Search and Preference-Based Navigation
in Electronic Shopping

April 1. 1993

Tomas Isakowitz Steven O. Kimbrough
Department of Information Svstems Department of Decision Sciences
Stern School of Business The Wharton School

New York University University of Pennsylvania

44 W. 4th St. Philadelphia, PA 19104

New York. New York. 10012

tisakowi@stern.nyu.edu kimbrough@wharton.upenn.edu

¥orking Paper Series
STERN 1S8-93-9

(replaces: 15-90-8)

Search and Preference-Based Navigation
in Electronic Shopping

Abstract

The aim of this paper is 10 address the requirements for electronic shopping sye-
teme. Large-scale computerized electronic shopping sveiems need to accommodate
both (a) a large number of products. many of which are close substitutes. and (b) »
heterogeneous body of customers who have complex. multidimensional—and perhaps
rapidly changing—preferences regarding the products for sale in the system. Furthes.
these systems will have to be designed in a manner so as to both (c¢) reduce the com-
plexity of the shopping problem from the customer’s point of view. and (d) effectively
and insightfully match products 10 customers’ needs. We show how an abstraction
hierarchy with an imposed distance metric provides the necessarv elements to im-
plement the desired features. Further. we indicate how the dictance metric. in the
context of the abstraction hierarchy. can be interpreted as a unidimensional utilitv
function. Finally, we extend the single dimensional (single perspective) treatment
to multiple dimensions. or perspectives. and show how the resulting representation
can be interpreted as a multiatiribute utility function. We argue that the resulting
function is plausible and. most importantly. testable.

Keywords: decision analysis. decision support svstems. electronic shopping. preference
modeling. user interfaces. utility theory. multiattribute utility theory.

Center for Digital Economy Research
Stern School of Business
Working Paper 18-93-09

1 Introduction

Technical developments and economic forces are evolving in a direction favoring computer-
and communications-based services for purchasing activities, either by consumers or by
businesses. On the technical side, personal compuiers and workstations continue to become
more powerful. and to have increasingly sophisticated software; communications networks
continue to proliferate. and the infrastructure to support them—including fiber optics trans-
mission facilities and network services such as ISDN-—continues to be developed at a rapid
pace. On the economic side. computing and communications continue to become cheaper:
time and labor continue to become more expensive: markets continue to expand both in
the variety of producis ofiered and the reach of the companies offering these products, viz.
24-hour, worldwide trading of securities: and globalization of commerce continues to accel-
erate. While the adoption and eventual impact of electronic shopping svstems is uncertain,
it 1s crucial at this stage 10 investigate the theory and design principles for supporting such

svstems.

In the presence of large databases of products. e.g.. J.C. Penney’s. Land’s End’s or L.L.
Bean's catalogs. customers need guidance and advice while shopping. Moreover, if we
consider the whole consumer marketplace as an arena for electronic transactions. we soon
encounter complexities in searching through such a vast information space. The ability to
support search in these large information bases will have a significant impact on the success

of electronic shopping svstems.

Center for Digital Economy Research
Stern School of Business
Working Paper 18-93-09

The customer should not face the burden of finding the right item by running through
screen after screen of product descriptions. A good system will play the role of a gooc
salesperson by understanding what the customer is looking for. remembering his or he:
personal preferences and making appropriate suggestions. In addition. a system shoulc

represent the seller’s interests by ofiering profitable items.

Our aim in this paper is to propese implementation principles for such a salesperson sysien:.
We suggest using artificial intelligence techniques 1o achieve the desired results. Our work
extends Lee and Widmever's [9] idezs on using a graph representation to guide the search
process. We use multiple graphs 1o represent difierent search perspectives. Moreover. we
propose an algebra of graphs that supports the combination of various search dimension:.
For example. a shopper should be aliowed to search not only for a pair of pants (typr
of clothing perspective). but should also be able to specify that she wants it blue (colo
perspective) and light in weight for the summer (season perspective). Further, we are abie
1o interpret our representation &s an encoding of a muluattribute utility function (see §8).
This permits the theoretical apparatus of utility theory to be brought into play in order tc

validate any particular representation in a given application.

We also deal with two basic problems: surplus and shortage. Surplus occurs when the
customer issues a vague request. I, for example. she asks for a pair of pants. the sysiemn:
has to narrow down the search so that it can come up with a good candidate. In order to

do this it might take into account other information such as cost. season, color preferences.

Center for Digital Economy Research
Stern School of Business
Working Paper 1S-93-09

the sex of the person that will vse it. and so forth. Shoeriage occurs when a request 1

jesued for an 1tem which is not available. Suppose that a customer asks for item numbe

jep 279-1730 d—a pair of pants—that 1s currently out of stock. The system should ofie:
a reasonable substitute. This means a pan of pants of similar cojor. cost-range, fashion

category. and £0 on.

There is a rich and broad range of issues to be taken into account when designing anc
developing svstems 1o support elecironic shopping. There are marketing issues. system
jssues and strategic issues. Jn this paper. our concern is with the problem of what info:-
mation should be presented 1o elecironic shoppers, rather than with Low that information
is presented (i.e. content rather than format.) Thinking in terms of decision support sys
tems (DSS). our focus is on the probiem processing and the knowledge subsvstems for an

electronic shopping DSS [2].

The remainder of the paper is organized as follows. We begin. in §2 by discussing electronic
home services and factors relevant to their acceptance. In &3 we continue with a discussion
of Lee and Widmeyer’s work. which encompasses only a single perspective (single attribute.
unidimensional) case. In §4 we extend this framework by elaborating upon its basic date
structure. &5 extends our treatment of the problem to the multiple perspective case. We
show. in §6. that the shortage. as well as the surplus, problem can be handled in essentially
the same manner under our representation scheme, and in &7 we discuss how learning and

idiosvneratic preferences can be incorporated into our proposed system. We demonstrate.

Center for Digital Economy Research
Stern School of Business
Working Paper 1S-93-09

in §€. how the measure of preference we have used throughout is an implicit utility function
and we present certain features of this function. which could be used in developing a valid

representation. We conclude in &9.

2 Delivering Electronic Services to the Consumer
Market

In 1992. the videotex market is forecasted 1o account for $700 million in 1evenues [11].
Videotex is “the delivery of electronic information to the consumer market [61." Prodigy
and Compuserve are the two best known videotex svstems in the United States. Minitel’s
success in France has been attributed in part to the government’s backing. Included in
their services such as stock prices. travel information. specialized news. these svstems offer
various kinds of electronic shopping services. As videotex systems expand their customer
base. the demand for electronic shopping will increase. Of the 85 million households in the
U.S.. 25 million have a personal computer [6]. Although only a small fraction of these-
1.5 million- actually subscribe to online services. the growth potential for this industry is

fabulous.

Although videotex was initially pronounced a failure [10], a number of lessons Jearned {from
the early experience guides the deployment of new services. One of the key lessons is that
“information content determines the success of a service [5].” The systems will be successful

as long as they deliver information in cheaper and less expensive ways than those otherwise

Center for Digital Economy Research
Stern School of Business
Working Paper 1S-93-09

available. For instance. consumers will not pav a premium for information (market prices,
entertainment listings. etc.) that is available in newspapers. A second lesson indicates that
the svstems should be entertaining and easy-to-use. One of the causes for Minitel's success
is ite is easy to use mierface {5]. Videotex svsiems should not require special equipment.
Since customers resent tving up household equipment such as the TV. it makes sense to

use the existing base of personal computers to deliver the service.
1

The advantages of elecironic shopping systems are:

¢ ability to provide continually updated. current information

¢ potential for substantially lowering shoppers’ transaction costs [3, 15, 16]. including
both the costs associated simply with ordering and invoicing, and the costs associated

with searching among offerings in a market

e opportunities in the implementation of new marketing strategies (advertisements can

be done via the system) and in measuring their eflects.

It is important to entice customers so that they prefer shopping electronically to doing
it in stores or by telephone. Since friendly trained telephone operators can offer help
and guidance, the electronic syvstem should offer comparable services. In this paper we
propose the use of intelligent search mechanisms to provide the electronic equivalent of a
friendly salesman, who guides and advises customers based on his own experience and on

the preferences expressed by the customers.

Center for Digital Economy Research

Stern School of Business
Working Paper 18-93-09

3 Previous Work

Our purpose in this section is 1o review earlier work on this subject by Lee and Widmeye:
[9] and to indicate ways in which we propose to extend it. Unless otherwise noted. the

proposals and data structures we discuss in this section are those originally presented in

[9).

The general problem is how to organize the information on the items for sale in a way that
can effectively support a search process. Printed catalogs tend to classify the items for
sale into categories. To locate a desired item, customers determine the category to which
it belongs and proceed to browse through it. For example. a catalog for a clothing shop
splits the items into pants, shirts, jogging suits, swimming suits, gloves, coats, and so on.
Furthermore. it seems natural to group coats and gloves together since both are outdoo
garments, and jogging and swimming suits could be grouped together as sportswear. In

this manner a hierarchical organization for representing the products for sale is reached.

Lee and Widmeyer [9], using ideas from semantic networks, propose representing the struc-
ture as a directed graph, as shown in Figure 1. The nodes are classification categories, the
leaves are individual items, and the directed arcs represent inclusion of categories and are
called isa-links. The items for sale are gloves, coats, jogging suits, swimming suils, and
so forth. The nodes clothes, outerwear. daywear, sportswear and pants represent abstract

categories. These are groupings used to support the search process. The leaves in the

6

Center for Digital Economy Research
Stern School of Business

Working Paper 1S-93-09

p
Gloves Coats Sp |
L ' | \ porswea!

JOEE'mEW ; I} Leather Corduwro
i Swimsui oo e Y

Figure 1: A Graph for Clothes

graph represent actual individual product units for which additional information on the
quantity on stock is kept. The graph imposes a natural dist.a.nce notion, as the number of
arcs between two nodes. For example, jogging suits are closer to swimming suits (2 arcs
away) than to leather pants (4 arcs away). A request for an item of a category is handled
by performing a graph search that arrives at the closest item. For example. in response
to a request for a sportswear item, jogging suits or swimming suits are proposed prior to

proposing leather pants.

In [9], Lee and Widmeyer outline a Prolog implementation. The isa links are represented
by predicates: isa(Cat1,Cat2). For example, the leftmost path in the graph of Figure 1

is represented by the following predicates:

Center for Digital Economy Research
Stermn School of Business

Working Paper 1S-93-09

isa(gloves, outerwear).

isa(outerwear, clothes).

Stock availability of the leaf nodes is indicated by assigning codes to physical entities. The
instance.of (Individual, Category) predicate is used for this purpose. For example,
instance.of ("jp 275-1730 ¢", "corduroy pants") represents the fact that the prod-
uct with code jp 279-1730 d is a pair of corduroy pants. Although these codes could be
included in the graph itself. this would clutter the graphs and duplicate information —in

the cases where an item belongs to more than one category.

Although all graphs considered by Lee and Widemeyer are, in fact, trees, their method also
supports multiple inheriiance links, i.e. graphs which have nodes with multiple parents. A

node z is such a node if there are nodes y; and y, such that

1. y; # y2; and

2. 1sa(z,y1), and 1sa(z.ys).

The predicate match is used to find suitable candidates for a user’s request. (We comply

with Prolog’s notation where variable names start with an uppercase letter.)

match(Item, Individual) :- instance_of(Individual, Item).
match(Item, Individual) :- isa(Desc, Item),
N

Center for Digital Economy Research
Stern School of Business

Working Paper 1S-93-09

match(Desc, Individual).

The recursive definition of this predicate provides a simple, vet correct method for finding
matches within a subgraph rooted at a node. 1t searches through the descendants of a node
in order to find an individual of the desired category. For example, using the clothing graph
presented in Figure 1. a request for a sportswear item. would launch a graph traversal that
first checks availability jogging suits. and then, if none are available, for swimming sutts.
The search fails if no items are available in any of these categories. A natural extension of
this method is to continue the search in a sibling subtree, in this case, the subtree rooted at
pants. Thus the system might propose leather pants, that. although not a sportswear item.

may represent the best match the store can offer. This is implemented via the predicate

pmatch:
pmatch(Item, Individuzl) :- match(Item, Individual).
pmatch(Jtem, Individual) :- isa(Item, Parent),

pmatch(Parent, Individual).

