EXTENDING TEMPORAL LOGIC TO SUPPORT HIGH-LEVEL SIMULATIONS

Alexander Tuzhilin

Information Systems Department
Stern School of Business
New York University

44 West 4th Street, Room 9-78
New York, NY 10012
atuzhilin@stern.nyu.edu
212-998-0832

Working Paper Series
STERN I5-93-19

Abstract

A high-level simulation language based on temporal logic is described. The language combines
a large set of temporal tenses and a rich class of high-level modeling primitives. Also an imple-
mentation of the language interpreter is presented. Finallyv. a real-world case study is described

that shows how a programmer can develop structured. reliable, and well-maintainable simulation

programs using the language.

1 Introduction

There has been a substantial amount of research done in the field of knowledge-based simulations
since the time when the first systems ROSS [KFM80], KBS [FR82], and T-Prolog [FS82] were
introduced. The recent developments in the field are presented in the books [FM91, FG90, E0Z89,
WLN89] and in the special issues on knowledge-based simulations of SCS Transactions [kbs90] and
ACM Transactions on Modeling and Computer Simulation [tom92]. Many of the knowledge-based
simulation systems provide support for rule-based and object-oriented paradigms and for powerful
knowledge representation schemes such as frames. Examples of commercial systems of this type
are SIMKIT [Int85b], Simulation Craft [SFBB86], and G2 [HSH89].

The rule-based component of these systems is typically based on a logic programming language,
e.g. PROLOG, or on a production system, e.g. OPS5 [BFK86]. Therefore, rules used in the
knowledge-based simulation methods described above are based on first-order logic since logic

programming languages and production systems have their roots in first-order logic.

Since simulation methods deal with processes evolving in time and since first-order logic does
not support time directly, knowledge-based simulation methods must provide an explicit support
for time. For example, most of the methods explicitly define and manipulate the system clock and
provide some form of event scheduling. This means that these systems are quite procedural because

the programmer has to specify explicitly how to handle time.

In order to provide a more declarative support for time, [Tuz92] proposed to use temporal
logic as an alternative to first-order logic in knowledge-based simulations. In particular, [Tuz92]
describes a temporal logic programming language SimTL that is specifically designed for simula-
tions. Although SimTL programmers do not have to schedule events or advance the system clock,
the language is still low-level in the sense that it does not support important modeling primitives,
such as events, activities, structuring constructs of aggregation and generalization [TL82], and the
decomposition of activities. The lack of these constructs in SimTL forces programmers to encode
them in SimTL programs, thus making the programs longer and more difficult to write and under-
stand. This makes SimTL comparable to a 3GL language. such as C or Fortran, that lacks some
of the high-level constructs present in the 4GL languages. In addition. the language contains quite
a few technical symbols thus making SimTL programs difficult to understand for a non-technical

user.

In this paper, we describe a high-level simulation language Templar that addresses these con-
cerns. The language is also based on temporal logic. but it supports a much richer set of modeling

primitives than SimTL does. A Templar program consists of a set of rules and a set of activity

specifications. Templar explicitly supports rules, events and activities, time, hierarchical decompo-
sition of activities, sequential and parallel activities. static and dynamic constraints, decisions, data
modeling abstractions of aggregation and generalization. and user-defined modelling constructs. To

illustrate the use of Templar, consider the following rule:

If a customer comes to a branch of a bank while the branch is closed, and the branch

has ATM machines then he or she should use an ATM machine.

It can be stated in Templar as

when arrives(customer,branch)
while close(branch)
if has_atm(branch)

then-do use.atm(customer,branch)

This rule is interpreted as follows. When an (instantaneous) event arrives(customer,branch)
occurs, and if it occurs while the activity close(branch) is in effect (i.e. the branch was closed in
the past but has not reopened yet). and if the condition has_atm(branch) holds then perform the

activity use_atm(customer,branch) (that lasts over some period of time).

The idea to use a rich set of high-level modeling primitives in a simulation language is not
new. Some of the existing knowledge-based simulation languages support many high-level model-
ing constructs. For example, both SIMKIT and Simulation Craft are based on a rich knowledge
representation schemes of Al. For instance, SIMKIT is built on top of KEE [Int85a] and therefore
takes full advantage of the expressive representational and reasoning tools that KEE provides. As
another example, the simulation language ROBS [RS29] supports rules. objects. parallel communi-
cating processes, and actions.

What differentiates Templar from these languages is that it integrates a temporal logic that
supports many tenses used in a natural language' and a rich set of modeling primitives into one

language. We believe that this integration will

e allow programmers rapidly produce concise. reliable. and well-maintainable simulation pro-
grams;
e allow other members of the development team and experienced users understand these sim-

ulation programs with a minimal eflort.

To validate these points, we did a case study in which we wrote a program in Templar that

TExamples of these tenses are when. while. since. until. before. after. always, sometimes, etc.

stern School ol Busimess

Working Paper 18-93-19

implements a portion of the Intelligent Adversary system for the Naval Training- Systems Center
that simulates behavior of navy pilots in combat situations. We describe the results of this case

study in Section 6.

In order to make the paper self-contained, we provide some background presentation of tem-

poral logic in the next section before describing Templar.

2 Background: Some Concepts from Temporal Logic and Tem-
poral Logic Programming

We start this section with a review of temporal logic and then describe its multi-sorted extensions.
The reader is referred to books by Kroger [Kro87] and by Manna and Pnueli [MP92] for a good

introduction to the subject.

Temporal Logic. The syntax of a predicate temporal logic is obtained from the first-order
logic by adding various future temporal operators such as sometimes_in_the_future (o), al-
ways_in_the_future (0), next (o), until and their past “mirror” images sometimes_in_the_past
(), always_in_the_past (m), previous (@), and since to its syntax?. The meaning of future op-
erators is defined in Fig. 1. The meaning of past “mirror” images of these operators is defined
similarly to the future operators except time is referenced only in the past. Besides these eight stan-
dard operators, other temporal operators can be defined. such as before. after. while [Kro87], and
bounded necessity. for_time (T) (Or). and possibility. within_time (T) (¢7), operators [Tuz92].
For example, A for_time (T) is true now if A is always true within the next T time units, and
A within_time (T) is true now if A is true at some time within the next T time units. Kroger
[Kro87] shows how temporal operators before. after. and while can be expressed in terms of the
operators until and since [Kro87]. Furthermore. it easily follows from the expressive completeness
of the temporal logic US [Kam68] for the discrete or continuous model of time. that the operators
of bounded necessity and possibility can also be expressed in terms of the until, since, next, and

previous operators.

The following example illustrates the use of temporal logic.

Example 1 The statement

If an employee has been fired from a company (worked there in the past but not now)

then he or she cannot be hired by the same company in the future

?Note that the operators ¢ and O can be derived from o and until. and ¢ and B from ® and since [Kro87, MP92].

oA: is true now if 4 is true at some time in the future -
DA: is true now if A is always true in the future
0A: is true now if A is true at the next time moment

A until B: is true now if B is true at some future time ¢t and A is true for all the
moments of time from the time interval [now,)

Figure 1: Operators of Temporal Logic

can be expressed in temporal logic as

eEM PLOY (company, person) A ~EM PLOY (company. person) —
t~EM PLOY (company, person)

or using a different syntax as

IF sometimes_in_the_past EMPLQOY (company,person) and not EMPLOY(company,person)
THEN always_in_the_future not EMPLQOY (company.person)

O

The semantics of temporal logic formulas is defined with temporal interpretations. A temporal
interpretation for some temporal logic language defines the domain of discourse, the model of
time (e.g. discrete or continuous. bounded or unbounded. linear or branching), assigns values
to constants and function symbols in the language as in classical logic, and specifies a temporal
structure [Kro87], i.e. the values of all the predicates in the language at all the time instances. We
assume any arbitrary structure of the domain of discourse and also assume that time is discrete,
linear, bounded in the past and unbounded in the future (i.e. time can be modeled with natural
numbers)®. A temporal structure defines for each predicate P; in the language a sequence of its
instances P; for all the moments of time t = 0.1.2..... We denote a temporal structure of a
temporal logic language at time { as ;. Then hy(F;) = Py. since it defines the instance of

predicate P; at time 1.

Given a temporal interpretation. we can define the truth value of a temporal logic formula
at any moment of time in the standard inductive way [Kro87]. For example., we can define
K¢{(A until B) in terms of hy(A) and Nhy(B) as follows. Iy(4 until B) is true if there is t’
such that t < 1/, Ny(B) is true. and for all t”, such that 1 < 1" < ', Nu(A) is true. Other

operators can be defined in a similar way (in fact. Fig. 1 contains some of the informal definitions

3Since we consider next and previous operators in this paper. we have no choice but assume that time is discrete.
Alternatively, we could disallow next and previous operators and make time dense.

astern Sehool of Busmess

Working Paper [S-93-19

of other temporal operators). An example of an inductive definition of a non-temporal operator

would be K;(AA B)= K{(A)A Ky(B).

