
TOWARD A LOGICALIPHYSICAL THEORY OF SPREADSHEET MODELING

Tomas Isakowitz

Shimon Schocken

Henry C. Lucas, Jr.

Department of Information Systems
Leonard N. Stern School of Business

New York University

July 28, 1993

Replaces 13-92-28

Working Paper Series
STERN IS-93-24

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

Toward a Logical/ Physical Theory of Spreadsheet i\/lodeling

In spite of the increasing sophistication and power of commercial spreadsheet
packages, we still lack a formal theory or a methodology to support the con-
struction and maintenance of spreadsheet models. Using a dual logical/physical
perspective, we identify four principal components that characterize any spread-
sheet model: schema, data, editorial, and binding. We present a factoring
algorithm for identifying and extracting these components from conventional
spreadsheets with minimal user intervention, and a synthesis algorithm that as-
sists users in the construction of executable spreadsheets from reusable model
components. This approach opens new possibilities for applying object-oriented
and model management techniques to support the construction, sharing, and
reuse, of spreadsheet models in organizations. Importantly, our approach to
model management and the Windows-based prototype that we have developed
are designed to coexist with. rather than replace, traditional spreadsheet pro-
grams. In other words, the users are not required to learn a new modeling
language; instead, their logical models and data sets are extracted from their
spreadsheets transparently, as a side-effect of using standard spreadsheet pro-
grams.

CR Categories and Subject Descriptors: H.4.1 [Information Systems
Applications]: Office Automation - Spreadsheets; H.4.2 [Information Systems
Applications]: Types of Systems - Decision Support; 1.6.4 [Simulation and Mod-
eling]: Model Validation and Analysis; 1.6.5 [Simulation and Modeling]: Model
Development; K.8.1 [Personal Computing]: Application Packages - Spread-
sheets. General terms: Theory, Design, Languages

Additional Key Words and Phrases: Model Management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

1 Introduction

Spreadsheet modeling represents one of the most pervasive and successful applications

of personal computers. Since their introduction in the late 707s, spreadsheet programs

transformed the notion of end-user computing, creating a new computational paradigm

which offers a unique combination of ease of use, on the one hand, and unprecedented

modeling power, on the other. As a result, spreadsheet programs became the most widely

used decision support tool in modern business. Compared to their humble origins and

limited objectives, today's spreadsheet programs are extremely powerful, versatile, and

user-friendly. Yet in spite of this technological progress, the basic practice of building a

spreadsheet model remains the same as it was a decade ago. Further, with the exception

of a few scattered efforts like [20], a theory of spreadsheet analysis and design is yet to

emerge.

Viewed as model generators, spreadsheet programs have both pros and cons.' Their con-

genial user-interface and instant modeling power notwithstanding, they suffer from several

limitations which typically go unnoticed by novice users: implicit logic, inaccessible model

structure, data dependency, and lack of a unifying model base. In many ways, the present

state of spreadsheet modeling is reminiscent of the state of data management in the pre-

database era. Before data definition was elevated to the DBMS level, file structures were a

fixed part of the programs' code. In a similar vein, the logic and documentation of spread-

sheet models are often 'buried in the formulae,' and are largely inaccessible to people other

then the spreadsheets' creators. In both cases, the implications were similar: redundant

and inconsistent file and model structures, respectively. To complete the analogy, these

problems arise because spreadsheet programs lack a high level means to support the design

and maintenance of spreadsheet models.

With that in mind, we propose to treat spreadsheet models from two different perspectives:

'Throughout the paper, the term spreadsheet programs refers to spreadsheet modeling environments
like Lotus 123, q u a t t r o p r o , and Excell. T h e terms spreadsheet models, or simply spreadsheets, refer to
specific spreadsheets, e.g. PkL spreadsheets, inventory control spreadsheets, and the like.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

logical ancl physical. The logical perspective consists of a formal ancl implementation-free

description of the model's logic and data structures: the physical level concerns sucll details

as storage, formatting, user interface, and other aspects that effect the model's implemen-

tation, but not its underlying structure. This distinction is nonesistent in the common

practice of spreaclsheet modeling, where logical, physical. and data elements are intermin-

gled and treated as one entity. We believe that until this built-in dependency is '~ntanglecl .~

it will be clifficult if not impossible to develop intelligent spreadsheet model management

systems - systems that promote the construction of consistent and valid models across the

organization.

Although a spreadsheet model management system n-ould hardly matter for the casual user

who builds several spreadsheets for personal use, the situation is quite different for orga-

nizations that depend on spreadsheets to support basic business functions, where model

validity and consistency are critically important. In a recent field study, Cragg and King

141 have sampled spreadsheet examples from ten such organizations. After scrutinizing the

various models that they have collectecl, they conclucled that about 25% of them contained

logical design errors, ranging from trivial cell misreferences to erroneous formulae that went

undetected by their users. In two independent simulation studies, Brown and Goulcl [2]

and Floyd and Pyun [7] had groups of subjects design spreadsheets to solve a variety of
b problems. In both cases, the authors reported that a significant error-rate characterized

novice as well as expert users. Further, most of the subjects in these experiments have

exhibited a great deal of confidence in their spreadsheets's validity, implying that spread-

sheet design errors are not only prevalent, but also elusive. These results corroborate the

observation that spreadsheet models suffer from weak accountability and face-validity [9].

Cragg and King categorized the errors that they have encountered in their field studies

as follows: incorrect cell references, incorrect ranges, incorrect use of functions, erroneous

formulae, data input errors (in particular - overriding formulae with constants), failure

to incorporate key factors or variables in one's model, and a host of model manipulation

mishaps that arise from using relative addressing instead of fixed addressing, and vice versa.

Needless to say, such errors can have far reaching implications for the model users, and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

the spreadsheet folklore contains several published anecdotes to that effect. For example, a

1J.S. coiltractor failed to include a major cost item in the range of a @sum formula that was

supposed to calculate the total cost of a government project for which he has bicl. After

winning the undervalued bicl and discovering the error, the contractor sued the spreadsheet

program's vendor for selling a modeling tool that enabled such a mishap to go undetected.

The contractor lost the suit, as well as the $254,000 that were inadvertently omitted from

his bicl [5]. In a similar case, a Dallas-based oil and gas company fired several executives

for spreadsheet model oversights that cost the company millions of dollars [S].

We believe that many of these errors occur because the lines of logical design and physi-

cal implementation are blurred in the conventional setting of a spreadsheet program. To

illustrate, consider the spreadsheet model in Figure 1. There are two ways to describe this

spreadsheet. Viewed from a logical, or a functional, perspective, the spreadsheet represents

a parameterized profit and loss projection model. Viewed From a physical perspective,

though, the spreadsheet amounts to two blocks of cells - B 2 . . E2 and B9. . GI6 - that are

interrelated through a set of formulae2. Although the cell formulae are not presented here.

one can consult the appearance of the spreadsheet and common sense to guess the following

relationships: sales are expected to grow 10% annually; cost of goods sold is assumed to

be 60% of sales; overhead is assumed to be fixed at $2,500,000; lease is fixed at $100,000 in

the first two years and $500,000 thereafter; and tax is assumed to be 48% of gross income.