Although an interesting and useful approach to the problem, this graph representation and
Prolog program are not sufficiently powerful to handle certain aspects of the salesperson’s
role. First, the graph search is dependent upon the order in which the Prolog predicates

are written. In the previons example when looking for a match for sportswear, jogging

9

Center for Digital Fconomy Rese

Stern School of Business
Working Paper 18-93-09

suit will be tried before swimming suit if the predicate isa(jogging suit, sportswear)
appears before isa(swimming suit, sportswear) among the Prolog facts. Thus the only
way of indicating preferences between siblings is via the order of the predicates, a rather
undesirable and subtle feature. Note that this is due to the absence of mechanisms fos
specifying preferences among siblings in the graph. Secondly. Lee and Widemever [9]
handles shortage and surplus differently. This results in different algorithms, and -to some
eﬁtenl— different data structures. Since both are instances of a search problem, a uniform
treatment of both situations is desirable. Most significant however, is our last point: in
general, there is more than one aspect to take into account when taking care of a customer.
For example, when buying clothes it is not only important to consider the categories as
described in Figure 1, the system should also consider other constraints such as cost.
color, fabric, season, personal preferences, etc. In this paper we propose an expanded data

structure and new operators to address these issues.

4 Expanding the Graphs

In this section, we augment the graphs by assigning costs, or weights, to the arcs. These
costs are used to penalize the choice of some nodes over others. As we shall see, this
solves some of the problems presented in the previous section. We also discuss a prototype

implementation of the data structure and new algorithms.

10

Center for Digital Economy Research
Stern School of Business

Working Paper 1S-93-09

4.1 Assigning costs to the arcs

In order to specify a more precise notion of distance between nodes in the graph. we assign
costs to the arcs. This is done via a cost-assignment function that maps arcs to costs. The
cost of a path is the sum of the costs of its arcs. We define the distance between two nodes

as the minimum over the costs of all paths connecting them.

Intuitively, low cost should be equated with close similarity. This however, is dependent
upon the right choice of a cost assignment function. The system we propose is very sensi-
tive to variations in the cost figures. Hence detailed attention should be provided to the
cost assignment function. Although this problem is itself quite interesting, an in-depth
treatment is bevond the scope of this paper. In section §8, we describe how to use the
utility model [12] to validate cost-assignments. Prospect theory [14] is another approach
to this problem; and Thaler [13] compares both approaches. The focus of this paper is not
on determining appropriate cost assignment functions. but on managing and using these
graphs to support electronic shopping once an appropriate cost assignment function has
been applied to construct the extended graph. In what follows we will assume the existence

of a cost assignment function.

The cost of the arc from a parent node, 7, to one of its child nodes, j, will be denoted by
C:;» and will be, without loss of generality, a number in the interval [0, 1]. Figure 2 presents

a cost assignment applied to the clothes graph. Note that the cost of the arcs connecting

Center tor Diental Economy Researc

Sterm School of Business

Working Paper 1S-93-09

sun

.
[Jogeing

jFI7-1T304
L6758

F 0254 20010004 3010004
p -0 6 2001001 d p 350-1001 d
¥ ¥ P

Figure 2: Adding Costs to the Arcs

daywear to pants and to sportwear are not in the interval [0,1]; they have been scaled as
we explain later. The arc costs represent an intentional bias: leather pants are preferred
to corduroy; and swimsuits to jogging suits. This bias is a consequence of the cost
assignment function, and it might reflect consumer preferences, or company policy (favor
sales of some higher margin items over others). The codes (catalog numbers) appearing
inside the rectangular boxes correspond to individuals instance_of predicates. They are
included for illustrative purposes only. Throughout this and the following sections we will
use that subgraph of Figure 2 as our example, rather than the whole clothing graph (Figure

1). to simplify and shorten the discussion.

A potential difficulty with arbitrary cost-assignment functions is that they may not respect

Working Paper 1S-93-09

the hierarchy of the graph, in fact they may obliterate it. For example, nothing prevents
the cost of the path from sportswear to corduroy pants, to be less than the cost of the
path from sportswear to swimsuit. This is problematic because the rationale bevond
the introduction of the cost-assignment functions is to refine the distance notion induced
by the graph. Therefore, the cost-assignment distance should eztend the graph-induced
distance, and hence. be consistent with it. In order to overcome this difficulty, we propose

the following principle:

Let Below(N) be the sel of all nodes that are connected to N and are below
N (if these graphs were trees, this set would be the set of descendants of N).
The total cost of a path connecting any two nodes in Below(N) should always
be less than the cost of connecling a member of Below(N) with another node

that is not in this set.

This can be achieved by scaling the costs according to the level of a node. The level of a
node is defined as the length of the longest path connecting it to a leaf. In Figure 1, the

level of daywear is 2, and the levels of sportswear and pants are both 1.

We will show how to choose a scaling factor so that arcs coming into nodes at the level of
N are assigned a cost higher than the cost of any path within Below(N). This will enforce
the desired principle. To see this, consider a path passing through N that connects a node

in Below(N) to a node outside the set. By the restriction on the kinds of graphs we use,

13

Center for Digital Economy Research
Stermn School of Business

Working Paper 1S-93-09

there has to be an arc in this path that is coming into N or into another node N’ with the
same level as N. By construction, the penalty for traversing this arc is higher than the
entire cost of any path connecting two nodes in Below(N). Hence, the desired property is

satisfied.

The scaling factors for arcs coming into a node of level I are of the form k'. The constant
k has to be chosen to satisfy the above stated principle. Let m be the number of nodes
with more than one parent in the graph (if the graph is a tree, then m = 0). For any level
l, the constant k has to satisfy

(-1

> m+1)25 K | (1)

1=0

The sum /23 k¥ is an upper bound for the cost of a path connecting a leaf node to a node
of level [. It is multiplied by 2 so that the path can go up to NV and down to a leaf. It is
multiplied by m 4+ 1 to accommodate instances of multiple inheritance. Since k and m are

greater than 1, this results in the following constraint for k:

‘l —
B> (m+1)2‘1_11 (2)
which is equivalent to
E* — 2m 4+ 3)k' +2(m+1)>0 (3)

Clearly, if this inequality is satisfied for [= 1, it will be satisfied for [> 1. Hence it is

enough to choose k so that:

B —2m+3)k+2m+1)>0 (4)

14

Since m is positive, we obtain

5 (2m+3)+ Vdm?* +4m +5
9

=

()

In the clothing example, m = 0, hence k can be chosen as a number greater than 1(3+ V5) =
2.618. We have picked, arbitrarily, the value k = 10. In Figure 2, the costs of the original

clothing graph have adjusted using the scaling factor 10'.

Node Distance
Leather Pants 0.25
Corduroy pants | 0.75
Swimming suit 10.83
Jogging suit 10.7

. Table 1: Calculated scaled distances from Pants

Let us analyze via an example how the scaled costs influence the distance measurements.
Table 1 shows the distances from Pants to all leaf nodes. We have included only leaf
nodes because it is among those nodes that the system makes its suggestions. It would not
make sense to suggest an abstract category such as Clothes or Daywear. The nodes in the
table are ordered from closest to furthest, thus the first suggestion is Leather pants, then
Corduroy pants, and so forth. Notice that we have succeeded in specifying a preference
between siblings. Only if the system is indifferent to a choice between two items, will they

have the same cost, in which case, the system should suggest both to a customer.

The use of costs in the graphs, opens the doorway to a number of applications. For example,

15

using the same underlying graph structure, different personal preferences can be specified
by changing the costs of certain arcs. This will be explored in section 7. Similarly, if
the management wants to stress a product over others, it can do this by lowering the
costs associated with the corresponding nodes. As we can see, the use of cost assignments

increases the accuracy and flexibility of an electronic shopping system.

Note that the above described constructs apply not only to trees, but to graphs with
multiple inheritance as long as levels can be safely assigned to nodes the notion of level
of an node, that is, the graphs are acyclic. Throughout the rest of these paper, we will

assume that all graphs are of this kind.

4.2 Modifying the Data Structure

The implementation of the expanded graph as a data structure is straightforward. An
argument representing the cost of the arc is added to the isa predicate. Since the system
will deal with more than one graph, we also add an argument for the graph name. The
predicate becomes: isa(Graph.name, Child, Parent, Cost). As before, the actual
leaves are represented via the instance_of predicate. There are no costs associated with
these predicates because they are not part of the hierarchy. A portion of the graph depicted

in Figure 1 is represented by the following predicates:

isa(clothing, leather pants, pants, 0.25).

16

isa(clothing, cecrduroy pants, pants, 0.75).

4.3 A note on complexity issues

Recall that the distance between two nodes is defined as the cost of the shortest path
connecting them. Fortunately, reasonably fast algorithms are available to compute shortest

paths. There are at least two possible implementation strategies.

1. The system could store internally the graphs and find the shortest path between two
nodes on demand by performing a graph traversal. If there are n nodes and e edges in
the graph, this approach takes O(e) space and O(n?) time, using Dijkstra’s algorithm

[1].

2. Another approach precomputes the distances between the internal nodes and the
leaves and stores them using O(n?) space. Using Floyd’s algorithm [1], this can be
done in O(n®) steps. Although somewhat expensive, this is a one time setup cost.
Once a distance table has been filled, distances can be retrieved in constant time. In
some cases the distances from one node to all leaves will have to be retrieved and

sorted. Even this can be done reasonably fast in O(n - In(n)).

If space is not a concern and changes to the graphs are rare, the second alternative seems

more attractive. It is interesting, however; to analyze the special case in which the graphs

17

are balanced trees, as in the examples so far. In this case there is at most one path
connecting any two nodes. Using Dijkstra’s algorithm [1], one can produce a list of all
nodes in ascending order of distance from a source node in time O(n - In(n)). In this case,
the first approach is advisable because it is able to handle dynamically changing graphs,
at no additional cost. The condition that there be at most one path connecting any two
nodes, and that the graph be a balanced tree, are essential for this estimate to hold. For

the purposes of this paper we use the second alternative.

4.4 SEP-Shop: The Prototype implementation

We have developed a prototyvpe, Search and Preference-Based Navigation in Electronic
Shopping (SEP-Shop), in Prolog to demonstrate the concepts in this paper. I SEP-Shop,
the distances between the nodes and the leaves are pre-computed and stored as Prolog
facts. There is no need to store the distances between internal nodes, because the sys-
tem will only be looking for leaf nodes. For similar reasons, the distances between leaf
nodes, which represent product codes, are not relevant. Thus the only distances that
need to be stored are those between internal nodes and product codes. The predicate
dist(Graph, Node, Leaf node,-Distance) denotes the Distance between a Node and a

Leaf node in graph Graph. It is used as follows:

dist(clothing,daywear,’jp 200-1000 4’,8.3).

dist(clothing,daywear,’jp 350-1000 d4’,3.25).

18

If there is no path connecting two nodes, the distance separating them is taken to be
infinity. We represent the value of infinity with the atom top which is greater than any
distance in the graph. This concept is enforced by the the clause dist(., -, -, top),
that is placed at the end of the all other dist facts. The underscore character _ denotes

an uninstantiated variable that matches any value.

Given a graph G and a node N, our implementation computes the predicate
reachable((G,N),L), where G is a graph, N a node in G, and L is a list of pairs containing
the leaf nodes of G and their associated distances to N. The list is in ascending order by

distance.

To interact with the user, the system captures through a friendly interface, the desired
selection consisting of a graph and a node, for example (clothing, pants). This means
that although s/he may be unaware of this, the customer will search for pants using the
clothing graph.! The predicate reachable is set as a goal, and it returns the ordered
list of leaves. Following this, the systems suggests products to the shopper in the order in

which they appear in L. The predicate match implements this process:

match(Selection):~ reachable(Selection, List),

dialog(List).

10ther graphs may exist.

