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Abstract

In this paper, we study the problem of discovering interesting patterns in large volumes of
data. Patterns can be expressed not only in terms of the database schema but also in user-defined
terms, such as relational views and classification hierarchies. The user-defined terminology is
stored in a data diclionary that maps it into the language of the database schema. We define
a pattern as a deductive rule expressed in uvser-defined terms that has a degree of certainty
associated with it. We present methods of discovering interesting patterns based on abstracts
which are summearies of the data expressed in the language of the user.
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database. attribute values are replaced by the set 1o which they belong. Han et.al [HCC92] use
a similar technique to search for dependencies among the abstracted attribute values and also
incorporate a probability measure into the dependency. Our approach generalizes on Walker’s and
Han et.al’s in that attribute values in an abstracted database can also be predicates or views of
the original database, depending on multiple attributes. We also allow a variety of functions. such
as summation, averaging, etc., to be used in addition to counting for aggregating attribute values.

Other difierences will be described after presenting our mode] in Section 5.

In order to describe pattern discovery, we first need a precise definition of a pattern. Cer-
tainly, there is no standard definition of the term in the literature. In trying to draw a common
thread through a recent collection of papers on “Knowledge Discovery in Databases,” Frawley et.al.

[FPSM91] define patterns as follows:

Given a set of facts (data) F. z Janguage 1, and some measure of certainty C, a pattern S
Is a statement S in L that describes relationships among a subset Fg of F with certainty

C. such that S is simpler (in some sense) than the enumeration of all facts in F&s.

This definition is intentionally vague 1o cover a wide variety of approaches. For example. even a
set of statistical parameters such as the mean and standard deviation for a collection of numerical
values qualifies as a pattern with the above definition. In fact, any abstraction that in some sense
summarizes the data would satisfy the above definition of a pattern. In contrast to this, we define
a pattern in a more restricted sense, as a rule that has associated with it a degree of certainty. The

precise form of the rule will be described in Section 3.

2 Data Dictionary

Consider the following application where a user may be interested in patterns in the data that are

expressed not in terms of the schema of the database but in other terms:

Example 1 Assume a credit card agency stores its data in the CREDIT.CARD database that
contains CUSTOMER and TRANSACTION files. The schemas of these files are shown in Fig-
ure 1. The CUSTOMER file stores all the information about the credit card customers, and the
TRANSACTION file stores all the information about the transactions performed by these cus-
tomers, such as customer name, merchant’s name, merchant’s type. and the amount and the date

of a transaction.
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1 Introduction

Our interest is in Jarge scale business databases which grow by millions of records daily. While this
data is recorded primarily for accounting purposes, executives are interested in leveraging them for
other purposes such as analyses of trends in the data. For example, intelligent summaries of credit
card and scanner data can greatly aid decisions about production, distribution, pricing, advertising,
and promotions. Likewise, securities trading data can be monitored for patterns that might point
to fraud or other irregularities. Clearly, with the massive volumes of data that fiow into databases
daily, the computer will play an increasingly important role in the analysis. The challenge, however,
is for it to generate the “interesting” patterns which may be hidden deep in the data, based on the

needs or interests of the user.

We have been working with an organization whose core business hinges on the collection and
effective analysis of very large amounts of consumer purchase data. A major part of the revenue
derives from standard statistical reports that are generated with SQL queries and report generators.
Amnother, more human-intensive “help” service focuses on helping clients with special one of a kind
requests that require analysts to dig deeper into the data in an open-ended way in order to detect

interesting patterns.

One of our short term objectives is to make the computer do the open-ended probing on its
own. This requires generating a broad range of summaries and recognizing relationships among
variables that a user might find interesting. The novelty in our method lies in exploiting two
types of knowledge, and in accommodating a range of inference methods. The first type is a user-
defined vocabulary that provides relational views of the data and is used to express generalization
relationships among different data types. For example, a credit card company can define Yuppie as
a person whose age is less than 35 and who makes more than $80000 a vear, or who has a Gold card.
Also, we can define Wall-Street-Yuppie and Madison-Avenue-Yuppie as specializations of Yuppie.
The second novelty is in how we use abstracts. which are summaries of the data expressed in terms
of this vocabulary. The vocabulary and abstracts endow the system with the ability to search for
patterns in terms of sets that are meaningful to the user, in effect, focusing the search. Finally, the
inference procedure applied on the abstracts can be a generate-and-test or a standard statistical
procedure such as the Logit model [The71]. The ability to use standard statistical techniques is

important given that the data is often inherently noisy and the patterns therefore statistical.

The idea of using an abstracted database was first proposed by Walker [Wal80]. His approach
made use of the fact that the domain of an attribute can be abstracted, i.e. for the PET attribute,

dogs and cats are mammals, snakes and turtles are reptiles and so on. In Walker’s abstracted
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Figure 3: Classification Hierarchy for CREDIT_.CARD Application.

i.e. P < P"if P logically implies P’. For example. Wzll_street_yuppie < yuppie.

Based on this partial order, we can build a classification hierarchy of user-defined predicates.
The classification hierarchy for the vocabulary from Figure 2 is shown in Figure 3. Notice that
siblings may not be mutually exclusive in a hierarchy. For example, a senior citizen can (sometimes)

be a student.

However, we assume that the children of a user-defined predicate in the hierarchy form a
collectively exhaustive set for the parent. This can be achieved by implicitly assuming an extra
predicate other for each node in the hierarchy as the “catch all” condition. For example, we can

implicitly define other_yuppies, other_merchants. etc.

The hierarchy enables the user to specifv the level of analyvsis at which the syvstem should
focus. For example, a marketing manager can be interested in patterns at a national level, whereas

a branch manager might be interested in a specific region.

2.3 Abstraction Functions

The third component of the data dictionary is the set of user-defined abstraction functions. An
abstraction function of an attribute maps the domain values of the attribute into some other domain.

For example, the abstraction function year maps a date into a year by “extracting” the year from

e
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Figure 4: Abstraction Hierarchy for Date and Addr Attributes of the CREDIT_CARD Database.

the date. Similarly, the city function extracts the name of the city from a street address.