Multi-Sorted Temporal Logics. In this paper. we extend single-sorted temporal logic to multi-
sorted logic using the approach taken by the ERAE model [DHR91] that differs somewhat from the
classical approaches. The reason why ERAE approach is chosen will become apparent in Section 3.7

when we define structuring mechanisms of Templar.

ERAE considers a set of elementary sorts — sort names and singletons — and derived sorts
obtained as a closure of the elementary sorts under the operations of union and intersection. For
example, the derived sort person is defined as man U woman. This model] differs from the classical
model in that it supports derived sorts that can be considered as types in programming languages.
Each attribute of a temporal predicate and each parameter in an activity specification? considered
in Templar must belong to a certain sort. For example. in predicate referees(paper,reviewer)

variable paper belongs to the sort Papers and variable reviewer to the sort Reviewers.

3 Overview of Templar

In this section, we briefly describe the language Templar by providing several examples of programs
written in it. In Section 4. we formally define the syntax of the Janguage. and in Section 5 describe

an interpreter that executes Tempar programs.

Templar features will be introduced with examples based on the description of an IFIP Working
Conference [Ol182, Appendix A]. Organization of a working conference involves several activities:
sending a call for papers, receiving paper submissions and registering these submissions, sending
papers to be refereed, receiving reports back from referees. making acceptance/rejection decisions,

and so on.

A Templar program simulating such a conference consists of a set of rules and activities that
will be described in turn below. We start with the most basic features of the language in Section

3.1 and introduce additional features in the subsequent sections.

3.1 Basics of Templar Rules

A Templar rule is based on the Activity-Event-Condition-Activity (AECA) model. AECA is an

extension of the Event-Condition-Action (ECA) model of rules in active databases [dMS88, MDS89,

4 Activity specifications will be defined in Section 3.

WF90, SIGP90]. _

The following is an example of a Templar rule. To make an example simple, we consider a rule

of the ECA type and describe an AECA rule in Example 4.
Example 2 The user specification

When a reviewer receives a paper to be refereed. which was sent by the conference

program chairperson, he/she evaluates the paper and sends it back to the chair

is expressed with the Templar rule

when end.send(paper,chairperson,reviewer)
if referees(paper,reviewver)
then next located(paper,reviever)

then-do review(paper,reviewer); send(paper,reviewer,chairperson)

O

This rule is interpreted as follows: when an event end.send(paper,chairperson,reviewer)
occurs (reviewer receives a paper) and if the condition referees(paper,reviewer) is true then set
the post-condition located(paper,reviewer) to be true at the next time moment and start the
activities review(paper,reviewer) and send(paper,reviewer,chairperson) sequentially (i.e.

when the first activity finishes, start the second one).

This rule illustrates three major modeling primitives in Templar: activities. events, and con-
ditions. Activity is a process that occurs over fime. e.g. a paper is being reviewed by a reviewer for
some time. An eventis a change to the syvstem state that occurs instantaneously, e.g. a reviewer
receives a paper at some moment in time. Prefix “end™ in “end.send” in Example 2 specifies the
event “activity send(paper,chairperson,reviewer) has finished.” A condition is a logical for-
mula that describes the state of the syvstem. e.g. predicate referees(paper,reviever) indicates
that in the current state of the systeni. objects paper and reviewer are engaged in relationship

referees.

The rule presented above consists of clauses when. if. then. and then-do. We distinguish
between state, temporal. and action types of clauses. A state clause describes the state of the
system (the working conference in our case). If and then clauses are examples of a state clause.
A temporal clause specifies how different events and activities relate to each other in time. When
and after are examples of a temporal clause. Finally. the action clause states imperatively what

activities will have to be done. Then-do is an example of an action clause.

5]

Each clause deals with only one type of a modeling primitive. For example, when clause
pertains to events, if and then clauses to conditions. and then-do clause to activities®. This means
that in the previous rule referees and located are predicates, review and send are activities,
and end.send is an event (the end of an activity). This relationship between types of clauses and
types of modeling primitives that can appear in them forces the user to think more structurally

when writing Templar programs.

3.2 Atomic and Composite Activities

Templar distinguishes between atomic and composite activities. A composite activity consists of
sub-activities. For instance, the activity review(paper,reviewer) from Example 2 consists of
reading the paper and then evaluating it. This statement can be expressed in Templar with an

activity specification as illustrated in the following example.

Example 3 A rule for the activity review can be stated in Templar as

activity review(paper: Papers, reviewer: Reviewers)
read(paper,reviewer)
evaluate(paper,reviewer)

end_activity

where Papers and Reviewers are elementary sorts as defined in Section 2 (and in [DHR91]). This

means that activities have types as temporal predicates do.
a

An activity specification can be compared to a procedure in conventional programming lan-
guages or to the body of a method in object-oriented programming. except that it is defined in
terms of temporally oriented modeling primitives (activities). We will describe how an activity is

“executed” in Section 5.

An activity is atomic if it does not consist of several subactivities. It is defined with a temporal
predicate describing how one of the temporal predicates changes over time®. For example, consider

the activity specification

activity read(paper: Papers, reviewer: Reviewers)

T = reading time(paper,reviewer)

*When we define the syntax of Templar formally and introduce all the clauses in Section 4. we will explain in
Figure 4 how clauses correspond to maodeling primitives.
“Temporal predicates will be described in full in Section 3.5

reading(paper,reviever) for_time T .

end_activity

where reading_time(paper,reviewer) is a function that specifies how much time it takes a re-
viewer to read a paper, and reading is a temporal predicate. Then “reading(paper,reviewer)
for_time T” is an example of an atomic activity. It states that the predicate

reading(paper,reviewer) will be true for the next T time units.

Templar allows the mixture of composite and atomic activities inside an activity specification.

For example, the composite activity review(paper,reviewer) can be rewritten as

activity review(paper: Papers, reviewer: Reviewers)
T = reading_time(paper,reviever)
reading(paper,reviever) for_time T
evaluate(paper,reviewer)

end_activity

Since subactivities in an activity specification can also be composite activities, Templar sup-
ports the process of hierarchical decomposition of a complex activity into progressively more and

more simple subactivities.

Templar also allows multiple subactivities in the then-do clause of a rule. For in-
stance, the then-do clause in Example 2 has two subactivities review(paper,reviewer) and
send(paper,reviewer,chairperson). Alternatively. these two subactivities could be combined

into one composite activity, and the then-do clause would refer only to this single activity.

The combination of activity specifications and rules makes Templar a powerful simulation
language. If Templar programs had only rules then thev could contain hundreds of rules, and it
would be difficult for the programmer to understand clearly how the rules interact. On the other
hand, if Templar programs consisted only of activities. then it could be difficult to describe the
control logic with only the if-then-else statements for certain applications. With Templar programs,
the user has the flexibility of combining rules and activities in such a way that there are much fewer
rules than for the strictly rule-based methods. and activity specifications tend to be small, simple

and easy to understand. as the case study in Section 6 will demonstrate it.

3.3 Activity-Event-Condition-Activity Rules

The rule from Example 2 has the Event-Condition-Activity (ECA) structure. This structure is

extended to the Activity-Event-Condition-Activity (AECA) structure in Templar by supporting

while, before, and after temporal clauses as the following example shows.

Example 4 Assume the organizers of the conference have a rule:

Wahile the paper is being reviewed, any request to withdraw the paper will be granted

by the program chairperson.

This requirement can be expressed in Templar as

while do_reviewing(chairperson,paper)
when withdrawal_request(paper)
if submission(paper,author,status)

then-do withdraw(paper,author)

where do_reviewing(chairperson,paper) is the activity of sending a paper by the program chair-
person for reviewing, submission(paper,author,status) is a condition stating that an author
submitted a paper to the conference. withdrawal request(paper) is an event indicating that
the request to withdraw the paper was received. and withdraw(paper,author) is an activity of

withdrawing a paper from the conference.
O

This rule says that while a certain activity lasts. and when an event occurs. and if a condition
holds. then do a new activity. In this rule, unlike the rule from Example 2. the activities in the
then-do clause depend not only on some conditions and events but also on some other activities.
Therefore, we call this type of a rule the Activity-Event-Condition-Activity (AECA) rule because it
generalizes the Event-Condition-Activity (ECA) rule as defined in [dMSS88. MD89. WF90, SJIGPI0]
by

¢ allowing activities in the antecedent part of the rule:

e supporting not only when. if. and then clauses of the ECA model but several additional

clauses, such as while, before. after. and various other user-defined clauses:

e providing a comprehensive support for time based on temporal logic.

In addition, we assume that Templar rules are safe [UlIS8] in the sense that all the variables
appearing in clauses then. then-do. then-cancel. and then-dont-do must appear positively in
some other clause in that rule. The rules in all the examples considered so far are safe. An example

of a non-safe rule would be if A(x) then B(x,y).