19

?-match((clothing,pant)).

leather pant with code # jp 350-1000 d
Would you like to see more 7 .

leather pant with code # jp 350-1001 d
Would you like to see more ? y.

corduroy pant with code # jp 279-1730 d
Would you like to see more 7 y.

cordurcy pant with code # jp 510-7578 e
Would you like to see more 7 y.

swimsuit with code # jp 200-1000 d
Would you like to see more 7 n.

Figure 3: A sample shopping session where a customer is looking for a pair of pants. (The

words in italics are entered by the user.)

The dialog predicate shows the first item of a list, asks the user if she or he wants to see

another one. If the answer is positive, it continues showing the rest of the list. Figure 3

shows a sample session of SEP-Shop where a match for pants is requested.

5 Multiple Perspectives

When shopping, we generally we take into consideration more than one aspect of the items
for sale. We may have in mind certain color and style preferences. We call these various

aspects perspectives. Lee and Widemeyer’s work [9] is on a single perspective; and so is the

20

extension to expanded graphs of the previous section. In this section we show how certain

operations on graphs allow us to deal effectively with search along multiple perspectives.

In principle the idea is quite simple: different graphs portray different perspectives, each
determining different distances between nodes. To use more than one perspective during
search, i.e. color and season as well as clothing categories, the various graphs are combined
into a multi-dimensional graph. Distances between nodes are now computed in this new
graph, and items are suggested using the new distance. The operations- we describe here
for combining various graphs are computationally savvy in that they do not require the re-
computation of paths —a computationally expensive process. Instead, the multi-perspective

distance is calculated by combining single-perspective distances.

5.1 Perspectives as Dimensions

We explained how a graph imposes a notion of distance (to be interpreted as utility, below,
§7) on a collection of abstract categories and product codes. Different graphs will impose
different distance notions. If we think of the perspectives as dimensions, we can think of the
distance notion imposed by a number of perspectives conjunctively as a multidimensional
" concept. For example, each of the perspectives of clothing, color, cost, season determines
a specific dimension. In order-to take them all into account, a multidimensional distance
should be used. In two dimensional Euclidean space thé distance between two points

< z,,71 > and < z,,y2 > is computed as a function of the distances in the z and the

y-dimensions: -

d((21,31), (22,32)) = VI 21 — 22 [P+ [91 — 92 II? " (6)

Here || z; — z2 ||, which stands for the absolute value of z; — z, is the distance along the
z-dimension and || 1 — y2 || is the distance along the y-dimension. We can rephrase this

equation as:

d(Py, Py) = \/do(Py, Py)? + dy(Py, P2)? ' (7)

where P, and P, are points in two-dimensional space, and d. denotes their distance along
the first dimension, z, and d, along the second dimension, y. This shows that the two-
dimensional distance is computed using two single dimension distances, the z-distance and
the y-distance. In the same spirit, we propose combining distances in various perspectives

to compute a multi-perspective distance as follows,

d(h, P,) = Jid{(Pl,Pz)z (8)

=1

where d;(Py, P,) is the distance between points P; and P, along the i** dimension.

To take an example from the clothing world, consider the color perspective represented in
Figure 4. The leaves correspond to codes of products that also appear in the clothing graph.
Although this information is not part of the color graph, we have listed the categories of
clothing, to which the coded objects belong, in order to facilitate our discussion here. The
costs of the arcs have been chosen arbitrarily and are not representative of any particu-
lar cost assignment function. There is an obvious bias towards darker colors, a marked

preference of green over yellow, and of red over blue and brown.

22

[green [yellow
= J Al J

§ § " 1 1
PpT-IT0d ip200-1000d pa0-1001d | | pSi7omd jp350-1001d

corduroy punts wimail wimmi Paging mit Jeather pants
pasolond jp3n-azsd
father parts Jogging mit
5107578
corduroy pants

Figure 4: The Color perspective

The color graph defines a notion of distance that differs from the one determined by the
clothing graph. For example, since jp 279-1730 d(green corduroy pants) and jp 510-7578 ¢
(red corduroy pants) are both corduroy pants, they are very close in the clothing perspec-
tive (distance= 0.) From the point of view of color, however, their distance is 10.3. We
would like to combine the information present in both graphs to support a complex search.
Suppose the customer is looking for blue pants. Notice that there are no blue pants, thus
the system has to choose between brown leather pants and red corduroy pants. From the
clothing perspective leather pants should be considered before corduroy pants. From the
color perspective red should be considered before brown. Should it suggest a pair of brown

leather pants or a pair of red corduroy pants? In what follows we will develop tools to help

instance_of (’jp 279-1730 d’,green).

instance_of (’jp 279-1730 d’,moderate).

instance_of (’ jp 279-1730 d’,female).
instance_of (’jp 279-1730 d’,winter).

h
h
h
h

instance_of (’jp 279-1730 d’,’corduroy pants’). %

Color
Cost
Gender
Season
Clothing

Figure 5: A sample database entry for the five perspectives of an item.

in these situations.

5.2 A Data Structure for Perspectives

Different perspectives are to be represented by different graphs. As before, the graphs are
encoded with the isa(Graph, Node_1, Node.2, Cost) predicates. The reason for having
a Graph argument is that the same nodes might appear in more than one graph (actually
all graphs have identical leaves, namely the product codes). The instance.of predicate
will represents links between the nodes of the graphs and the individual items on stock. A
data base containing all the information about the products is to be constructed. If the
perspectives taken into account are clothing, color, cost, gender and season, a typical entry

for an item in SEP-Shop is shown in Figure 5. By design, the number of perspectives is

unconstrained rather than limited to a fixed number of attributes.

5.3 The Multi—Perspective Distance

Elaborating on the analogy between perspectives and dimensions, we propose to compute
the multi-perspective distance as a function of the distances on each of the perspectives.
One could adopt the Euclidean metric:

i=n

d((z1,. . 2a), (Y15--+19n)) = ; d(zi,y:)° (9)
alternatively, one can use a summation metric:
d((z1y---+2n), (Y15+-+1Yn)) =i_§:d($£,yi) (10)
a mazimal metric:
d((z1y---,@n)s (Y12---2¥n)) = ?nﬂ$15£5n(d($£, Yi)) (11)
or a minimal metric:
d((z1y- -+ Zn), (Y15- - -, ¥n)) = minycica{d(zi, ¥i)) (12)

Each imposes a different penalty on deviation from the optimal point. From a compu-
tational point of view it would make sense to find a suitable multi-dimensional distance
function that is compositional, i.e. it only depends on the distances in each perspective and
does not require finding shortest paths in multidimensional graphs. The metrics presented
above satisfy this requirement. The distances of the shortest paths in each perspective

are combined algebraically to produce the multi-perspective distance. Liberated from the

25

complexity of finding shortest paths, this method makes it viable to combine -in real time-

various perspectives.

The formulz presented so far provide no means for distinguishing perspectives with regard
to relative importance. Under certain circumstances however, there should exist means for
specifying that a certain perspective is more important than another one. Suppose, for
example, that a customer is looking for a pair of pants, and that he or she would prefer
them to be blue. Since, as we saw, there are no blue pants, the system has to find an
alternative. In this case it might be better to suggest a brown pair of pants than a blue
swimsuit. However, if the color is more important, then the blue swimming suit constitutes
a better match. In our implementation we associate weights with the perspectives when
performing a search. The distance along each perspective is multiplied by the corresponding
weight prior to calculating the multidimensional distance. Thus, following the example,
one would assign more weight to clothing than to color. To do this formally, we use a

weighted Euclidean formula.

d((l‘h e _..Tn)-, ('yl-: “en 1yn)) = JZ w;j - d(miayi)z (13)

i=1
The weights, w;, for each perspective should be gathered according to some mechanism that
either asks the user for the relative importance of the perspectives, or uses a predetermined

scale. Next, we show how to algebraically combine various graphs.

5.4 The Join Operation

The join operation combines an arbitrary number of graphs and nodes within those graphs,
finding the best match in all perspectives, i.e., the individual that is closest to all of the
criterion nodes, where closest depends on-the metric chosen, which in our case is the
weighted Euclidean. As mentioned at the end of the last section, weights are added to the
graphs in order to specify their relative importance. The dist predicate is extended to
compute this distance, it receives an ezpanded graph list (EGL) of the form:

[[Weight,, (Graphy, Node1)),...,[Weight,,(Graph,, Node,)]].

The second argument of dist is a node M. The third argument is the computed distance

between the nodes in EGL and M.

dist(join(EGL) ,M,D):- coll_dist(EGL,M,L),

euclid(L,D).
The predicate coll_dist is used to collect the distances between a sequence of weight-

graph-node triples, EGL, and a given node, M. We now show the result obtained using the

clothing and color perspectives.

27

?- match(join([[1, (clothing,pants)],[2,(color,blue)]]))
OQutput:

red corduroy pants with code # jp 510-7578 e
brown leather pants with code # jp 350-1001 d
red swimsuit with code # jp 200-1001 d

blue jogging suit with code # jp 517-0287 d

Figure 6: Searching for a blue pair of pants.

Searching for a blue pair of pants.

The search is along two dimensions: clothing and color. Emphasis is placed on color
by assigning it twice as much weight as that assigned to clothing. Figure 6 is a snapshot
form a run of our prototype SEP-Shop. Note that although leather pants are preferred
over corduroy pants in the clothing perspective, a pair of the latter is suggested first since
blue is closer to red than to brown. We envision a friendly user-interface that will elicit
customer choices and represent these internally using the join operator. Thus, users of the

system would not have to handle the cumbersome notation as it appears in the example.

Searching for a blue pair of pants.

The same query, but now the emphasis is on pants is shown in Figure 7

?- match(join([[2, (clothing,pants)], [1, (color,blue)]]))
Dutput:

brown leather pants with code # jp 350-1001 d
red corduroy pants with code # jp 510-7578 e
green corduroy pants with code # jp 279-1730 d
yellow leather pants with code # jp 350-1000 d
red swimsuit with code # jp 200-1001 d

Figure T: Searching for a blue pair of pants.

Here, leather pants appear before corduroy ones, but only red ones. Also, swimsuits appear

only after all pants have been shown.

5.5 The Union Operation

Suppose someone is interested in buying pants, would like them to be blue, but would accept
green. This preference can be handled by searching for green and for blue and selecting the
best of both outcomes. This operation is implemented via the union operator. As with
join, it takes as an argument an expanded graph list (EGL) whose elements are triples
contaiﬁing a weight, a graph and a node in that graph. The distance from each node
appearing in the EGL to a target node is computed, multiplied by the weight, then the

minimum of the distances is taken to be the distance of the union. The role of weights is

29

reversed here due to the use of minima: a higher weight means less importance.

dist(union(EGL), M, D) :- coll_dist(EGL,M,L),

minimal(L,D).
The situation above is represented by a combination of join and union as follows:

7- match(join([[3, union([[0.3,(color,blue)],
[0.7,(color,green)]])],
[1,(clothing,pants)]])).

Output:

green corduroy pants with code # jp 279-1730 d
brown leather pants with code # jp 350-1001 d
red corduroy pants with code # jp 510-7578 e

yellow leather pants with code # jp 350-1000 d

Since the notation can become quite cumbersome, we remind the reader that, in any
commercial-grade application, a front-end user interface should handle friendly dialogs
while constructing the formal queries in the background. By analyzing the output of SEP-
Shop we realize that even although green was given lower priority than blue, a green pair

of pants is suggested first, since no blue ones are available. The ordering of the subsequent

30

suggestions comes from the fact that red and brown are closer to blue than yellow is to

green.

The same operation can be used to combine different graphs. The color perspective of
Figure 4 clusters colors according to their brightness. One could, however, easily think
of other interesting criteria, for example complement. Suppose we have a perspective
complementary colors where red and green are close together as are lilac and yellow. When
searching for a red item, the system uses both the color and the complementary colors
perspectives to make suggestions. If nothing red is available, the system suggests an item
that matches red either according to brightness or according to complement by using the

union operator as follows,

7- match(join([[1, union([[0.5, (color, red)],

[0.5, (complementary, red)]])],

[1, (clothing, jacket)]])).