Put Figure 1 around here

As it turns out, however, the PScL spreadsheet has more to it than appears on the surface.

It is true that sales grow 10% annually, but only in the first four years. In 1996 and 1997,

sales are 20% greater than the average sales in the previous two years - a fact which is

not at all evident from the spreadsheet's appearance. Likewise, although it is reasonable

to assume that net income equals gross minus tax, there is absolutely no reason to believe

that this is actually the case in this particular spreadsheet. The lesson is clear: the physical

2Following cornrnon practice, contagious blocks of cells are denoted by their top-left and bottom-right
coordinates.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

appearance of a spreaclsheet can be cleceiving, as it is not necessarily consistent with the

logical structure that it suggests. One way to valitlate the integrity of a spreadsheet is to

print out all the cell formulae and inspect their definitions. However. even at this intimate

layer of representation, the moclel's logic is anything but readily available. For example, the

tax of 1992 is computecl through the formula B14: QIF(Bl3>O ,B13*E2,0). The logical

ecluivalence of this expression is I F net>O THEN t a x = n e t * t a x r a t e ELSE tax=O. but this

useful clocumentation is external to the spreadsheet model, and may not be available.

Once built, the PStL spreadsheet is prone to many accidental maintenance mishaps. For

example, one can delete cells that impact other cells (which may be out of sight). override

generic formulae with fixed values, add a new cost item without modifying the total cost

formula, and the like. Since the spreadsheet program does not 'know' that the user is

dealing with a profit and loss projection, there is no way to sense that such activities can -.

corrupt the model's logical structure. For similar reasons, spreadsheet programs make it

difficult to isolate the data element of a given spreadsheet. Although one can separate 'data

cells' from 'model cells' by focusing only on the cells that contain constant values. the data

will have no supporting structure. For example, what is the meaning of a cell definition

like C12 : loo? An inspection of the spreadsheet screen layout suggests that 100 is the

value of the l e a s e item in the year 1992, but this interpretation is strictly in the eye of

the user, and is not a formal part of the spreadsheet model.

To a large extent, many of these problems resemble the kinds of problems that preceded the

development of structured programming techniques. Unlike modern languages. early pro-

gramming languages did not have built-in features to support the writing of well-designed

programs; instead, they permitted an unrestricted use of GOT0 commands and undeclared

variables, leading to long-term maintenance problems. Similarly, spreadsheet programs are

totally unconstrained, allowing users t o construct any spreadsheet that they desire, includ-

ing, of course, poorly-designed and poorly-documented spreadsheets. One objective of this

research is to preserve the tremendous design freedom that spreadsheet programs have to

offer, and, at the same time, enable users to inspect their work from a logical perspective

that promotes the construction of well-designed models.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

The realization that unguiclecl spreaclsheet modeling is prolie to design ancl maintenance

errors has lecl to several recommenclations to streamline the modeling process. For esample.

Mason Le: Keane [lS] proposecl to designate a human rnodel adnrinist~.ato~-- akin to a DB.4

- to regulate and monitor spreadsheet rnocleling activities across the organization. In a

similar vein, Williams [24] recomnlends to adopt an organizational stanclarcl to cover such

aspects as spreadsheet specification, documentation, maintenance, and security (of the ten

companies studied by Cragg & King, only one had a spreadsheet modeling standard).

Others, e.g. McMickle [19] and Simkin [21], have advocated the use of spreadsheet audit

software. Clearly, all these recommendations are consistent with our ultimate objective to

develop a corporate-wide spreadsheet model management system (sMMs).

What kind of services should such a system provide? From a model definition perspective,

an SMMS should support the construction of well-designed and well-documented spread-

sheets that can communicate with other model and data resources in the organization. Yet

ideally, an SMMS should accomplish these objectives behind the scene, without modifying

the standard practice of spreadsheet modeling. In other words, we begin with the work-

ing assumption that the average user would like to continue to build models in his or her

favorite spreadsheet program, objecting to the dictum of having to learn a new modeling

language. From a model manipulation perspective, we observe that one of the major bene-

fits of spreadsheet modeling is the ability to change assumptions and inspect the impact on

some output criterion. Hence, an SMMS should facilitate the storage and retrieval of differ-

ent data-sets associated with different sensitivity and 'what-if' analyses. In addition, the

system should facilitate transparent access to remote databases so that data can be piped

to and from spreadsheets without human intervention. Similarly, a SMMS should facilitate

access to a repository of reusable models and model 'chunks,' or a model base. Ideally,

the spreadsheet designer should be able to retrieve models according to a variety of search

criteria such as functional purpose, generic structure, and relationship to other models.

Once retrieved, the system shoulcl allow the designer to combine these models with other

models and databases across the organization.

This paper presents the first step toward developing such a model management system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Tlle plan of the paper is as follows. Section 2 focuses on the interplay of the physical ant1

the logical views of spreaclslleet models. In particular, it identifies four principal compo-

nents that characterize any spreadsheet: schema, data, editorial, and binding. Section '3

presents a top-down factoring algorithm that extracts these components from conventional

spreaclsheets with minimal user intervention. Section 4 takes the opposite route, describing

a bottom-up synthesis algorithm that constructs executable spreadsheets and spreadsheet

templates from a repository of reusable spreadsheet components. Both algorithms make

use of a functional relational language (F R L) , whose syntax and BNF are given in a separate

appendix. The paper ends with a discussion section that comments on the implications of

this research for the development of intelligent modeling assistants and spreadsheet model

management systems.

2 The Physical and Logical Views of Spreadsheets

Our approach to spreadsheet analysis and design is based on the premise that spreadsheet

models can be seen and operated on from two independent views: physical and logical.

From a physical perspective, a spreadsheet model is a collection of addressable cells, ar-

ranged in a two-dimensional grid. Each cell has a row and column address, and a definition

part that binds it to either a constant value or to a calculated value, obtained through a

formula. Taken as a whole, these definitions determine the user's view of the spreadsheet,

which is automatically updated whenever one or more of the cell definitions are changed.

In addition to this familiar physical perspective, every spreadsheet model embeds an im-

plicit logical view which, in this research, we take to be a set of functional-relations. A

functional-relation is similar to an ordinary relation in that both data structures consist of

one or more attributes and of one or more tuples, the minimal practical case being a single-

attribute/single-tuple relation. Unlike ordinary relations, though, functional-relations have

two types of attributes: data attributes and functional attributes. Data attributes define

slots that store constants, whereas functional attributes are bound to functions that are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

calculated 'when neeclecl,' to borrott- a term from object-oriented programming. The set

of functional-relation definitions that are embedded in a particular spreadsheet is callecl

hereaftel. the spreadsheet's s c h e m a , denoted S for brevity.

The schema provides the spreadsheet's skeleton, which is further augmented with several

other features. Paraphrasing Wirth 1251, we observe that every spreadsheet can be char-

acterized by four principle properties, as follows: spreadsheet = s c h e m a + d a t a + ed i tor ia l

+ binding. The s c h e m a property (S) stores a concise and formal definition of the spread-

sheet's underlying logic. The d a t a property (V) is the structured collection of constants

on which S operates. The edi tor ial property (I) can be defined as what is left over in the

spreadsheet model after S and D have been carved out: titles, column and row headings,

and documentation. Finally, the b i n d i n g property (B) is a logical-to-physical mapping that

binds S,D, and I to the spreadsheet grid, using row and column addresses.