3.4 Procedures in Templar :

In Section 3.3, we considered a rule of an AECA type and in Section 3.1 its restricted ECA version.
In general, only the action part of the rule (then-do clause) is mandatory in a rule, and all other
clauses are optional. For example, the “topmost™ activity specifying that a conference has to be

organized may not require any preconditions and can be expressed in Templar as
then-do organize_conference

or, using then-do operator implicitly. as
organize_conference

If only the action part of a rule is specified then it is reduced to a procedure. Therefore, in the
extreme case, Templar programs may contain no rules at all. and only procedures. This provides the
user with the range of options and gives him/her extra flexibility for writing simulation programs

based on rules, procedures and the combination of rules and procedures.

3.5 Temporal Predicates

As was explained in Section 2. Templar predicates change over time. For example, the predicate
submission(paper,author,status) can have different truth values at different moments of time

depending on the value of status at those moments.

Therefore, temporal operators. described in Section 2. can be applied to these predicates in if
and then clauses. If clause takes only the past temporal operators always_in_the_past, some-
times_in_the_past, previous. for_past_time. and within_past_time. Then clause takes only
the future temporal operators always_in_the_future. sometimes_in_the_future,next, for_time,

and within_time.

Example 5 The rule

Only the original papers are accepted for the conference. i.e. if a paper has been

published in some journal in the past. it cannot be submitted to the conference.
can be expressed in Templar as

if submission(paper,author,status) and
sometimes_in_the_past published(paper,author,journal)
then-do reject(paper,author)

10

where sometimes_in_the_past is the temporal possibility operator defined in Section 2 and reject

is the paper rejection activity.

3.6 Static and Dynamic Constraints

Templar supports static and dynamic constraints by specifving rules only with if and then clauses.
The static constraint does not have any temporal operators in either the head nor the body of a

rule. For example. the following static constraint
A paper can have only one specific status at a time.

can be expressed in Templar as

if submission(paper,author,status) and submission(paper,author,status’)
then status = status’

Note that this constraint specifies that paper and author functionally determine status in predi-

cate submission.

A dynamic constraint is defined as an if-then rule where some predicates take temporal

operators. For example, the following dynamic constraint

If a paper has been published already. it cannot appear in any other publication in the

future.

can be expressed in Templar as

if published(publication,paper,author) and list_of_publications(publication’)
and publication # publication’
then always_in_the_future not published(publication’,paper,author)

where 1ist_of publications describes the “universe™ of publications in which the paper cannot

appear.

3.7 Structuring Mechanisms in Templar

Templar supports structuring mechanisms of aggregation and generalization [TL82] as follows.

Generalization is supported exactly as in ERAE [DHR91] by using multi-sorted temporal logic

11

that allows derived sorts (see Section 2). For example. if the sort Papers is defined as the union
of Regular_papers and Invited_papers then Papers is the generalization of these two sorts.
Assume it is declared that a variable 2 belongs to a sort and we want to state that it should belong
a specialization of this sort. For example, assume that 2 belongs to Papers and we want z to
be an invited paper. In this case, we follow the approach of ERAE and make a statement z in

Invited_papers, where in is an interpreted membership predicate.

Aggregation is supported in Templar by the use of x.y notation. For example, an address can
be defined by the street address, city, state, and zip. We can say in Templar that a person lives in
New York as address.city = ’New York’. Note that the sort of the expression x.y is determined

by the sort of variable y. For example. the sort of address.city is Cities.

3.8 Other Properties of Templar

In this section, we consider several additional features of Templar, such as parallel activities, exter-
nal events, events defined by explicit specifications of time. periodic events, temporal precedence

operators before and after, decisions. cancellations of and constraints on activities.

Example 6 Consider the following rule:

When the program commitiee chair receives a paper before the submission deadline,
the chair registers the paper. sends it to the reviewers and sends the acknowledgment

letter to the author (at the same time as sending it to the reviewers).

It is expressed in Templar as

when receives(chairperson,paper,author)
before submission_deadline
then next located(paper,chairperson)

then-do register_paper(paper,author);
(distribute_paper_to_reviewers(paper,chairperson)
|| send_acknowledgement(chairperson,paper,author))

a

The rule from Example 6 illustrates several important features of Templar. First, it provides an
example of the parallel operator (||). This operator specifies that the corresponding activities occur
simultaneously. For instance. activities distribute_paper_to_reviewers(paper,chairperson)

and send_acknowledgement (chairperson,paper,author) occur in parallel in Example 6. Sec-

12

ond, the rule illustrates the use of temporal precedence operators before and after. The clause
before specifies that the reviewing process can start only if the paper is received by the program
chair before the submission deadline (determined by the temporal constant submission_deadline).
Third, the rule shows how time can be referenced explicitly in Templar rules. The temporal con-
stant submission_deadline (e.g. 6/22/98) defines the temporal event “the submission deadline is
reached,” and the rule can be fired only before this event occurs. Fourth, the rule provides an ex-
ample of an ezternal event, receives(chairperson,paper,author). This event did not occur as
a result of starting or ending of any internal activity but occurred because of some activity external
to the system. Finally, the then clause provides an example of using temporal logic operators in
post-conditions (e.g. next): it says that the predicate located(paper,chairperson) will be true
at the time moment immediately following the execution time of the rule. In other words. the paper

is “physically” located with the chairperson at the next time moment after he or she receives it.

The next example shows how Templar supports periodic temporal events.

Example 7 The rule

Every Monday, the program chair examines review reports sent to him/her by the

referees.

can be expressed in Templar as

when every Monday
then-do examine_reports(chairperson)

0

Also, Templar supports decisions which are non-temporal procedures. For example, when the
program committee chair receives a paper. he/she decides who should review it. and then sends the
paper to the selected reviewers. In this case. select reviewers(paper,chairperson,Reviewers)
is a decision, which we assume happens instantaneously in time’. Since decisions do not involve
time, they can be specified either in Templar with only non-temporal operators or in any conven-
tional programming language. e.g. Fortran or C. In the latter case. decision routines are dynamically

linked to the main Templar program during the execution.

Templar also allows to refer explicitly to the time of an event. This can be done by using the

time prefix. The next example illustrates the use of this construct. It also illustrates the use of the

If this decision is made over time. then we treal it as an activity.

13

then-dont-do and then-cancel clauses that respectively support cancellations of and consiraints

‘on activities.
Example 8 The rule

If a paper was submitted to a journal and the reviews were not received by the author
within 1.5 years, then withdraw the paper from the journal and never submit any papers

to it again.

can be expressed in Templar as

if now - time.begin.submission(paper,author,journal) > 18months
then-cancel submission(paper,author, journal)
then-dont-do sometimes_in_the_future submission(paper’,author, journal)

where now is the symbol specifving the present time. submission is an activity, be-
gin.submission(paper,author, journal) defines the event when the paper was submitted, and
prefix time specifies the time when this event occurred. The clause then-cancel specifies that
the currently scheduled activity submission(paper,author,journal) should be canceled, and the
clause then-dont-do imposes a constraint stating that the activity submission should never occur

for this author and this journal in the future.
a

Finally, Templar supports namings of the events associated with beginning and ends of activ-

ities. For example. the event end.send {rom Example 2 can be called arrive by the user.

In the next section. we formally describe the syntax of Templar and in Section 5 how Templar

programs are executed.

4 Syntax of Templar

Templar programs consist of a set of predicate declarations. a set of rules and a set of activity
specifications. Since Templar is based on multi-sorted temporal logic. all of its predicates must be
declared so that it is clear what sorts are involved in their definitions. In order to do so, we have to
specify the list of sorts that are used in the program. We adopt the syntax of ERAE for declaring

sorts and predicates [DHR91] and will not present it in the iJal)ez'.

The syntax of a Templar rule is defined with the BNF grammar presented in Fig. 2 and 3% (we

#We could not fit the BNT syntax on one page. and therefore we put it into two figures.

