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Abstract  

Numerous proposals for extending the relational data model to incorporate the temporal 
dimension of data have appeared in the past several years. These proposals have differed 
considerably in the way that the temporal dimension has been incorporated both into the 
structure of the extended relations of these temporal models, and consequently into the 
extended relational algebra or calculus that they define. Because of these differences it 
has been difficult to compare the proposed models and to make judgments as to which of 
them might in some sense be equivalent or even better. In this paper we define the notions of 
t empora l ly  grouped and temporal ly  ungrouped historical data models and propose two 
notions of historical reIationa1 completeness, analogous to  Codd's notion of relational 
completeness, one for each type of model. We show that the temporally ungrouped models 
are less expressive than the grouped models, but demonstrate a technique for extending the 
ungrouped models with a grouping mechanism to capture the additional semantic power 
of temporal grouping. For the ungrouped models we define three different languages, a 
temporal logic, a logic with explicit reference to time, and a temporal algebra, and show 
that under certain assumptions all three are equivalent in power. For the grouped models 
we define a many-sorted logic with variables over ordinary values, historical values, and 
times. Finally, we demonstrate the equivalence of this grouped calculus and the ungrouped 
calculus extended with a grouping mechanism. We believe the classification of historical 
data models into grouped and ungrouped provides a useful framework for the comparison 
of models in the literature, and furthermore the exposition of equivalent languages for each 
type provides reasonable standards for common, and minimal, notions of historical relational 
completeness. 
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1 Introduction 

Over the course of the past decade various historical relational data models have been pro- 

posed, including [JM8O, BZ82, CW83, Ari86, Tan86, CC87, Lor87, NA89, Sno87, Gad88, 

SarSO].' These data models are intended for those situations where there is a need for 

managing data as it changes over time. Generally, these data models extend the standard re- 

lational data model by including a temporal component. This incorporation of the temporal 

dimension has taken a number of different forms. Chief among these have been the addition 

of an attribute, say TIME, to a relation (the equivalence of time-stamping) [Sno87], or the 

inclusion of time as a more intrinsic part of the structure of a relation [CC87, Gad861. The 

latter approach results in what have been called non-first normal  form relations. 

Although the structures of the historical relations defined in each of the proposed 

historical relational data models differ from each other to varying degrees, the question 

of whether they have the same modeling capabilities has remained a subject for debate. 

Moreover, because the query languages defined in these data models differ from each other 

in their formulations, it has remained unclear whether they provide the same capabilities 

for extracting various subsets of a database. So many different languages have appeared in 

the literature, in fact (e.g., [MSSla] refers to no fewer than twelve algebras alone) that it is 

crucial to have some standard measure against which to compare them. 

In this paper we address the issue of completeness for historical relational data models 

and languages. A metric of historical relational completeness can provide a basis for 

determining the expressive power of the query languages that have been defined as part 

of proposed historical relational data models. As such, the notion of historical relational 

completeness can serve a role similar to that of the original notion of relational completeness 

first ~ r o ~ o s e d  by Codd [Cod721 and later justified as being reasonable by Bancilhon [Ban781 

and Chandra and Hare1 [CI.380]. 

In Section 2 we first address the issue of the modeling capability of the various historical 

data models that have been proposed. In particular we explicate the different modeling 

capabilities achieved by incorporating the temporal dimension at the tuple level (by time- 

stamping each tuple) or at the attribute-value level (by including time as part of each value). 

We introduce the terms tempora l ly  ungrouped and tempora l ly  grouped  to distinguish 

'This list is not exhaustive. For an overview of the area of time and databases see [AC86], [SnoSO], and 
[TCG+93]; for an ongoing bibliography on the subject see [McK86], [SS88] and [SooSl]. 
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between these two approaches, respectively, and discuss the relative power of the two ap- 

proaches. We then propose two canonical models to serve as the basis for our analysis of 

the power of query languages for these two approaches. The distinction between these two 

different types of models, temporally ungrouped ( TU) and temporally grouped ( TG), serves 

to structure the remainder of the paper. 

In Section 3 we introduce the notions of weak and strong completeness for comparing 

the query languages of different data models. Then in Section 4 we apply these concepts of 

completeness separately to the temporally ungrouped and temporally grouped models. For 

the tempora l ly  ungrouped models we define three different languages: a temporal logic, 

a logic with explicit reference to time, and a temporal algebra. We show that under certain 

assumptions about the temporal universe all three are equivalent in power. We propose 

these languages as a standard for strong completeness, which we call TU-Completeness, for 

temporally ungrouped models. In Section 5 we examine the temporal ly  grouped models,  

and define an historical relational calculus for them; this calculus is a many-sorted logic with 

variables over ordinary values, historical values, and times. We propose this calculus as a 

standard of strong completeness which we call TG-Completeness, for models of this type. In 

Section 6 we show that the ungrouped historical data models are only weakly complete with 

respect to the grouped historical models. However, we then show how the representation 

power of the ungrouped models and their languages can be extended to incorporate the 

grouping semantics, and show that this extended ungrouped model is strongly complete with 

respect to the grouped model. Finally, in Section 7 we examine the completeness of several 

historical relational languages that have been proposed in the literature with respect to these 

metrics. 

It is worth pointing out that there are a number of additional issues which might rea- 

sonably be said to be related to the question of completeness of query languages but which 

are necessarily outside of the scope of this paper. We are limiting our attention to models 

which incorporate a single dimension of time (historical, as opposed to temporal models, in 

the terminology of [SA85]), but we believe that these results could be extended to handle 

additional time dimensions. Furthermore, in the spirit of most of the work on completeness 

for standard relational languages, we do not address the issue of temporal aggregates (as, 

for example, in [SGM891). Work in the spirit of [Klu82] could extend the results here in that 

direction if so desired. Finally, we limit our attention to temporally homogeneous relations 

([Gad88]), i.e., relations whose tuples have attributes all defined over the same period of 

time, and do not incorporate schema evolution over time (as in [CC87]) because treatment 
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of these additional issues would significantly lengthen the paper, and because they have not 

been included in most of the proposed historical data models. In all of these decisions of 

what to incorporate in our notion of "reasonable" queries, we have been motivated by the 

desire to choose the greatest common denominator of the various models proposed. In this 

way we have been able to apply our metrics of completeness fairly against several models in 

the paper. We conclude in Section 8 with a summary of our results and some directions for 

future research. 

2 Temporally Grouped and Temporally Ungrouped 
Data Models 

Two different strategies for incorporating a temporal dimension into the relational model 

have appeared in the literature. In one, the schema of the relation is expanded to include 

one or more distinguished temporal attributes (e.g., TIME) to represent the period of time 

over which the fact represented by the tuple is to be considered valid. This approach has been 

referred to in the literature as tuple time-stamping or as a first-normal form (1NF) model. 

In the other approach, referred to as attribute time-stamping or as a non-first-normal form 

(NlNF)  model, instead of adding additional attributes to the schema, the domain of each 

attribute is extended from simple values to  complex values (functions, e.g.) which incorporate 

the temporal dimension. Both [CC87] and [Sno9O] contrast these two approaches. 

Consider, as an example, a relation intended to record the changing departmental and 

salary histories of employees in an organization2. Figures 1 and 2 show typical representations 

in these two approaches. While both relations appear to have the same information content, 

i.e., the same data about three different employees over the same period of time, the models 

represent this information in quite different ways. In the 1NF approach (Figure 1, and 

models such as [Ari86, Sno87, Lor87, NA89, TC90]), each moment of time relevant to each 

employee is represented by a separate tuple which carries the time stamp. In the N l N F  
approach (Figure 2, and models such as [Tan86, CC87, Gad881) each employee's entire 

history is represented within a single tuple, within which the time stamps are embedded 

as components of the values of each attribute. Also note, with respect to the N l N F  models, 

that while in general a key field like NAME would typically be constant over time, there is no 

requirement that this be the case. For example, in the EMPLOYEE relation in Figure 2 

2Similar examples have appeared in [CW83], [Gad861 and [Sno87]. 
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EMPLOYEE 
NAME I DEPT I SALARY I/ lime 

Figure 1 : Prototypical 1 NF Historical Employee Relation 

Figure 2: Prototypical NlNF' Historical Employee Relation 

EMPLOYEE 

the employee Tom changes his name to Thomas at time 3. There are many applications 

where the value of a key need not be constant over time, but merely unique in the relation 

at any given time. 

NAME 
0 -+ Tom 
1 -+ Tom 
2 -+ Tom 
3 -+ Thomas 
1 -+ Jim 
2 -, Jim 
3 -+ Jim 
1 -+ Scott 
2 -+ Scott 

While N l N F  models inherently group related facts into a single tuple, 1NF models, 

whether historical or temporal (using the distinction in [SA85] for models with one or two 

time dimensions, respectively) are problematic in this regard. Such models provide no inher- 

ent grouping of the tuples that represent the same object3; for instance, they do not group 

the tuples of the same employee (Jim, e.g.) in Figure 1. As we shall see, it is up to the users 

to know and to maintain that grouping in all of their interactions with the database. 

3We will use the term object occasionally in the paper. We use it in a completely neutral sense, and not 
as a reference to objects in the object-oriented paradigm with all of the implications thereof. . 

4 

DEPT 

0 -+ Sales 
1 -+ Finance 
2 -+ Finance 
3 -+ MIS 
1 -, Finance 
2 -, MIS 
3 -+ MIS 
1 -t Finance 
2 -+ Sales 
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SALARY 
0 -+ 20K 
1 -+ 20K 
2 -+ 20K 
3 -+ 27K 
1 --t 20K 
2 -+ 30K 
3 - + 4 0 K  
1 -, 20K 
2 - + 2 0 K  

lifespan 

{0,1,2,3) 

{1,2,3) 

{1,2) 



Figure 3: Prototypical 1NF Temporal Employee Relation 

EMPLOYEE 

We point out that another technique for time-stamping tuples (or values) that has ap- 

peared in the literature (e.g., [Sno87, LOI-871) uses a time-interval rather than a time-point 

as the time-stamp. For example, the VALID-TIME (from) and (to) attributes in Figure 3 

denote a time interval. It is well known that if time is discrete these two approaches are for- 

mally equivalent ([vB83]), although interval time-st amping may be representationally more 

compact. Nearly all of the work on historical or temporal databases has assumed a dis- 

crete temporal domain ( [MSSla]). We will therefore utilize the two representation schemes 

interchangeably. 