6 Shortage

So far we have focused on the surplus problem, i.e., how to narrow down on the set of
possible suggestions and find the best one. In terms of our graph representation, we start
at one or more non-leaf nodes and find a closest leaf. The shortage problem occurs when

a specific item is selected by the user (given by its code number) that is not available. In

31

terms of our graph representation, we start at a leaf and need to find a different leaf that

is as close as possible. Shortage can be dealt with in much the same way as surplus.

Suppose we are looking for item T-shirt jp 522-1635 d, and there are none in stock. The
query match(’jp 522-1635’) would not deal the desired results because we are not spec-
ifying under what perspectives to search. The solution is to have the system find out

to which perspectives jp 522-1635 belongs to and then perform a join operation on these

perspectives .

~Why it is necessary to perform a join operation? Suppose that we also have a perspective
for the cost of items in dollars, so that we know whether or not an item is expensive.
If we are looking for the specific T-shirt jp 522-1635 d, which happens to be blue and
inexpensive, the alternatives offered should consider not only the fact that we want a T-
shirt, but also that it should be blue and not high-priced. A default weight assignment for

the perspectives will be used to reflect the relative importance of color, cost, etc.

The implementation is as follows:

match(Ind):- individual (Ind),
collect_categories(Ind, CatList),
get_weights(CatList,WCL),

match(join(WCL)).

7 Personal Preferences

In many occasions, the may be a natural need to replace certain portions of a graph,
especially in what pertains to costs. If for example, a customer’s color preferences are not
properly represented by the color graph, the customer may be given the option of using

his/her own color preferences. In this section we deal with these issues.

The operations on graphs that we have so far described are compositional in that no new
graph traversals are needed for their implementation. We now introduce an operation that

requires graph traversals, because it modifies the underlying graphs.

Suppose that Susan prefers dark colors to light oneé. Otherwise her preferences agree with
those represented by the color perspective. Instead of building a new perspective for her
preferences and thereby duplicating most of the graph, it would be interesting to establish
a way of changing the values of some arc costs in the color perspective. We propose the
following solution. Build a graph that only holds the arcs whose costs have to be changed.
When computing distances on this new graph default to the other one when no information
is available. That is, if there is an arc between two nodes in the new graph, then use that

arc; otherwise, rely on the other graph.

For the example of Susan, we would build a special graph, susan_colors, containing only
the nodes color, light and dark as shown in figure 8. This kind of default is implemented

by altering the isa hierarchy as follows,

33

6 4

#) . (=)

Figure 8: Susan’s Preferences

isa(default(Graph, Def_Graph), N1, N2, c) :-
(isa(Graph, N1, N2, C);

isa(Def_Graph, N1, N2, C)).

If an arc is present in Graph it is used, otherwise one in Def_Graph is used.

The advantage of using this default operation, as opposed to building a new graph for each
minor variance, is twofold. First, it is space efficient since no information is duplicated.

Second, it provides for consistency by keeping only one version of the shared information.

By far the most interesting use of defaults is the representation of personal preferences.
By interacting with customers and monitoring their choices, the system could observe in
which way a customer’s preferences differ from the stored ones. It could then build user

models in the form of personal perspectives, preferences and weights.

34

8 Relationship to Utility Theory

Our purpose in this section is to show how our distance measures for a single perspective
can be interpreted as a series of unidimensional utility functions, and to show how our

extension to multiple perspectives can be interpreted as a series of multiattribute utility

functions.

We begin with the unidimensional case, i.e., with a single perspective as in §3. The distance
between any two nodes in a single graph, d(z;,z;), was (letting C;; = Cj;, for all 7,7)
simply the length of the path between z; and z;. (We have implicitly been assuming that
the distance from any node to itself is 0. If we restrict our discussion to trees, there is
exactly one path between any two nodes. We relaxed this assumption, and this led us to
measure the distance as the length of the shortest path.) Given this, we can readily see
that the graph may be taken as encoding a series of conditional utility functions, one for
each node. We can define u,, (z;), the utility of going to node j given that you are at node
1, as

uz;(2;) = max — d(zi, ;) (14)
where max is the length of the longest path in the graph. Thus, u ranges from 0 to max.
Since utility functions are unique only up to a positive linear transformation and since in
equation 14 the distance is a negative linear transformation of the utility, we minimize

distance in order to maximize utility.

35

Given the definition implicit in 14, it remains to investigate the requirements of that utility
function and to determine whether these requirements are reasonable. So far as we are
aware, e.g., [4, 7, 8], the sort of graph-functional utility function we are proposing has not
been investigated. We will confine ourselves to but a few remarks. We note two properties

of our utility function. First, for any node z; on the shortest path from z; to z;,
uz,(z;) = max — (d(zi, xx) + d(zx, z;)) (15)

We call this the additivily property, since the utility depends on the sum of the arc lengths.
Second, we note an independence property: u.,(x;) is independent of the cost of any arc
not on the path from z; to z;, the utility is unaffected by changes in the graph not on the

path.

These are, we think, sensible properties for a utility function for this sort of application.
In any case they can be used diagnostically in eliciting a utility function and constructing
a tree. To illustrate, suppose that z; and z; are two leaf nodes with a common ancestor,
Ty, and that d(z;,zx) < d(z;,2x). Then, for any node, -xf for which z; is on the shortest
path between z; and z; and between z; and 2, uz(2;) > ug(z;). This fact can be used
to validate a given graph and assignment of arc costs. Further, if upon examination the
graph is found to be invalid in this way, then the graph can be modified by adding (or
perhaps removing) nodes and arcs, e.g., by splitting z; so that it is not a common ancestor
for both z; and z;. Similarly, if the independence property is violated, then the graph
can be changed so that the offending arcs are in fact on the paths in question. In any

case, changing the underlying graph can be a rather computationally expensive. Further

36

exploration of these ideas is left for future research.

We turn now to the multiple perspectives case, discussed in §4. The required utility function

definition is mainly a generalization of that for the unidimensional case:

Uy (T3} = MAX — d(z5, (115 - - -y Ya)) (16)

where z; is a leaf node (hence common to all the trees in question); the y;s are categorization
(non-leaf) nodes, one for each perspective in play; and MAX is the length of the longest path
in all of the perspectives. In §4 we emphasized that several different distance metric were
possible. We choose, as indicated earlier in the discussion of the code, a weighted Euclidean

metric for our implementation:

i=n ;
d(x;, (Y13++ 1Y) = Jz(ki'wi'd(zjayi))z (17)
1=1
where, as above, z; is a leaf node (hence common to all the trees in question); the y;s are
categorization (non-leaf) nodes, one for each perspective in play; the w; are the weights
placed on the various perspectives; and the k; are standardization factors, set so that

k; -max; = k; -max; = MAX for all ¢, j. (For the sake of simplicity in our implementation, we

absorbed the k;s into the w;s.)

This weighted Euclidean metric is, we think sensible and intuitive. However, it can be easily

changed for another metric. In particular, we note that with a slightly simpler metric:

1]

d(zj, (y1s- -1 Yn)) =) (ki - wi - d(z5,9:)) (18)

=1

37

we have an additive multiattribute utility function, which is the one most commonly used

in practice (7].

The fact, that our distance measures for single and multiple perspectives can be viewed
as utility functions, is crucial both theoretically and practically. Since utility. theory is
widely regarded as the best normative theory of rational choice, it is comforting that our
representation scheme coheres with that theory. In addition, this gives us, among other
things, opportunities to validate the assignment of distances, as well as ways to predict
users’ preferences. In fact, these two features are two sides of the same coin, as we shall

now explain briefly.

Utility theory tells us that preference is (or should be) transitive. If A is prefiered to B, and
B to C, then A should be preferred to C. We can both predict that users will have transitive
preferences and use this fact to validate our preference models. Thus, if under a particular
representation intransitive preferences are discovered, this can be treated as indicating a
need to revise our model, or representation. In the present context, for example, if there is
a path from A to B and from B to C, we would predict that A is preferred to B, B to C,
and A to C. If users indicate a contrary preference ordering for A, B, and C, this would
tend to show that our graphs were inaccurate and needed revision. On the other hand, if
a number of such predictions are extracted from the graphs and confirmed by users, this
would tend to increase our confidence that the graphs were indeed adequately representing

the users’ preferences.

38

Deeper tests of validity are possible, but we shall confine ourselves to but one more ex-
ample. Suppose the user wants A, but we are in a shortage situation with both B and C
available as alternatives. By using one or more graphs (depending on whether we are in a
multidimensional situation), we determine the utilities of B and C, given a preference for
A, i.e., we have us(B) and us(C). At this point there are a very large number of lotteries
we can construct in order to validate our graphs (as representations of users’ preferences).
Suppose, without loss of generality, that us(B) < ua(C). We might, for example, offer a
subject a choice between B for certain, or a lottery with a probability p of getting C and
a probability 1 — p of getting nothing. In such a context, utility theory will help us make
predictions. If, for example, us(B) = p * ua(C), then t he subject should be indifferent
between the gamble and B for certain, and if u4(B) > p * us(C), then the subject should
prefer B to the gamble. In these cases, and many others, it is possible to validate the
graph (and its assigned path lengths) by making predications of subjects’ preferences, and

determining whether these predictions obtain.

The great utility, as it were, of utility theory in this context naturally raises the following
questions. Why rely on the graphs at all? Why not, in particular, simply construct a
utility function algebraically and use it to evaluate preferences? In principle, this could be
done, just as, in principle. books could be printed before the invention of movable type.
A great advantage of this graph-based approach is that the graphs can easily be modified
with minimal disruption of the utility functions. The graphs effectively encode very many

utility functions. In the case of shortage, the graphs encode a utility function for each item

39

that can be in shortage. This is evident from our notation. How many such functions are
there implicit in our scheme? Essentially one for each node in each graph, i.e. for each
internal node N in a graph G, there is a utility function uy . Thus, for example, if the
catalog is augmented with a new product, say rubber river rafts, we may, with considerable
confidence, add the new product to specific points in the various graphs. We know, for
example, that the raft falls under the sporting goods category, rather than the clothing
category. This is knowledge that the ordinary algebraic utility models do not exploit,
since they do not attempt to capture the abstraction hierarchies expressed by these graphs.
Because the method described here does exploit this knowledge, we are able to augment
the graphs easily, thereby creating new utility functions more or less as a byproduct of

using commonsense judgments.

9 Summary and Conclusion

In this paper, we showed how an abstraction (or isa) hierarchy with an imposed distance
metric can be used as a representational basis for modeling the salesperson’s role (as em-
bodied in the surplus and shortage problems) in an electronic shopping system. Further,
we indicated how the distance metric, in the context of the abstraction hierarchy, can be
interpreted as a unidimensional utility function. Finally, we extended the single dimen-
sional (single perspective) treatment to multiple dimensions, or perspectives, and showed

how the resulting representation can be interpreted as a multiattribute utility function,

40

and we argued that the resulting function is plausible and, most importantly, testable.

If, in the future, there are to be large-scale electronic shopping systems, they will need to
accommodate both (a) a large number of products, many of which are close substitutes, and
(b) a heterogeneous body of customers who have complex, multidimensional—and perhaps
rapidly changing—preferences regarding the products for sale in the system. Further, these
systems will have to be designed in a manner so as to both (c) reduce the complexity of the
shopping problem from the customer’s point of view, and (d) effectively and insightfully
match products to customers’ needs. We think that our approach, described above, bids
fair to be able to meet requirements (c) and (d) in the context of (a) and (b). Of course, no
approach can be shown to be optimal. Much remains to be learned, then, about alternative

approaches and about refinements to the one we have proposed.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley

Publishing COmpany, 1983.

[2] Robert H. Bonczek, Clyde W. Holsapple, and Andrew B. Winston. Foundations of

Decision Support Systems. Academic Press, New York, 1981.

[3] Eric K. Clemons and Steven O. Kimbrough. Information Systems, Telecommunica-

tions, and Their Effects on Industrial Organization. In Leslie Maggie et al., editor,

41

Proceedings of the the Seventh International Conference on Information Systems, pages

99-108, December 1986.