14

rule
head-of-rule
head_clause
then-clause
do-clause
dont-do-clause
cancel-clause
next-activity
body-of-rule
body-clause

user-defined-operator
activities

events

activity

event
future_conditions
past_conditions
future_condition
past_condition
future-temp-predicate

past-temp-predicate

predicate
decision
begin-activity
end-activity
external-event
temporal-event
periodic-event

i

1]

i

Wi

1

i

[body-of-rule] head-of-rule

head_clause { head_clause }

then-clause | do-clause | dont-do-clause | cancel-clause
then future-conditions

then-do activity { next-activity }

then-dont-do activity { next-activity }
then-cancel activity { next-activity }

; activity { next-activity } | || activity { next-activity }
{ body-clause }

if past_conditions

while activities

when events

before activities

before events

after activities

after events

user-defined-operator activities

user-defined-operator events

name

activity { logical-op activity }

event { logical-op event |}

name (arguments)

begin-activity | end-activity | temporal-event | external-event
future_condition { and future_condition }
past_condition { logical-op past_condition }

[not] future-temp-predicate

[not] past-temp-predicate | expr relop expr | decision
[unary-future-temp-oper] predicate

predicate binary-future-temp-oper predicate
[unary-past-temp-oper] predicate

predicate binary-past-temp-oper predicate

name (arguments) | var in name

name (arguments)

begin.activity

end.activity

name (arguments)

temporal-constant | periodic-event

every period

Figure 2: Syntactic Definition of a Rule (Part I).

stern School ol Busimess

Working Paper 18-93-19

period == hour | day | week | month | year | day-of-week -
day-of-week u= Monday | Tuesday | Wednesday | Thursday
Friday | Saturday | Sunday

name

term + term | term — term

temporal-constant

expr e
term := factor = factor | factor / factor
factor = var | const | time.event
logical-op = and |or

relop = =|£|<|L]>]2

always_in_the_future | sometimes_in_the_future | next
for_time name | within_time name | user-defined-operator
until | user-defined-operator

always_in_the_past | sometimes_in_the_past | previous
for_past_time name | within_past_time name
user-defined-operator

since | user-defined-operator

unary-future-temp-oper

binary-future-temp-oper ::
unary-past-temp-oper

[R,

binary-past-temp-oper

arguments := mname {. name }
var 1= mname.var | name
const = now | name

Figure 3: Syntactic Definition of a Rule (Part II: continuation).

assume that name is a sequence of characters in Fig. 2 and 3). As Fig. 2 shows, a Templar rule
consists of a collection of clauses that are divided into body and head clauses. There can be more
than one clause of the same type in a rule (e.g. one before clause refers to activities and another
to events). However, each clause deals only with an entity of one type: either with an activity,
or an event; or a condition. Therefore. clauses provide a natural way to separate activities from
events and from conditions and force the user of Templar language to think in these terms. Fig. 4

shows the relationship between clauses and activities. events. and conditions.

Furthermore. the user can define his or her own clause operators as long as the semantics
of these operators is defined precisely. These operators are denoted as “user-defined-operator” in
Figures 2 and 3. For example. the user can define such operators as unless. atnext {Kro87], or any
other temporal operator he or she needs. This provides an extra flexibility in describing real-world

svstems in more natural terms.

The syntax of activity specifications is defined with the BNT rules presented in Fig. 5. As
Fig. 5 shows, an activity specification consists of a list of statements. The for-statement is needed
for iterations (to be able to express statements of the form “for each element ... perform some
activity™). If-statement is not strictly necessary because the activity containing this statement can

be expressed in terms of rules and activities without if-statement. However, it was added as a

16

clauses

conditions | if, then
events when, before. after
activities | then-do. then-dont-do. then-cancel, while. before, after

Figure 4: Types of Clauses

activity-spec
statement-list
statement

if-statement
for-statement
parallel-statement
decision-statement
composite-activity
atomic-activity =
future-temp-predicate ::
variable 3
parameters
type

1]

(R T [(R (]

activity name [(parameters)] statement-list end_activity
statement { ; statement }

composite-actiyity

atomic-activity

if-statement

for-statement

parallel-statement

decision-statement

if condition then statement-list else statement-list end_if
foreach variable suchthat condition do statement-list end_for
statement-list || statement-list

[variable = | name (parameters)

name (parameters)

future-temp-predicate

same as future-temporal-predicate in Fig. 2

name.variable | name

name: type {. name: type }

name

Figure 5: Svntactic Definition of Activity Specification .

1. advance the system clock to the next event that is scheduled in the future;

2. match the antecedents of the rules against the current and the past states of temporal predi-
cates and against the previous events and activities: as a result of this matching process, a set
of tuples is instantiated; form a set of future activities and future values of predicates from
this set of instantiated tuples:

3. resolve conflicts among conflicting activities and among conflicting predicates;

4. schedule the activities and the predicates that passed the conflict resolution step for the future
executions;

5. execute the previously scheduled activities and predicates whose execution time has come.

Figure 6: Temporal Recognize-Act ('vcle for Templar Rules.

convenience for the user. Activities occur either sequentially or in parallel. Semicolon (;) is the
operator delineating sequential activities, and parallel bars (||) is the operator delineating parallel
activities.

As was pointed out in Section 3.2. we distinguish between atomic and composite activities. An
atomic activity is defined as a future temporal predicate. For example. deliver(paper,referee)
for_time T, where deliver is a predicate indicating that the paper is being delivered to the referee
for T time units, is an atomic activity. A composite activity consists of several subactivities and
requires an activity specification that describes the decomposition of the composite activity into

several subactivities.

As Fig. 5 shows. each element in the list of parameters belongs to a certain type.

5 Executing Templar Programs

In this section, we describe how Templar rules are executed in a recognize-act cycle. As in the
case of production systems. such as OPS5 [BFRS6]. the cycle consists of the matching, conflict
resolution and execution steps. The sequence of these steps is presented in Fig. 6. Steps 1 and
2 in this sequence correspond to the matching part of the cycle. Step 3 to the conflict resolution
part, and Steps 4 and 5 to the execution part of the cycle. We will describe each step in Fig. 6
in detail in the remainder of this section. However. before we describe these steps, we present the

data structures being used.

stern School ol Busimess

Working Paper 18-93-19

FIELD TYPE DESCRIPTION

FROM: time beginning of a temporal interval when the tuple belonged to the predicate
TO: time end of the temporal interval when the tuple did not belong to the predicate
NEXT: pointer pointer to the next node (in the decreasing order of time)

IFigure 7: The Structure of a Node in the Past List of a Dynamic Predicate Table.

FIELD TYPE DESCRIPTION

1.D: boolean is equal to 1 if the tuple will be added to the predicate and 0 if
deleted

AS: boolean is equal to 1 if the temporal operator associated with the tuple is
always and is 0 if it is sometimes

FROM: time beginning of a temporal interval when the tuple will be added to the
predicate

TO: time end of a temporal interval when the tuple will be added to the
predicate

NEXT: pointer pointer to the next node

Figure 8: The Structure of a Node in the Future List of a Dynamic Predicate Table.

We use two separate data structures for activities and temporal predicates. We first describe
predicate structures. Schemas of all the predicates being used in the application are stored in a
static predicate table. For each predicate. there is one record in the table describing how many
arguments the predicate has. types of arguments. and also containing a pointer to the dynamic

predicate table.

The dynamic predicate table for predicate P contains all the time-dependent information about
P S-peciﬁca]ly. it contains the list of all the tuples /{ P) that were ever inserted into this predicate.
It also contains two linked lists for each tuple 7 in /(P). The first list p(1) is the list of all the past
time intervals when P(1) was true. Each node in this list has the structure presented in Fig. 7.
Nodes in the past list are organized in the decreasing order of time (from the most recent to the
more distant in time). The second linked list f(7) is the set of all the time intervals when tuple t
is scheduled to be either inserted into or deleted from the predicate in the future. Each node in the
list (1) consists of the fields presented in Fig. 8. Nodes in the future list are organized as follows.
If node n; has FROM and TO fields equal to FROM(#n;) and TO(n;) respectively. and node n,
has fields FROM(ny) and TO(u3). and if TO(ny) < FROM(n,) then node n; must precede node

ng in f(t). If time intervals of the nodes in f(7) intersect then these nodes can have an arbitrary

19

NAME| PLACE

[3/1888, 32788} 11580, 125901— Jim | Hawaii t—={1,1,2/21/93, 22783—+{0, 1, 411583, 62093—+}1, 0, 1072093, 1272693

John | Australia (—{1, 1, 12/2¢/92. 17693

Pat | Pars [—=1,1,602093, 7183 |
7/15/90, 8/1/90 Jim Mexico

Figure 9: An Instance of the Temporal Predicate VACATION.

precedence.

Example 9 Consider the predicate VACATION(NAME.PLACE) that specifies where a person
spends vacations. An instance of this predicate may look as the one shown in Fig. 9. Assume
that the current time is 1/1/93. Then the tuple (Jim. Hawaii) in Fig. 9 has three nodes in the
future list and two nodes in the past list associated with it. The future list says that Jim has a
planned vacation in Hawaii from 2/21/93 to 2/27/93. that he will not go to Hawaii from 4/15/93
to 6/20/93, and he will go to Hawaii at some point between 10/20/93 and 12/26/93 (but does
not know when and for how long vet). The past list savs that Jim had vacations in Hawaii from
3/18/88 to 3/27/88 and also from 1/15/90 to 1/25/90.

O

For each activity., we maintain 1wo data structures. The first one. called the static activity
table, contains all the time-invariant information about the activity, e.g. the name of the activity,
descriptions of the arguments of the activity. what the subactivities of the activity are, definition
of the activity if it is an atomic one. etc. The static activity table can be thought of as a schema

of the activity.

The second data structure associated with an activity. called dynamic activity table, contains
all the time-dependent information about the activity. For an activity A. the dynamic activity
table contains the instances of the activity. la(A). that ever occurred or are scheduled to occur for
A. For each tuple 7 in la(A). we also maintain two linked lists as for temporal predicates. The
first list pa(?) is the list of all the paust time intervals when activity A(7) occurred in the past for
tuple ¢. Each node in this list has the structure presented in Fig. 10. Nodes in the past list are also

organized in the decreasing order of time (from the most recent to the more distant in time).