The s c h e m a and the da ta properties play a major role in our approach to modeling, and

much of the paper evolves around the dual processes of (i) factoring these properties from

existing spreadsheets and (ii) synthesizing them into new spreadsheets. The relationship

between a conventional spreadsheet and its underlying S and V properties is depicted in

figure 2, which is used throughout the paper as an illustrative example. In inspecting

this figure, the reader is asked to ignore for now the details of the schema definition lan-

guage and the functional-relations, focusing instead on the general relationship between the

spreadsheet's physical view (top) and logical view (bottom). Note that the figure does not

mention the editorial and binding properties. Theoretically as well as practically, & and l?

are not nearly as interesting and challenging to deal with as S and D - a point which is

taken up later in the paper.

Put Figure 2 around here

The argument that models and data should be kept and managed separately is central

in the model management literature 16, 22, 11. Following this principle, we have designed

Center for Digital Economy Research
S t em School o f Business
IVorking Paper 19-93-24

our S and D properties to be inclepeilclent of the spreaclsheet program. as well as inde-

pendent of each other. Specifically. we take the s~>readsheet scllenla to be a nlathematical

abstraction that can be described in terms of several different formalisms. of which the two-

dimensional parlance of cells and formulae is only one representation. Likewise, we view

the spreadsheet's data property to be a set of relations that can be manipulated by any

relational DBMS, and the fact that the relations can be extracted from: or superimposecl

on, a spreadsheet grid is a useful but not mandatory property of their existence. Taken

together, we use the symbolic sum S + D to refer to the application of a schema to a fixed

data set, similar to the notion of running a model on a particular scenario, or executing a

program on a given input. Finally, the symbolic sum S + 2) + 1 $13 stands for the familiar

notion of a conventional spreadsheet, where 13 maps S -t D on a two-dimensional grid that

is further interspersed with textual labels drawn from I .

Practically all the problems that were alluded to in $1 are related to the following ob-

servation: in conventional spreadsheet programs, users are encouraged to weave the four

spreadsheet properties together and treat them as one entity from the outset, forming a

prime example of how a modular system should not be constructed. -4s a result of this

enmeshment, the two most important principles of software engineering- separating logical

design from physical implementation, and separating algorithms from data - are violated

by conventional spreadsheet programs almost by definition. The first step toward resolving

these problems requires a precise understanding of the interplay of the physical and logical

views of spreadsheet models, which we define as follows:

The physical view of a spreadsheet is a list of entries of the form (cell-address: defi-
ni t ion, formatting-specifications), one entry for each active cell in the spreadsheet.

The logical view of a spreadsheet is a pair < S , D >, consisting of the spreadsheet's
underlying schema and data properties, respectively.

It is convenient to think of the spreadsheet's physical view as its underlying map - a linear

representation of the spreadsheet's more familiar two-dimensional perspective. For exam-

ple, the map of the P&L spreaclsheet is depicted in Figure 3. Most spreadsheet programs

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

are capable of proclucing spreaclsheet maps on clemand as a stanclarcl service, asailahle

from the program's menu. Tlle format of these maps varies from one program to another.

but their substance is more or less the same. For the purpose of this research, we have

written a special macro that produces an annotated version of a spreadsheet map, in which

each cell entry is preceded by a relational label, as we treat later in the paper. Normally.

spreadsheet maps are used "passively" for clocumentation and debugging purposes; Yet for

us, the notion of an annotated spreadsheet map is central, as it serves as the primary input

from which the spreadsheet's logical view is extracted.

The interplay of a spreadsheet's physical and logical views is illustrated in Figure 2. The

top of the figure gives an outlined version of the P&L spreadsheet. According to this

particular outline (which is not unique), the spreadsheet can be seen as involving two

functional relations, named assumptions and proforma, or a and p for brevity. In each

relation, some attributes (e.g. y e a r and l e a s e) contain constant values, whereas other

attributes (e.g. sales and cogs) are bound to functions that relate them to attributes

in the same relation as well as to attributes in other relations. The exact definitions of

the two relations are given in the spreadsheet's schema (bottom left of Figure 2), whereas

their da ta contents are stored in a separate data set (bottom right of Figure 2). The

numeric values in the relations are user-supplied data, extracted from the spreadsheet.

The special C symbols denote calculated values that correspond to functional attributes

in the spreadsheet schema. When these functions are 'evaluated,' the C values become

constant values, and the functional-relations become ordinary data relations, i.e. relations

that contain only constant values. We see that each hnctional-relation induces an ordinary

data relation in the database sense of the word.

It is important to note that even though they can be constructed from each other, the

physical and the logical views of a spreadsheet model are independent entities. Specifi-

cally, the physical spreadsheet characteristics of each functional-relation, e.g. its location,

column/row headings, and spatial orientation, are external to, and independent of, the

relation's schema. Likewise, the physical arrangement of the relations on the spreadsheet

grid (side-by-side, top-bottom, etc.) is independent of the spreadsheet schema. Thus, a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

user may transpose the spatial image of a functional-relation from a row-wise orientation

to a column-wise orientation. and vice versa. or simply move it to another area in the grid.

leaving the spreadsheet's schema ancl data property intact.

The distinction between the logical and the physical views of spreadsheets has significant

practical implications. Suppose that whenever a spreadsheet were loaded into a spread-

sheet program, the program would also load a "behind the scene" image of its underlying

S, D, 13, and & properties. By continuously comparing the user's activities at the physi-

cal spreadsheet grid to their implications for the four properties, the program could sense

what he or she is trying to do not only in the way of manipulating physical cells and formu-

lae, but also in the way of revising its logical and data building blocks. Such an extension

would endow conventional spreadsheet programs with the ability to understand the seman-

tics of spreadsheet models, something which is quite lacking in the present generation of

spreadsheet mocleling environments. As we argue later in the paper, this would enable the

development of (i) spreadsheet model management systems, and (ii) interactive assistants

for building consistent and valid spreadsheet models.

3 Factoring: from Physical to Logical

This section describes the process through which a conventional spreadsheet can be factored

into its four principal properties: schema, data, editorial, and binding. The process consists

of two key stages, as follows:

outlining (interactive relations definition)

factoring (automatic properties extraction)

In the preliminary outlining stage, which takes place within the host spreadsheet program,

the user is asked to identify and name the functional-relations that make up the model.

These specifications provide all the necessary inputs for the subsequent factoring stage - a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

seven-step recluction algorithm that 'splits7 the spreadsheet into its four principle properties

with no additional human intervention.