[4] Peter C. Fishburn. Utility Analysis for Decision Making. Robert E. Kreiger Publishing

Company, Huntington, New York, 1979.

[5] Donalds T. Hawkins. Lessons from the Videotex School of Hard Knocks. ONLINE,

pages 87-89, January 1991.

[6] Donalds T. Hawkins. Videotex Markets, APplications and Systems. ONLINE, pages
97-100, March 1991.

[7] Ralph L. Keeney and Howard Raiffa. Preferences with Multiple Objectives: Preferences
and Value Tradeoffs. John Wiley & Sons. New York, NY, 1976.

[8] David H. Krantz, R. Duncan Luce, Patrick Suppes, , and Amos Tversky. Founda-
tions of Measurement, Volume I, Additive and Polynomial Prepresentations. Academic

Press, New York, NY, 1971.

[9] Ronald M. Lee and George Widmeyer. Shopping in the Electronic Marketplace. Jour-

nal of Management Information Systems, 2(4):21-35, 1986.

[10] Michael A. Noll. Videotex: ANatomy of a Failure. Information and Management,

9:99-109, 1985.

[11] LINK Resources. United States Consumer Videotex Forecast, 1987-1992. Research

Report 206, New York, NY, 1987.

[12] Paul J.H. Schoemaker. The Expected Utility Model: Its Variants, Purposes, Evidence

and Limitations. Journal of Economic Literature, XX:529-563, June 1982.

[13] Richard Thaler. Toward a Positive Theory of Consumer Choice. Journal of Economic

Behavior and Organization, 1:39-60, 1980.

[14] Amos Tversky and Daniel Kahneman. The Framing of Decisions and the Psychology

of Choice. Science, 211:453-458, January 1981.
(15] Oliver E. Williamson. Markets and Hierarchies. The Free Press, New York, NY, 1975.

[16] Oliver E. Williamson. The Economics of Organization: The Transaction Cost Ap-

proach. American Journal of Sociology, 87:548-575, 1981.

43

Contents

1 Introduction

2 Delivering Electronic Services to the Consumer Market

3 Previous Work

4 Expanding the Graphs
4.1 Assigning coststothearcs L L oL
4.2 Modifying the Data Structure 0oL
43 Anoleoncomplexity 1ssU€S . . v « v« v s s rn s s s s 5 s 6 v e e

4.4 SEP-Shop: The Prototype implementation

5 Multiple Perspectives
5.1 Perspectivesas DIDiensions « « « v w54 a5 vamas vo8 s a® &m e @5 &0

5.2 A Data Structure for Perspectives

44

10

11

16

18

20

-1

5.3 The Multi-Perspective Distance 25

54 The Join Operation o i i it ittt e e 27
B5 TheUnion Operation « o v v v o s o oo e o o e e e e o @ & & w3 29
Shortage 31
Personal Preferences 33
Relationship to Utility Theory 35
Summary and Conclusion 40

45

2309

List of Figures

AGrophforClothes .o s s3 tasspiiwes sumames awanisn
Additg Comtn todle AT & cscamro camosmamownn vo nmowws

A sample shopping session where a customer is looking for a pair of pants.

(The words in italics are entered by theuser.)

The Color Gerspettiveg « v a v s s was wame s amans HE §5 ¥ 8w &S

A sample database entry for the five perspectives of an item.

Searching for a bluepairof pants.

Searching for a blue pairof pants.

Susan’s Preferences v i i e e e e e e e e e e e e e e

46

|

12

20

Example 7 The TC, query Q
{<< o,z >,<d,a">,1> | Rlo,z,t) AQ(d',2',1)}
is mapped into:

[e.A,e" . A": 1) (3z)(32")((R(e) At €elNheAlt) =z) A (Q() At € €lNE.At) =1"))
AR(e)At € elANQ(e)NT €€l

This expression for I'yg(Q) could be simplified (using standard techniques of logical

transformation) to
[e.A,e . A" :t] Rle)At€elAQ(e) ANt €€l

However, this simplification is not always possible as the following example shows.
Example 8 The T'C, query
{< 0,2 >,1| R(o,z,t) A (F0")Q(0',z,1)}
is mapped into
[e.A:t] Bz)[R(e)AteelneAlt)=z A (3e)Q(e) Nt € €e.INEA(t) =)]

Note that in this case the variable z serves to equate the terms e.A(t) and €'.A(t), via
transitivity. Also note that the quantified group-id variable (30’) was replaced with the

historic variable (3¢’) in the Ly formula.

Example 9 The T'C, query
{< o,z >,t| R(o,z,t) A (32")(3t")(R(0,z,1) A Q(o0,z",t') ANz = z')}

is replaced with

[e.A:1] Bz)((R(e)At€elneAlt)=z)A(F2")3t')((R(e) At € elAe.Alt) = z)A
(Qe)At'€elNheAlt')=2')Az=1z2')) AR(e) At € el

This expression can be simplified to

43

[e.A:t] (3z)(32)(3t')((Re)AteelneAlt)=z)A(Q(e) At € el Ne. A(t') = 2')
Az =a')AR(e) At € el

Note that the equality 2 = 2’ did not change in the conversion process. However, it
follows from the facts that e.A(t) = z, e.A(t') = 2’ and £ = z’ that the terms e.A(t)
and e.A(t') are equal. Also note that the domain variable 2’ in the T'C, formula remained

unchanged in the L, formula.

Example 10 The T'C, formula
{< o,z >,t| R(o,z,t) A ~Q(o,z,1)}

is converted to

le.A:1) Bz)(R(e)AteelnheAlt) =z A~ (Q(e)At€elNeAlt)=z)) AR(e)ALE el

Note that in the previous examples, I'yg maps safe T'C,; formulae into safe L formulae.

We generalize these observations in the following proposition.

Proposition 4 I'yg maps safe TC, formulae into safe Ly formulae.

Sketch of Proof: Let ¢ be a safe TC, formula. We will prove that I'yg(4) is safe by
verifying all the conditions in the definition of safety for Lj formulae. First, I'yg(4) does

not have universal quantifiers since ¢ does not have them.

Second, the range expression ¥; = (3z;5)...(3z;)Ri(0i,Tiry- .., Tin;,t) is mapped
into the expression (Jz;;)...(3zi;)(Ri(e)) At € eid A €Ay, (1) = T A ... A eiA(1) =
z;;) and also the expression R;(e;) At € e;.l is added at the “outermost” level of Tyg(¢)
because of condition 1 in the definition of the mapping I'vg. Clearly, the two expressions are
semantically equivalent. But the second condition was added to make I'yg(¢) syntactically
safe. Since I'ug(@) has the formula R;(e;)At € e;.l for each range expression at the outermost

level, the second condition of safety for L; formulae is satisfied.

Third, subformula F} V F; in ¢ is mapped into T'yg(F1) V Tuc(F) so that I'vg(F1) and
T'yg(F:) have the same set of atoms ¢; € e; because the formulae F; and F, have the same

set of pairs < 0;,1; > and because the mapping 'y translates them into expressions t; € €

Finally, the mapping I'yc is defined so that all the three items in the definition of safety

related to maximal conjuncts are satisfied. O

44

Theorem 5 Mrc = (TG, L) is strongly complete with respect to Mry, = (TU,,TC,).

Sketch of Proof: First of all, Qug is clearly a correspondence mapping, and 1-1, be-
cause of our grouping axioms. Secondly, the mapping I'yg satisfies the second condition
in the definition of strong completeness for the following reasons. Intuitively, the predicate
R(o,21,...,2,,1) in TC, is mapped into the expression R(e) At € e.l, so that the historical
variable e corresponds to the group-id o and 1 is in the lifespan of e. Furthermore, group-id’s
are defined so that the variables z,,...,z, are uniquely determined by values of o and ¢
and are irrelevant in the translation process. Also, the expressions R(o,z;,...,2n,t) and
R(e) At € e.l are equivalent. In addition, the mapping 'y preserves the structure of the

formula @, i.e. it leaves conjunctions, disjunctions and negations of ¢ in their places in

T've(9)- O

6.2.3 Mapping L Formulae to T'C,

In this section, we define the mapping I'cy that maps safe L, formulae into equivalent
safe TC, formulae. Let ¢ be a safe L, formula. As for the I'yg mapping, the formula
I'cu(¢) is obtained from ¢ by replacing all the atomic formulae in ¢ together with quantified
variables and leaving the structure of ¢ intact (operators A, V, — remain unchanged). The

replacement of atomic formulae and quantified variables is done in the following manner:

1. Replace quantified variables in Lj as follows.

(a) Do not change any quantified domain and temporal variables, i.e. (3z) and (3t)
in Ly will remain in Tgy(¢).

(b) Replace quantified historic variables (Je;) with (3o;), where o; is a unique group-id
variable.

(c) Consider all pairs of historic and temporal variables e and t such that ¢ contains
an expression t € e.l. Dependiné on the relationship between the scopes of these

variables, we add the expression (3z,)...(3z,) to I'gu(®), where z; is a domain

variable associated with historic variable e of arity n, as follows.

1. if t is a free and e is a bound variable, then place the expression (3z,)...(3z,)

before the expression (Jo) obtained in Step 1b;

ii. if ¢ and e are bound variables, and the scope of e is contained within the

scope of t then also place (z,)...(3z,) before (Jo);

45

iii. if t and e are bound and the scope of { is contained within the scope of e then
place (3z,)...(3z,) before (3t);

iv. in all other cases, do not add anything to the formula.

2. Replace each occurrence of Ly expression R(e) with (3z;)...(3z,)(3t)R(0, z1,. .., Zn,1).
If e is a bound variable in ¢, then the group-id variable o is the same as the one that
replaced e in the expression (Je) in Step 1b. If e is free, then all the occurrences of €

are replaced with the same group-id variable o.

3. Replace each occurrence of expression t € e.l with R(o,z,,...,Z.,1t), where predicate
R is one of the predicates occurring positively in the maximal conjunct containing
t € e.I"™. If e is a bound variable in ¢, then the group-id variable o is the same as the
one that replaced e in the expression (Je) in Step 1, and the domain variables z;,. .., z,
are the same as the quantified variables introduced in Step 1 for the combination of
(3e) and (3t) expressions. If € is a free variable in ¢, then the group-id variable o and

the domain variables z,...,z, are free and are different from all other variables in
Teu(d).

4. Replace each term e.A;(1) in ¢ with z;, where z; is defined as follows. Since ¢ is safe,
the maximal conjunct containing e.A;(t) must also contain expressions ¢t € e.l and R(e)
(for some R). In Step 3, t € e.lis replaced with R(o,z;,...,z,,t). Then z; corresponds

to the variable in this expression that corresponds to attribute A; in R.1°

Examples illustrating the mapping I'gy follow. In these examples we assume that the
schemas of relations R and @ from L, are R(A, B) and Q(A) respectively.
Example 11 The L, query

[ex:t) Rle)AteelneB(t)=5

is mapped into the T'C, query as follows. R(e) is replaced with (3z')(3y")(3t")R(o, ', ¥’,t'),
t € e.l with R(o,z,y,1), and e.B(1) = 5 with y = 5. :

Putting the pieces together, we get the answer:

{<o,2>,<0,y>1]|(32")3y)(3t")R(0,2',y',1") A R(o,z,y,t) Ay = 5}

14 1t follows from the grouping axioms in Section 6.1 that it does not matter which positively occurring
predicate R is selected. Any selected predicate will produce the same results. In fact, all the qualifying
predicates can be selected as well, for a longer but logically equivalent formula.

I>Remark in the footnote 14 is also applicable here.