The second linked list fa(7) is the set of all the future time intervals when activity A(t) is

20

FIELD TYPE DESCRIPTION

FROM: time starting time of an activity

TO: time ending time of an activity

NEXT: pointer pointer to the next node (in the decreasing order of time)

Figure 10: The Structure of a Node in the Past List of a Dynamic Activity Table.

FIELD TYPE DESCRIPTION

TYPE: integer is equal to 0 if it is an activity scheduled by the then-do clause, 1
if it is a constraint scheduled by the then-dont-do clause, and 2 if
it is a cancellation of an activity

FROM: time beginning time of the scheduled activity

TO: time ending time of the scheduled activity

NEXT: pointer pointer to the next node

Figure 11: The Structure of a Node in the Future List of a Dynamic Activity Table.

scheduled at some time in the future for tuple t. Each node in this list has the structure presented
in Fig. 11. Nodes in the future list of the dynamic activity table are organized as in the future
list of the dynamic predicate table. In particular. if node n; has FROM and TO fields equal to
FROM(n;) and TO(n;) respectively. and node n; has fields FROM(n;) and TO(n3), and if TO(n;)
< FROM(ny) then node n; must precede node n; in fa(1). If time intervals of the nodes in fa(t)

intersect then these nodes can have an arbitrary precedence.

Example 10 Consider an activity STUDY(NAME.SCHOOL) that specifies the past studying his-
tory and future studying plans of a person. An instance of the dvnamic activity table for STUDY
is shown in Fig. 12. Assume that the current time is 1/1/93. Then the tuple (John,NYU) has
two nodes in its past activity list. The first node savs that John attended NY'U from 9/1/89 until
6/1/91 and from 9/1/92 until the present time. The same tuple (John.NYU) has also three nodes
in the future activity table. The first node savs that John resumed his attendance of NYU on
9/1/92 and will continue to attend it until 6/1/93. Also. he will take a vear off and will not attend
NYU from 9/1/93 until 9/1/94. and then will resume attendance from 9/1/94 until 6/1/95.

a
As was stated before. the recognize-act cycle consists of the matching. conflict resolution, and

execution parts. We describe each part in turn now.

2]

NAME | SCHOOL
91789, 61— /192, nil fe— John [NYU {0,912, 6/1/93 F—{1,9/193, 9184 }——={0,9/194,6/155 |

9/1/90, nil Jim | Ruigers 0, 9/1/90, 6/1/94
9/1/90, 1/1/92] Pat UCLA 0. 1/6/93, 6/6/95

[971785, 6/1/87+— 9/1/88, 6/1/9 Mark | Yale

Figure 12: An Instance of the Dynamic Activity Table for Activity STUDY.

5.1 Matching Part of the Recognize-Act Cycle

The matching part of the cycle starts with the selection of the smallest time #,.,; associated with
any future event that is scheduled in the system. This time is determined by selecting the smallest
time t,¢, > now from the nodes of the future lists of all the predicates and all the activities
appearing in all the rules. For example. assume that there is only one predicate VACATION and
only one activity STUDY in the program. Also assume that the current time is 1/1/93. Then
the smallest time 7,¢,; based on the data in Fig. 9 and Fig. 12 is 1/6/93. This time is associated
with the end of John’s vacation in Australia and the beginning of Pat’s studies at UCLA. If any
of the external events occurred between now and 1,,,; then set {,.»; to the value of the smallest
time among these external events. Also. if any temporal constants in when clauses of any of the
rules happen to be between the current moment of time and 1y, then set 1,.,; to the value of the
smallest temporal constant. After1,,,, is determined as just described. make the current time now

equal to 1,ez¢-

Once the time clock is advanced 10 7,.,¢. the matching process starts. Matching is done on
a clause-by-clause basis within a rule based on the following ordering of its clauses. The highest
order is associated with the when clause. then the if clause. then the while clause, and finally, the
before and after clauses. For example. if a rule has when. if. and before clauses then first the

when clause is matched against the data. then the if clause. and finally, the before clause.

The when clause is matched against the data as follows. We first find all the events (beginnings
and endings of activities. external and temporal events) that occur at (new) time #,¢,4. For example,
if 1next = 1/6/93 and if a rule contains the clause when begin.STUDY(Pat,UCLA), then there
is only one event selected for the data from Fig. 12. i.e. begin.STUDY(Pat,UCLA). However,
there can be more than one event selected in general since more than one event can occur at the

same time. The matching of the when clause against the data produces the relation R, (it is

22

stern School ol Busimess

Working Paper 18-93-19

{(Pat,UCLA)} in our example). We expect the size of K, to be small on average in comparison
to the size of the data because there should be a small number of events that occur exactly at the
same time on average. For this reason. we started the matching process with the when clause so

that the size of the instantiated relation be reduced at the early stage of the matching process.

After the matching of the when clause is finished. we match the if clause against the past
data and relation R, as follows. Without loss of generality. we assume that the if clause has the
form P, and ... and P,, where P; is a temporal literal (otherwise. we convert the clause into the
disjunctive normal form and split the rule into several rules, each rule containing one disjunct).
We replace each F; with the semijoin [UlI88] P/ = PxR, and evaluate P/ against the past data in
the dynamic predicate table for P; as follows. If P/() is sometimes_in_the_past P(1) then check
for each tuple ¢ in P if the past list p(7) is not empty. If P/(1) is always_in_the_past P(t) then
check for each tuple ¢ in P if p(t) has only one node and if it covers all the time points. If P!/(1) is
within_past_time T P(1) then for each tuple ¢ in P go over the nodes in p(t) to see if some node
has times that fall between now and T. The case for for_past_time T P is handled similarly. As

a result of matching the if clause against the data and relation R,. we obtain the relation R,;.

After that, we match the while clause against the data and relation R,; as follows. Also
without loss of generality we assume that the while clause has the form A; and ... and A,, where
A; is an activity. We replace each A; with the semijoin A’ = AXR,,;. For each activity A; and for
each tuple t, such that Al(7) is true. check if the first node in the past list pa(?) of the dynamic
activity table for A; has a non-nil time in the FROM field and nil in its TO field. All the tuples
{ that satisfy this condition form a relation P/”. Then all the relations P”. i = 1,...,n are joined
together to form the relation R,,;,.. For example. consider the clause while STUDY (name,school),
and let the tuple (Pat, UCLA) belong to the semijoin of STUDY and R,.;. Since the first node
in pa(Pat.UCLA)is (9/1/90. 1/1/92). the tuple does not pass the while test and does not belong
to Ryiy. However, if the first node in pa(Pat.UCLA) had nil in the TO field (e.g. was (9/1/90,
nil)) then the tuple (Pat. UCLA) would have passed the while test and should have been added

to relation R iw-

The after clause is matched against the data similarly to the while clause. First. all the
activities in the clause are semi-joined with R,... Then for each conjunct in the after clause and
each tuple ¢ in the newly created semijoin in that conjunct. check if the TO field in the first node
in pa(t) is not empty. All the tuples that passed this test form the relation R,iuq. The matching
process for the before clause is done similarly to the after clause. except the check is done against

the future list fa(7). The resulting relation R ., forms the set of instantiated tuples for the rule.

23

Stern School ol Busimess

Working Paper [S-93-19

The relation Ryiwae of instantiated tuples is used to schedule new instances of temporal
predicates to be true or false in the future. It is also used to schedule new instances of activ-
ities and their subactivities. For example, assume that the then-do clause of a rule is then-
do review(paper, reviewer), where activity review(paper, reviewer) was defined in Exam-
ple 3, and assume that Ryuqp contains two tuples { (paper.29,Jack), (paper.43,Susan) }.
Then this predicate instance Ry,yqpb gives rise to the instances of activities read(paper_29, Jack),
read(paper.43,Susan), evaluate(paper_29,Jack), evaluate(paper_43,Susan) that will have
to be scheduled in the future. The scheduling is based on the computations of the time intervals of
individual subactivities and on the composition of these subactivities into activities. For example
to schedule activities mentioned before. we first compute durations of atomic activities read and
evaluate at the scheduling time (since an atomic activity is defined as a temporal predicate, and it
is known for how long it will be true at the scheduling time). Assume that read(paper.29,Jack)
will be true for 30 days, read(paper_43,Susan) for 40 days, evaluate(paper_29,Jack) for
1 day, evaluate(paper.43,Susan) for 2 davs. Then read(paper_29,Jack) will be scheduled
from time now until now + 30. evaluate(paper.29,Jack) from now + 30 until now + 31, and
review(paper_29, Jack) from now until now+31. Similarly, read(paper_43,Susan) will be sched-
uled from now until now + 40. evaluate(paper_43,Susan) from now + 40 until now + 42, and

review(paper_43,Susan) from now until now + 42.