3.1 Outlining a Spreadsheet

The notion of relatiofin1 ovtlining is based on the observation that any spreadsheet can be

viewed as a (non-unique) collection of f~~nctional relation candidates. A relation-candidate is

a contiguous block of cells - a rectangle, a row, a column, or a single cell - that represents

either a singular or a repetitive entity in the model's realm. In the P&L spreadsheet,

for example, block [B2. .E21 is a relation-candiclate that contains a set of parametric

assumptions. Technically speaking, each individual cell and contagious subsets thereof in

the assumptions block are also relation-candidates, and yet it is reasonable to assume that

the entire block wilI be manipulated as one unit, as in moving it around the screen or

changing its spatial orientation from a row vector to a column vector. In a similar vein,

block CB9. . GI61 is also a relation-candidate, representing sales and expense figures for

several years - a repeating pattern in the model's realm. Clearly, the task of identifying

a 'good7 set of relation candidates is semi-structured. Although several rules may be used

to guide the process, and even automate it to a certain extent, the final decision as to

which relations to employ in a given model should be best left to the discretion of a human

designer, as is normally done in constructing ordinary data models.

In the system that we have developed, the user outlines the spreadsheet through an in-

teractive outlining macro, implemented in Excell 's macro language. The macro enables

the user to define the relations directly from the spreadsheet program, using pop-up di-

alog boxes and screen-painting inputs. For each relation, the macro prompts the user to

specify a name, an a l i a s , a scope, and a spatial o r i en t a t i on . The scope refers to the

relation's data boundaries; these are specified by anchoring the cursor in a certain cell and

painting a rectangular area on the spreadsheet grid. The relation's o r i e n t a t i o n regards

its spatial positioning, which is either horizontal (row tuples) or vertical (column tuples).

If the relation's scope consists of a single row or a single column, the user is also asked to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

specify whether the relation is designed to store a single tuple, in which case it is said to

be a vector relation. Based on these inputs, the macro infers the screen coordinates of the

relation's attributes, and, after highlighting them one by one, prompts the user to name

them. Finally, if the relation is not of type vector , the user is also asked to designate a

key attribute.

In sum, the outlining macro enables the user to superimpose a relational structure on

a conventional spreadsheet grid. In addition, the outlining macro performs an elaborate

'behind the scenes' act: as the user provides the relations' specifications, the macro builds

an annotated spreadsheet map, stored in a separate ASCII file. For each active cell in the

spreadsheet, the macro constructs a map-entry that gives the cell's symbolic label (to be

discussed shortly), address, definition, and formatting instructions. For example, when the

outlining macro was applied to the P&L spreadsheet from figure 1, it produced the map

shown in Figure 3.

Put Figure 3 around here

As the figure illustrates, the map is a list of map-entries, one for each active cell in the

spreadsheet. Note that some entries are prefised by a label of the form r [i] . x , where r is

a relation name, i is a tuple indes: and x is an attril~ute name. These labels are obtained

from the spreadsheet's outline through the follo~ving matching rule. If a cell falls inside

the scope of a named relation (e.g. C l 2 , which is inside p's outline - see Figure 2), it must

sit in the intersection of a named attribute (l ease) , and a keyed tuple (1993 - or tuple

number 2 in p). In that case, the respective map-entry of the cell is labeled pC21 . l ease .

If a spreadsheet cell does not fall inside the scope of any one of the user-defined relations,

its map-entry is left unlabeled. The reader may wish to compare the spreadsheet's outline

(Figure 2) and map (Figure 3) in order to track the labels generation rule.

The map that emerges from the outlining process conveys two types of information. First,

it subsumes all the information contained in the original spreadsheet. Second, it offers all

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

tlie meta-information necessary to factor the spreadsheet into its four principal properties.

Througlil>ut the factoririg process, the map is gradually reduced and rewritten, sheering

away the properties I , B, ID, and S, in that order.

3.2 Extracting the Editorial and Binding properties

The extraction of the E and 23 properties from the spreadsheet map is straightforward, and

therefore it will be discussed here only in broad terms.

Recall that by the editorial property of a spreadsheet we refer to the collection of cells

that carry auxiliary information such as titles, column and row headings, comments, and

general documentation. Since the outlining process focuses only on the cells that make

up the spreadsheet's relations, the cells that carry editorial information are left out of the

relations' boundaries (see Figure 2) , and thus they end up as non-labeled entries in the

spreadsheet map. Therefore, the task of extracting and archiving the editorial property E

is merely a matter of splitting the map into two sub-maps, consisting of non-labeled entries

and labeled entries. The former map forms the spreadsheet's editorial property, which is

stored in a separate file.

The latter map consists of entries of the form (r[i].x : cell-address, cell-definition). In

each of these entries, the first two terms associate a relational data-item (the value of the x

attribute in the i th tuple of relation T) with a physical spreadsheet cell. Taken together, the

list of pairs (r[i].x : cell-address) can be used to superimpose, or "anchor," all the relations

on the spreadsheet grid. This list, which forms the binding property of the spreadsheet, is

copied from the map and stored separately.

3.3 . Extracting the Data property

The labeled map-entries that remain in the map after E has been extracted fall into two
categories:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

constant entries: (rli1.x : cell-ciddress, c ~) ~ s t (i ~ ~ t)

formula entries: (r[i].x : cell-address, formula)

The data extraction proceclure begins by building a set of relational templates to accom-

moclate all the values specified by the map-entries. Since the r[i].z entry-labels provide all

the necessary relation- and attribute-names (as defined by the user), the construction of

the relational structures that they imply is carried out automatically. Once these relations

have been constructed, the constants and formulae of each map-entry are pegged into their

proper slots in the relations, using the r[i].x entry-labels as pointers. The constants are

copied verbatim, whereas the formulae definitions are replaced with the special symbol C,

denoting a calculated value3. For example, the procedure uses the map-entry (p [I] . sales:

6000) to set the sa les attribute of the first tuple of the p relation to 6000, whereas the

map-entry (p C31 . inc: +D9-DlO-D11-D12) causes the inc attribute of p's third tuple t o

be set to the marker C.

The set of relations that are constructed and populated by this process forms the spread-

sheet's data property. For example, the data property of the P&L spreadsheet consists of

the relations a and p, depicted at the bottom right of Figure 2. Once "liberated" from the

spreadsheet grid, the relations become stand-alone entities that can be (i) used by other

spreadsheets, and (ii) maintained by a database management program.

3.4 Extracting the Spreadsheet Scherna

The remainder of the factoring process is a series of steps that may be described as

map; = ~tep;(map;-~), i = 1,. . . ,7 . The input of the process - mapo - is the annotated

spreadsheet map produced by the outlining macro. The output of the process - map,

- is the spreadsheet's schema S, written in the FRL language. The FRL syntax is self-

explanatory, and is best described through examples. For a formal language description

3When a functional-relation contains many calculated values, a sparse matrix representation can be
used to conserve disk-space.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

ancl a BNF, the reacler is referrecl to the paper's appendix.

Since it contains cell acldresses, the spreadsheet map is an inherently physical entity. Hence:

factoring begins with a preprocessing stage that transforms the spreadsheet map into a

logical map which is independent of cell addresses. The preprocessing stage is given in

figure 4 and described as follows.