NAME 
Tom 
Tom 
Tom 
Thomas 
Jim 
Jim 
Jim 
Scott 
Scott 

Although in this paper we are concerned only with the issue of completeness of query 

languages for historical data models, it is worth pointing out that the same grouping problem 

occurs in temporal models, as the prototypical representation in Figure 3 makes clear. In 

these models the tuples are stamped, not merely with the time period during which the fact 

that they represent held true in reality (VALID-TIME), but also with another time stamp 

representing the time period during which the database knows of the fact ( TRANS-TIMq. ' 

We do not treat such relations in this paper, but believe that our results could (and should) 

be extended to address them. 

Because the term N l N F  has been used elsewhere to refer to various kinds of relaxations 

of the 1NF Property including, among other things, models which allow nested relations or 

set-valued attributes, we prefer to use the terms Temporally Grouped and Temporally 

Ungrouped for these two types of models. In the rest of this paper, therefore, we will use 

the term Temporally Grouped (TG) to  refer to models which provide built-in support 

DEPT 

Sales 
Finance 
Finance 
MIS 
Finance 
MIS 
MIS 
Finance 
Sales 
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SALARY 

20K 
20K 
20K 
27K 
20K 
30K 
40K 
20K 
20K 

VAL ID- TIME 

( ' o m )  
0 
1 
2 
3 
1 
2 
3 
1 
2 

TRANS- TIME 

(to) 
1 
2 
3 
4 
2 
3 
4 
2 
3 

(start) 

t I 
t 2 

t 3  

t 4  

t 5  

t 6  

t 7 

t s  
t g  

(stop) 
00 

CX) 

00 

00 

00 

00 

00 

00 

00 



for the grouping of related temporal values, and Temporally Ungrouped (TU)  for those 

which do not. 

In the rest of this section we will formally define two canonical models, one ungrouped 

and the other grouped. These models will first be informally contrasted, and then will be 

used in the remainder of the paper to provide the basis for our definitions of temporally 

grouped completeness (TG-Completeness) and temporally ungrouped completeness (TU- 
Completeness). 

2.1 TU: A Canonical Temporally Ungrouped Relation Structure 

The structure for relations in temporally ungrouped data models is essentially a straight- 

forward extension of the standard relational structure ([Mai83]). We refer to the canonical 

temporally ungrouped historical database model, now to be presented, as TU. 

Let UD = {Dl, DZ . . . , Dnd) be a (universal) set of value domains  (i.e., each D; is a set 

of values), where for each i, D; f 0. 1) = U:zI D; is the set of all values. 

Associated with each value domain D; is a set of value comparators  eD, ,  each element 

of which can be used to compare two elements of the domain. At a minimum each set of value 

comparators contains the comparators "=" and "+" to test for the equality and inequality, 

respectively, of any two elements of the associated value domain. 

T = {to, i l l . .  . , t i , .  . .) is a non-empty set, the set of t imes,  and < is a total order on T. 
The cardinality of T is restricted to be at most countably infinite. 

Let UA = {A1,  A*, . . . , An,) be a (universal) set of a t t r ibutes .  Each attribute names 

some property of interest to the application area. Moreover, there is a distinguished attribute 

TIME, not in UA,  which will be used to represent temporal information. When we need to  

distinguish between these two types of attributes, we will refer to those attributes in UA as 

value a t t r ibutes ,  and to  TIME as a tempora l  a t t r ibu te .  

A TU relation scheme RTU is a 3-tuple RTU =< A,  K, DOM > where: 

I. A U {TIME) is the set of attributes of scheme RTU, where A C UA. 

2. The set KU{TIME) ,  where K C A, is the key of scheme RTv, i.e., Ku{TIME) -+ 
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A*. We call this the key constraint. 

3. D O M  : A U {TIME) -, UD U {T) is a function that assigns to each value attribute 

A; E A from scheme RTU a value domain, denoted DOM(A;, RTU), and to TIME 
the temporal domain T. 

A TU relational database scheme DBTu = (RITu, R2,,, . . . , hTU} is a finite set of 

TU historical relation schemes. A TU tuple t ~ u  on scheme RTU =< A, K, D O M  > is a 

function t q - ~  : A U {TIME) -, D U T, that associates with each attribute A; f A 
a value in DOM(A;, RTU) and with TIME a value in T. A TU relation rTu on scheme 

RTU =< A, K, D O M  > is a finite set of TU historical tuples on scheme RTU that satisfies 

the key constraint. A T u  database dTu = {rlTu, rzTu,. . . , rnTU ) is a set of TU relations 

where each riTU is defined on a (not necessarily unique) ungrouped historical relation scheme 

RiTu- 

The EMPLOYEE relation in Figure 1 is a typical relation in the temporally ungrouped 

historical data model. 

2.2 TG: A Canonical Temporally Grouped Relation Structure 

As a basis for the specification of our notion of historical completeness for temporally grouped 

temporal relations, we begin by defining a canonical temporally grouped historical relation 

upon which we will base the calculus that we define in the next section. The structure 

of this relation is specified in such a way as to capture the intent and requirements of a 

temporally grouped historical relation, and to be general enough to have the representational 

capabilities of other proposed historical relations. We refer to this canonical temporally 

grouped historical database model, now to be presented, as TG. 

Let b, I), OD,, T, and UA be as for the canonical temporally ungrouped relation 

structure, TU, above. T will designate the set of t imes in the model, and any subset L C_ T 
is called a lifespan. (Note, therefore, that a lifespan can consist of several, non-contiguous 

intervals of time.) Corresponding to each value domain D; is a t empora l  domain D ; ~  of 

partial temporal-based functions from the set of times T to the value domain Di5. Each of 

4The symbol "--+" is used here to represent a functional dependency. 
50ur use of the term temporal domain should not be confused with Gadia's use of the same term in 

[Gad88]; our use of the term is analogous to Gadia7s term temporal assignment. 
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these partial functions defines an association between each time instance in some lifespan L, 
and a value in some value domain D;, and thus provides a means of modeling the changing 

of an attribute's value over time. 

A TG relation scheme RTG is a 3-tuple RTG =< A,  K ,  D O M  > where: 

1. A C UA is the set of a t t r ibutes  of scheme RTG. 

2. K C A is the key of scheme RTG, i.e., K -4 A. 

3. D O M  : A 4 UD U {T} is a function that assigns to each attribute of scheme RTG a 

value domain, and, by extension, the corresponding temporal domain. We denote the 

domain of attribute A; in scheme RTG by DOM(A;, RTG). 

A TG database  scheme DBTG = {RITG , RzTG, . . . , RnTG} i s a  finite set of TG relation 

schemes. 

A TG t up l e  ~ T G  on scheme RTG = < A, K ,  D O M  > is a function that associates with 

each attribute A; E A a temporal-based function from the tup le  lifespan (any subset of T ) ,  

denoted tTG.l, to the domain assigned to attribute Ai. That is, tTG(Ai) : tTG.l + DOM(A;)6. 

A TG relation rTG on scheme RTG =< A, K, D O M  > is a finite set of TG tuples on 

scheme RTG such that given any two tuples tlTG and tZTG in rTG, Vt E (tlTG:l n tzTG .l) 

3A; E K such that tlTG (A;)(t) # tZTG(Ai)(t). This notion of a key simply specifies that 

there can be no time in which two different tuples agree on the key. Note that the key is 

not required to be constant over time. The E M P L O Y E E  relation in Figure 2, with three 

tuples, is an example of a TG relation. Its (presumed) key, NAME,  is an example of a 

non-constant key. 

A TG database ~ T G  = {'ITG7 rzTG ,... , rnTG ) is a set of TG historical relations 

where each riTG is defined on a (not necessarily unique) TG relation scheme RiTG. 

'we note that it is also possible to associate lifespans with attributes [CC87]; a treatment of this is 
beyond the scope of this paper. Doing so permits historical relation schemes to accommodate changes that 
may occur to them over time. 
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2.3 Comparison of Grouped and Ungrouped Models 

Many researchers have assumed that these two different approaches - temporally grouped 

and temporally ungrouped - were equivalent in power, the differences simply a matter of 

style7. In exploring completeness for historical databases, however, we had to  try to reconcile 

these two different approaches, and in doing so came to the conclusion that they are not 

equivalent. Gadia in [Gad881 addresses this issue of grouping (without using the term), 

when he discusses the relationship between his homogeneous model, a grouped model, and 

what he calls a snapshot valued function which is analogous to our notion of a corresponding 

ungrouped model, to be introduced in Section 6. However, rather than emphasizing the 

importance of the diflerences between these two approaches, he focuses on their similarity 

by defining them as being weakly equivalent. Essentially he shows that you can take a 

grouped relation and ungroup it, but that for an ungrouped relation there is not a unique 

grouped relation, and hence his equivalence is weak. (A similar point is made in [TG92] with 

respect to nested relations.) 

What we will argue in the rest of this section is that the differences are important, and 

the modeling and querying capabilities are not the same. In subsequent sections we shall 

define precisely a notion of completeness for each of the two approaches, and then compare 

them formally. Finally, we will show how by adding grouping mechanism to the ungrouped 

model there is a (strong) equivalence between the grouped model and the ungrouped model 

with group identifiers. 

The first problem with the ungrouped historical models is that without knowledge of 

the key of the relation there is no way of knowing how to group appropriately the facts 

represented in an arbitrary and unbounded number of tuples. Also, if the key is not required 

to  be constant over all times (and there is no reason to require this), there would be no way 

at  all to group related tuples (i.e., tuples describing the same object). Figure 3 is typical of 

the figures provided with these models (e.g. ,[Sno87, Figure 81) in that it "begs the question" 

somewhat by assuming that the key value of an object remains constant over time. Moreover, 

these figures implicitly sort the tuples by the key field(s). However, since relations are sets, 

the implicit grouping of the multiple tuples for a given object in these models is in fact being 

done subliminally for the reader and is not supported by these models. A simple listing 

7For example. Snodgrass ([Sno87, pp.264-2661) discusses what he calls the "embedding" of the temporal 
relation into a flat relation, and informally discusses four techniques for doing so, with the implication that 
they are all capable of representing identical information. 
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of the tuples in such a relation is not guaranteed to  present them in such a nicely ordered 

fashion. 