Note that during the execution of the recognize-act cycle. the past activity and predicate lists
grow longer with time. Therefore. a special care was taken for the Templar interpreter not to
deteriorate its performance with time. To illustrate how it is done. consider the operator some-
times_in_the_past P(x). To check if it is true. we have to see if the past list in the dynamic
predicate table for P(2) is not empty. and this can be accomplished in constant time. Similarly, to
check if the operator for_time(7')P(r) is true. we have to check the past portion of the dynamic
table for at most T time units. and this can be done in the amount of time proportional to 7.
Therefore, the performance of the matching part of the cvcle does not deteriorate with time in
these two cases. We employ similar techniques for other temporal operators in the Templar inter-
preter. Therefore. the performance of the matching part of the cvcle does not deteriorate with time

for other cases as well.

As a result of the matching step of the recognize-act cycle. we obtain a set of new predicates
and activities to be scheduled in the future and times at which these operations begin and end. In
the next step of the cycle. we have to resolve conflicts among these operations and also the conflicts

with the previously scheduled operations.

There have been two conflict resolution approaches proposed in the past. The first is the logic

24

based approach. It says that if we conclude that P and notP are true at the-same time then
this is a contradiction and the program execution should stop. Doubly negated Datalog, Datalog™
[AV91], follows this approach. In similar situation. MetateM [BFG*89] stops the current execution,
backtracks and tries to find another model in which the conflict does not appear. The second
approach is used in production systems. It says that the conflict should be resolved according to
some conflict resolution strategy [BFIS6]. We will follow the production system approach in this

paper and describe how conflicting actions are resolved in Templar in the next section.

5.2 Conflict Resolution Part of the Recognize-Act Cycle

In (non-temporal) production systems. such as OPS5. conflicts between adding to and removing
elements from a working memory occur between operations generated within the same recognize-act
cycle. In the temporal case the situation becomes more complex because conflicts can also occur
between activities and between predicates scheduled at different moments of time. For example,
assume that the current time is 80 and some rule schedules predicate P to be true from time 100
to 120. Suppose that another rule scheduled predicate P to be false from time 110 to 130, and
this scheduling occurred at time 60. Clearly. these two rules conflict, even though they scheduled

predicates to be true at different moments of time.

According to Joannidis and Sellis [IS89]. conflicts in rules can occur either at the rule, or the
antecedent, or the consequent levels. For example. QPS5 resolves conflicts at the antecedent level.
In the temporal case. conflicts must be resolved at the consequent level because activities and
temporal predicates can conflict with the previously scheduled activities and predicates. For this
reason we consider conflict resolutions at the consequent level. One consequence of this choice is
that rules can be fired in parallel in the temporal case (unlike OPS5. which can fire only one rule

at a time) since conflicts are resolved at the consequent part.

We describe conflict resolution strategies separately for temporal predicates and activities

because they are handled somewhat differently.

5.2.1 Conflicts Between Temporal Predicates

Conflicts between two temporal predicates scheduled in the future can occur if one predicate is
scheduled to be true over the time interval [77.75] and another is scheduled to be false over the

time interval [T3, Ty]. and the time intervals [T7.7T3] and [T3. T3] intersect.

Since the scheduled operations come in two “flavors™ always and sometimes (based on the

value of the A_S field in Figure 8). we have to consider three types of conflicts: between two always

operations, between always and somctimes operations. and between two sometimes operations.

If two potentially conflicting actions are of the type always then the conflict occurs when
their time intervals intersect. Formally. P; for_time 77 scheduled at time T3 conflicts with
not P, for_time T, scheduled at time Ty if the time intervals [T3,753 + T3] and [Ty,T4 + T3]

intersect.

We consider two types of conflicts between always and sometimes operations. Let the first
operation be P; for_time 77 and let it be scheduled at time 75. Let the second operation be
not P, within_time 7T, and let it be scheduled at time T,. Then the intersection semantics
of conflicts says that the two operations conflict when intervals (73,73 + T3] and [Ty, Ty + T3]
intersect. Intuitively, it says that if an always operation overlaps with a sometimes operation then
the sometimes operation cannot be scheduled at any arbitrary time in the interval [T}, Ty + T3] and
must be restricted to some smaller time domain. which may not be what the programmer had in
mind when he or she had written the program. The containmment semantics of conflicts says that
the two operations conflict when interval [T3.73 + T3] contains interval [Ty. Ty + T5]. Intuitively, it
says that if always operation is scheduled during the whole time interval of sometimes operation,
then the sometimes operation cannot occur at any point in this time interval. Clearly, this means

that sometimes operation is invalid. and the two operations conflict.

The last type of conflict occurs between two sometimes operations. In this case, we also
consider two types of semantics for conflicts. As in the previous case. if two sometimes operations
occur at time intervals [73.73 + T7] and [T4.7, 4+ T3] then the intersection type of conflict occurs

when these intervals intersect. The containment type of conflict occurs when Ty = T, = 0.

Once we identified when conflicts between temporal predicates occur, we are ready to describe
how they can be resolved. As was pointed out before. we distinguish between two types of conflicts:
conflicts between operations scheduled at the same time. and conflicts between operations scheduled

at different moments of time. We start with the conflicts between operations scheduled at the same

moment of time.

Conflicting operations scheduled at the same moment of time can be resolved with any of
the conflict resolution strategies proposed for production systems and active databases [MD89,
WT90. SJGP90, GJ91]. One such strategy orders rules (either partially or totally) according to
their precedence. Then the qualifving rules with the highest precedence are selected. This is
the conflict resolution strategy adopted in active databases Starburst [WF90] and POSTGRES
[SIGP90]. The conflict resolution strategy of OPS5 is based on several tuple selection criteria that

take into account structural properiies of rules and recency of tuple insertions into the working

26

memory [BFK86]. If all these criteria fail to resolve the conflict, a single instantiation is chosen at
random. Still another conflict resolution strategy initially proposed in [KT89] and later extended
in [TK91] operates on the consequent part of a rule. It assumes that the insertion of a tuple has
a precedence over its deletion if the database does not contain the tuple and the deletion has a
precedence over the insertion if the tuple exists in the database. The intuitive justification for
this strategy is presented in [TK91]. Furthermore. de Maindreville and Simon [dMS88] describe a
conflict resolution strategy (within a rule), such that if an insert operation conflicts with a delete
operation, then both operations are canceled. In conclusion, any of these strategies can be used to

resolve conflicts between the operations scheduled at the same time.

If the operations are scheduled at different moments of time, we propose the following temporal

conflict resolution strategy:

If the operations of two rules conflict. then select the operation of the rule that fired
first. If both rules are fired at the same time then apply any conflict resolution strategy
for the non-temporal case described above, e.g. cancel the conflicting operations or

select the conflicting operation from the rule with the higher precedence.

For example, if rule Ry scheduled predicate Pla;..... an) to be always true from time 40 to

. . 5 & .
time G0 at time t = 20. and rule R scheduled predicate P(ay.....a,) to be always false from time
50 to 80 at time ¢ = 30. then the first operation has a precedence over the second operation because

rule R; was fired before rule R,.

Intuitively, this conflict resolution strategy says that once an operation is scheduled for a
future execution, then the commitment is made to execute it at some later time, and the scheduled

operation cannot be canceled®.

5.2.2 Conflicts Between Activities

Activities can be divided into three groups: activities that appear in the then-do, then-dont-do,
and then-cancel clauses. Correspondingly. we consider three types of conflicts between activities:
in two then-do clauses. in the then-do and the then-dont-do clauses. and in the then-do and

the then-cancel clauses.

We define conflicts between activities recursively. Since atomic activities are defined in terms

of temporal predicates then two atomic activities conflict if their corresponding temporal predicates

°If there is a need to cancel the previously scheduled operation. the user has 1o use the then-cancel clause in a
rule. The semantics of this clause will be described n the next section.

27

conflict. Two non-atomic activities conflict if some of their subactivities conflict. -

If the conflict occurs between two activities from the then-do clauses then the conflict is
resolved in the same manner as for temporal predicates as described in Section 5.2.1, i.e., one
activity has a precedence over another conflicting activity. if it was scheduled before the other
one. If two activities occur at the same time then we can also use any of the conflict resolution
strategies described for the predicates in the same case. If the conflict occurs between activities
from the then-do and then-dont-do clauses then it means that the program is incorrect because
the explicit “don’t do” constraint imposed by the user is violated, and the execution of the program
terminates with an error message. If the conflict occurs between activities from the then-do and
then-cancel clauses and if the activity in the then-do clause was scheduled before, then it is

terminated (i.e. is removed from the future list in the dynamic activity table).

As a result of the conflict resolution step. we have the list of non-conflicting activities that are
ready to be scheduled for the execution in the future and the list of predicates that are ready to
be set true or false at certain times in the future. The next step in the recognize-act cycle is to

execute scheduled activities and operations.

5.3 Execution Part of the Recognize-Act Cycle

The execution part of the cvcle consists of two subparts. In the first part. the activities and opera-
tions that survived the elimination process in the conflict resolution part of the cycle are scheduled
for the future execution. In the second part. previously scheduled activities and operations are

actually executed. We start our description with the scheduling part first.