46

Since (3z')(3y’)(3t")R(o,2',y',t') A R(o,z,y,t) is equivalent to R(o,z,y,t) we can rewrite

the previous query as

{<o,z >,<o0,y>,t| R(o,z,y,t) ANy = 5}
Example 12 The L; query

[e.+ :] R(e) At € ed A(Bt')(R(e) At € el A (3e)(Q(e) At € "IN Rle) At € el
Ae.B(t) = ¢ A(t)))

is mapped into the T'C, query
{<o,z>,<0,y > 1| R(o,z,y,t) A (") 3y")(3t')(R(0, ", y",t")A
(30)(3')(Q(', 2", t') A R(o,z,y,t) Ay = 2'))}

Note that the domain variable z’ in the previous example is quantified in the same part
of the I'gy(¢) formula as the group-id variable o’. Also note that the variables z”, y” are
quantified together with temporal variable ¢'. In general, the domain variables appearing in
the same predicate as group-id variable o and temporal variable ¢ are quantified together
with the innermost scope of variables o and ¢. The next example shows how 'y handles

negations.
Example 13 The L, query
(€% :1] (Fe)(Qe)A~(t € el AQ(e)) AR() ANt €€I)AR(e)ALt €€l

is converted to

{<d,2'>,< 0,y > 1| (30)(Iz)((3z")(3t")Q(0, 2", t") A ~Q (o, z,t)A
R(O’a m".l y’! t)) A R(O” x” y‘! t)}

The next example shows that I'cy does not affect domain variables in ¢.

Example 14 The L, query
[ex:t] R(e) At €elA(Fz)(R(e) At € elAeAt)=2z)
is translated into

{<0,2>,<0,y>,t]| Rlo,2,4,t) A (32)(R(0,2,y,1) Az = 2)}

47

Proposition 6 I'cy maps .éafe Ly, formulae into safe TC, formulae.

Sketch of Proof: The proof proceeds along the lines of the proof of Proposition 4. O

Theorem 7 Mgy, = (TU,, TC,) is strongly complete with respect to Mrg = (TG, Ly).

Sketch of Proof: First of all, lgy is clearly a correspondence mapping, and 1-1, because
of our grouping axioms. Secondly, the mapping 'y satisfies the second condition in the
definition of strong completeness, as we shall show by by induction on maximal conjuncts in
¢ in L,. At any inductive step the L, formula ¢(es,...,en,T1,...Tm,11,-..,1) is mapped
into the TC, formula I'gy(#)(01,...,0n,T15-+«,Tmy Y15+ -, Yty t15. - -, k), Where yy,...,y; are
extra variables introduced in the translation process (i.e. when R(e) At € e.l becomes
R(0,y1,-.-,Ys,t)). Notice that variables y;,. ..,y are uniquely determined (i.e. functionally
depend) by values of variables 0, ...,0,,21,...,Zm,t1,...,tx. Therefore, these variables are
“superfluous” and do not affect the translation process. With this observation in mind, the

proof proceeds along the lines of Theorem 5. O

The following theorem immediately follows from Theorem 5 and Theorem 7.

Theorem 8 The grouped model Mrg = (T'G, L) and the ungrouped model with group iden-
tifiers My, = (TU,, TC,) are strongly equivalent.

Theorems 3 and 8 establish the connections between grouped and ungrouped historical
data models. The power of temporal grouping which is inherent in grouped models can only
be achieved in an ungrouped model by the addition of some mechanism, analogous to our

group identifiers, for simulating the grouping.

7 Historical Models and Completeness

All of the historical relational data models and languages that have been proposed differ
from one another in the set of query operators that they provide. In addition, they often
differ in the structure of the historical relations that they specify, that is, the way in which
the temporal component is incorporated into the structure. Space obviously precludes an

analysis of all of these models with respect to our two notions of completeness. Since we

48

have two orthogonal characteristics to describe these models and their languages — grouped
or ungrouped, algebra or calculus — we decided to discuss four models, each covering one
of the four possibilities. Two of the data models we discuss are ungrouped, one with an
algebra ([Lor87]) and the other with a calculus ([Sno87]); we therefore investigate whether
or not they are TU-Complete. The other two data models discussed are grouped, one with
an algebra ([CC87]), the other with both an algebra and a calculus ([Gad88]), and so we

investigate whether or not they are TG-Complete.

We have earlier motivated our choice of Ly and T'C as appropriate languages to use
for our notions of completeness. Therefore, in this section a data model will be said to be
complete with respect to Mrg = (T'G, L) (or My = (TU,TC)) if it is strongly complete
with respect to Mrg = (TG, L;) (or Myy = (TU,TC)). Although by our definitions we
should, strictly speaking, refer to completeness with respect to the data models, we will
generally speak more specifically about their languages and apply the term loosely to them.
For each of the historical query languages discussed in the following, therefore, we consider
first its completeness with respect to either of Ly and TC and vice versa. We shall see that
L and TC are complete with respect to all of the languages we consider, a fact which lends

further support to their use as the standards for TG-Completeness and TU-Completeness.

We begin with a discussion of the completeness of the historical relational algebra speci-
fied by the historical relational data model HRDM [CC87]. We discuss this language first
both because the T'G model defined in Section 2 is derived directly from the structure of
the historical relations in HRDM, and because the set of operators specified by this model

were intended initially to provide all the functionality thought useful and desirable.

7.1 HRDM

The historical relational data model HRDM presented in [CC87] is a temporally grouped
historical data model with an algebraic query language which is presented as an extension

to the standard relational algebra.
We can categorize the operators of HRDM as follows:

Set-Theoretic These operators are defined in terms of the set characteristics of relations,
and include the standard set operators union (U), intersection (N), set difference (-), and

Cartesian product (x). Because these operators do not exploit the historical aspects of

49

HRDM relations, the standard mappings from these operators in relational algebra to their

counterpart in relational calculus also applies to these operators here. For example,

rUs = {z|lzt€rVvazes}
= [e.x|tlr(e)At€elVs(e)At€el

Attribute-Based This category includes those operators that are defined in terms of the
attributes (or their values) of a relation. Some of these operators, as suggested by their
names, are derived from similar operators that exist in the standard relational algebra. As
shown below, often the original definition of these operators has been modified to exploit
the temporal component of the historical model. For each of these operators we give both

its set-theoretic definition, and then an equivalent Lj-based expression.

1. Project (7): This operator is equivalent in definition to its standard relational coun-
terpart, and has the effect of reducing the set of attributes over which each of the
tuples z in its operand, a relation r, is defined, to those attributes contained in a set
of attributes X.

mx(r) = {z(X)lz€r}
= [eX:tlr(e)Ateel

2. Select-If (0-IF): This variant of the select operator selects from a relation r those
tuples z each of which for some period within its lifespan has a value for a specified
attribute A that satisfies a specified selection criterion. The period of time within the
lifespan is specified by a lifespan parameter L. The selection criterion is specified as
Afa, where 0 is a comparator and a is a constant. (It is also possible to compare one
attribute with another in the same tuple.) A parameter, @, of the select-if operator
is used to denote a quantifier that specifies whether the selection criterion must be
satisfied for all (V) times in the specified subset of the tuple’s lifespan, or that there

exists (3) at least one such time.

o-1F (a6a0.0)(r) = {z €r|Q(t € (LN z.0))[z.A(t)0a]}
(ifQis3I) = [ex:tlr(e)Ate€elA
3t1(t1 € LAt € el Ae.A(t1)0a)
(ifQisY) = [ex:tr(e)At€elA
—3t,(t; € LAt € el A—e.A(ty)ba)

30

3. Select-When (o-WHEN): This operator is similar to the 3-quantified select-if op-
erator. However, the lifespan of each selected tuple is restricted to those times when

the selection criterion is satisfied!®.

0-WHEN pg,(r) = {z|32' € r[z.l = {t|z’. A(t)0a} A z.v = z'.v|..4]}
= [ex:tlr(e) At € el Ae.A(t)fa

4. 6-Join: Like its counterpart in the standard relational data model this operator com-
bines tuples from its two operand relations. With 6-join two tuples are combined when
two attributes, one from each tuple, have values at some time in the intersection of
the tuples’ lifespans that stand in a 6 relationship with each other. The lifespan of the

resulting tuple is exactly those times when this relationship is satisfied.

Let 7, and r; be relations on schemes R; and R,, respectively, where A € R; and

B € R, are attributes.

r1[A0B]r; = {e|3e,, € r1,3e,, € r2e.l = {tle,, (A)(t)0e,,(B)(t)} A
e.v(R1) = e,,.v(R1)|eas A

e.v(R2) = ey, .v(R2)|e.]}

[e1.%, eg.% : t]r1(e1) A T2(ez)

At € 61.1 At € 62.1 A 61.A(t)962.B(t)

5. Static Time-Slice (7gr): This operator reduces an historical relation in the temporal
dimension by restricting the lifespan of each tuple e of the operand relation r to those

times in the set of times L.

Tor(r) = {el3¢'er[l=LNnélAel=1Aev=_ev|]}
[ex:t]lr(e)At€elNtEL

il

Other Operators

In addition to the above categories of operators, the HRDM algebra includes several
grouping operators that are used to restructure a relation without changing the informa-

tion content of that relation. These operators, union-merge (U,), intersection-merge

16The notation f|; in this definition, used in HRDM, is the standard notation for denoting the restriction
of the domain of the function f to the set [.

o1

(N,), and difference-merge (—,), first computes the set-theoretic union, intersection, and

difference, respectively, and then regroups the tuples in the resulting relation.

The HRDM algebra also includes the operators WHEN and Dynamic Time-Slice.
We categorize the WHEN operator as an eztra-relational operator in that it computes a
result that is not contained in a database relation, nor given as a constant. Applied to
an historical relation, this operator returns a value defined as the union of the lifespans
of the tuples in that relation. This operator can be viewed as a type of temporal-based
aggregate operator. The dynamic time-slice is only applicable to relations that include in
their scheme an attribute A whose domain consists of partial functions from the set TIMES
into itself. We do not treat such attributes in this paper since most of the models considered
distinguish between ordinary values and the times at which they hold, and do not allow
comparisons between them. Therefore it would be unfair to include such an operator in our
comparison. We omit the other operators from our discussion of completeness of HRDM
and the remaining languages that we will examine. The grouping operators are not treated
because they are not intended for querying, and the aggregate operators, because they are

outside of the scope of standard relational-based notions of completeness.

The translations that we have provided for each of the relation-defining operators of the
HRDM algebra shows that L, is complete with respect to this algebra. However, this
algebra is not TG-Complete in that there are queries that are expressible in L, for which no
equivalent algebraic expression (i.e., sequence of algebraic operations) exists. One example
is the query on the database in Figure 8 for the name and department of each employee that

has at some time received a cut in salary, expressible in L; as

[e. NAME,e.DEPT : fEMPLOYEE(e) A ¢ € e.l A
Jt;3t,(EMPLOYEE(e) A t; € el Aty € Aell A
(tl < tg) A C.SAL(fl) > ESAL(tz))

The lack of an equivalent algebraic expression is due to the specification of those operators
in HRDM that include the comparison of two values as part of their definition: the join,
and the various select operators. In each case only attribute values that occur at the same
point in time can be compared. (This ability seems to be what is meant by the property
of supporting “a 3-D conceptual view of an historical relation” that has been cited as an
intuitively necessary component of a good temporal database model (e.g. in [CT85, Ari86,
MS91a).) Thus, as required by the above query, it is not possible to compare the salary of

92

an employee at some time ¢; with that employee’s salary at some other point in time, #5.

7.2 The Historical Homogenéous Model of Gadia

The next historical model that we discuss is one that was proposed by Gadia [Gad88]; it is a
model that includes a query language and an algebra. This data model, which we shall label
TDMG(for Temporal Data Model of Gadia), is the same as that of HRDM, and thus of

the canonical historical model T'G defined in Section 2.

In TDMG the value of a tuple attribute is a function from a set of times to the value do-
main of the attribute, and the lifespan is the same for all the attributes (Gadia’s homogeneity

assumption). Therefore the TDMG model is temporally grouped.

In addition to the data model, Gadia defines an historical algebra and calculus. Although
his data model is temporally grouped, the semantics of the algebra is defined in terms of the
ungrouped model obtained by ungrouping temporal relations. Gadia calls this a snapshot
interpretation semantics. The semantics of the historical algebra is defined by ungrouping
temporal relations because Gadia considers grouped and ungrouped models “weakly equal”
and does not distinguish between them when he proves equivalence of his algebra and cal-
culus. In terms of our discussion on completeness in Section 3, Gadia’s mapping from his
grouped model to his ungrouped model is not a 1-1 mapping; unlike our mapping into 7'C,,

Gadia’s () mapping ignores grouping.