Furthermore, abstraction functions can be grouped into abstraction hierarchies by composition

of abstraction functions. Examples of some of the abstraction hierarchies are presented in Figure 4.

In conclusion, a data dictionary for searching patterns contains the vocabulary consisting of
user-defined predicates, a classification hierarchy based on the vocabulary, and a set of abstraction
functions grouped into abstraction hierarchies. In the next section, we show how patterns are

defined based on the data dictionary.

3 Patterns

We define a pattern along the lines of the machine learning literature [Win84] as a rule expressed

in terms of the vocabulary with some degree of strength attached to it, i.e. as

Pyand ... and P, — (Qjand... and Q4  (with strength p) (1)

where P;. 1 =1,...,nand Q,, 7 = 1,...,k could be database relations, user-defined predicates,
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GROUP_BY constructs, or relational operators =, <, <. etc.?. Furthermore, we allow negations
of predicates in the body but not in the head of a rule. Finally, p s a “measure of sirength” that
a certain pattern holds. We illustrate these concepts using some examples of patterns and then

formally define the GROUP.BY construct and the strength of a pattern later in the paper.

Example 2

The  pattern “New York yuppies mest likely live in Manhattan and have az Gold

hmerican Express card” can be expressed as

CUSTOMER (nzme,addr,income,profession,age,card type,mer_stat) and
yuppie(name) and city(addr) = ‘‘Nevw York’’ —

borough(addr) = ‘‘Manhattan’’ and card.type = ‘‘Gold AmEx’’ (vith strength SO%)

Intuitively, “strength 90%"” means that 90% of New York vuppies live in Manhattan and have the
Gold American Express card. We define the strength of a pattern in Section 4. Notice that the
right-hand side of the rule contains a conjunction of two operators. Also notice that this pattern
cannot be split into two patterns “New York yuppies live in Manhattan™ and “New York yuppies
have a Gold American Express card” because it is impossible 1o compute the strength of the
combined pattern from the strengths of the two individual patterns. For example, as will be shown
later in Section 4, we cannot determine what percentage of New York vuppies lives in Manhattan
and has Gold American Express card {from knowing the percentage of New York yuppies living in

Manhattan and the percentage of New York yuppies carrying Gold AmEx.

O

The next rule presents an example of a pattern with a relational predicate appearing in the

head of a rule.

Example 3 The pattern “expensive restaurants in the Greenwich Village are mostly

visited by yuppies” can be expressed as

CUSTOMER (name,addr,income,profession,zge,cardtype,mar_stat) and
TRANSACTION(name,merchant,type,amount,data) and

expensive restaurant (merchant) and city(merchant) = ‘‘New York’’ and
school_district(merchant) = ‘‘Greenwich Village’’

— yuppie(name) (with strength 60%)

In this example we also used the relation CUSTOMER besides the relation TRANSACTION be-

*We will also introduce additional statistical relational operators in Section 4.

-1
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cause yuppie is defined in terms of that relation.

We next provide an example of an aggregate patiern having the GROUP_BY construct.

Example 4 Consider the pattern ‘‘yuppies spend more money in expensive restaurants
P I yupp P

than in any other type of restaurant (over the years).’’

To express this pattern succinctly, we define the following three macros that specify total
vearly spendings of yuppies in expensive, moderate and inexpensive restaurants respectively (the

first parameter X in these macros specifies the year and the second Z specifies the amount spent):

YEARLY_YUPPIESPENDING_EXP_REST(X.Z) =
GROUP_BY(| CUSTOMER(name,addr,income,profession,age,card_type,mar_stat) and
TRANSACTION (name.merchant,type,amount.data) and yuppie(name)

and expensive_restaurant(merchant) and year(date) = X ], [ X ], [Z = SUM(amount)])

where the predicate GROUP._BY/([expression], [X], [Z = SUM(amount)]) is similar to the
GROUP_BY statement in SQL and specifies the sum Z of all the amounts taken over all the

tuples in expression with the same value of X°.

We define the other two macros YEARLY_YUPPIE.SPENDING.MOD_REST(X,Z) and
YEARLY.YUPPIE_.SPENDING_.INEXP_REST(X.,Z) similar to
YEARLY.YUPPIE.SPENDING_EXP_REST(X.Z) by replacing predi-
cate expensive restaurant (merchant) in its definition by moderate_restaurant (merchant) and

inexpensive restaurant(merchant) respectively.
Then our pattern can be expressed in terms of these macros as

YEARLY.YUPPIE.SPENDING_EXP.REST(X,Z) and
YEARLY.YUPPIE.SPENDING_MOD_REST(X.Z') and
YEARLY_YUPPIE_ SPENDING_INEXP_REST(X.Z")
— Z2'<Zand 2" < 7 (with strength 85%)

assuming that in 85% of the years yuppies spend more in expensive than in moderate and inex-
pensive restaurants.

This pattern could have been expressed in a more succinct form if we defined predicate
YEARLY_YUPPIE.SPENDING(X,Y,Z) that defines the total amount Z spent by yuppies in the

vear X in a restaurant type Y (expensive, moderate. inexpensive). However. any definition of

®This form of GROUP_BY was originally propesed in [MPR90].
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such a predicate would require the use of the second-order logic with quantification over predicates

expensive restaurant, moderate restaurant, inexpensiverestaurant.
O

In general, the GROUP_BY construct is defined as follows [MPR90]. Let ¢ be a first-order
formula, X;,....X%,Y be variables appearing in ¢ and aggr be one of the standard aggrega-
tion functions COUNT, SUM, AVG, MAX, MIN, etc. Then GROUP_BY (¢, [X;..... X ],[Z =
aggr(Y)]) is a predicate depending on variables X;.....X,, Z such that all the tuples in ¢ with
the same values of X;...., X, are grouped together, and the aggregaf.ion function is computed for

the attribute ¥ within each group.