Put Figure 4 around here

In step F1, the constants that were previously stored in V are replaced with their corre-

sponding data-types. Next, F2 substitutes physical cell-addresses that appear in formulae

with their corresponding entry-labels. For example, the physical map-entry (p [I] . cogs :

+B9*D2) is rewritten as (p [l] . cogs : p [I] . sa les*a [l] . cogs) , because p [l] . s a l e s

and a[1] . cogs are the entry-labels of the cells B9 and D2, respectively, in the P&L spread-

sheet map. When this substitution operation is completed, F3 takes another pass through

the entire map, eliminating the cell-addresses from all the entries. The data structure that

emerges from steps Fl-F4 is denoted hereafter the spreadsheet's logical map, which, in the

case of the P&L spreadsheet, is shown in Figure 5 . The reader may want to compare this

map to the physical map in Figure 3 in order to track the execution of steps F1-F4.

Put Figure 5 around here

Due t o F4, the logical map becomes a list of attribute-clusters, each cluster being an ordered

list of one or more map-entries whose labels are made of the same relation prefix r and

the same attribute name x. In what follows, these sets of entries are denoted r.x-clusters.

For example, the P&L7s logical map consists of the attribute-clusters a . g r a t e , a. ovhead,

a . cogs, a . t a x , p .yea r , p . s a l e s , p . cogs, p. ovhead, p. l e a s e , p . i n c , p . t a x , and p .net.

The remaining steps of the factoring algorithm contract and transform these clusters into

a formal spreadsheet schema, written in FRL. These steps are depicted in figure 6 and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

ill.cistratec1 in Figure 7, which shows hotv they trarisform the p . sales-cluster of the P&L

spreatlsheet map into an FRL attribute clefinition4.

Put Figure 6 around here

Put Figure 7 around here

As Figure 7-b indicates, the p . sales-cluster is made up of three generic sets of entries

- entries that convey exactly the same mathematical relationship, albeit with different

indices, or tuple references. The goal of step F5 is to transform generic entries into entries

that have precisely the same right hand side definition. In Figure 7-b, all the right hand

side attribute-references p [il .sales are related, because they have the same relation name

as their left hand side entry-labels - in this case p. Hence, the i's in these references, which

stand for absolute tuple numbers, are replaced by F5 with relative tuple offsets. Bext,

the second part of F5 rewrites every occurrence of a[$l l . g r a t e as aC11 .g r a t e , leading

to Figure 7-c. Next, F6 packs and rewrites each set of repetitive map-entries into a single:

generic entry, leading to Figure 7-d. From here, the route to a formal spreadsheet schema

(Figure 7-e) is straightforward, involving trivial syntactical conversions that are carried out

by F7.

Implementation: The factoring algorithm was implemented in our system as a Pascal

program that is launched automatically from within Excell , as a transparent side-effect of

saving a spreadsheet. Using a lexical parser and analyzer whose rules follow steps Fi-F7,

the program converts the spreadsheet map (output of the outlining macro) into a formal

schema which is stored on a separate A S C I I file. When we applied the factoring program

to the PStL spreadsheet, it produced the schema depicted at the bottom left of Figure 2.

Using the implementation, we can now generate and maintain logical views of spreadsheets

4Due to space limitations, the maps in Figures 3 and 5 correspond only to years 1992-1994 in the
PkL spreadsheet. At the same time, the p . sales-cluster in Figure 7 is taken from the map of the entire
spreadsheet, i.e. for years 1992-1997.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

wit11 ~llininlal user i~itervention. It is inlportant to emphasize that from the user's perspec-

tive, factoring is n~ostly a one-time operation. For example, let us assume that a particular

spreaclsheet has ben factored. From that point on: the spreaclsheet,'~ map. outline, schema.

data, editorial, and binding elements become transparent properties that are continuously

revised as a side-effect of using the spreaclsheet. The revision process is as follows:

1. The user loads the spreadsheet into a host environment such as Excell , proceeding
to use, maintain, or extend it, via standard spreadsheet commands.

2. When the user saves the spreadsheet, a transparent housekeeping macro is triggered.
The macro generates a spreaclsheet map and proceeds to compare it to the spread-
sheet's olcl map.

3. If the two maps contain exactly the same set of cells (although the contents of cells
m a y well be difleerent), the housekeeping macro goes to step 5 .

4. If the two maps contain different sets of cells, the housekeeping macro invokes the
outlining macro, asking the user to outline the areas in the spreaclsheet that were
changed during the present Excel1 session.

5. The factoring program is transparently launched, creating updated versions of the
spreadsheet's schema, data, editorial, and binding properties.

Stage 3 is of a particular interest here. If the user applies the spreadsheet to a certain

scenario, as in changing some parameters or any other cell values, the refactoring process

runs automatically, and the only impact from the user's standpoint is a slightly longer time

to save the spreadsheet on the disk. As a matter of fact, even if the user changes the model

in the way of modifying existing formulae, the refactoring process is once again carried

out automatically, without any user intervention. The only case which requires human

feedback occurs when the user adds or deletes one or more cells from the spreadsheet.

And even then, the dialog with the user boils down to a partial outlining process that

involves answering a few simple questions. In sum, the cost of factoring in terms of user's

involvement is fairly minimal. Perhaps the most intriguing feature of the process is its low

profile: the user builds and maintains spreadsheet models in his or her favorite spreadsheet

program, without having to learn a new modeling language. The four properties of the

spreadsheets are extracted and managed behind the scene, as a transparent side-effect of

the user's activities at the spreadsheet program level.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Synthesis: from Logical to Physical

The previous section clescribecl a top-clown factoring process that splits physical spreacl-

sheets into their four principal properties. This section describes the reverse operation

- synthesis - in which executable spreadsheets can be built bottom-up from reusable

components5. The synthesis process has many practical benefits, not the least of them

is model sharing. In its simplest form, synthesis enables different users to apply the same

spreadsheet logic (schema) to different data sets. Although spreadsheet sharing and reuse

is already done in practice on an informal basis, the synthesis process takes the practice

one step further. For example, it ensures that changes made to a spreadsheet schema will

propagate to all the spreadsheets that were synthesized from it (if the users so desire).

Further, it enables the construction of a corporate model-base - a collection of spreadsheet

templates - from which users can pick and choose generic models according to functionality

and structural criteria.

The key player in the synthesis process is the spreadsheet schema S. In the factoring al-

gorithm, S was the final output; in synthesis, it is the major input, along with optional

V, I , and 23 components. Note that in and by itself, the schema is not an executable

entity. At the same time, it contains all the necessary information for constructing oper-

ational spreadsheets. Using this observation, we have designed a synthesis procedure that

transforms a spreadsheet schema into a model that can be loaded directly into a target

spreadsheet program. The synthesis process is highly flexible, enabling the user to mix

the spreadsheet schema with different (but structurally compatible) data, editorial, and

binding components. The resulting spreadsheets form families of related models whose

relationships can be monitored and exploited by a spreadsheet model management system.

For example, let us assume that a certain spreadsheet has been previously factored into

its four principle properties. The synthesis of all four properties, denoted S + V + 23 + El

yields an executable spreadsheet that is completely identical to the original. The full

'Hereafter, the terms component and property will be used interchangeably.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

reconstruction of a factorecl spreadsheet is hardly interesting 011 practical grounds, but it

provicles a convenient point of cleparture from which more interesting cases can be discussed.