Gadia’s (ungrouped) algebra is defined as follows. He starts with the five standard
relational operators, selection, projection, difference, Cartesian product, and union, as TA
does. He also defines derived temporal operators such as join, intersection, negation, and
renaming. In addition, he defines temporal expressions for the temporal domain. Finally,
he combines relational and temporal expressions by considering relational expressions of the

form e(v) where e and v are relational and temporal expressions, respectively.

TC is complete with respect to Gadia’s algebra for the following reasons. The five stan-
dard temporal operators are defined as for TA and, therefore, can be expressed in TC.
Temporal expressions are defined as a closure of a time intervals over the operations of
union, intersection, difference and negation. Each of these operators can be expressed in the

first-order logic with explicit references to time. For example, the expression tdom(r(A, B))V
tdom(s(A, B)) in TDMG can be defined in TCas {t | (3z)(3y)(r(z,y,1) V s(z,y,t))}. This

53

mea;.ns that every query in TDMG can be expressed in TC.

Gadia also defines an historical calculus and shows its equivalence to the algebra (mod-
ulo temporal grouping). This calculus is expressible in Lj for the same reasons that the
ungrouped algebra is expressible in T'C. A lifespan of a temporal tuple z in TDMG can be
captured with expression ¢ € z.l in L. Also, the operators of union, intersection, difference
and negation for temporal expressions can be expressed in L, with the same methods that

are used to express algebraic expressions in T'C since Lj, explicitly supports time.

The temporally grouped language L, has strictly more expressive power than Gadia’s
calculus, i.e. this calculus is not T'G-Complete. Also, the temporally ungrouped language
TC is strictly more powerful than Gadia’s algebra, i.e. the algebra is not TU-Complete.
The reason for this lack of completeness is the same as for HRDM: it is not possible to
compare the value of one attribute at time ¢; with the value of another or the same attribute
at some other time ¢,. For example, the query of the previous section, asking for the name
and department of each employee that has at some time received a cut in salary, cannot be
expressed in TDMG.

7.3 TQuel

TQuel is the query language component of an historical relational data model proposed by
Snodgrass [Sno87]. We shall call this model TRDM.

TRDM provides for two types of historical relations. One, called an interval relation,
is derived from a standard relation through the addition of two temporal attributes, valid-
from and valid-to, both of whose domains are the set of times T. (An example of such a
relation has already been given in Figure 3). As before, we will ignore the two TRANS-TIME
temporal attributes since we are only considering historical data models. Thus we will view
TRDM as a temporally ungrouped historical data model. The values of the non-temporal
attributes of a tuple in such a relation are considered to be valid during the beginning of
the interval of time starting at the walid-from value and ending at, but not including, the

valid-to value. (This interval thus denotes the lifespan of the tuple.)

The second type of relation, an event relation, is defined by extending a standard relation
by a single temporal attribute valid-at. Since both interval relations and event relations are

derived from first normal form relations through the addition of attributes whose values are

o4

atomic, they are also in first normal form.

The query language TQuel is an extended relational calculus derived from and defined
as a superset of Quel, the query language of the Ingres relational database management
system [SWKH76]. TQuel extends Quel by adding temporal-based clauses that accommo-
date the valid-from and valid-to attributes. (These attributes are not visible to the existing

components of the Quel language.)

A WHEN clause is added to define an additional temporal-based selection constraint
that must be satisfied in conjunction with the constraint defined by the TQuel (and Quel)
WHERE clause. This constraint, specified as a temporal predicate over a set of tuple valid-
from-valid-to intervals (lifespans) defines a restricted set of relationships that must hold
among them. A VALID clause is used to define, in terms of temporal expressions, valid-from

and valid-to values for tuples in the relation resulting.from the TQuel statement.

Both temporal predicates and temporal expressions have a semantics that is expressible
in terms of the standard tuple calculus ([Sno87]).!" TQuel is complete with respect to T'C,
and vice versa, since the semantics of TQuel like that of Quel [UlI88] can be expressed in
terms of the standard relational calculus, with which T'C is clearly strongly equivalent. In
particular, Snodgrass shows how any TQuel query can be expressed as a formula of the form
QAT A® where @, I', and ® are the calculus formulae of the underlying Quel statement, the
TQuel WHEN clause and VALID clause, respectively, and I' and ® contain no quantifiers.
Additionally, I' and ® are defined only over the temporal attributes valid-from and valid-
to, neither of which may be included in Q. The structure of this formula means that, as
with Quel, not all algebraic expressions can be expressed as a single TQuel statement (for

example, algebraic expressions containing the union operator).

If none of the non-temporal attributes over which a TRDM database is defined has a
domain whose values are comparable to those in the set of times T, then in no algebraic
expression over the relations in this database can such an attribute be compared to either
valid-from or valid-to. For such a database, TQuel statements, as represented by a defining
tuple calculus formula, are no more restrictive than Quel statements. Therefore (as with
Quel) a sequence of TQuel statements can express any algebraic expression, perhaps by

creating temporary relations, and using statements such as APPEND and DELETE,

17This specification also includes the use of several auxiliary functions that are used to compare times in
order to determine which of two times occurs first or last.

%]

Although interval relations and event relations are distinguished by TQuel, they are
standard first normal form relations that provide a fixed way of encoding temporal data
using the temporal attributes. TQuel differs from Quel only in the distinction accorded
these attributes. Thus, like Quel — with the addition of such statements as APPEND - it is
complete in the sense defined by Codd. By extension, as a result of the use of the temporal

attributes, it is TU-Complete, but, like all ungrouped models, it does not exhibit temporal

value integrity.

We note that the query on the database in Figure 8 for the name and department of each

employee that has at some time received a cut in salary, expressible in L as

[e.NAME, e.DEPT : tEMPLOYEE(e)At € e.l A
3t,3t,(EMPLOYEE(e) Aty € el Aty € Aell A
(t1 < t3) Ae.SAL(t1) > e.SAL(t2))

is also expressible (again, ignoring transaction times) in TRDM as:

range of el is EMPLOYEE

range of e2 is EMPLOYEE

retrieve into SalChange(el.NAME, el.DEPT)
valid from begin of el to end of el

where el .NAME = e2.NAME AND e2.SAL < el.SAL
vhen (end of el) precede (begin of e2)

We note further that an algebra has been proposed that provides a procedural equivalent
to the TRDM calculus ([MS91b]). While it employs a different data model from that
in TRDM (in fact, its model is NINF), it is not a grouped model and does not support

grouping.

7.4 The Temporal Relational Algebra of Lorentzos

The final historical data model that we discuss is one that was proposed by Lorentzos in
[Lor87]. The data model in [Lor87], which is called TRA, is essentially the same as that in
[Sno87], except that as an historical model it is restricted to only one temporal dimension.
Two of the stated goals of TRA are that “no new elementary relational algebra operations
are introduced and first normal form is maintained” [Lor87, p. 99]. Typical relations in this

model appear basically as in Figure 3 (with the columns valid-from and valid-to called Sfrom

56

and Sto, respectively). Although the structures of relations in this model are essentially
the same as in the historical version of TRDM, we discuss this model here because, unlike

[Sno87], the language it proposes is an algebra rather than a calculus.

It is difficult to discuss formally the algebra of TRA because it is not specified formally.
Rather, it is presented via a series of example queries and discussion. Nevertheless, enough

of a picture of the algebra emerges clearly through these examples to make a discussion

possible.

Two new operators, FOLD and UNFOLD are defined. These operators essentially convert
between the time interval representation (as in Figure 3) and a time point representation (as
in Figure 1). The FOLD and UNFOLD are clearly expressible in terms of operators in the

standard relational algebra, as [Lor87] points out.

The previous sections demonstrated that two other algebras, that of HRDM and that of
TDMG were incomplete because they were not able to compare the value of one attribute
at a time t; with the value of another (or the same) attribute at some other time ;. In
TRA such comparisons are possible. Consider again the query that finds the name and

department of each employee that has at some time received a cut in salary:

[e. NAME,e.DEPT : t{{EMPLOYEE(e) At € el A
3t:3t,(EMPLOYEE(e) Aty < t, A e.SAL(t;) > e.SAL(t2))

This query can be expressed in TRA as follows. First UNFOLD the interval relation EM-
PLOYEE into all of its time points:

EMPLOYEEy, = UNFOLD[Time,Start, Stop)(TIME, EMPL)

Then, ©-Join this relation with itself, joining tuples with the same name and with a pay
cut, and then Project just the names of the employees from the result (here NAME1 and
NAME?2, etc., refer to the NAME attributes in the first and second operands to the Join):

NAMEl = NAME?2,
TEMP1 = EMPLOYEEy, | TIME1 < TIME2, | EMPLOY EEy,
SALl > SAL2

TEMP2 = nnamei(TEMPI)
Finally, Join the result with the original relation and Project onto the desired fields:

T{NAME,DEPT,Sfro,st0} (T EMP2 v« EMPLOY EE)

a7

Language Reference | Type Completeness

Ly Section 5 | grouped Basis for TG-Completeness
TC Section 4 | ungrouped | Basis for T'U-Completeness
TRA algebra Lor87] ungrouped | TU-Complete
TRDM calculus | [Sno87] ungrouped | TU-Complete

HRDM algebra | [CC8T7] grouped not TG-Complete

TDMG calculus | [Gad88] grouped not TG-Complete

TDMG algebra | [Gad88] ungrouped | not TU-Complete

Figure 15: Summary of Completeness Results

Because TRA is equivalent to standard relational algebra, the question of its TU-Completeness,
as in the case of TRDM, is reduced to the question of the completeness of relational algebra.
Therefore we conclude that TRA is TU-Complete but, like all ungrouped languages, it does

not exhibit temporal value integrity.

The results of our explorations into the completeness of these five languages is summarized
in the Table in Figure 15.

8 Summary and Conclusions

In this paper we have explored the question of completeness of languages for historical
database models. In this exploration we were led to characterize such models as being of one
of two different types, either temporally grouped or temporally ungrouped. We first
discussed these notions informally by means of example databases and queries, and showed
that the two models were not equivalent. The difference between the two models is that in
temporally grouped models, historical values (like salary histories) are treated as first class
objects which can be referred to directly in the query language. In the temporally ungrouped
models, no such direct reference is permitted. We characterized this property of the grouped

models as temporal value integrity.

We then proceeded to define the two concepts of weak completeness and strong complete-
ness between two data models with different representation paradigms and different query
languages. In the case of weak completeness, there is a correspondence mapping from the
relations of the reference model to the comparison model, and a mapping on the query lan-

guage which preserves the meaning of a query. The problem with weak equivalence is that

58

different relations in the reference model can be mapped to the same relation in the compari-
son model, and so information, e.g. grouping, can be lost. In the case of strong completeness,

the correspondence mapping must be 1-1, and hence there is no loss of information.

For the ungrouped models we defined three different languages, 7L, TC, and TA: a
temporal logic, a logic with explicit reference to time, and a temporal algebra, and showed
that under certain assumptions about the model of time employed all three are equivalent
in power. Any one of the three can serve as the basis for TU-Completeness. An ungrouped

model is said to be TU-Complete if it is strongly complete with respect to M7y = (TU,TC).

For the grouped models we defined the calculus Lj, a many-sorted logic with variables
over ordinary values, historical values, and times. We proposed L, as the basis for T'G-
Completeness. A grouped model is said to be T'G-Complete if it is strongly complete with
respect to Mpg = (T'G, Ly).

We then proceeded to explore more formally the relationship between ungrouped and
grouped models. We demonstrated a technique for extending the ungrouped model with a
grouping mechanism, a group identifier. With this mechanism we showed how the ungrouped
model TU and the language T'C could be extended to TU, and T'Cy in such a way as to
make the resulting model equivalent in power to TG with L;. In this way we demonstrated
that the grouped and ungrouped models differ only with respect to the grouping capability.
More precisely, we proved that the model M7y = (TU,TC) is weakly equivalent, and the
model Mry, = (TU,,TC,) is strongly equivalent, to the model Mr¢ = (TG, Ls).