Another, even more serious problem inherent in these ungrouped models can be seen 

when we consider the result of the following two queries. 

Q1: Give me the salary history of each employee. 

Q2: Give me the salary history of each employee, but without identifying the employees to 

whom they belong. 

Q l  poses no additional problems for any of the three models: provided the user knows that 

NAME is the key, the key is constant over time, and the user remembers (or the DBMS is 

nice enough) to sort the resulting tuples by the key, the interpretation of the tuples in the 

answer to Q l  is no more problematic than interpreting the tuples in the base relation. 

Q2, however, is another matter entirely. First, it is worth noting that this very reasonable 

query asks simply that the DBMS treat the salary history (temperature history, rainfall 

history, etc.) as a first-class object that can be queried, manipulated, etc. ([Cli82], [SS87]). 

The result of the query in the three models is shown in Figure 4. Note that only a tempo- 

rally grouped model, such as that in Figure 2, respects the integrity of the temporal values of 

all attributes as first-class objects and therefore yields the answer shown in Figure 4(a). The 

result of the query in such a model could, for example, be piped to a graphics program to 

produce a visual query output such as is shown in Figure 5. Temporally ungrouped models 

cannot support this query, because they do not treat temporal objects as first-class values. 

We believe that a model which claims to support the temporal dimension of data should 

support temporal values - i.e., values changing over time. For example, a SALARY should be 

seen as the history of the changing salary values over some time period, and not as a simple 

scalar value whose time reference is somewhere else in the relation. These considerations 

motivate the following definition. 

Definition. A temporal DBMS is said to have tempora l  value integrity if: 

1. The integrity of temporal values as first-class objects is inherent in the model, in the 

sense that the language provides a mechanism (generally, variables and quantification) 

for direct reference to  value histories as objects of discourse, and 
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SALARY lifespan - 
0 -+ 20K - 3 2 m r x F  
1 -+ 20K 
2 + 20K 

20K 
20K 3 4 2 7 K  {0,1,2,3) 
20K 1 -+ 20K 

2 -+ 30K 27K 
'-.A-,Y 

3 
SUK 1 3 - + 4 0 K  11 f1.2.31 1L 

1 2 + 20K 11 {1,2) 

(a) in TG Model (b) in Time Point TU Model ( c )  in Time-Interval TU Model 

Figure 4: Answers to Q2 

SAL SAL 

TIME TIME TIME 

Figure 5: Graph of Employees' Salaries from Figure 4(a) 
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2. Temporal values are considered identical only if they are equal for all points in time 

over which they are defined. 

We categorize models which do not satisfy these properties, such as the so-called 1NF his- 

torical data models, as Temporally Ungrouped. In their answer to Q2 (Figures 4(b) and 

4(c)), Property 1 is violated: instead of showing salary values for three individuals and at  

nine different moments in time as in Figure 4(a), the TU model incorrectly equates Tom, 

Jim and Scott's salaries between times 1 and 2 and Thomas' and Scott's salaries between 

times 2 and 3, and discards what it considers duplicates, merely because at  those particular 

points in time the salaries happen to have the same values. Property 2 is violated since the 

tuples in the answer are presented as though they are completely unrelated - which salaries 

are tied together into which groups? The model does not provide any inherent grouping. 

The user must therefore always know and demand the key in any query, even when, perhaps 

for security reasons, this is not desired. 

In temporally ungrouped models you can never quite take hold of an object like a "salary." 

You can take pieces of it, but if you try to take the whole object and look at  it and inspect 

it, it falls through your fingers moment by moment. Only in a temporally grouped model 

is an object like a salary (or the pricing history of a stock, or the average annual rainfall 

in Boulder over the last fifty years) a first class object that you can interrogate, examine, 

dissect, or compare to another salary (or the rainfall in Spokane.) It is really an ontological 

question of what exists in the model. As Quine put it, "a theory is committed to  those 

and only those entities [emphasis ours] to which the bound variables of the theory must 

be capable of referring" [Qui53, in On What There Is]; in temporally ungrouped models 

temporal entities (like salary histories) do not exist because the models and their languages 

provide no mechanism for referring to them. 

We note that the same problem occurs in those ungrouped models (like TQuel [Sno87]) 

which use two attributes, rather than one, to incorporate the valid time (Figure 4(c)). Only 

a Temporally Grouped model, like TG, with relations such as the one in Figure 2, exhibits 

t empora l  value integrity,  and therefore provides the correct answer t o  this query, as in 

Figure 4(a). 

The two representation schemes, TG and TU, complicate the question of completeness of 

query languages for an historical relational data model. We are therefore led to define two 

notions of completeness for historical database query languages, one based on TG models and 
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Figure 6: Management TU Historical Employee Relation 

the other on TU models. We first define TU-Completeness and demonstrate the equivalence 

of 3 different types of query languages for TU models: a temporal logic, a first-order logic 

with explicit temporal variables, and an extended relational algebra ([TC90]). We then 

define TG-Completeness in terms of a calculus that we call Lh. Lh is a natural extension 

to standard first-order calculus, incorporating two domains (ordinary values and times) and 

providing each domain with constants, variables, and quantification. Finally, we show how 

ungrouped models can be extended in a simple way (by adding the grouping mechanism of 

group IDS), so that the grouping can be simulated explicitly. 

4 
4 
5 
4 
5 
6 

Tom 
Tom 
Herb 
Jim 
Jim 
Jim 

One additional aspect that we will address is the issue of safety: which expressions in 

the language are guaranteed to yield finite answers, and answers that come from data in the 

database (see, e.g., the description of domain independence in [U1188]). For instance, consider 

an additional historical relation modeling managers and their projects, as shown in Figure 6 .  

Without some restrictions on the way that time references can be made in a query, i t  will be 

possible to  ask questions that in effect create arbitrary temporal relationships among data 

items where such relationships do not exist in the database. 

P1 
P2 
P2 
P3 
P3 
P3 

For example, in a query language which does not respect temporal value integrity the 

following query can be asked: 

Q3: {< x, y, t > 1%' 3z(  EMPLOYEE(w, x, y, t') A MANAGEMENT(w,  z,  t )  )) 

This query, here expressed in a temporal calculus (to be described in Section 4.2), could 

also be expressed in other ungrouped languages such as TQuel ([Sno87]). The answer, as 

shown in Figure 7, relates employees and departments at  times which are clearly nonsensical 

because this relationship was created by the query rather than extracted from the data in the 

database. While such a query is clearly expressible in a language for a model which treats 
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Jim Finance 6 

NAME 
Tom 

( Jim 
I 

1 MIS 1 6  

DEPT 

Sales 

Jim 
Jim 
Jim 

Figure 7: Answer to Unsafe Query Q3 

time 

4 

time as just another attribute, it seems to us questionable whether the model is incorporating 

time into the model in any meaningful way. This issue will be addressed by our rules for safe 

expressions in historical query languages in Section 5.2, which incorporate a data extraction 

view ([AU79]) of query languages. 

MIS 
MIS 
MIS 

Temporally grouped models support temporal values directly - they incorporate the 

temporal component into the historical model at an appropriate level, and provide a means 

to refer directly to temporal "objects". They also group together into a single tuple all of the 

facts about an object over time. In Section 6 we will show that the TG representation is more 

expressive than the TUrepresentation. Thus we can state that merely time-stamping tuples 

in the database, as attractive as its simplicity might make it, is not sufficient to adequately 

incorporate a temporal dimension into the database. 

6 
4 
5 

Because the values of many attributes frequently do not change over long periods of 

time, it is often convenient to adopt a shorthand notation for temporally grouped relations. 

Figure 8 represents a TG historical database using a shorthand notation for intervals, where 

e.g., [tl,t2) denotes the set of all points t ,  t l  < t < t2. Note that the E M P L O Y E E  

relation records historical information on three employees in three historical tuples, and 

the D E P A R T M E N T  relation represents the history of four departments in four historical 

tuples. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-93-08 



1 [5,6] + Engrng 1 (5,6] -+ 35K ( {1,2,3,5,6)  
I DEPARTMENT 

EMPLOYEE 

DEPT I MGR I lifespan 

NAME 1 DEPT SALARY 
[O, 3) -+ 20K 
[3,5) -+ 30K 
[5,6] -+ 27K 
[2,6] -, 28K 
[ l ,  2) -+ 27K 
[2,4) -+ 30K 

[O, 5) -+ Tom 

[5,6] -, Thomas 
[2,6] --, Juni 
[I, 4) -, Ashley 
[5,6] -+ Ashley 

[0,6] -, Acctng 

[0,6] --, Engrng 

lifespan 

{0 ,1 ,2 ,3 ,4 ,5 ,6)  
{2,3,4,5,6)  

[O, 4) -+ Sales 
[4,6] -+ Mktg 

[2,6] - Acctng 
[I, 3) -+ Engrng 
[3,4) -+ Mktg 

[0 ,6 ] -+Mktg  

Figure 8: The TG Historical Relations EMPLOYEE and DEPARTMENT 

[0,2) -, Paul 
[2,6] -+ Juni 
[O, 5) -+ Wanda 

[O, 61 -+ Sales 

3 Completeness 

- 

{0,1,2,3,4,  5 ,6)  

[5,6] -+ Ashley 
[0,5)-+Torn 

Most of the database literature that has addressed the question of query language complete- 

{0 ,1 ,2 ,3 ,4 ,5 ,6)  

[5,6] -+ Thomas 
[O, 61 -+ Sue 

ness has done so within the context of a single data model. As with the work of Codd 

{0,1,2,3,4,5,6)  
('1 1 ,2 ,3 ,4 ,5 ,6)  

[Cod721 comparing the relational algebra and calculus, two different query languages for the 

same data model are compared. Informally, one language is said to be complete with respect 

to another if it can express all of its queries, and two languages are equivalent if they are 

mutually complete with respect to one another. This notion is made precise in the following 

definition. 