4 Searching for Patterns

Consider the pattern from Example 4 which states that yuppies spend more in expensive restaurants
than any other type of restaurant. How can this pattern be detected? Since this pattern is
based on total spendings of vuppies in different types of restaurants over a period of vears, it
is not apparent from the original relations CUSTOMER and TRANSACTION. To discover this
pattern, we need an abstract of these relations that contains cumulative spendings of yuppies and
mavbe oth;ar customer types in different types of restaurants over the vears. Figure 5 provides an
example of such an abstract called SPENDING®. The CUST_TYPE column of SPENDING comes from
the classification hierarchy (see Figure 3) and its values senior.citizen, student, and yuppie
are relational views from the data dictionary (see Figure 2). Similarly, the REST_.TYPE column
comes from the classification hierarchy (see Figure 3). and its values expensive, moderate, and
inexpensive are relational views defined in the data dictionary (see Figure 2). Finally. the column
TOTAL_AMOUNT is obtained by adding the amounts of all the transactions of members of a certain

customer group in a certain restaurant type in a certain year.

We call this kind of a table an abstract becauvse it summarizes and abstracts the data in terms
of high-level categories. For example, the first row in Figure 5 says that the amount that the
CUST.TYPE category senior.citizen spent in the REST_.TYPE category expensive in YEAR
1985 was $1.05 million. Note that an abstract can also be considered as a report [PS91]. It
aggregates data in a form that can be useful to an executive. In fact, much of the consolidation
of data involved in management reporting systems involves the generation of abstract-like tables

which provide useful summaries of the data. Note that our definition of an abstract is similar but

®Even though we are focusing only on yuppies, the reasen why other customer types appear in the abstract will
become apparent shortly.
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1 SPENDING (in millions)
CUST.TYPE REST_-TYPE YEAR TOTALAMOUNT
senior_citizen  expensive 1985 1.05
senjor_citizen moderate 1985 1.82
senjor_citizen inexpensive 1985 0.92
student expensive 1985 0.04
student moderate 1985 0.1¢&
student inexpensive 1985 0.42
senior_citizen moderate 1987 2.44
student moderate 1989 0.56
yuppie expensive 1985 7.41
yuppie moderate 1985 7.39
yuppie inexpensive 1985 4.32
yuppie expensive 1986 8.54
yuppie expensive 1987 8.93
yvuppie expensive 1988 9.61

Figure 5: An Abstract of Relations CUSTOMER and TRANSACTION.

more general than the attribute-oriented generalization of Han et. al [HCC92], a point we discuss

more fully in Section 5.

The term “spend more” in the pattern from Example 4 requires clarification. If the total
spending of yuppies in expensive restaurants in 1985 was only slightly higher than in moderate
restaurants, e.g. 7.41 vs. 7.39, we might consider them for practical purposes to be equal (or not
significantly different), whereas 7.41 would be significantly greater than. say, 4.3. Accordingly. we

could restate the pattern from Example 4 to say that

yuppies spend significantly more money in expensive restaurants than in any

other types of restaurants

where we can interpret significance in the standard statistical sense using, say, the t-test [Kac&6!.
To do this, we assume that the spending of a yuppie for a meal in a certain type of a restaurant is
a normally distributed random variable (its mean and variance can be computed in a standard way
by examining all the transactions of vuppies in this type of a restaurant). Then the total spending
of all the vuppies over a year in this type of a restaurant is also a normally distributed random
variable because it is the sum of individual random variables. In order to test whether or not the
total spending of yuppies in moderate restaurants o4 is significantly less than the total spendings
of yuppies in expensive restaurants z.., in a vear (e.g., if 7.39 is significantly less than 7.41 in 1985

in Fig. 5), we have to apply the t-test to these two random variables. This means that we have to

10
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test the null hypothesis Ho : p(2mod) < p(Zezp) (Where p is the mean of a random variable). and

the answer to this test constitutes the meaning of “significantly more” in the pattern stated above.

As defined in Example 4, the strength of a pattern is a ratio of the number of tuples satisfving
the head and the body of a rule to the number of tuples satisfying the body of the rule. To
generalize this approach, the strength of a pattern p — ¢ is defined as a conditional probability that

the head of a rule is true given that the body of the rule is true, i.e. as

P(q is true and p is true)
P(p is true)
number of tuples satisfying conditions p and ¢

P(g is true | pis true)

number of tuples satisfying condition p

(2)

For instance, if it turns out in Example 4 that in 17 vears out of 20 yuppies spent significantly more
in expensive restaurants than in moderate and inexpensive ones, then the strength of the pattern

is 17 / 20 * 100% = 85%.

To summarize, we compare values such as means for statistically significant differences. We
then compute the strength of a rule based on the number of values that turn out to be (significantly)

different using conditional probabilities.

4.1 Abstracts

As mentioned above, one way to limit the search for interesting patterns is to let the user specify
in broad terms the things to be considered (objects, aggregation functions. etc.) in deriving the

patterns of interest. In particular, the user has to specify three types of information:

o the list of relational attributes and/or user-defined predicates the pattern should contain
o the list of abstraction functions the pattern should contain

o aggregation principle (or aggregation function).

User-defined predicates and abstraction functions were defined in Section 2. An aggregation prin-
ciple specifies how observations in patterns of interest should be aggregated. For example, the user
may specify yuppies and expensive restzurants as user-defined predicates, year as abstraction
functions, and summation as an aggregation principle. This specification means that the user is in-

terested in the cumulative spending patterns of yuppies in expensive restaurants over the years. In

11
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LOCATION |
CUSTOMER.TYPE CITY - BOROUGH COUNT |
vuppie New York Manhattan 95.000 |
vuppie New York Queens 1,000 |
vuppie New York Brooklyn 3.500 |
yuppie New York Bronx 500
senior_citizen New York Manhattan 450,000
yuppie Boston Brookline 9.000
student Los Angeles  Hollywood 2.000

Figure 6: Example of an Abstract.

this example, we considered summation as an aggregation principle. Examples of other aggregation

principles are counting, averaging, mazimizing, and mintnizing.

Given the user-specified inputs containing ucer-defined predicates, aggregation functions and

an aggregation principle. an abstract can be built from these inputs and the datza as follows.