To schedule a new activity A(t) that takes place from time T to T". we have to go to the future
list fa(1) of the dynamic activity table A for tuple 7. Let the beginning and end times of the node
NODE; in the list fa(t) be Trroari.Troi. for i = 1.....k. Then the new activity should be placed
in the list fa(?) so that if it turns out that T7o; < T then the new activity should be placed after
the node NODE,. Similarly. if T’ < Trroas; then the new activity should be placed before NODE;.
If these two conditions are not satisfied then the new activity can overlap the previously scheduled
one. However, this does not cause any problems because the activities do not conflict with each
other (conflicts have been resolved in the previous step). Future predicate values are scheduled

similarly to the future activities. and we omit the description of how it is done.

Once all the new activities and predicate values are scheduled. we are ready to execute pre-
viously scheduled activities and predicates whose execution times have arrived. In the matching

part of the cycle described in Section 5.1. the system clock was advanced forward to the closest

event(s) scheduled in the future. In the execution part of the cycle, we go over all these events and,
depending on their types, do the following things. We first start with the events associated with
beginnings and endings of the time intervals when predicates are true or false. Then we consider

beginnings and endings of activities.

If the event is associated with the beginning of the time interval [Ty, T5] during which predicate
P(t) is always true for tuple ¢ (note that 77 must be the current moment of time) then we check
the TO field of the first node in the past list p(#) for P(7). If the value is not nil then it means
that P(t) is false now, and we have to make it true again. In this case, we create a new node in
the past list of time intervals p(1) and put it in front of the first node of p(t). We also place the
current time into the FROM field and nil into the TO field of that node.

If the event is associated with the beginningof the time interval [T7, T3] during which predicate
P(t) is always false for tuple 1 (again. 77 must be the current moment of time) and if the past list
p(t) has a node with the TO field being nil. then this means that P({) is true now. and we have to

make it false. In this case. we insert the value of the current time. 73, in that node.

If the event is associated with the beginning of the time interval [T}. 73] during which predicate
P(t) is sometimes true. then we check the TO field of the first node in the past list p(t) for P(t). If
the value is nil then it means that P(7) is true now, and the commitment to have P(t) true between
times 77 and T3 is fulfilled. Therefore. we don’t have to do anything in this case. If the value is
not nil then it means that P(1) is false now. and we attempt to make it true now (at time Ty) for
one time instance. To do this. we create a new TRUE node and make its FROM and TO fields
equal to “now” (77). Then we check if this new node conflicts with the previously scheduled future
nodes. If it does, we do nothing. If it does not conflict. we put it in front of the first node of the

past list of time intervals p(1).

If the event is associated with the beginning of the time interval [Ty, T3] during which predicate
P(t) is sometimes false, then we check the TO field of the first node in the past list p(t) for P(t).
If the value is not nil then it means that P(1) is false now. and the commitment to have P(t) false
between times Tj and 73 is fulfilled. Therefore. we don’t have to do anyvthing in this case. If the
value is nil then it means that P(7) is true now. and we attempt to make it false now (at time 1)
for one time instance. To do this. we create a new FALSE node and make its FROM and TO fields
equal to “now” (7T7). Then we check if this new node conflicts with the previously scheduled future
nodes. If it does, we do nothing. 1f it does not conflict. we incorporate it into the past list of time

intervals p(2).

If the event is associated with the end of the time interval [T7. T3] during which predicate P(t)

Stern School ol Busimess

Working Paper [S-93-19

is sometimes true then we check whether the TO field in the first node in the past-ist p(1) is either
nil or is greater than Tj. If this is the case, it means that at some point between the times 7; and
T, P(t) was made to be true. In this case, the commitment to make P(t) true sometime between
times T; and T3 is satisfied, and there is no need to do anything. However, if the TO field has
the value less than T} then the commitment was not satisfied, and we have to fulfill it at the last
point of the time interval [Ty, T3] by making P(1) true now (at time 73). In this case, we create a
new TRUE node with the FROM and TO fields equal to *now” (73) and see if it conflicts with the
previously scheduled future nodes. If it does, we cancel the execution of Templar program (because
we did not satisfy the commitment to make P(7) to be true sometimes between 77 and T3). If it

does not conflict, we put it in front of the first node in p(1).

If the event is associated with the e¢nd of the time interval [T}, T3] during which predicate P(t)
is sometimes false then we check whether there is a node in the past list p(¢) with begin/end times
(T{,T3) such that Ty < T; < T. If this condition is true. this means that P(t) was false sometime
after T; and before T3, and therefore the commitiment to make P(1) false sometime between times
Ty and T3 was fulfilled. In this case. we don’t have to do anything. However, if the condition does
not hold, this means that we have to fulfill the commitment at the very last point of the interval
[T1, T3], as in the previous (true) case. In this case. we take steps similar to the previous case,
i.e., create a FALSE node with I'ROM and TO fields equal to Ty and see if it conflicts with the
previously scheduled future nodes. If it does conflict. we abort the execution of the program. If it

does not, we put T3 in the TO field of the first node in the past list of p(1).

If the event is associated with the end of the time interval [Ty, T3] during which predicate P(1)
is either always true or always false then we do nothing. We do nothing because after the predicate
stops to be true, it can take any value. j.e. either true or false. Therefore. unless stated otherwise,
the predicate remains to be true. The same argument applies to the case when the predicate is
false.

Also, in case of the events associated with endings of the time interval [Ty, T3] for some P(1),
the corresponding node is removed from the future list for P(1).

This completes the consideration of events associated with the beginnings and endings of the

time intervals when predicates are true or false. We next consider activities.

If the event is associated with the beginning of activity A(1). then check the past list pa(t) of
tuple 7 in the dynamic activity table A(7). If the TO field of the first node in this table has the
value that is different from nil then create a new node and place it at the beginning of the pa(1)

list. Set the FROM field in this node 10 the current value of time. and the TO field 1o nil.

30

If the event is associated with the end of activity A(f). then again check the-past list pa(t) of
tuple 7 in the dynamic activity table A(7). If the TO field of the first node in this table has nil in

it then replace it with the current value of time.

This completes the description of the recognize-act cvcle and the semantics of Templar.

5.4 Implementation of the Templar Interpreter

The Templar interpreter, based on the description of the temporal recognize-act cvcle presented in

this section (Section 5), was implemented on a Sun Workstation in C.

The interpreter works as follows. It takes a Templar program and parses it using the parsing
tables generated by YACC parser generator. The result of the parsing process is a set of internal
data structures, including the static predicate table. the static activity table, and an internal
representation of Templar rules. After that. the interpreter initializes the dynamic tables, including
the dynamic activity, predicate and external event tables'’. by reading the initial state of the system
specified by the user (e.g. the list of the papers being initially submitted. the list of the initially
selected reviewers. etc.). Following this stage the interpreter executes the temporal recognize-act
cycle. as described above, either until no rules can be fired or until the time limit specified by the

user is reached.

As was pointed out in Section 5.2. different strategies can be used by the interpreter to resolve
conflicts between activities and between predicates. In our implementation. we selected the follow-
ing strategy (that was described in Section 5.2). If action 4; conflicts with action A, and action
A; was scheduled first. then action 4y has precedence over action 45. If two conflicting actions are

planned to be scheduled at the same time. then we cancel both actions!!.

It took 10 man-months to develop the interpreter. and the program contains over 5000 lines of

C code. In the next section. we describe a case study that will be used for testing the interpreter.

6 Case Study

To test the Templar interpreter described in the previous section. and to test the language in terms

of ease of development, reliability, and maintainability of its programs. we did a case study. In

1%We assume that the user specifies the future occurrences of external events before the execution starts by placing
all of them into the external event file. However. we plan to extend this part of the interpreter in the future by
modeling external events with some Poisson arrival processes, as is usually done in simulation systems.

' As was stated in Section 5.2. the non-temporal component of this conflict resolution strategy was proposed
in {dMS88]. However. our interpreter can easily incorporate any other conflict resolution strategy described in
Section 5.2. This is in the spirit of OPS5 that can use either LEN or MEA strategies [BFIN86]

31

stern School ol Busimess

Working Paper 18-93-19

this case study, we implemented a portion of the Intelligent Adversary (IA) system for the Naval
Training Systems Center that simulates behavior of navy pilots in combat situations. This system
helps to train navy pilots for air battles and can be thought of as a very sophisticated version of
a flight simulator video game, where the IA subsystem simulates the behavior of the “bad guys.”
The IA system has been implemented in OPS5 before. and it took two man-years to develop it. In

our case study, a portion of it was rewritten in Templar.

We selected this case study because it has a very rich temporal component since navy pilots
have to react to adversary actions in time. For example. the following statement is a part of an
informal English description of pilot’s behavior demonstrating the richness of the temporal domain

in this application [Bod92]:

If the enemy flies on an intercept course for at least 3 seconds and then he flies with at
least 30” of aspect for 5 seconds and if the elapsed time between the end of his flying
intercept and the beginning of his flving aspect is less than 3 seconds, then this means

that he may have fired a missile at vou and is doing an F-pole now.