Definition. Given a data model M and two query languages L1 and L2 for M ,  language 

LZ is complete with respect to  L1 iff 

Vdb E M, V q  E L1, 3q' E L2 [ql(db) = q(db)] 

where db is a database in M and q is a query in L1. Languages L2 and L1 are equivalent iff 
L2 is complete with respect to L1 and L1 is complete with respect to L2. 

It is more difficult to compare two diflerent data models with different query languages. 

Let us denote a data model as a 2-tuple A4 = (DS, QL) consisting of a structural component 
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(DS) and a query language (QL). For example, we might consider the relational model as 

R M  = (R, RC) where R is the set of all possible relations and RC is the relational calculus. If 

we are interested in comparing two data models MI = (DSl, QL1) and M2 = (DS2, QL2), we 

must consider a mapping between the structures of the different models as well as mappings 

between the query languages. 

Obviously, not all comparisons between different data models are interesting. Informally, 

we are only interested in comparing two models whose structures can represent the same 

information. If, e.g., data model DM1 were the relational model and data model DM2 

had structures capable of representing only a single "object", there would be little point 

in comparing them. Intuitively, DM2 is not large enough to represent all of the possible 

relations in the relational model, and to distinguish between them. 

In order to compare what we may call the representation power of the data models them- 

selves, we need to have a mapping QMIM2 from structures in one model (MI) to structures 

in the other (M2). Such an Q M , ~ 2 ,  we contend, is only interesting if it preserves the identity 

of all of the application-specific base values in MI, such as the employee names, salaries, etc. 

At a minimum, if there is to be any possibility that M2 is going to be able to represent the 

same information as MI, there must be a 1-1 mapping from these base value domains in MI 
into M2. Then some higher-level mapping from the Ustructures" of MI into the "structures" 

of M2 must be specified. Once we have two data models that are in this sense reasonable 

to compare, we can examine the issue of whether or not their query languages are in some 

sense complete with respect to one another, or equivalent to each other. We will want to talk, 

not only of the mapping from an "object" in one model to its representation in the other, 

but also of the mapping applied to an entire database. So we will abuse notation slightly by 

extending S 2 M l ~ 2  in the obvious way. If D = {xl,. . . x,) is an instance of data model Ml 
(for example, a set of relations), then fljwIM2 (D) = {QMlM2 (XI), . . . Q M ~  M2 (x,)) is the image 

of that set of objects (e.g., relations) in MZ under the mapping. 

Let us try to be more precise about what constitutes a "reasonable mapping" between 

the structures of two different data models. Our definitions will be simpler if we confine 

the discussion to two "relationally-based" temporal models, i.e., models whose structures 

are relations consisting of tuples with attributes and valuess. Accordingly, we will focus 

on comparing data models which are quite similar in terms of the functionality that they 

8The entire issue of formal comparisons of different data models is an interesting one which, in its full 
generality, is necessarily outside of the scope of this paper. 
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at tempt to  capture ( time-varying values, and temporal grouping) and ignore more general 

issues of entirely different representation schemes, different normal forms, etc. Therefore, 

we will focus on comparing two databases which have a comparable set of relations and 

attributes, but which incorporate time or grouping in different ways. 

To this end, we partition the set of attributes of a relation into the set of distinguished 

attributes (e.g., T I M E  ) that are required in each relation of the model and the set of non- 

distinguished attributes (e.g., SAL, DEPT, etc.) that are user-specified. We assume that 

for the models under consideration the following two functions can be specified. AND(r) 

denotes the set of all non-distinguished attributes in the relation scheme of r in the model. 

For each non-distinguished attribute A, the active domain of A in a relation r from r denoted 

AD(A, r), is the set of all the values in the value domain (as defined in Section 2.1) that 

occur in the A-column of the tuples in r. 

Definition. A relation 7-2 in data model M2 corresponds to relation rl in data model Ml 
iff: 

The main purpose of this definition is to eliminate obviously trivial mappings such as a 

mapping to a model consisting of only a single relation with a single attribute and a single 

tuple, which could (trivially) be defined to be "equivalent" t o  any other data model. What 

this definition requires is that for a relation 7-2 to correspond to relation rl (1) it must be 

defined over the same set of non-distinguished attributes, and (2) all of the values of the 

non-distinguished attributes that appear in relation rl also appear in relation r 2 .  Note that 

condition 1 only requires the same set of non-distinguished attributes because the distin- 

guished attributes of one model may not be required in a different model which nevertheless 

can be said to represent "the same information." For example, TU models require the 

distinguished attribute TIME, whereas TG models do not. 

Definition. Given data models MI = (DSl, QLl) and M2 = (DS2, QL?), a mapping 

from the relations of MI to the relations of M2 is a correspondence mapping iff: 
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Vrl E MI [GMIM2(rl )  corresponds to r l ]  

For example, the relation in Figure 1 could be obtained from the relation in Figure 2 through 

the obvious Uunnest" correspondence mapping (see Section 6). With these definitions we are 

prepared to compare different data models and query languages. 

Definition. Given data models MI = ( D S l ,  Q L l )  and M2 = (DS2 ,  QL2) ,  we say that M2 

is weakly complete with respect to MI iff there exist two mappings: 

f l M l M 2  : DS1 --, DS2 and 

I'M] M2 : QLl --' QL2 such that 

1. OM] M2 is a correspondence mapping, and 

2. for all 4 in QLl and for all instances D of the structures DS1 : 

Definition. Given data models MI = (DS1,  QLI)  and M2 = (DS2, QL2) ,  we say that M2 

is strongly complete with respect to MI iff there exist two mappings: 

f l M l ~ 2  : DS1 --+ DS2 and 

I 'M,M~ : QLI  + Q.L2 such that 

1. GMlM2 is a correspondence mapping, and is 1-1 

2. for all 4 in QLl and for all instances D of the structures DSl : 

Figure 9 illustrates these two possible completeness relationships between M2 and MI.  

In the case of weak completeness, 0MlM2 is not required to be 1-1, and so several relations 

in Ml could map to the same relation in M2. Strong completeness requires f lMlM2 to be 1-1. 

Clearly, strong completeness implies weak completeness. Finally, we can define a derivative 

notion of equivalence based upon these two notions of completeness: 
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Figure 9: M2 complete with respect to MI 

Definition. Given data models MI = (DSl, QL1) and M2 = (DS2, QLZ),  we say that MI 
is weakly (strongly) equivalent to M2 iff MI is weakly (strongly) complete with respect to M2 
and M2 is weakly (strongly) complete with respect to MI . 

Note that our definition of weak equivalence is different from the related concept of 

weak equivalence in [Gad88]. Our notion cornpares two different data models. Gadia7s 

notion compares two (grouped) relations which map to the same ungrouped relation via an 

"unnest" operation. 

4 Historical Relational Completeness for Ungrouped 
Languages 

In this section, we define the concept of ungrouped tempora l  relational completeness, 

TU-Completeness. It will be based on the canonical temporally ungrouped model TU, asd 

on two temporal calculi and a temporal algebra. We will define all three formalisms in this 

section and show their equivalence. However, to make the paper self-contained, we provide 

a brief overview of (conventional) temporal logic in the next subsection. 

4.1 Overview of Temporal Logic 

In this section, we review the basics of temporal logic. Both Kroger [Kro87] and Rescher 

and Urquhart [RU71] provide a good introduction to the subject. 

Since temporal logic deals with time, we have to specify the model of time that we will 

be working with. The most general model represents time as an arbitrary set with a partial 

order imposed on it. With additional axioms, we can introduce other models of time, e.g., 
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A until B: is true now if B will be true at some future time t and A will be 
true for all the moments of time in the time interval (now, t )  

A since B: is true now if B was true at some past time t and A was true for 
all the moments of time in the time interval (t,  now) 

Figure 10: Temporal Operators until and since 

time can be discrete or dense, bounded or unbounded, linear or branching [vB83]. Although 

the temporal calculus can be defined for an arbitrary model of time (since it is based on 

the predicate temporal logic), we consider the discrete linear temporal domain in this paper 

because the algebra TA defined in Section 4.3 is based on that domain. We note that this is 

the model of time generally considered by historical and temporal data models ([MSgO]). 

The syntax of a predicate temporal logic is obtained from the first-order logic by adding 

various temporal operators to it. In this paper, we consider the U;S logic, i.e., the temporal 

logic with until and since temporal operators, because it is shown in [Kam68] and also in 

[Gab891 that this logic is equivalent to the first-order temporal logic with explicit references 

to timeg. There are several different definitions of until and since operators proposed in the 

literature. We will use the definition of these operators from [Kro87] shown in Figure 10. 

The semantics of a temporal logic formula is defined with a temporal structure [Kro87], 

which comprises the values of all its predicates at all the time instances. Formally, let 

PI,. . . , Pk be a finite set of predicates considered in the predicate temporal language1'. 

Then, a temporal structure is a mapping Ii: : T -+ Fl x . . . x Pk, where T is a 

set of time instances, and Pi is the set of all the possible interpretations of predicate Pi. 
The mapping K assigns to each time instance an interpretation of each of the predicates 

PI,. . . , Pk at that time. We will use I(t instead of Ii:(t) to denote the value of temporal 

structure I( at time t. We make an assumption, natural in the database context, that the 

domains of predicates do not change over time. 

F'rom a database perspective, a temporal structure Ii: is most naturally looked at as 

mapping of each moment of time t into a state of the database, i.e. into instances of each of 

the database relations at time t. Therefore, each predicate in a temporal structure determines 

an historical relation, i.e. a relation that changes over time. An instance of an historical 

gKamp [Kam68] used the term complete to describe this property. However, we will use that term in a 
broader sense and abstain from introducing any additional terminology. 

l0Since we are interested in database applications, we consider only a finite number of predicates corre- 
sponding to the set of relations in a database. 
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F'isiirp 11 .  T~mnnral Striirtaire fnr Relatinm Ti.MPT.nVF.Ti? 

EMPLOYEE 

"b"'" ** '  *Vl*lt.IVIUI U U I  L l U U U I . ,  *"I I ~ U I I U W I V I I  -*.I* 1_IV I YU.  

time 

i = 0 

i = 1 

i = 2 

i = 3 

relation R at time t ,  ICt(R), will be denoted Rt. 