1:

%]

For each user-defined predicate and each abstraction function, create a column in the abstract.

Furthermore, create an aggregation column based on the user-specified aggregation principle.

For example, if the user specified yuppie as a user-defined predicate, city and borough
as abstraction functions, and count as an aggregation principle, then the abstract has four

columns, one for each of the inputs.

For each user-defined predicate selected by the user. consider all of its siblings in the classifi-
cation hierarchy described in Section 2.2. For each abstraction function, determine its range.
Form the Cartesian product of the sets of siblings for the user-defined predicates and the

ranges of all the abstraction functions.

For example, as is shown in Figure 3, the siblings of the predicate yuppie are senior_citizen
and student. and their parent is customer.type. The abstraction function city defines the
set of all the cities in the USA, and borough the set of all boroughs in these cities. Take the
Cartesian product of all the combinations of all the customer types in all the boroughs in all

the cities.

For each tuple t {rom the Cartesian product obtained in Step 2, formulate a conjunctive query
against the database as follows. Each user-defined predicate in tuple t is a relational view,

and the query that defines this view gives rise to a conjunct in the conjunctive query that

12

Center for Digital Economy Research

Stern School of Business

Working Paper 18-93-11



ic being formed. Each component ¢ in tuple t corresponding to the abstraction function f

defined on attribute A gives rise to the conjunct f(A) = c.

For example, consider the tuple (yuppie, New York, Manhzttan) from the Cartesian prod-
uct obtained in Step 2. The query is formed based on this tuple as follows. Yuppie(name),
being a view, gives rise to the expression age < 35 and income > 80000 or card_type =
’Gold’. New York, belonging to the range of the abstraction function city, gives rise 1o the

conjunct city(zaddress) = ‘New York’. The final query is

(age < 35 and income > 80000 or card.type = ’Gold’) and

city(address) = ‘New York® and borough(address) = ‘Manhattan’.

4. Aggregate the values of the tuples in the answers to the queries formulated in Step 3 based
on the aggregation principle specified by the user. If the aggregated value of a tuple is 0, then

the corresponding tuple is removed from the abstract.

For example, if the aggregation principle is counting. then the aggregation field contains the
number of customers belonging to a certain customer type who live in a certain borough in
a certain US city. For example, if there are 95.000 vuppies living on Manhattan then we
get a tuple (yuppies, New York, Manhattan, 85000). Furthermore, if no yuppies live in
Bismarck, North Dakota then the tuple (yuppie, Bismarck, z, 0) will not appear in the

abstract for any borough r in Bismarck.

An abstract for the user-defined predicate yuppie, abstraction functions city and borough, and

counting as the aggregation principle is shown in Figure 6.

This definition of an abstract does not specify some procedural details (e.g. how to evaluate
the queries described in Step 3). However, these details are straightforward, and we therefore do
not describe all the details of the abstract generating algorithm based on this definition. Note
that in this algorithm we have to formulate as many queries as there are elements in the Cartesian
product formulated in Step 3 of the definition. It is quite possible that the size of this Cartesian

product can be very large. Therefore, this naive algorithm is impractical.

4.1.1 A More Efficient Algorithm

We assume initially that the user-defined predicates and all of their siblings do not contain aggregate
functions in their definitions. We will explain subsequently how to handle the case when aggregation

functions are allowed in these predicates.
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Since an abstract is built from the database relations, as a first step. we have to determine
what parts of which relations should participate in building the abstract. This can be achieved by
examining all the siblings of all the user-defined predicates specified by the user and determining
the attributes of the relations involved in their definitions. Similarly, we have to include the
attributes of all the abstraction functions specified by the user. For instance, in the previous
example we have to determine relations and relational attributes that are used in the definitions
of the user-defined predicates yuppie. senior.citizen, and student, and the attributes used
in the abstraction functions specifying New¥ York and Manhzttan. Yuppie is defined in terms of
age, income. and card_type attributes of relation CUSTOMER. senior_citizen in terms of the
attribute age. and student in terms of the attribute profession. Finally, city and borough
abstraction functions use the attribute zdéress. This means that the abstract should be built
from the relation obtained from the CUSTOMER relation by projecting it on the attributes nzme.
address, age, income, card_type, and profession. Note that attributes can belong to more than
one relation in general. This means that the relations containing any of these attributes should
be joined and then projected on the attributes involved. We will call the resulting relation an

underlying relation.

The algorithm that builds the abstract works as follows. Initially. assume that the abstract
has no tuples in it (is an empty set). For each tuple ¢ in the underlying relation do the following.
For each sibling of each user-defined predicate specified by the user check if it is true for the
values in 7. For example, if the first tuple in the underlying relation is (Jack, 125 3 Av New York
10017, &5K, financial analyst, 33, Gold AmEx, single) then it should be checked whether
yuppie(Jack), senior.citizen(Jack), and student(Jack) are true. Note that each sibling has
to be checked because, as was pointed out in Section 2.2, their definitions may not be mutuallv
exclusive (e.g.. a person can be a senjor citizen and a student). Also note that these checks can
be done in constant time because we assumed that definitions of the user-defined predicates have
no aggregate functions (e.g., to check if a person is a yuppie. one has to Jook only at this person’s
record). It should also be determined 1o which category abstraction functions belong. For example,

it should be determined in which city and borough Jack lives (New York. Manhattan).

If a tuple” of user-defined predicates and abstraction functions satisfies all the checks, then see
if it was already added to the set of tuples in the abstract. If the tuple has not been added to the
abstract already, then add it. Furthermore, add an additional attribute to this new tuple based
on the aggregation principle specified for the abstract. For example. if the aggregation principle

is counting then associate a counter with this tuple and set it initially to one; if the aggregation

"Note that this tuple differs from the tuples in the underlying set.
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principle is summation then associate a total sum with this tuple and set its initial value to the value
of the summation attribute from the database. If the tuple was already added to the abstract before,
then update the aggregation attribute based on the aggregation principle specified by the user for
the abstract. For example, if the aggregation principle is counting then the counter associated with
the tuple in the abstract is incremented by one.