For example, if the data property is left out of the synthesis process, the conlbination

S + B + E yields a spreadslzeet t e m p l a t e - a skeletal model structure that can be instantiated

with a variety of different clata sets, or mocleling scenarios. Specifically, two spreadsheets

of the form S + B + I + D and S + B + £ + V' that differ only in their data property are

said to be different data ins tances of the same generic spreaclsheet. This will be the case:

for example, when different divisions of the same company are required to use a standard

spreadsheet template to produce their divisional PSzL statements.

Other combinations of the four properties are equally instructive. To illustrate, consider

the two spreadsheets S + D + B + & and S+D+Bt+£ ' , that differ only in their bind ing and

edi tor ial properties. Note that even though the two spreadsheets are physically different,

they are invariant in terms of the logical view < S , D >. This distinction could be useful

if £ and I' were the English and Spanish versions of the same spreadsheet, or if B and B'

were alternative screen layouts of the same model, a variation that occurs whenever two

users wish to present or print the same spreadsheet in two different ways.

The type of component manipulation that was described above already occurs in practice,

albeit in an informal and haphazard fashion. F'or example, consider Tom, a junior loan

officer, who wants to analyze loan applications with a spreadsheet model created by his

experienced colleague and savvy spreadsheet user, Jane. For Tom, the easiest way to adopt

Jane's spreadsheet is to clone it. This is commonly done by copying Jane's spreadsheet,

carefully erasing all its constant cells (implicit data property), and retaining all its formulae

cells (implicit schema). Once the spreadsheet has been emptied from Jane's data, Tom can

populate it with his own data, at which point Tom and Jane apply the same model to

two different data sets. Yet in spite of this logical proximity, a conventional spreadsheet

program will treat the two spreadsheets as unrelated physical enti ties. Therefore, when

Jane changes her spreadsheet to fix an error, or to accommodate a new credit rule, the

change will not effect Tom's work in any way.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

We see that when spreadsheets are shared and reusecl informally, maintenance and esten-

sion efforts must be duplicated. Hacl we hacl a intelligent frameivork for spreaclslleet nloclel

management, this cluplication could be minimized. For example, if Tom wants to clone

Jane's spreadsheet, the safest way to do it is to (i) factor her spreadsheet into its four prin-

cipal components, and (ii) synthesize her S, £, and 23 compollents with his D component,

which could be entered interactively into the empty spreadsheet, or loaded batch-style from

a file. If Jane were to change her spreadsheet's logic at a later point of time (an event which

a model management system could sense by comparing her old and new S properties), the

system could advise Tom that his spreadsheet is no longer logically identical to Jane's.

If Tom wants his model to be completely in sync with Jane's, the discrepancy could be

resolved by synthesizing his data component with Jane's modified schema.

It goes without saying that numerous technical ends must be met before such an integration

can take place in practice. In the extreme case, Jane could modify her schema in such a way

that would render it incompatible with Tom's existing data set. Yet in many situations

the differences between two related spreadsheets are quite manageable, due to the fact

that they represent evolutionary deviations from a single schema that the system already

understands. For example, suppose that Jane uses a spreadsheet copy or insert command

to add a new row or column to her model. Since the system already stores an image of her

spreadsheet schema, it can automatically infer whether this spatial manipulation amounts

to adding a new data tuple, which requires no further action at Tom's end, or adding a new

attribute, in which case Tom's spreadsheet could be effected. In either case, the implications

of Jane's actions on Tom's and other related spreadsheets could be inferred and acted upon

by the system.

In order for a spreadsheet model management system to discern and manage such cases,

the system must employ a taxonomy of schema modification scenarios, as well as a discrete

metric that measures the structural proximity of different spreadsheet schemas. We are

presently in the process of developing such tools, about which we intend to report in a future

publication. So far, our research suggests that once the factoring/synthesis framework is

in place, the problems that hindered the development of a spreadsheet model management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

system become largely technical, not fundamental.

Going back to the subject of synthesis. note that the process is essentially the converse of

factoring. Therefore, it traces the factoring steps backwards, beginning with a spreaclsheet

schema written in FRL and ending with an executable spreadsheet model. The process

involves three main stages, as follows. First, the schema is converted into a logical map like

the one depicted in Figure 5 . At this point, the user has two options. If he or she wishes to

'instantiate7 the schema with a stored data set, the logical map is merged with a given 2)

component. If, alternatively, the user wishes to create a spreadsheet template, the logical

map is merged with a generic data set that is consistent with the schema's structure. Next,

the logical map is transformecl into a physical spreadsheet by synthesizing it with binding

and editorial components. These properties can be drawn from a documentation library,

or added interactively by the user.

4.1 From a Spreadsheet Schema to a Logical Map

The synthesis algorithm begins with a preprocessing stage (Figure 9) that fuses a spread-

sheet schema and a data component into a logical map. Since the algorithm processes the

schema one relation definition at a time, it is sufficient to describe it for one relation only.

Put Figure 9 around here

Once again, tve illustrate the algorithm in the context of the p.sales attribute. The

primary input of the algorithm is the spreadsheet schema (Figure 7-e). It is important to

recall that in spreadsheet schemas, attribute-references are abbreviated as much as possible,

using FRL'S syntax-default rules. For example, the expression (cogs : sales*a . cogs) is

shorthand of (p [n] . cogs : p [nl . sales*a [I] . cogs). In steps SI-S2, all the abbreviated

attribute-references are expanded to their fully-specified references. As a result, the schema

definition of the sales attribute becomes the p. sales attribute-cluster listed in Figure 7-d.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

In S3, each definition line is expancled, i.e. repeated for all the tuples that it covers.

leacling to the attril>ute-cluster listed in Figure 7-c. In order to carry out this espansio11.

the algorithm has to know how many tuples the relation presently contains in Z?. If the user

wants to synthesize the schema with a given data component, this entails a simple lookup

operation. If the user wants to create a spreadsheet template, a dummy data component

is cloned from S , as we describe shortly.

Following S1-S3, the definition parts of the attribute-clusters typically contain attribute

references with relative tuple addressing, e.g. p[n-'21 . s a l e s . This kind of addressing is

characterized by the presence of the special symbol n, as in r[n].x, r[n+ j].x, or r[n- j].s, for

some j . In S4, relative tuple references are substituted with their corresponding absolute

values, leading to Figure 7-b. When applied to the entire P&L schema, the final output of

steps S1-S4 is the P&L logical map (Figure 5).

4.2 Adding the Data Component

During synthesis, a spreadsheet schema S can be fused with a set of "real" data relations

V, or with a set of "dummy?' relations - denoted Ds - that are constructed from the

schema itself, as we describe below. In the former case, it is assumed that V is structurally

compatible with S - a property that can be easily tested. In the latter case, Ds and S are

compatible by construction.

The data component, be it real or dummy, is synthesized by posting the data items from

the relations in V into the constant entries in the spreadsheet's logical map, i.e. the map-

entries whose definition part is either numeric, s t r i n g , l o g i c a l , or da te (see Figure 5).