K; (EMPL 0 YEE) 
EMPL(Tom, Sales, 20K) 
EMPL(Tom, Finance, 20K) 
EMPL(Jim, Finance, 20K) 
EMPL(Scott, Finance, 20K) 
EMPL(Tom, Finance, 20K) 
EMPL(Jim, MIS, 30K) 
EMPL(Scott , Sales, 20K) 
EMPL(Thomas, MIS, 27K) 
EMPL(Jim, MIS, 40K) - 

An historical database represented in a certain ungrouped historical data model, such 

as the (historical component of) TQuel data model [Sno87], or the TRA model of [Lor87], 

defines a temporal, i.e. the mapping Ii', although often implicitly. Therefore, a temporal 

structure represents a common base of comparison for different historical data models. For 

instance, the temporal structure of the NlNF historical relation EMPLOYEE presented in 

Figure 1 is shown in Figure 11. 

Given a temporal structure for temporal logic predicates, we can interpret arbitrary 

temporal logic formulae in the standard inductive way [Kro87]. For example, the meaning of 

until and since operators in Figure 10 can be defined inductively in terms of the temporal 

structures for the arguments to the operator. 

Alternatively, assertions about temporal structures can be expressed in a two-sorted first- 

order logic, where one of the sorts is time. In this logic, arbitrary quantifications are allowed 

over both temporal and non-temporal variables. 

It is clear that until and since operators can be expressed in this first-order logic. In fact, 

Figure 10 shows how to do that. Furthermore, Kamp [Kam68] and subsequently Gabbay 

[Gab891 have shown that the two logics are equivalent when time is modeled either by the 

real numbers or the integers. 
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4.2 Temporal Calculi TL and TC 

In the previous section we described the temporal logic US and also considered a two-sorted 

first-order logic with explicit references to time. These two logics give rise to two temporal 

calculi TL and TC. In order to define them precisely, we first introduce the concept of 

temporal safety for the two languages. 

Intuitively, a temporal formula (both a temporal logic and a first-order formula with 

explicit references to time) is safe if it can produce only finite relations at  all time instances, 

and if these relations contain only data from the database. Our definition of the safety of 

temporal logic formulae is analogous to that of the snapshot relational case [U1188] with 

the added assertion that the temporal operators until and since produce safe formulae if 

operands of these operators constitute safe formulae. It is easy to see that, indeed, these 

temporal operators cannot produce infinite historical relations if they operate on finite rela- 

tions. For the first-order logic with explicit references to time, safety is defined exactly as in 

[U1188]. 

With this definition of safety for the two types of logic, we are ready to define the two 

calculi TL and TC. 

Definition. A temporal calculus query is an expression of the form 

where q5 is a safe temporal logic formula and xl, 2 2 , .  . . , x, are all the free variables in 4. W 
denote the temporal calculus based on these queries as TL. 

Let T be a temporal domain for the predicates in 4. The answer to this query is an 

historical relation defined on T, such that for any t in T, its instance is 

We also define a temporal query expressed in the first-order logic with explicit references 

to  time in a similar way as 

{ x 1 , x 2 , . . - , x ~ ,  14) 
t 

where 4 is a safe formula from the first-order logic with explicit references to time, xl, x2, 

. . ., x, are the free variables in 4, and t is a temporal variable. The answer to this query is 
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Figure 12: Historical Relations U N E M P L  and TAXES 

Scott 
Jim 
Jim 
Tom 
Jim 
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Jim 
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1986 

1987 

1988 
1989 - 1990 

defined exactly as in the standard relational case. We denote the temporal calculus based 

on these queries as TC. 

Note that in both calculi a query operates on historical relations and returns an historical 

relation, i.e. it returns the same type of object as the type of its operands. 

8400 
10400 
10800 
12000 
11500 
13200 
12800 
13600 
9200 

Example  1 Assume that time is measured in years. Consider historical relation UN- 

EMPL(NAME) specifying that a person is unemployed for most of the year, and historical 

relation TAXES(NAME, TAX) specifying taxes a person paid in a certain year. Figure 12 

gives examples of such relations. We say that a person is a "good citizen" if he or she always 

paid taxes during the period of his or her last employment, i.e. since the last time the per- 

son was unemployed. The relation GOOD-CITIZEN(NAME) (shown in Figure 13) can 

be computed with the following TL query: 

1986 
1987 
1988 

1989 

1990 

GOOD-CITIZEN = {NAME I TAXES(NAME, TAX) since UNEMPL(NAME))  

The same relation can also be computed with the following TC query: 

GOOD-CITIZEN = {NAME, t I (3ti)(UNEMPL(NAME, ti) A 

(Vt")(ti < t" < t + TAXES(NAME, TAX, t")))) 

The proposal to use TL as a query language for historical databases was made in [Tuz89] 

and in [TC90]. The proposal to use TCas a query language for historical databases was made 

in [KSW9O]. Since the U;fi temporal logic is equivalent to the first-order logic with explicit 
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Figure 13: Historical Relation GOOD-CITIZEN 

references to time for the discrete linear model of time considered in the paper [Kam68], it 

follows that the two calculi TL and TC are also equivalent. 

4.3 Temporal Algebra TA and Its Equivalence to Calculi TL and 
TC 

In this section, we present a temporal algebra TA that is equivalent to  the two calculi defined 

in the previous section. This algebra was first introduced in [TC90]. 

Let R = {Rt ) tE~ ,  S = {St}tE~ and Q = {QtItET be historical relations defined over a 

temporal domain (lifespan) T = Itl, t,]. Using the standard relational algebra terminology, 

we say that two historical relations are union compatible if their schemas have the same 

sets of attributes, defined over the same domains. Then we consider the following temporal 

algebra operators: 

01: Select: S = OF(R) iff St = crF(Rt) for all t in T, where F is the first-order (non- 

temporal) formula defined as for the standard relational case [U1188]. 

02: Project: S = TA,  , . . . , A ~  (R)  iff St = T A ,  , ..., (Rt ) for all t in T, where A1, . . . , Ak are some 

attributes in R. 

03: Cartesian product: S = R x Q iff St = Rt x Qt for all t in T. 
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0 4 :  Set diference: S = R - Q iff S and R are union compatible and St = Rt - Qt for all t 

in T. 

0 5 :  Union: S = R U Q iff S and R are union compatible and St = Rt U Qt for all t in T. 

06a: Future linear recursive operator: S = LF(R, Q)  iff St+l = (RtnSt)UQt, for tl 2 t < t,, 
and St, = 0. 

06b: Past linear recursive operator: S = Lp(R, Q) iff St-l = (RtfMt)UQt, for tl < t < t,, 

and St, = 0. 

A temporal join operation w can be defined exactly as for the snapshot case in terms of the 

Cartesian product, select and project operators. 

Denote the temporal algebra defined by operators 01 - 0 6  as TA. Note that the operators 

01 - 0 5  correspond to the standard relational operators of the snapshot relational algebra 

and reduce to these operators in the degenerate case when tl = t,. 

Example 2 The relation GOOD-CITIZEN(NAME) in Figure 13 can be computed in 

TA as follows. Set TAXES1 = T N A M E  (TAXES). Then 

GOOD-CITIZEN = LF(TAXES~,UNEMPL)  

It is shown in [TC90] that the algebra TA is equivalent t o  the calculus TL and, therefore, 

to TCfor the discrete linear model of time. This means that the three languages, i.e. TL, 

TC, and TA are equivalent in terms of the expressive power. 

4.4 Ungrouped Historical Relational Completeness 

Comparing ungrouped data models is easy because in some sense all of the structures of 

these data models are isomorphic. 

Definition. A data model M = (DS, QL) is a temporally ungrouped historical data model 

if DS is isomorphic to the canonical ungrouped historical relational model TU. 

Definition. A temporally ungrouped historical data model M = (DS, Q L) is TU-Complete 

if M is strongly complete with respect to MTU = (TU,TC)(or, equivalently, to MTUt = 

( TU, TL)). 
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Our proposal to use the three languages considered in this section, the historical relational 

algebra (TA) and the two temporal calculi ( TCand TL), as the linguistic basis for ungrouped 

historical relational completeness is based on a number of reasons. First, the temporal calculi 

have a sound and well-studied theoretical basis since they are based on first-order logic and 

on temporal logic. Second, both the calculi and the algebra are very simple. Essentially, 

one temporal calculus is based on the first-order logic and another one is obtained from 

the first-order logic by adding to it the temporal operators until and since. The temporal 

algebra is obtained from the relational algebra by a straightforward extension to its five basic 

operators and by the addition of a single additional temporal operator, in a future and a 

past version. Third, the two calculi and the algebra are equivalent for certain models of 

time, i.e. besides being simple and "natural," the two approaches have the same expressive 

power. This suggests that they capture an important class of temporal queries. F'ourth, the 

temporal algebra and the two calculi reduce to the relational algebra and calculus in the 

degenerate case when the time set consists of only one instance. Therefore, the notion of 

TU-Completeness is compatible with standard relational completeness when the temporal 

dimension is so reduced. Fifth, the temporal calculi are independent of a specific historical 

relational data model, and the temporal algebra is independent of any data model based on 

the discrete bounded model of time. Some of the query languages and algebras proposed 

in the literature are tailored to a specific historical data model. That is, operators of these 

languages take into account specific constructs of the underlying historical data model. For 

example, the constructs overlap, begin of and end of of TQuel [Sno87] assume that the 

temporal data are grouped into intervals. There are no model-specific operators in the 

temporal calculus and in the algebra considered in this paper. This means that the temporal 

calculus can be applied to any historical relational data model and the temporal algebra to 

any historical relational data model supporting discrete bounded time. 