Finally, we examined several historical relational proposals to see whether they were
TU-Complete or TG-Complete. We looked at four historical models, two grouped and two
ungrouped, offering five different languages. In the ungrouped models we found both an
algebra (from TRA) and a calculus (TQuel from TRDM) which are TU-Complete, while
in the grouped models we found, apart from our metric, the complete calculus Ly, two
languages which are not TG-Complete: an algebra (from HRDM) and a calculus (from
TDMG), as well as an algebra (from TDMG) (which operates on ungrouped versions of
grouped relations) which is not TU-Complete. We believe that this classification scheme, and
our examination of the completeness of several historical models, should help to explicate
the differences and the commonalities between the various models proposed in the literature.
As with the relational model, a baseline notion of completeness of query languages, while
imperfect (e.g.' relationally complete languages do not allow for transitive closure queries or

support aggregates), nonetheless provides a minimum and reasonable metric with which to

59

compare a variety of different languages.

One point bears emphasizing. It has on occasion been said that the issue of adding time
to relational databases is an uninteresting one, since the user can always just add whatever
extra attributes are desired (e.g., Start-Time and End-Time) and then use standard SQL
(or relational algebra) as the query language. In our discussion of the completeness of the
ungrouped temporal languages we, to some extent, relied on the underlying point of this
argument. For example, this point underlay our argument that TRA (which is equivalent
to standard relational algebra) is TU-Complete. Two points need to be made in reply to
this comment. First, there is a difference between the formal notion of completeness and
the informal, but no less important, notion of ease of use. Even though the programming
language C'is formally equivalent to a Turing Machine, it is a lot more convenient to use C
if you are writing an operating system because of its buzlt-in high level features. The built-in
temporal features of the historical and temporal data models make them easier to use for
managing temporal data; without these features a greater burden is placed upon the user.
Secondly, this paper has shown that the grouped models and languages are more expressive
than their corresponding ungrouped models, unless these models add a surrogate grouping
mechanism. This grouping mechanism, itself, is a higher-level construct that is implicit in
the grouped systems (and this, we argue, makes them more convenient), but needs to be

made ezplicit in the ungrouped systems for them to be equivalent in expressive power.

There are a few interesting areas for future research that this work has clarified. The first
question relates to our grouping axioms (in Section 6). It might seem that they are rather
strong, perhaps stronger than necessary for simulating temporal grouping in a temporally
ungrouped model like T'U. Cléarly, in order to have an isomorphism between two such models,
the () structural mapping and the I' mapping on queries must work hand in hand. It is an
area for additional research whether our Qgy could be simplified, most likely at the expense

of complicating the mapping on queries.

Another area of interest arises when it is noted that we did not find here, nor are we
aware of, any complete algebra for grouped historical data models. Such an algebra is clearly
needed. Another area in which there continues to be interest is in the support of evolving
schemas. Our decision not to treat this interesting area here was based largely on the fact
that hardly any of the models in the literature incorporate this feature, and we wanted to
choose the common denominator of all the models in order to make our comparisons fairly.

The model in [CC87] addressed this issue, and other work (e.g. [BKKK87, MS90]) continues

60

to be done in this area.

Finally, we would like to address the question of completeness for temporal as opposed
to historical relational models (in the terminology of [SA85]). We believe that our results on
grouped and ungrouped historical relational completeness can be extended in a straightfor-
ward way to temporal data models and languages. The extension would involve the addition
of another sort (for transaction times). In ungrouped temporal models, relations would be
extended with an additional column to stamp every tuple with its transaction time, and
the language would have constants, as well as variables, and quantification for this sort. In
grouped temporal models, values would be extended to be doubly indexed; they would most
likely be better modeled as functions from a transaction time into functions from a data time
to a scalar value, but the order of the two temporal indices could be reversed. Preliminary
work that we have done on Indexical Databases [Cli92] holds promise for a unified treatment,

not only of these two temporal dimensions, but of spatial, or other, dimensions as well.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valuable comments which have helped
to improve the contents and presentation of this paper. We would also like to thank Rick
Snodgrass for ongoing and fruitful discussions that have helped to clarify many of the ideas

presented here.

References

[AC86] G. Ariav and J. Clifford. Temporal data management: Models and systems. In
G. Ariav and J. Clifford, editors, New Directions for Database Systems, pages
168-185. Ablex Publishing Corporation, 1986.

[Ari86] G. Ariav. A temporally oriented data model. ACM Transactions on Database
Systems, 11(4):499-527, December 1986.

[AUT9] A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In ACM
Symposium on Principles of Programming Languages, pages 110-120, New York,
1979. ACM.

61

[Ban78)

[BKKK87]

[BZ82]

[cCsT]

[CHS0]

[C1i82)

[C1i92]

[CodT2]

[CT85]

[CW83]

[Dat83]

[End72]

F. Bancilhon. On the completeness of query languages for relational databases.
In Proc. Seventh Symposium on Mathematical Foundations of Computing, pages
112-123. Springer-Verlag, 1978.

J. Banerjee, W. Kim, H.-J. Kim, and H.F. Korth. Semantics and implementa-
tion of schema evolution in object-oriented databases. In Proceedings of ACM
SIGMOD Conference, pages 311-322, San Francisco, CA, 1987. ACM.

J. Ben-Zvi. The Time Relational Model. PhD thesis, University of California at
Los Angeles, 1982.

J. Clifford and A. Croker. Th; historical relational data model HRDM and
algebra based on lifespans. In Proc. Third International Conference on Data
Engineering, pages 528-537, Los Angeles, February 1987. IEEE.

A.K. Chandra and D. Harel. Computable queries for relational data bases. Jour-
nal of Computer and System Sciences, 21(2):156-178, October 1980.

J. Clifford. A model for historical databases. In Proceedings of Workshop on

Logical Bases for Data Bases, Toulouse, France, December 1982.

J. Clifford. Indexical databases. In Proceedings of Workshop on Current Issues
in Database Systems, Newark, N.J., October 1992. Rutgers University.

E.F. Codd. Relational completeness of data base sublanguages. In R. Rustin,
editor, Data Base Systems. Prentice-Hall, 1972.

J. Clifford and A.U. Tansel. On an algebra for historical relational databases:
Two views. In S. Navathe, editor, Proceedings of ACM SIGMOD Conference,
pages 247-265, Austin, TX, May 1985. acm.

J. Clifford and D. S. Warren. Formal semantics for time in databases. ACM
Transactions on Database Systems, 6(2):214-254, June 1983.

C.J. Date. An Introduction to Database Systems, vol. II. Addison-Wesley, 1983.
Reading, MA.

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
New York. '

62

[FVG8S5]

[Gab89]

[Gad86]

[Gad88]

[Hal60]

[HOT76]

[IMS0]

[Kam68]

[K1u82]

[Kro87]

[KSW90]

[Lor87]

P.C. Fischer and D. Van Gucht. Determining when a structure is a nested

relation. In International Conference on Very Large Databases, pages 171-180,

1985.

D. Gabbay. The declarative past and imperative future: Executable temporal
logic for interactive systems. In B. Baniegbal, H. Barringer, and A. Pnueli,
editors, Proceedings of Colloquium on Temporal Logic in Specification, pages
402-450. Springer-Verlag, 1989. LNCS 398.

S.K. Gadia. Toward a mulithomogeneous model for a temporal database. In Proc.
Second International Conference on Data Engineering, Los Angeles, California,
February 1986. IEEE.

S. K. Gadia. A homogeneous relational model and query languages for temporal
databases. TODS, 13(4):418-448, 1988.

P. Halmos. Naive Set Theory. D. Van Nostrand, Princeton, NJ, 1960.

P. Hall, J. Owlett, and S.J.P. Todd. Relations and entities. In G.M. Nijssen,
editor, Modelling in Data Base management Systems. North-Holland, 1976.

S. Jones and P.J. Mason. Handling the time dimension in a data base. In
Proc. International Conference on Data Bases, pages 65-83, Heyden, July 1980.
British Computer Society.

H. Kamp. On the Tense Logic and the Theory of Order. PhD thesis, UCLA,
1968.

A. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. Journal of the ACM, 29(3):699-717, July 1982.

F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987. EATCS Mono-

graphs on Theoretical Computer Science.

F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal data.
In Proceedings of PODS Symposium, pages 392-403, 1990.

R.G. Lorentzos, N.A.; Johnson. TRA: A model for a temporal relational algebra.
In Proceedings of the Conference on Temporal Aspects in Information Systems,
pages 99-112, France, May 1987. AFCET.

63

[Mai83]

[McK86]

[MS90]

[MS91a]

[MS91b]

[NASY]

[Qui53]

[RKS88]

[RUT1]

[SA85]

[Sar90]

[SGM89)

[Sno87]

[Sno90]

D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

E. McKenzie. Bibliography: Temporal databases. ACM SIGMOD Record,
15(4):40-52, December 1986.

E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra.
Information Systems, 15(2):207-232, 1990.

E. McKenzie and R. Snodgrass. An evaluation of relational algebras incorporat-

ing the time dimension in databases. compsurv, 23(4), December 1991.

E. McKenzie and R. Snodgrass. Supporting valid time in an historical relational
algebra: Proofs and extensions. Technical Report TR-91-15, Department of
Computer Science, University of Arizona, Tucson, AZ, August 1991.

S. B. Navathe and R. Ahmed. A temporal relational model and a query language.
Information Sciences, 49(2):147-175, 1989.

W.v.o Quine. From a Logical Point of View. Harvard University Press, Cam-
bridge, 1953.

M. A. Roth, H. Korth, and A. Silberschatz. Extended algebra and calculus for
nested relational databases. TODS, 13(4):388-417, 1988.

N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, 1971.

R. Snodgrass and I. Ahn. A taxonomy of time in databases. In Proceedings of
ACM SIGMOD Conference, pages 236-246, New York, 1985. ACM.

N.L. Sarda. Algebra and query language for a historical data model. The Com-
puter Journal, 33(1):11-18, February 1990.

R. Snodgrass, S. Gomez, and E. McKenzie. Aggregates in the temporal query
language tquel. Technical Report TR-89-26, Department of Computer Science,
University of Arizona, Tucson, AZ, November 1989.

R. Snodgrass. The temporal query language TQuel. ACM Transactions on
Database Systems, 12(2):247-298, June 1987.

R. Snodgrass. Temporal databases: Status and research directions. ACM SIG-
MOD Record, 19(4):83-89, December 1990.

64

[So091]

[SS87]

[SS88]

[SWKH76]

[Tan86]

[TC90]

[TCG*93]

[TG92]

[Tuz89]

[U1188]

[vB83]

M.D. Soo. Bibliography on temporal databases. ACM SIGMOD Record,
20(1):14-23, March 1991.

A. Segev and A. Shoshani. Logical modeling of temporal data. In Proceedings
of ACM SIGMOD Conference, pages 454-466, San Francisco, May 1987. ACM.

R. Stam and R. Snodgrass. A bibliography on temporal databases. Database
Engineering, 7(4):231-239, December 1988.

M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementation
of ingres. ACM Transactions on Database Systems, 1(3):189-222, September

1976.

A.U. Tansel. Adding time dimension to relational model and extending relational
algebra. Information Systems, 11(4):343-355, 1986.

A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for temporal
relational completeness. In International Conference on Very Large Databases,
pages 13-23, 1990.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors.

Temporal Databases. Benjamin-Cummings, 1993.

A. Tansel and L. Garnett. On roth. korth, and silberschatz’s extended algebra
and calculus for nested relational databases. TODS, 17(2):374-383, 1992.

A. Tuzhilin. Using Relational Discrete Event Systems and Models for Prediction
of Future Behavior of Databases. PhD thesis, New York University, October
1989.

J. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-

puter Science Press, 1988.

J.F.AK. van Benthem. The Logic of Time. D. Reidel Publishing Company,
1983.

65