Specifically, each constant entry of the form (r[i] .x: data-type) is rewritten as (r[i].x: value),

where value is the value of the x attribute in the i th tuple of the relation r E 23. Since

the logical map has already been "stretched" by S 1-S4 to accommodate all the data-items

from all the relations, this operation completes the synthesis of the spreadsheet schema

with the data component.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Spreadshee t templates: A spreaclslleet template is a skeletal spreaclslleet model - a

model whose data-cells contain symbolic clata-type markers rather than actual data. Spreacl-

sheet templates are quite useful for clocumenting, distributing, and sharing, spreadsheet

application software. Once loaded into a host spreadsheet program, a template can be

populated with real data, a process that requires the user to fill in existing cells, and, oc-

casionally? expand the template in the way of inserting new rows and columns and copying

their formulae from the template's generic formulae. For example, a stock portfolio spread-

sheet template can contain a single row with all the necessary formulae for calculating and

presenting some statistics about a generic stock entity. Once put to actual use, the row can

be expanded by the user to accommodate as many stocks as necessary. via the spreadsheet

program's copy command.

Thus, a relation's template should contain just enough dummy tuples to reflect its generic

structure and facilitate its later expansion by the user. In the above example, we implicitly

assumed the existence of a s tocks relation whose tuples follow the same definition. But

in reality, a relation schema can contain case structures, in which case its dummy version

must contain more than one generic tuple. Thus, the general rule for determining the

number of filler tuples (m) in a dummy relation r is as follows. If r's schema contains

no case structures of the form condi t ion t--t d e f i n i t i o n , set rr, to 1. If one or more of

the relation's attribute definitions contains a case construct, set rn to one plus the highest

tuple number referred to in the condi t ion part of any one of these case constructs. For

example, in the P&L schema, the definitions of assumptions and prof orma contain 0 and

.1 case constructs, respectively. In the latter relation, the highest tuple number in the ca se

construct is 5 . Therefore, the assumptions and prof orma dummy relations will contain one

and six filler tuples, respectively. Note that the dummy prof orma relation will contain six

tuples irrespective of how many 'real' tuples the data relation prof orma actually contains

in 27.

Once the number of dummy tuples has been determined, the dummy relations are populated

with filler data through the following straightforward process. If an attribute x in r's schema

is of type numeric, s t r i n g , da te , or l o g i c a l , the filler character N, S, D, or L, respectively,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

The clata structure that emerges from the synthesis process is a physical spreaclsheet map

that can be loaclecl into a host spreaclsheet program. ' In the P&L example, steps S1-Si'

procluce the map clepicted in figure 3.

Discussion

The paper is based on four premises:

First, in spite of their remarkable ability to create models quickly and effectively,
conventional spreadsheet programs can lead to insidious problems such as duplication
of modeling efforts, inconsistencies within and across models, and models that cannot
interact with each other.

Second, most of these problems are related to the lack of a unifying model man-
agement system - a system that treats spreadsheet models as a shared corporate
resource, much like a database management system treats data.

Third, spreadsheet model management systems will not be feasible until spreadsheets
yield to a platform-independent representation that makes them accessible to other,
non-spreadsheet, model- and data-management tools.

Fourth, in order for such a representation to be practical, we must provide means to
translate conventional spreadsheets into the representation, and vice versa.

This paper focused primarily on the last two premises. The key to our approach is a dual

Iogical/physical perspective that identifies four principle properties in any given spread-

sheet model: schema, data, editorial, and binding. The four properties and the algorithms

that operate on them are summarized in Figure 11. In the figure, the area above the

factoring/synthesis bubble corresponds to the physical realm of conventional spreadsheet

programs, along with their appealing and intuitive user interfaces. The area below the

bubble corresponds to a logical realm in which spreadsheet models are viewed as modular

objects with distinct properties that can be constructed in different ways under the user's

control. The top-down and bottom-up transitions between the physical and the logical

views are made possible by the factoring and synthesis algorithms, respectively,

Put Figure 11 around here

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Beginning with the pllysical realm. it is important to observe that our approach is com-

pletely unobtrusive to the standard practice of spreaclsheet mocleling. That is. unlike sonle

software products, notably Improv [16] ancl J ave l i n [Id], tve do not espect people to change

the normal way they build spreadsheets, nor do we propose a new spreadsheet modeling.

paracligm. Instead, we began with the working assumption that users would like to con-

tinue to build spreadsheets in such familiar environments as 123, Excel1 and Qua t t r o .

Once implemented, though, we propose that some spreadsheets in the organization could

be factored into their principle properties, either for documentation purposes or for the

more ambitious objective of bridging a spreadsheet model management system.

In order t o carry out this factoring operation, the only tools that the user needs are (i) an

outlining macro, written in the host spreadsheet's macro language, and (ii) an implementa-

tion of the factoring algorithm described in section 3. For the purpose of this research, we

have written the outlining macro in Exce l l , ancl the factoring process in a Pascal program

that is launched from within Excel l . We have used these tools to factor several spreadsheet

models (including the P&L model described in the paper), and we are now in the process

of refining and improving them. bye are also completing work on a synthesis program that

would allow users to construct executable spreadsheets from reusable objects. We view this

as the first step toward developing a spreadsheet model management system.

Some of the benefits of our approach are depicted in figure 11. As the figure shows. once the

four properties have been extracted from the spreadsheet's physical representation, they

can be stored and managed in separate repositories which are independent of spreadsheet

programs. Most importantly, spreadsheet schemas can be channeled to and managed by a

system that supports model documentation, retrieval and reuse. Likewise, data properties

can be archived and accessed via a database management system that offers all the flexibility

and power of a general-purpose DBMS.

The & and B properties, which are of lesser theoretical importance, are placed in a separate

documentation library. This way, a user with no spreadsheet experience can translate a

spreadsheet from one language to another (or, say, check its spelling) by operating directly

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

on its ediforinl property, which is essentially a list of textual labels implemented as an

A S C I I file. Similarly. a program could be written to manipulate the screen la~+outs of

spreadsheets by operating exclusively on their bindiizgs properties, without ever getting

into their underlying data and formulae properties. Such a service would enable one to

alter the spreaclsheet's appearance without worrying about damaging its contents.

Hence, our dual logical/physical perspective has both 'micro' and 'macro' implications

for spreadsheet modeling. At the micro level, the properties' modularity enables us to

distinguish between different types of spreadsheet manipulations. Neutral manipulations.

like transposing or moving relations around the screen, effect neither the S nor the 2;,

properties of the spreadsheet. Data manipulations, like adding or deleting rows or columns

that correspond to repetitive tuples, effect only the spreadsheet's D property, leaving the

S property intact. Structural manipulations, like adding or deleting rows and columns

that correspond to attributes, effect both the S and the 2) properties of the spreadsheet.

The key point here is as follo-vvs: once the property modularity of spreadsheets is explicitly

recognized by the host modeling environment, an intelligent modeling 'assistant' could

be designed to sense from the physical spreadsheet what the user is trying to do in the

way of building logical models. At the 'macro' level, the dual perspective redefines the

conventional notion of spreadsheets in such a way that makes them accessible to other, non-

spreadsheet software environments. This opens new and exciting possibilities for integrating

spreadsheet, data, and model management systems in novel ways that were previously

unfeasible.