For all these reasons, we propose to use TU with the two calculi and the algebra pre- 

sented in this section as a basis of ungrouped historical completeness, TU-Completeness. We 

note that our notion of ungrouped historical completeness subsumes the notion proposed in 

[Sno87, p.2871, "the temporal query language, when applied to a snapshot of the database, is 

at least as powerful as ... Codd's definition." Our notion meets this criterion, but also allows 

queries (e.g., comparing values across different times) that cannot be reduced to operations 

on a snapshot of the database. We will return to  this issue in Section 7 when we examine 

the completeness of a number of models proposed in the literature. 
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5 Historical Relational Completeness for Grouped Lan- 
guages 

In this section we define a concept of g rouped  historical  re la t ional  comple teness ,  TG- 

Completeness. The basis for this concept of completeness is the canonical temporally grouped 

model TG, and a grouped, tuple-based historical relational calculus, Lh. 

5.1 A Grouped Historical Calculus 

To begin our de\~elopment of grouped historical relational completeness we define a tuple- 

based historical relational calculus, the language Lh,  that conforms to  the canonical grouped 

relations defined in Section 2.2. Lh is a many-sorted logic with variables over ordinary values, 

historical values, and times admitting quantification over all three sorts of variables. This 

distinguishes Lh from, among other languages, Gadia's calculus IGadsS], which does not have 

temporal variables or quantification over them. To simplify the discussion we will assume that 

we are defining this calculus relative to a particular relational database dTG = {rl, r2,. . . , r,), 
with universe of values D, universe of times T and universe of attributes UA. 

The S y n t a x  of Lh 

1. The Basic Expressions of Lh are of three categories: 

(a) Constant Symbols 

i. CD = {dl, d2,. . .) is a set of individual constants, a t  most denumerably infi- 

nit,e, one for each value S in D. 

ii. CT = {7], T ~ ,  . . .) is a set of temporal constants, a t  most denumerably infinite, 

one for each time 7 in 7'. 

iii. CA = {A1, A2, .  . .Ana)  is a finite set of attribute name constants, one for each 

attribute A in UA. 

(b) Variable Symbols 

i. VT = {t,, t2 , .  . .) is a denumerably infinite set of temporal variables. 

ii. VD = {xl ,  2 2 , .  . .) is a denumerably infinite set of domain variables. 

iii. VTv = {el, e2,. . .) is a denumerably infinite set of tuple variables. 
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(c) Predicate Symbols 

i. 8 = {B1, 02.. . . , On@)  is a set of binary predicates, one corresponding to  each 

value comparator defined on objects of type y (e.g., values from a common 

value domain). The predicate symbol < must be included for the domain T. 

ii. r = ( r l ,  7-2,. . . , r,) is a set of relation predicates, one corresponding to  each 

relation r in the database d. 

2. The Terms of Lh are as follows: 

(a) Every individual constant S is a va lue  t e r m .  

(b) Every domain variable x is a va lue  t e r m .  

(c) If e is a tuple variable, A is an attribute name constant, and t is a temporal 

variable, then e.A(t) is a value t e r m .  

(d) Every temporal constant T and temporal variable t is a t e m p o r a l  t e r m .  

(e) If e is a tuple variable, then e.1 is a lifespan t e r m ,  where 1 is a distinguished 

symbol of Lh. 

3. The Formulae of Lh are the following: 

(a) If o and ,8 are both value terms, and 8 is a binary predicate, then a8,O is a formula. 

(b) If o is a lifespan term and t is a temporal variable, then t E o is a formula. 

(c) If t l  and t2  are temporal variables, 8 is a binary predicate on domain T, and T is 

a temporal constant, then t18t2, d t l ,  and t l  = 87 are formulae. 

(d) If r is a relation predicate and e is a tuple variable, then r (e)  is a formula. 

(e) If 4 and 1L are formulas, then so are (4) ,  74, ( 4  A $), (4 v +), (4 -+ $), and 

(4  ++ $9. 
( f )  If 4 is a formula and u is a tuple, temporal, or domain variable, then Vu(4) and 

3u(4) are both formulae. 

The Query Expressions of Lh are all expressions of the form [el.Al, . . . , en.An : t]$ where: 

1. [el.Al,. . . , e,.An : t], called a target list, consists of 

(a) A list of terms e;.A; where each e; is a free tuple variable, and 
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(b)  the free tempora! varia.ble t .  

2. 4 is a formula. 

As a convenience, when a tuple variable e ranges over a set of tuples on a common scheme 

that consists of the set of attributes A = {A1, A2 , .  . . , A,), we use the notation e.* to  denote 

e.A. 

The Semantics of Lh 

Here we give the intended interpretation of the tuple relational calculus. For convenience 

the numbering used here correlates directly with that used in the specification of the syntax. 

1. The Basic Expressions of Lh denote as follows: 

(a) Constant Symbols 

i. An individual constant S denotes an object in some value domain D;. 

ii. A temporal constant T denotes a time in the universe of times T. 

iii. An attribute name constant A denotes an attribute in UA.  

(b) Variable Symbols 

i. A temporal variable t denotes a time in the universe of times T. 

ii. A domain variable x denotes a value in the universe of domain values D. 

iii. A tuple variable e denotes a tuple in some grouped historical relation r in the 

database d. 

(c) Predicate Symbols 

i. A binary predicate symbol 19 denotes some value comparator (e.g., =, +, 5 )  
over objects in some domain. 

ii. A relation predicate r denotes a relation (set of tuples) in the database. 

2. The Terms of Lh denote as follows: 

(a) An individual constant S denotes an object in some value domain D;. 

(b) A domain variable x denotes an object in some value domain D;. 
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(c) A value term e.A(t) denotes an object in some value domain. In particular, it 

denotes the value in the tuple denoted by e of the attribute denoted by A at the 

t ime denoted by t .  

(d) A temporal constant r denotes a time in the universe of times T. 

(e) A lifespan term e.1 denotes a set of times, in particular, the set of times that is 

the  lifespan of the tuple denoted by e. 

3. The Formulae of Lh denote as follows: 

(a) a@/? is true just in case the denotation of a stands in the relation B with the  

denotation of p, and false otherwise. 

(b) t E a is true just in case the time denoted by t is in the lifespan denoted by a, 

and false otherwise. 

(c) t10t2 is true just in case the time denotaed by tl  stands in the relation 0 with t2, 

and false otherwise; similarly for rot l  and t10r. 

(d) r (e)  is true just in case the tuple denoted by e is in the grouped historical relation 

denoted by r, and false otherwise. 

(e) (4), 74, (4 A $), (4 V $), (4 -f $), and ( 4  * $) are true just in case the obvious 

conditions on 4 and q!~ hold. 

(f) 'du(4) and 3u(4) are true just in case the obvious conditions on 4 and u hold. 

A Query Expression [el.Al,. . . , en.An : t]C$ of Lh denotes an historical relation, each n- 

tuple of which is derived from a satisfying assignment to  the variables of the formula 4. The 

components of the n-tuples are denoted by the value terms ei.Ai. The lifespan of each tuple 

in the result is the set of values of the temporal variable t ,  for which all of the ei.Ai(t) values 

satisfy the formula 4. 

5.2 Safety 

In order to ensure that the relations denoted by expressions of the calculus are well-defined, 

we include along with the syntax given earlier several additional restrictions. Without these 

restrictions it is possible to  specify formulae that define historical relations that contain an 

infinite number of tuples, e.g., [e.* : t ] ~ r ( e )  A t = 12. I t  is also possible to  specify relations, 
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some of whose tuples have unbounded lifespans or undefined values for certain times within 

their lifespans, e.g., [e.* : t ]r(e)  A ~ ( t  E e.1). 

To avoid such situations we restrict the allowable formulae of Lh to  a subset of suje 

formulae. Our definition of safety derives from [Ull88], and is extended to  the temporal 

domain. For a formula $ of Lh to be safe it  must satisfy the following conditions: 

1. It does not contain any use of the universal quantifier (V). 

2. It contains exactly one free temporal variable, no free domain variables, and for each 

free tuple variable e, 4 is of the form F, A t E e.1 where t is the free temporal variable. 

3. For each disjunction I;; V F2 in gi, Fl and F2 must include the sa.me set of atoms 

ti E ej.l. 

4. In each maximal conjunct Fl A . . . A F, of 4 the following conditions hold: 

(a) for each F; of the form e.A(t) = a or a = e.A(t), there is an F'j of the form t E e.1, 

where a is a value term. 

(b) for each Fi of the form t E e.1, there is an Fj of the form R(e); 

(c) for each F; of the form 1F: the following condition must hold: for all the free 

temporal variables t in F;' there is an _Fj of the form t E e.1 and for all the free 

historical variables e in c! there is an F' of the form R(e). 

5. The application of the not operator -, is limited t o  those terms F; defined in rule (4) 

above. 

An Lh query [&,.Al,. . . , e,.A, : t]$ is safe if the corresponding Lh formula 4 is safe. We 

restrict our attention to  safe.Lh queries in the sequel. 

5.3 Examples of Lh Queries 

We now give several examples of queries expressed in the  language Lh for the database 

consisting of the E M P L O Y E E  and D E P A R T M E N T  relations shown in Figure 8. 
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Example  3 This first query performs a selection of historical tuples from E M P L O Y E E ,  

and projects the  results onto the attributes NAME and SALARY. 

What are the  name and salary histories of those employees in the marketing department 

at time 6? 

Example  4 This second query returns a set of historical tuples that are derived from the 

joining of two historical rela.tions. 

What are the names of the ma.nagers for whom Tom has worked? 

[e l .NAME : t ] E M P L O Y E E ( e l )  A t  E el.lA 

3e23t23d(EMPLOYEE(e2) A t 2  E e2.1 A 

D E P A R T M E N T ( d )  A t 2  E d.1 A 

e2.ATAME(t2) = Tom A e2 .DEPT( t2)  = d .DEPT( t2)  A 

d.MGR(t2) = e l .NAME( t2 ) )  

Example  5 Finally, we give an example of a query that,  although semantically safe in that 

it returns an historical relation having a finite number tuples whose values are extracted 

from the base relations, is syntactically unsafe. 

Give m e  all the information about the employees who have only worked in the accounting 

department? 

[e.* : t ] E M P L O Y E E ( e )  A t E e.lA 

-.(3tl(tl E e.1 A -.(e.DEPT(tl) = Acctng))) 

The query is not safe because the quantified subformula, which is a maximal conjunct, 

does not include the conjunct E M P L O Y E E ( e ) .  If this conjunct were added into the sub- 

formula the entire formula would be safe, and would also be correct. 
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5.4 Grouped Historical Relational Completeness 

We propose t o  use the canonical temporally grouped model TG, along with the many- 

sorted calculus Lh considered in this section, as the basis for grouped historical relational 

completeness. That is, we propose the following definitions. 