For example, since yuppie(Jack) is true. city(125 3 Av New York 10017) = ‘‘New York?’’
and borough(12& 3 Av New York 10017) = ‘‘Manhattan’’, we add the tuple (yuppie, New

York, Manhattan) to the abstract and initialize the counter column to one since the aggregation

principle is counting in this case.

This process is repeated for each tuple in the underlying relation. The process of building an

abstract is terminated when all the tuples from the underlying relation are processed.

The time complexity of this algorithm is determined as follows. For each tuple in the underlying
relation, we have 1o consider all the siblings in all the user-defined predicates. As was explained
above, the check for whether a user-defined predicate is true for the current tuple (e.g. that
yuppie(Jack) or student(Jack) is true) is done in constant time. Therefore, the overall time
complexity of the algorithm is proportional to the size of the underlying relation times the sum of
the numbers of all the siblings in all the user-defined predicates specified in the abstract. Typically,
the latter component (the sum) is much smaller than the size of the underlying relation. In this

case the algorithm is liner in the size of the underlyving relation.

The algorithm above is linear in the size of the underlying relation because the user-defined
predicates do not contain any aggregation functions. Suppose we change the definition of a yuppie
to be a person who is vounger than 35 and spends more than 30K annually on purchases with a
Gold American Express card. In this case, we cannot determine that Jack is a yuppie, i.e. that
yuppie(Jack) is true, in constant time because it is not sufficient to examine only Jack’s record
in the underlying relation but to sum all his purchases in order to answer this question. To solve
this problem, we have 1o establish an index on person’s name, retrieve all the transactions Jack did
over a year and sum the values of his purchases. The time it takes to determine if Jack is a yuppie
in this case is proportional to the number of transactions Jack did over the vears and this can slow
the performance of the algorithm. However, aggregation functions seldom occur in user-defined

predicates in practice.

Finally, we want to point out a direct relationship between abstracts and the GROUP_BY
construct discussed in Section 3: GROUP_BY([¢],[X1....,Xn],[Z = aggr(Y)]) defines an ab-

stract having attributes X;,...,X,,Z and an aggregation principle defined by the aggregation

—
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ih_.?\_’}_ajor Birth_place GPA vote |

art Canada excellent 35
science Canada excellent 40
science foreign good 25

Figure 7: Generalization of the List of Graduate Students.

function aggr. We will use this observation later on in this paper when we discuss searches for
g9 0 p

patterns on abstracts.

4.2 Deriving Patterns from Abstracts

’atterns on an abstract can be discovered using various techniques. In this paper. we will consider
the techniques based on the attribute-oriented induction, on statistical methods and exhaustive

searches on the abstract. We will describe each of these methods in turn now.

4.2.1 Attribute-Orienied Induction

This approach was proposed in the language DBLEARN [HCC92) and works as follows. The orig-
inal data is inductively generalized for various attributes in the relation using the classification
hierarchies for the attributes. For example, student’s majors can be initially generalized to hard
sciences (physics, mathematics, etc.), natural sciences (biology, chemistry, etc.), humanities (lit-
erature, history, etc.) and so on. At the next level, they can be further generalized to arts and
sciences. This data abstraction process continues until the original data is generalized so that only
a few tuples remain. Then each tuple defines a rule. For example, the list of graduate students
enrolled at a university can be generalized to three tuples shown in Figure 7 (from [HCC92]). The

generalized data in Figure 7 produces the following three patterns:

(Vz)graduate(z) — Major(z) € art A Birth_place(z) € Canada A GPA(z) € ezcelient [35%)]
(Vz)graduate(z) — Major(z) € science A Birth_place(z) € Canada A GPA(z) € ezcellent [40%)
(Vz)graduate(z) — Major(z) € science A Birth_place(z) € foreign A GPA(z) € good [25%)

This data compression technique can be extended from the generalized relations of Han et. al to
abstracts® described in this paper by successively building abstracts on abstracts until the abstract

becomes small (we can use techniques from [HCC92] to determine when an abstract becomes small).

#We will describe the difference between our abstracts and the generalized relations from [HCC92] in Section &.
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Then. following [HCC92], each tuple in the final abstract becomes a pattern.

As [HCC92] shows, this approach can generate many interesting patterns. However. it some-
times tends to discover “overgeneralized” patterns, e.g. patterns about graduate students studying
science from Canada as opposed to graduate computer science students {from British Columbia,
unless the user is willing to limit the search to graduate computer science students from British

Columbia by “manually” specifving this in the DBLEARN statement
learn characteristic rule for Status = “graduate” and Major = “CS” and Birth_place = “BC”

Furthermore, DBLEARN cannot derive the patterns that have comparisons in their bodies. For ex-
ample, it cannot derive the pattern “more yuppies lived in Manhattan than in Queens over

the pest 15 years.” This pattern can be expressed in our Janguage as

(VW X) (1877 < X < 1992 and NEW_YORK_YUPPIES(Manhattan, %, NUMB1) and
NEW_YORK_YUFPIES(Queens, X, NUMB2) — NUMB1 > NUMB2) (with strength 100%)

where NEW_YORK_YUPPIES(borough,vear,number) can be defined as

NEW_YORK.YUPPIES(X,Y,Z) =

GROUP_BY( [CUSTOMER(name.addr.income,profession,age.card_type,mar_stat) and
TRANSACTION(name,merchant,type.amount.data) and yuppie{name) and

city(addr) = “New York” and borough(addr) = X and year(date) = Y], [X,Y], [Z = COUNT()])

and can be derived using the technigues to be described in Sections 4.2.2 and 4.2.3.

4.2.2 Statistical Methods

A fundamental statistical representation for studying associations between variables is the contin-
gency table [Kac86]. In a 2-dimensional table for example, we might have values of customer types
on one axis and residential boroughs on the other. The number of cells in the table depends on the
number of partitions of each variable. A table showing the numbers of yuppies and senior citizens

distributed over Manhattan, Queens. and Brooklyn would have 6 cells.