In this case study, we implemented a module of the 1A system that selects an appropriate
radar mode and then designates the target. “Designation™ is a technical term meaning that a
pilot presses a special “designate” button on his radar that locks the radar on a particular target
and displays vital information about that target. The designation process continues until the pilot
makes the final decision which target to pursue. This module constitutes about 10% of the total

IA system [Bod92].

The description of the Templar program that simulates the selection of a radar mode and the
designation process is presented in [Bod93] and is based on the extensive practical experience of
interviewing navy pilots. It contains 30 Templar rules. 11 activities, 21 predicates. and 5 external

events. We present examples of three rules from this program in order to show its “flavor.”
o

The first rule says that if a pilot is waiting for a radar return. while designating a target, and
when he actually gets the return. then he should stop waiting for the results of the designation and

check the returned results. This rule is expressed in Templar as

when new.radar_return(pilot)

while designate(pilot,target)

if waiting for_radar_return(pilot)
then-do checkresults(pilot,target)

then not waiting for_radar_return(pilot)

Stern school o

where new_radar_returnis an external event specifving that the radar gets a new return, designate
is an activity designating a target, waiting for_radar_return is a predicate specifying that the
pilot is waiting for the radar return. and check_results is an activity that checks the results of

the new radar return.

The second rule says that when the targets on the radar screen change (the set of targets
becomes different) while the pilot tries to choose the desired target, then terminate the process of

choosing, and start it all over again. It is expressed in Templar as

when change_in_targets(pilot)

while choose_desired_target(pilot)
then-cancel choose_desired_target(pilot)
then-do choose_desired_target(pilot)

where change_in_targets is an external event. and choose_desired_target is an activity. This
rule cancels the old selection activity and starts a new one when the set of targets changes on the

radar screen.

The third rule says that every 10 seconds. if the radar has been in the RWS mode continuously
for the last 10 seconds, and if the pilot is not in the process of choosing a desired target then set

the radar to the TWS mode (for a quick look at the airplanes). This rule is expressed in Templar

as
when every 10seconds
while not_choosing desired_ target(pilot)
if RWS_mode(pilot,radar) for_past_time(10seconds)

then-do check. TWS_data(pilot,radar)

7 Conclusions

In this paper we described a high-level simulation Janguage Templar based on temporal logic. We

also described an interpreter for the language that executes Templar programs.

Templar combines a large set of temporal logic operators and a rich set of high-level modeling
primitives, such as events. activities. predicates. rules. hierarchical decomposition of activities,
sequential and parallel activities. static and dynamic constraints. decisions. and data modeling
abstractions of aggregation and generalization. As our experience with a real-world case study

shows, this combination can help a programmer rapidly develop structured. reliable. and well-

maintainable simulation programs.

Acknowledgments

The author wishes to thank David Bodoff for numerous discussions of some of the issues in this

paper and Ira Minsky for writing an interpreter for Templar.

References

[AV91]

[BFG*89]

[BFK&6]

[Bod92]

[Bod93]

[DHRO1]

[AMS8S]

[EOZ89]

[FG90]

[FM91]

S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal

of Compuler and System Sciences, 43:62-124. 1991.

H. Barringer. M. Fisher. D. Gabbay. G. Gough. and R. Owens. METATEM: A frame-
work for programming in temporal logic. In Stepwise Refinement of Distributed Systems,

pages 94-129. Springer-Verlag, 1989. LN('S 430.

L. Brownston. R. Farrell. and E. Kant. Programming Eapert Systems in OPS5: an

Introduction to Rule-Based Programming. Addison-Wesley. 1986.
D. Bodoff. November-December 1992. Personal communications.

D. Bodoff. Templar specification of the intelligent adversary system. Unpublished

Manuscript, March 1993.

E. Dubois. J. Hagelstein. and A. Rifaut. A formal language for the requirements engi-
neering of computer systems. In A. Thayse. editor, From Natural Language Processing

to Logic for Expert Systems. John Wileyv and Sons. 1991.

C. de Maindreville and E. Simon. Modelling non deterministic queries and updates
in deductive databases. In International Conference on Very Large Databases, pages

395-406. 1988,

M.S. Elzas. T.I. Oren. and B.P. Zeigler. editors. Modelling and Simulation Methodology:

Knowledge Systems”™ Paradigms, North-Holland. 1989.
I. Futo and T. Gergely. Artificial Intelligence in Simulation. Ellis Horwood /Wiley, 1990.

P. A. Fishwick and R. B. Modjeski. editors. Nnowledge-Based Simulation: Methodology

and Application. volume 4 of Advances in Simulation. Springer-Verlag. 1991.

34

[FRS2]

[FS82]

(GJ91]

[HSHS9)]

" [Int85a]

[Int85b]

[1589]

[Nam68)]

[kbs90]

[KFMS0)

[Kro87]

(KTS9)

[MDS9]

M. S. Fox and Y. V. Reddy. Knowledge representation in organizational modeling and
simulation: Definition and interpretation. In Proceedings of the 13th Annual Pittsburgh

Conference on Modeling and Simulation. 1982.

I. Futo and J. Szeredi. A discrete simulation system based on artificial intelligence
methods. In A. Javor. editor, Discrete Simulation and Related Fields, pages 135-150.
North-Holland, 1982.

N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers.

In International Conference on Very Large Databases, 1991.

A. G. Hofmann, G. M. Stanley, and L. B. Hawkinson. Object-oriented models and their
application in real-time expert systems. In W. Webster, editor. Simulation and Al,

volume 20. SCS Simulation Series. 1989.

IntelliCorp, Mountain View. Calif. IntelliCorp. NEE Software Development System

User’s Manual. 1985,

IntelliCorp, Mountain View. Calif. The SINMKIT System: Knowledge-Based Simulation
Tools in KEE, 1985.

Y.E. Ioannidis and T.K. Sellis. Conflict resolution of rules assigning values to virtual
attributes. In Proceedings of ACM SIGMOD Conference, pages 205-214. 1989,

H. Kamp. On the Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.

Transactions of the Society for Computer Simulation, September 1990. Special Issue on

Knowledge Based Simulation.

P. Klahr, W. S. Faught. and G. R. Martins. Rule-oriented simulation. In Proceedings
of 1980 IEEE International Conference on Cybernetics and Society, pages 350-354,
Cambridge. MA. 1980.

F. Kroger. Temporal Logic of Programs. Springer-Verlag. 1987. EATCS Monographs on

Theoretical Computer Science.

Z. M. Kedem and A. Tuzhilin. Relational database behavior: Utilizing relational discrete

event systems and models. In Proceedings of PODS Symposium, pages 336-346, 1989.

D. McCarthy and U. Daval. The architecture of an active. object-oriented database

system. In Proceedings of ACA SIGMOD Conference. 1989,

35

[MP92]

[01182)

[RS89)]

[SFBBS6]

[SIGPI0]

[TK91]

[TL82]

[tom92]

[Tuz92]

[Unss]

[WF90]

[WLNS9]

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1992.

T. W. Olle. Comparative review of information systems design methodologies, stage 1:
Taking stock. In T. W. Olle. H. G. Sol. and A. A. Verrijn-Stuart. editors, Information
Systems Design Methodologiecs: A Comparative Review, pages 1 — 14. North-Holland,
1982.

A. Radiya and R. G. Sargent. ROBS: Rules and objects based simulation. In M. S. Elzas,
T.1. Oren, and B.P. Zeigler. editors, Modelling and Simulation Methodology: Knowledge
Systems” Paradigms. chapter 111.4. North-Holland. 1989.

N. Sathi, M. Fox, V. Baskaran. and J. Bouer. Simulation Craft: An artificial intelligence
approach to the simulation life cvcle. In Proceedings of the SCS Summer Simulation

Conference, 1986.

M. Stonebraker. A. Jhingran. J. Goh. and S. Potamianos. On rules, procedures, cashing
and views in database systems. In Proceedings of ACM SIGMOD Conference, pages 281

- 290, 1990.

A. Tuzhilin and Z. M. Kedem. Modeling dynamics of databases with relational discrete

event systems and models. Working Paper 15-91-5. Stern School of Business, NYU,

1991.
D. C. Tsichritzis and F. H. Lochovsky. Data Models. Prentice-Hall, 1982.

ACM Transactions on Modeling and Computer Simulation. October 1992. Special Issue

on Al and Simulations.

A. Tuzhilin. SimTL: A simulation language based on temporal logic. Transactions of

the Sociely for Computer Simulation. 9(2):87-100. 1992.

J. Ullman. Principles of Database and Knowledge-Base Systems. volume 1. Computer

Science Press. 1988,

J. Widom and S. J. Finkelstein. Set-oriented production rules in relational database

systems. In Proceedings of ACAM SIGAMOD Conference. pages 259 - 270, 1990.

L.E. Widman. K.A. Loparo. and N.R. Nielsen. Artificial Intelligence, Simulation and

Modeling. Wiley. 1989.

36