Defini t ion,  A data model M = (DS, QL) is a temporally grouped historical data model if 

DS is isomorphic to the canonical ungrouped historical relational model TG. 

Defini t ion.  A ten~porally grouped historical data model M = (DS, QL)  is TG-Complete 

if M is strongly complete with respect to  hYTG = (TG, Lh). 

The reasons that support this choice of TG with Lh as an appropriate metric for TG- 

Completeness are essentially similar to  those that motivated out choice of the metric(s) for 

~ ~ - ~ d , n ~ l e l m e s s  (Section 4.4). Lh has a sound and well-studied theoretical basis since it 

is based on a many-sorted first-order logic. The sorts that it uses are the  "natural" ones for 

the task a t  hand: ordinary values, temporal values, and historical or time-series values. The 

need for historical values has already been motivated: they provide the linguistic mechanism 

for direct reference to temporally changing values, and provide for the  grouping of these 

values with the object that  they describe. As with our metric for TU-Completeness, Lh 
reduces t o  the relational calculus in the degenerate case when the time set consists of only 

one instance. It  is therefore compatible with standard relational completeness when the 

temporal dimension is so reduced. Furthermore, in Section 6 we shall see that  Lh differs 

from TC and the other ungrouped languages only in this respect, so that  i t  is an extension 

of the concept of ungrouped historical completeness that is minimat it  adds only what is 

necessary for providing temporal value integrity. 

6 Relationship Between Historically Grouped and His- 
torically Ungrouped Completeness 

The question naturally arises as to  the relative expressive power of the two approaches, tem- 

porally grouped and temporally ungrouped, to  representing historical relations. Specifically, 

we wish t o  compare the expressive powers of the temporally grouped historical data model 

MTG = (TG, Lh) and the temporally ungrouped historical data model MTU = (TU, TC) .  
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A database dbTG in MTG consists of a set of relations on a set of schemes {R1,. . . R,); for 

our purposes we can view each scheme as simply its set of attributes, i.e. R; = {A,, , . . . A;,). 

\Ye want to compare such a database with its counterpart in the ungrouped model. By a 

corresponding database to dbTG in MTU we mean a database in MTU derived through a corre- 

spondence mapping 0 (as defined in Section 3). This corresponding database likewise consists 

of a set of relations on schemes {Ri,  . . . Rk), where each relation scheme has the same set of 

attributes plus the additional attribute T I M E ,  i.e. RI = {A;, , . . . A;,, T I M E  ). The follow- 

ing temporal unnest operation (similar to  the snapshot-valued function defined in [Gad86]) 

provides an example of the corresponding mappingH. Let r (Al ,  . . . , A,) be a relation in 

dbTc. Then unnest(R) is a relation in dbv-consisting of a set of tuples (a l , .  . . , a n ,  t )  such 

that  there is an historical tuple e in r satisfying the condition e.Al(t) = al ,  . . . , e.A,(t) = a,. 

We want t o  study the relationship between grouped and the corresponding ungrouped 

models. To begin with. we establish the relationship between their relational schemes. We 

start with the following definition. 

Definition. A relation scheme R is more expressive than a relation scheme R' if the 

cardinality of the set of all possible relations on scheme R is greater than the cardinality of 

the set of all possible relations on scheme R'. 

The following theorem compares the expressiveness of the grouped and ungrouped data 

models. 

T h e o r e m  1 f i r  any database scheme in the data model T G  of MTG = (TG,Lh)  the corre- 

sponding database scheme in the data model T U  of MTU is less expressive. 

Sketch  of Proof :  Let D be a value domain, and T be a non-trivial time domain (having 

more than one value), as defined in Section 2. Let RTG(AI,.  . . , A,) be  a relation scheme in 

the T G  model and RTU(Al,.  . . ,An,  T) be the corresponding scheme in the T U  model. 

By inspection, there can be ( D " U { L ) ) ~  possible historic tuples for the scheme RTG(A1,. . . ,An), 

where 1 accounts for the situation where data values may not be defined for some val- 

ues of time. Therefore, there are a = ~(D 'u{ '} )~  possible historic relations with schema 

RTG(AI,. . . ,A,). In comparison, there are Dn x T possible ungrouped tuples for the scheme 

RTV(AI,.  . . ,A,, T) a.nd ,B = 2 DnxT possible relations. 

omit the details of a discussion of the  model MTU, = (TU2,TC2) whose relations represent the 
temporal dimension with two time attributes, because i t  is well known that  the two representations are 
equivalent for discrete time. 
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If we assume that the domains D and T are infinite, then p < cr because the cardinality 

of the power set is greater than the cardinality of the set itself. If we assume that the 

domains D and T are finite, then again P < a. The latter follows from simple combinatorial 

considerations. 

Corollary 2 For any database scheme in the data model T G  o f M T G  = (TG,  Lh) the cor- 

responding database scheme in the data model TU2 of ktTv, is less expressive. 

Theorem 1 will help us to  establish the relationship between the language Lh and the 

corresponding language TC. 

Theorem 3 For any given database scheme in AITG = (TG, Lh), the corresponding database 

scheme in MTU = (TU, T C )  is weakly equivalent and not strongly equivalent. 

Sketch of Proof: The weak completeness of MTU = (TU,TC)  with respect to  MTG = 

(TG,  Lh)  immediately follows from the choice of un~zest as the structural correspondence 

mapping. The weak completeness of MTG = (TG, Lh)  with respect t o  MTU = (TU, TC) 
immediately follows from the choice of the identity group mapping as the structural corre- 

spondence mapping. This mapping maps each tuple in AilTu = (TU,TC)  to  a singleton 

grouped tuple in MTG = (TG, Lh). Lack of strong equivalence immediately follows from 

Theorem 1 and the definition of strong equivalence. 

We will now demonstrate how ungrouped historical relations can be used to simulate 

grouping through the use of an additional, distinguished attribute 0 for keeping track of the 

groups, Specifically, we will show how the ungrouped model can represent a grouped relation 

on scheme R, = {A;,, . . . A;, ) by a relation on scheme Ry = (0, A;,, . . .A; , ,  TIME ). 

6.1 Extending TU and TC to Support Grouping 

To support grouping in the ungrouped model TU, we introduce an additional group iden- 

tifier attribute for each relation in TU. For example, a TC relation scheme R(A, B, T) is 

extended with an additional attribute 0 and becomes R ( 0 ,  A, B, T) ,  where 0 is a group 

identifier (group-id) attribute. The role of the grouping attribute - identifying groups of 

tuples which correspond to  a single object - serves a role similar to  that  of object identi- 

fiers in object-oriented databases, or the  surrogates in certain extended relational models 

([HOT76, DatSS]). We call the model with these relations TU,. 
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Figure 14: Rela.tion E M P L O Y E E  in the  Grouped TC, Model 
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We then introduce a logic with grouping, TC,, as a 3-sorted first-order logic, where the 

first sort is the domain sort, the second sort is the temporal sort, and the third sort is the 

grouping sort. The domain and the temporal sorts are defined exactly as for TC in Section 

4. Intuitively, the grouping sort divides a TU, relation into groups, each group having the 

same group identifier. Furthermore: tuples are parameterized by time within each group, i.e. 

the combination of the  group-id and time uniquely determines the  tuple. Figure 14 shows 

the E M P L O Y E E  relation of Figure 8 as it might be represented in the TU, model. 
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Formally, the grouping sort 0 has countably many constants and variables, and a set of 

function symbols newk for k = 1,2 , .  . . that will be defined later. Relational predicates have 

one and only one attribute with the grouping and temporal sorts, and relational operators 

(e.g., =, >, >) are not defined for the grouping sort. Finally, the grouping sort admits 

quantifiers. 
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The semantics of grouping is captured with the following grouping axioms that specify 

how TU, tuples are grouped into "temporal objects." 
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1. A group-id and time uniquely determine the rest of the tuple no matter which relation 

it belongs to, i.e. if R(o, xl ,  . . . , x,, t )  and Q(o, yl, . . . , y,, t )  are true then m = n (i.e., 

the relations must be union-compatible) and x, = y; for i = 1, .  . . , n. In other words, 

OT functionally determines all the attributes in all the relations in which 0 and T 

appear. 

2. A group-id uniquely determines the group of tuples independently of which rela- 

tion they belong to, i.e., if o appears in relations R and Q, meaning that  if both 

( 3 ~ ~ ) .  . . (3un)(3t1) R(o, ~ 1 , .  . . , u,, tl) and (391) . . . (3y,)(3t1')Q(o, yl, . . . , y,, t") hold, 

then, for all XI , .  . . ,x,, t ,  if R(o ,x l , .  . . ,x, , t)  is true then Q(o,x l , .  . . ,x,,t) is also 

true, and vice versa. 

3. A group of tuples uniquely determines the group-id, i.e. there cannot be two iden- 

tical groups of tuples with different group-ids. Formally, if there are R ,  Q,  o, and 

o1 such that for all XI , .  . . , x,, t ,  if R(o, 21,. . . , x,, t )  implies Q(ol, XI , .  . . , x,, t )  and 

Q(ol, XI , .  . . , x,, t )  implies R(o, XI , .  . . , x,, t) ,  then o = 0'. 

The  first axiom ensures that a group-id always refers to  the groups of tuples of the same 

arity, and that elements in the same group, defined by a group-id, are parameterized by time. 

The second and third axioms ensure that a group-id uniquely defines a group of tuples and 

that  a group of tuples is assigned a unique group-id. These axioms ensure that  group-ids 

uniquely identify a group of tuples and vice versa, so that the notion of a group of tuples in 

the ungrouped model can be made (below) consistent with the notion of a single tuple in the 

grouped model. We call the resulting model, consisting of the ungrouped relations extended 

with a group identifier, and the logic extended with the group sort, MTU, = (TU,,TC,). 