It is possible to test the association between customer type and borough by testing the null
hypothesis [Kac86] that there is no association between the variables, in which case we would expect
the customer types to be distributed equally across the boroughs in a random sample. The chi
squared test [Kac86] tests for independence on the basis of deviations of actual values from expected

values. where the expected values are based on the null hypothesis.

An abstract with k attributes is essentially a k-dimensional contingency table. It is therefore
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possible to perform all standard statistical tests on it thal can be done on contingency tables. In
particular, if there is a relationship among the variables (i.e. they are notindependent), it is possible
to specify a dependent variable and the independent variables, and extract a linear relationship
showing the impact of each of the independent variables on the dependent variable. The form of

the linear relationship is
Y = Bg+BiXi4+...4 BpXs

where the magnitudes and signs of the coefficients By, B;,..., B, indicate the impacts of the cor-

responding variables on the dependent variable.

When the dependent variable is categorical (discrete), we are often interested in the probability
that it has a certain (categorical) value, given the values of the independent variables. For example.
we might be interested in the conditional probability that someone is a Manhattan resident given
his customer type (i.e. yuppie) and spending level. In such cases. we must make sure that the value
of the equation falls between 0 and 1. A popular transformation, called the Logit transformation
[The71], first takes the odds for a certain value of the dependent variable occurring (odds and
probabilities have a simple relationship, i.e. a probability of 0.75 means odds of 3:1) and applies the

logarithmic transformation to it. Specifically. the above equation is transformed into the following:
logifp = Bo+ BiXi+ ...+ B X,

where P is the computed probability value for the observation denoted by the variables X;,..., X..

P is guaranteed to fall in the interval {0,1}.

Let us illustrate applicability of the Logit transformation to pattern discovery with a simple
example showing the conditional probability of someone being a Manhattan resident given spending

level and customer type. The relationship would be:
logl—f-}s = Bo+ B1X;+ BaXo

where X is the spending level and X, is the categorical 0/1 variable. where X, = 0 means that
the person is a yuppie and X, = 1 otherwise. If X; = 0, the right hand side is By + B; X;. If
Xy =1,itis Bg+ B; Xy + By. The coefficient B, therefore represents the impact on the probability
that a person lives in Manhattan as we change the value of the customer type from yuppie to some
other value. For example, suppose that the parameters, based on a data set, have been estimated
to have the following values: By = 0, By = 0.002, and By = —138.0. where coefficients By, B;.
Bs are obtained using the standard regression analysis techniques [The71]. For a yuppie with a
spending level of §70,000, the probability of being a Manhattan resident is 0.99, whereas for some

other customer type, it drops to 0.33. From this, it is apparent that for an individual at the above
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level of spending. the customer type has a high impact on the borough of residence. In fact, such
an analysis can be interpreted as a rule such as ‘‘high spending New York yuppies live in
Manhattan,’’ which is similar to the pattern in Example 2. Similarly, it is possible to perform
other types of analyses on the outputs of the Logit model by choosing different dependent and

independent variables.

It should be noted that statistical techniques. such as the ones presented above, can be applied
not only to the original data (as is typically done in statistics), but more importantly. to abstracts.

The latter allows us to extract patterns in terms of the vocabulary of the user.

4.2.3 Exhaustive Search on an Abstract

In general, there is an infinite number of patterns that can be discovered on an abstract if attribute
domains are infinite. Therefore, we must concentrate on some finite “interesting” subset of these

patterns.

Our interest is in two types of patterns that capture a rich subset of all possible patterns. The
first class of patterns does not contain any aggregates and can be generated from the abstracts
with the counting aggregation principle. The second class of patterns consists of patterns on the

abstract of the form
ABSTRACT(X;....X,.N;)and ABSTRACT(Y:,...Ys,Ny) — NyON,.

where X;,...Xn, Y1,...Y, are either constants or variables associated with regular fields of an
abstract, and N; and N; are constants or variables associated with the aggregated field of the
abstract, and 6 is a relational operator <, =, etc. We consider these two classes of patterns in turn

now,

Patterns without Aggregates. Assume that an abstract has counting as an aggregation prin-
ciple. One general way to discover patterns without aggregates on the abstract is to “fix” some of
its attributes and analyvze the relationships among the remaining attrilaites by varying one or more
of them and seeing the impact on the values of the others. We will illustrate this procedure on the
abstract from Figure 6. Patterns on this type of an abstract can be searched as follows. Fix all
the attributes in the abstract except one. For example. we can fix attributes CUSTOMER_TYPE
to be “yuppie”™ and CITY to be “New York.” We then compute the conditional probabilities of
yuppies living in different boroughs. If NY_yuppie is defined as

CUSTOMFER.TYPE = yuppie and CITY = New York
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then the conditional probability that a yuppie lives in borough z of New York is
P(z) = P{NY_.yuppie and BOROUGH = z | NY_yuppie]
Substituting the numbers from Figure 6, we obtain the following conditional probabilities:

P(Manhattan) = 95%
P(Queens) = 1%
P(Brooklyn) = 3.5%
P(Bronx) = 0.5%
In general, if r is a condition describing the values of fixed attributes and ¢ is the condition
describing a free attribute and if p is the conditional probability, i.e.,
P{gis true | 7 is true} = p
then we can obtain the rule
r — q (with strength p)
For example, if 7 is the condition NY_yuppie and ¢ is BOROUGE = z then, since P(Manhattan) =
95%. we obtain the pattern
NY_yuppie — BOROUGH = Manhattan (with strength 95%)
or in words: New York yuppies most likely live in Manhattan.
1f we expand NY_yuppie in the previous rule then we obtain
CUSTOMER (name, addr,income,profession, age,card_type,mar.stat) and
yuppie(name) and city(addr) = ‘‘New York’’

— borough(addr) = ‘‘Manhattan’’ (with strength 95%)
An example of another pattern obtained in a similar way is

CUSTOMER (name,addr,income,profession,age,card.type,mar_stat) and
yuppie(name) and city(esddr) = ‘‘New York®’
— borough(addr) = ‘‘Bronx?’ (with strength 0.5%)

or in words: New York yuppies most unlikely live in the Bronx °.

Notice that these patterns do not contain aggregation (i.e. GROUP_BY constructs) because
the abstract has counting as the aggregation principle which is used to compute the strength of a

pattern. Furthermore, in this pattern the head of the rule contains the equality predicate because

®Notice that the strength of this pattern is 99.5% because it is a negation of the previous pattern. Also note
that there is an interesting relationship between pattern strengths and fuzzy logic; however, we do not explore this
relationship in the paper.
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the free attribute is based on the aggregation function BOROUGH. 1f it were based on a user-defined

predicate, then the derived pattern would have a predicate in its head.

By exhaustively fixing different values of different attributes and varying other attributes. we
can obtain many different patterns. However, we will retain only the patterns with high levels of

strength that is a priori specified by the user.

The method described above finds patterns without aggregates because the abstract has count-
ing as the aggregation principle. If an abstract has any other aggregation principle, such as sum-
mation or averaging. then only patterns with aggregates (that have GROUP_BY construct) can

be discovered on that abstract.

Patterns with Aggregates. Since there is a direct relationship between GROUP_BY con-
structs and abstracts that was discussed in Section 4.1, we will search for patterns on abstracts of

the form

ABSTRACT(X,....Xn,Nq)and ABSTRACT(Y:,...Yn,N3) — N16N; (3)

where A BSTRACT is the abstract being considered and @ is one of the comparison operators

>.=.>.etc.. These types of patterns can be converted into patterns with GROUP_BY construct:

GROUP_BY([¢],[X1,...Xn),[N1 = aggr(2)])and GROUP_BY ([¢], [Y1,...Ya],[N2 = aggr(2)))
—  NyON,

where @ is the expression that is vsed to build the abstract, and aggr is. the aggregation principle
being used. We describe a conceptual method of finding patterns on abstracts now (efficiency issues
are less important in this case than when we described how to build abstracts because abstracts

are significantly smaller than the underlying database in most of the cases).

Patterns of the type (3) can be discovered as follows. First, form a Cartesian product of the
abstract with itself. For example, in case of the abstract SPENDING from Figure 5 , the Cartesian
product will have fields CUST.TYPE. REST_.TYPE, YEAR, TOTAL_.AMOUNT, CUST_.TYPE".
REST_TYPE', YEAR’, and TOTAL_AMOUNT’. Then different patierns can be searched on this
Cartesian product by fixing some of the attributes, varying others and comparing the corresponding
aggregation columns. For example, we may fix the attributes CUST_TYPE and CUST.TYPE’ to be
yuppie and REST.TYPE to be expensive, vary attributes REST_TYPE’ and YEAR, assume that
YEAR = YEAR’, and compare aggregated attributes TOTAL_.AMOUNT and TOTAL.AMOUNT".

During the comparison process, we compute the percentage of cases in which the value of the field
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TOTAL_AMOUNT is significantly greater than TOTAL_AMOUNT’ while values-of REST.TYPE’
and YEAR range over zll restaurant types and vears respectively. Assume the percentage turns
out to be 85%. This specifies the strength of the pattern. If the strength is higher than the one

specified by the user then we retain the pattern. In this example we get the pattern

(VW X) (V¥ Y) SPENDING(yuppie,expensive,Y,N1) and SPENDING(yuppie,X,Y,N2) — N1>N2
(with strength 85%)

where variables X and Y range over restaurant types and years respectively, or in words

‘‘yuppies spend more meney in expensive restezurants than in any other type of

restaurant’’.

4.3 Interestingness of Patterns

Since the data can contain billions of patterns, it is important to provide methods that limit
the search for patterns. Omne way to solve this problem would be to provide some measure of

“interestingness” of patterns and then search only for patterns interesting according to this measure.

As was pointed out before. one such possible measure could be the strength of a pattern.
For example, the pattern saying that 95% of New York yuppies live in Manhattan is intuitively
more interesting than the pattern saying that only 65% of New York yuppies live in Manhattan.
However, strength by itself is not a sufficient measure of interestingness. The pattern saying that all
the Manhattan yuppies live in New York has trivially the strength of 100%. However. this pattern
is not interesting because it reflects the fact that Manhattan is a part of New York. In general, this
type of problem arises because of a functional dependency (in the example above, between borough

and city).

In our approach, part of the interestingness heuristic for focusing the syvstem comes from the
classification hierarchy. For example, if the user asks the system to find cumulative spending
patterns of yuppies in expensive restaurants over the years, the system automatically includes in
the search related nodes such as senior citizens, inexpensive restaurants, and so on. Intuitively, the
search procedure really tries to answer the question “what is it about the data. raw or abstracted,
that according to the user-specified aggregation functions, is interesting given a specific classification

hierarchy?”

The discovered patierns are presented to the user (sorted in the order of their strength). If
the system discovers too many strong patterns or the user is not satisfied with the results, the user

can adjust the inputs in order to find more interesting patterns. For example. the user may want
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1o search for cumulative spending patterns of yuppies in expensive restaurants during recessions.
This interactive process of user specifying the types of patterns to search for, the svstem returning
the patterns found. and the user “manually” adjusting the inputs based on the svstem feedback

can continue until the svstem does not return patterns of interest to the user.

5 Related Work

A recent book by Piatetsky-Shapiro and Frawley [PSF91] contains a collection of articles on pattern
discovery. It presents various approaches to this problem ranging from purely statistical approaches
to the knowledge-based methods. We compare some of these methods and other related work to

our approach to pattern discovery.

There has been much work done in the area of pattern discovery in the scientific arena. How-
ever, there are some fundamental differences between commercial and scientific data. in the types of
patterns that one is trying to discover, and in the methods of discovery. First, much of the business
data is qualitative or categorical, not numeric. It is not collected in a controlled manner, but is a
by product of decisions about what data is necessary for business functions. Secondly, the patterns
in a large business database tend to be inherently fuzzy. not precise mathematical relationships as
in the natural sciences. It therefore makes sense to also include statistical techniques in addition
to explicit enumeration techniques to extract patterns. Finally, the criteria for deciding what is
“interesting” in scientific domains, which is the generator part of the generate-and-test, tend to
be theory-based as in AM [Len77] and BACON [LBS81]. In the business arena. zs illustrated in
the examples, executives are usually interested in trends dealing with changes in aggregate-based
functions, such as totals and averages, for the terms in their vocabulary that they are interested in
investigating. This information provides some of the “interestingness” heuristics for focusing the

pattern discovery system.