While these axioms may be stronger tshan necessary, we shall nevertheless demonstrate 

that  they are sufficient to  define the model hfTv, = (TU,, TC,) which we show t o  be strongly 

equivalent to  the model MTG consisting of TG with Lh. 

A TC, query is defined as 

where \a is a TC, formula and o;, x; and t ,  for i = 1,. . . , n, are the only free group, domain 

and temporal varia,bles, respectively, appearing in it. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-93-08 



E x a m p l e  6 Consider the query of Example 3 in Section 5 

What are the  names and salary histories of those employees in the marketing department 

a t  time 6? 

It can be expressed in TC, as 

{< o, x >, < o, z >, t I E M P L O Y E E ( o ,  x, y, z ,  t )  A y = M k t g  A t = 6) 

However, the  definition of a TC, query, as defined above, has one important drawback. 

A query does not return an object of the same type as the objects it operates on, i.e. i t  

does not return historically grouped relations. To fix this problem, we slightly change the 

definition of a TC, query by "encoding" the tuple of pairs < ol ,x l  >, . . . , < on, x, > with a 

new group-id. 

To do this, we can divide a set of tuples S = {< < 01, xl >, . . . , < on, x, >, t >) into 

groups of tuples 

Then we encode the group of tuples G(ol , .  . . ,on,  S) with an encod ing  func t ion  

where D is the universe of all possible values (Section 2.1), 0 is a set of group-id's, and T 
k 

is the set of times. An encoding function is a bijection between'finite sets in 2D XT and 0. 
I t  is well-known that such encoding functions are definable for finite D and T ([End72]). In 

the case of countably infinite D and/or T, the definability of such a function follows from 

the finiteness of the relations in the da.tabase and their representation. 

Then the definition of a TC, query is changed to 

This definition says that,  first, the query is computed according t o  the previous definition, 

then tuples in the answer are grouped into sets G(o1,. . . ,on ,  Q(4))  and, finally, each set is 

given a unique group-id. 

Although this definition of a TC, query is technically better than the first one, because 

it  evaluates to objects of the same type, the first definition is easier to  use. Therefore, we 
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will oft-en use the  first definition of a query in the paper, because it could always be modified 

to  the second form. 

S e m a n t i c s  of  TCg Queries.  Since TCg is a 3-sorted first-order logic, the semantics of 

its formulae is defined as in the standard case of many-sorted logics [End72]. Based on this 

semantics, a TCg query 

returns the set of tuples << ol, xl >, . . . , < on, xn >, t > for which the formula q5 is true. 

Sa fe ty  for  TCg Queries. As is the case-with Lh formulae and the standard first-order 

relational calculus, we have to  define safe TCg formulae that return finite answers over a 

finite time horizon. 

A TC, formula is safe if it satisfies the following conditions. 

1. It, does not contain any use of the universal quantifier (V). 

2. It contains exactly one free temporal variable t ,  and for every free group-id variable o;, 

i = 1,. . . , n, there is a r a n g e  express ion $; = (3xij,). . . ( ~ X ; ~ ~ ) R ; ( O ; , X ; ~ ,  . . . , xini, t )  

such that  4 = dl A . . . A dn A fl for some TC, formula fl, and such that  all the 

free domain variables of 4 and only they appear among the free variables of range 

expressions $;. 

3. If a group-id variable o and a temporal variable t in a TCg formula appear in the 

same predicate R(o, . . . , t ) ,  then we say that  there is a p a i r  < o, t > of variables in 4. 

Then the two disjuncts Fl and F2 of each disjunction operator in 4, f;; V F2, must have 

the same set of pairs < o;, t j  >. 

4. In each maximal conjunct Fl A . . . A F, of 4 the following conditions must hold: 

(a) If some F; has the form x = cu or cu = x,  where cr is either a constant or a variable, 

then there is a conjunct Fj of the form R(o, . . . , x, . . . , t )  for some variables o and 

t.  

(b) If some F; has the form 7F;' then for each free temporal variable t in _F;' there 

must be a conjunct Fj either of the form Q(o', xy, . . . , x:, t )  or of the form t = c,  

and for each free group-id variable o in F/ there is a conjunct Fj of the form 

Q(0, xi,. ' . , x;, t'). 
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5. The application of the not operator 1 is limited to  those terms F; defined in rule ( 4 )  

above. 

This definition of safety mirrors the definition of safety of Lh formulae as defined in Section 5. 

In particular, Condition 2 ensures that only data from the database can appear in the answer 

to  a TC, query. This definition is also an extension of the definition of safety from [U1188] 

to  the temporal domain. 

A TC, query {<< 01~x1  >, . . . , < onlo, >,t  > I 4) is safe  if the corresponding TC, 
formula 4 is safe. We restrict our attention to safe TC, queries in the  remainder of the 

paper. 

6.2 Strong Equivalence of MTG and MTU, 

We begin this section by defining two correspondence mappings QuG and QGu between the 

structures of the two data models MTG = (TG, Lh) and MTUg = (TU,, TC,), and show that 

they are inverses of each other. We then consider their query languages, and define mappings 

TUG and TGU between them. Finally, we show that the models MTG and hug are strongly 

equivalent. 

6.2.1 Relationship Between Data Models of TG and TU, 

In this section we define mappings between the structures of the ungrouped and grouped 

historical models. QUG maps TU, relations into TG relations; intuitively, i t  groups Tug 

tuples with the same group-id into a single group that becomes an historical tuple. flGu 

maps TG relations to TU, relations; intuitively, it ungroups an historical tuple into a set of 

tuples with the  same group-id. QGv can be considered as an extension of Ga.dia7s temporal 

wnnest operator described in Section 6 that  supports group identifiers. 

Formally, the mapping f lUG from Tug to TGreIations is defined as follows. Let r and r' be 

TU, and TG relations, respectively, with the same number of domain attributes A], . . . , Ak. 

Then f lUG(r) = r' if and only if the following conditions hold: 

1. Each tuple in r appears in some historical tuple in r', i.e. for all the  tuples 

< o, a , ,  . . . , ak, t > belonging to  relation r there is an historical tuple e such that r t (e)  
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is true, t E e.1, and e.Al(t) = al ,  . . . , e.Ak(t) = ak. 

2. Each historical tuple e in r' contains all ungrouped tuples from r with the same group- 

id. Formally! if rl(e) and r(o, a l l . .  . , ak, 2 )  are true for some historical tuple el group-id 

O, domain values a l ,  . . . , ak and time t ,  and if t E e.1 and e.Al(t) = a l l  . . . , e.Ak(t) = 

ak, then for all a:, . . . , a;, t', if r(o, a:, . . . , a i l  2') is true then t' E e.1 and e.Al(tt) = 

a;, . . . , e.Ak(tf) = a;. 

The mapping QGU is defined similarly. It  ungroups all the historical tuples into relational 

tuples with the same group-id. We omit the formal definition of QGu because it  is very close 

to the  definition of flUG. 

Clearly, the two mappings flGu and .RUG are inverses of each other, i.e. QGUOflUG = I and 

QUG o flGU = I because grouping followed by ungrouping and ungrouping followed by group- 

ing always produce the same relation. This property holds because we introduced group-id's. 

Without group-id's, we cannot reconstruct a relation if we first group and then ungroup i t  

and vice versa. (The same problem occurs in all N l N F  models ([FVG85, RKS881.) [RKS88, 

p.409] points out that "in order to  avoid problems where [grouping an ungrouped relation is 

impossible] we assume each database relation, . . . their nested relations, and relations created 

by colIecting constants into a limited domain, have an implicit [italics ours] keying attribute 

(or set of attributes) whose value uniquely determines the values of all the  other attributes." 

Our group-ids make explicit the need for such a "keying attributen; [TG92] addresses this 

issue in detail.) 

6.2.2 Mapping TC, Formulae t o  Lh 

In this section, we define the mapping rUG that maps safe TC, formulae into equivalent safe 

Lh formulae. 

Let $ be a safe TC, formula. The formula I'uc($) is obtained from $ by replacing all 

the atomic formulae in $ together with quantified variables in the manner described below, 

and leaving all other connectives (e.g. A,  V, 7 )  intact. The replacement of atomic formulae 

and quantified variables in $ is done as follows: 

1. Each range expression $; = ( 3 ~ ; ~ ~ ) .  . . (3x;j,)Ri(oi, x;l,. . . , xini ,  t)12 is replaced with 

I2Range expressions were introduced in Section 6.1 when safe TCS queries were introduced. 
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the expression R;(e;) A t E ei.1. 

2. Replace TC, predicate R(o, X I , .  . . , x,, t )  with 

where A; is the attribute in R corresponding to variable x;I3. A group-id variable o 

defines a unique historic variable across different relations, i.e. if several predicates 

in 4 have the same group-id variable o then this variable o is replaced with the same 

historic variable e. 

3. Replace each quantification (30) in 4 with the quantification (3e) in rvG(4),  where o 

is a group-id variable appearing in some TCg relation R;(o, XI,. . . , x,,t), and e is the 

corresponding historic variable defined in Step 2 that replaces o. 

4.  Each qantification (32) in 4 remains unchanged in For any free variables x 

remaining in 4 , prepend (32) to  ruc (4 ) .  

We defined the mapping ruG on the set of safe TC, formulae. This mapping can be extended 

to TC, queries as follows. If Q is a TC, query 

where 4 is a safe TC, formula of the form: 

then I'uG(Q) is 
n 

[t, .A1, . . . , €,.An : t] ~ u G ( $ ' )  A l\ ( E ( e i )  A t E ei-1) 
i=l 

where historic variables e; correspond to  the  group-id variables o; appearing in predicates R; 
in 4,  and attributes Aj correspond t o  variables x j  in these predicates. 

Examples illustrating the mapping rUG follow. In these examples we assume that  the 

schemas of TU, relations R and Q are R ( 0 ,  A, T) and Q ( 0 ,  A, T) respectively, where 0 is a 

group-id, A is an attribute, and T is a temporal attribute. 

13Actually, there is no need to add expressions e . A i ( t )  = xi for all i = I , .  . . , n as some examples below 
will show, but only for those xi's that appear in other expressions. However, it is acceptable to do it for all 
terms, as it simplifies the presentation, and the transformation is still correct. 
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