There are also other techniques in the machine learning literature referred to as “learning from
examples” techniques such as Winston’s learning program [Win75], Mitchell's LEX svstem that
works with “version spaces” [MKKCS86], and Quinlan’s 1D3 algorithm [Qui86]. Of these, the ID3
is most closely related to our work. It tries to generate a decision tree that explains the data. For
example, given a table with information on yuppies. expensive restaurants, and spending amounts,
it would generate a decision tree where each node would involve a test on a particular attribute, in
effect partitioning the data. The leaves of the tree contain the classification. such a low spenders

and high spenders.

One of the limitations of ID3 is that it does not deal well with noisy data. Specifically, the
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tree becomes overly complicated in order to account for the moisy instances. A related problem i<
that it cannot deal with inconclusive data. that is, when there are no rules that classify all possible
examples correctly using only the available attributes. Uthurusamy et.al. [UFS91] propose that
the solution to this problem is to use probabilistic rather than categorical rules. This essentially

makes it a statistical approach, in the same spirit as our method which makes use of strengths.

More recently, there has been work done by Pearl and Verma [PV91] on finding causal rels-
tionships in the data. Pearl and Verma define causation among a set of variables as some type of &
minimal mode] that is consistent with the joint probability distribution for these variables. Since
there can be many such models that are consistent with a given distributjon, they consider the
intersection of these minimal models in order to postulate “strong”™ and “possible” causal relation-
ships. The authors do point out as a caveat that “fitness to data ... is an insufficient criterion for
validating causal theories.” In other words, they claim that there is a difference between discov-
ering patterns in the data and establishing causality between variables based on the data because
causality assumes a certain degree of data independence, whereas pattern discovery is entirely
data-driven. Nevertheless, we think the work of Pearl and Verma will prove to be very promising
in ezplaining the types of patterns which we discover. In fact, from a user’s point of view, the

explanation is often more interesting than the pattern ijtself.

As we mentioned at the outset, our use of abstracts builds on the work of Walker [Walg0].
The concept of an abstract, as described by Walker, was independently used by Cai et.al [CCHO1]
and Han et.al [HCC92] who term this method “attribute oriented generalization” and extend it
to deal with uncertainty. Our approach generalizes on the above by providing a more general
concept of a pattern and considering other types of discovery procedures such as statistical pattern
discovery and exhaustive searches, in addition to the attribute-oriented induction method proposed
in [HCC92]. All the patterns introduced in [HCC92] can be expressed with our rules’®. Furthermore.
we extend the rules in [HCC92] as follows. First, their rules can only contain predicates from the
base relations. e.g. CUSTOMER, and predicates from the classification hierarchy (concept tree in
their terminology). e.g. city(x) or major(x). In contrast, we allow arbitrary predicates (relational
views) from the data dictionary in our rules. e.g. yuppie(name). recession(date). Second. we
extend patterns with aggregates (GROUP_BY construct) because many interesting patterns are
expressed in terms of aggregates. Third. we extend the expressive power of patterns by supporting
relational operators in the rules (an example of a rule expressible in our rule language that cannot

be expressed with the rules of [HCC92] was presented in Section 4.2.1). Fourth, we support the

1% Although Han et al. allow disjunctions in the head of a rule, and we don’t, their rules can be converted intc
several of our rules, each rule containing only one conjunctive clause per head.
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notion of statistical significance in patierns as, for example,’in ‘ ‘significantly more New York

yuppies live in Manhattan than in any other borough.’’

As we mentioned at the outset of the paper, it is important to use statistical techniques as
part of a pattern discovery system, particularly when the data are noisy. Such techniques are
theoretically well developed and pervasive in practice. The natural question, therefore, is why are
they not sufficient? The answer is that they require the user to do too much work, thereby making
exploratory data analysis cumbersome and hence reducing the likelihood of finding something that
might even be “close” to what the user had as an initial hypothesis. Secondly, they require the user
1o provide data sets corresponding to the variables before the analysis is performed, as opposed
to having a svstem construct them dynamically from a database depending on the variables unde:
investigation. For example, when a statistical technique is being emploved by the user to test
the hypothesis that yuppies spend more on moderately priced restaurants than expensive ones. it
is unlikely to discover that yuppies spend more than any other type of customer on any type of
restaurant which might be an unexpected but interesting insight for the user. Also, the data set
corresponding to yvuppie, the view, must be explicitly provided prior to the analysis. In contrast,

our method would generate this view when required by the search procedure.

In summary, our approach is 1o use knowledge about the domain to take user inputs and focus
the search while at the same time guiding the discovery procedure to parts of the search space
that are in some sense “close” to the inputs specified by the user (i.e. include senior citizens in
the picture even though the user specified yuppies, and so on). In this way, the domain knowledge

simultaneously focuses and broadens search to potentially interesting parts of the search space.

6 Conclusions

In conclusion. the model of pattern discoverv we have described makes use of whatever domain
knowledge is specifiable in terms of a ciassification hierarchy in order to focus search. Specificaliy.
nodes in the hierarchy, which can be used to construct database views on the original data, serve
as the basis for generating abstracts from which patterns can be derived in terms of the vocabulary
of the user.

We also make use of the fact that what is often of interest to the user is a comparison of
different subsets of the data, measured on the basis of some type of aggregation. The types
of patterns presented in the examples represent a useful subset of patterns that the system can
discover on its own. At the same time. the user can specify interactively, additional constraints or

restrictions to be included as part of a pattern. This interaction between the user and the system
25
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can focus the search for interesting patterns. which s essential for dealing with large quantities of

data.
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