In conclusion, the paper presents the conceptual framework, algorithms, and data defini-

tion language, necessary to take the standard practice of spreadsheet modeling one step

beyond its present state of the art. To illustrate the feasibility of our approach, we have

developed a Windows-based prototype that is capable of factoring Excel1 spreadsheets into

FRL schemas. This work provides a foundation for developing (i) intelligent spreadsheet

programs that 'understand' the model world of the user; and (ii) powerful spreadsheet

model management systems that help manage and streamline repositories of spreadsheets

as well-organized corporate resources. Our objective is to use this foundation as a point of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

cleparture for fut,ure research in these clirections.

Appendix: Schema Definition Language

A schema definition language for spreadsheets must acldress two important aspects of

spreadsheet models. First, many spreadsheets have one or more repetitive patterns, e.g.

the years entity in the P&L example. Second, many spreadsheets are characterized by

functional interdependencies, e.g. the sales of this year are based on the sales of the pre-

vious year. The first recluirement - repetition - promptecl us to base our language on the

relational approach to data definition. The second requirement - functional interclepen-

dencies - led us to consider a functional extension of the relational model.

There have been several proposals to extend the standard relational model with functional

and object-oriented capabilities. For example, Gehani [lo] described a financial database

in which monetary values were expressed in terms of several international currencies. Us-

ing currency conversion functions and the prevailing exchange rates, the system could

automatically revise monetary attributes to reflect their real values in terms of a given

currency. Taking a more fundamental approach, iUaier [17] presented a general computed

relation formalism in which attributes could be expressed as functions of other attributes

within the same relation. The notion of computed attributes played a key role in several

object-oriented relational systems, e.g. C a c t i s [12, 131 and OZ+ [23]. In Cac t i s , functional

attributes were implemented using attribute grammar techniques [15]. In OZ+, value de-

pendencies were implemented through functions that operated on objects. Coming from

a different direction, Ginzburg and Kurtzman [ll] provided a relational view of spread-

sheets through their Spreadsheet History Schemes, which once again contains a distinction

between 'given' attributes and 'evaluated' attributes. Another relevant work is Campeoli

and Lucchesi's [3], who proposed a spreadsheet-like interface for relational databases, called

Spreadview. In a spreadview, each attribute is split into two components - a head and an

index - which are used to map its values on a spreadsheet matrix. The resulting repre-

sentation enables interesting user-interface manipulations such as rotating or transposing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

relations, as well as relational operatiolls such as project and join.

For the purpose of this research, we have sought a language that will allow us to carry out

two-way transformations, from spreadsheets to relations, ancl vice versa, with similar ease.

The resulting language, called FRL. is specifically suited for this purpose. In addition to

standard relational features that can be found in other clata definition languages, FRL offers

both absolute and relative tuple addressing, in line with the addressing style of spreadsheet

formulae. It is important to emphasize, though, that FRL is not intended to be a user-

or even a programmer-oriented language. Instead, it should be viewed as an internal

representations of spreadsheet schemas - a representation that lends itself to database

and model-base management systems. The users need not know FRL because their model

schemas are generated (through factoring) from the spreadsheets that they construct in

the host spreadsheet program. Having said that, note that it is entirely possible to create

spreadsheet schemas directly in FRL, and then have the synthesis process transform them

into conventional spreadsheets.

The remainder of this appendix provides ar. overview of FRL, as it unfolds in the context

of the PkL example (Figure 2).

Functional-relations: A functional-relation is a tabular data structure consisting of one

or more attributes and one or more tuples. Each relation has a mandatory name and an

optional alias, or abbreviated name. We distinguish between relations that normally con-

tain many tuples, and relations that are designed to contain one tuple only. The latter

data structures, denoted vector relations, are uncommon in relational databases but occur

frequently in spreadsheet modeling. In the P&L spreadsheet, a is a vector relation designed

to store a single tuple of model parameters. The attributes of a functional-relation fall into

two categories: data and functional. For example, all the attributes of the a relation are of

type 'data.' The p relation has two data attributes - year and l e a s e - and six functional

attributes: s a l e s , cogs, ovhead, inc , t ax , and ne t . For each data attribute, the relation

schema specifies a data type which is either numeric, s t r i n g , d a t e or l og i ca l , consistent

with the standard data types of spreadsheet constants. The definitions of functional at-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

tributes are more involvecl, making use of such constructs as functiorts, og~r.crtora. and case

stt*uctures. ii'e now describe each of these constructs in broacl terms, leaving their precise

clefinitions to a later BNF section.

Keys and orderings: With the exception of vector relations, each functional-relation

must have a key in the database sense of the term. That is, each relation r must have

a t least one attribute x such that no two tuples in r have the same x value. If a certain

relation does not have a natural or a user-supplied key candidate associated with it, a hid-

den system key which is essentially a tuple identifier is attached to the schema by default.

The domains of the key attributes (the sets of values that the key attributes can attain)

are assumed to be totally ordered. That is, for each two key values k and k', either k < k'

or k' < k . When a total ordering among key values is not natural, an arbitrary ordering is

imposed, based on tuple identifiers. The total order implies the existence of the following

function from natural numbers to key values:

Where n is a natural number, min(key) is the minimal value in the key's domain, and

succ is the familiar successor function. Thus, if the domain of key is, say, the set {1992,

1993,1994, 1995,1996, 1997), then keyval(3) = 1994.

Tuple addressing: Since a functional-relation r always has a totally ordered key, the rela-

tion's tuples can be indexed uniquely, either relatively or absolutely. In absolute indexing,

the term r[i] for some i > 0 refers to the tuple whose key value is keyval(i). In relative

indexing, the special term r[n7 is used to refer to r's current tuple, and the term r[n + i] for

some i (which may be either negative or positive) is used to refer to the tuple whose key

value is i positions away from the key value of r's current tuple.

Attribute Addressing: As a rule, the value of an attribute x in the ith tuple (in the

order of the key) in a relation r is denoted r[i].x. Thus, pC3l .sales refers to the sales

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

value in the tuple of the p relation whose key value is 1994 (since key~'cl l (3) = 1994). Two

default rules are used to abbreviate these attribute-references. First, the value of .r in the

current tuple, i.e. r[n].r, is abbreviatecl to r.z. Second, when an attribute 2 is referred to

within the schema of its own relation, the relation prefix can also be dropped and one is

left with the reduced attri bute-reference z.

To illustrate, consider the attribute definition n e t : inc- tax from Figure 2. This expression

is a shorthand of p [n] . n e t : p [n] . inc-p [nl . tax , meaning this year's net income equals

this year's gross income minus this year's tax. Similarly, the attribute definition cogs :

s a l e s * a . cogs is a shorthand of the expression p [nl .cogs : p [nl . s a l e s * a [l l . cogs.

The latter example illustrates another FRL syntax convention: when referring to the at-

tributes of vector relations, there is no need to specify an index, because these relations

contain only one tuple. Thus, expressions like a . cogs and a. g r a t e are interpreted without

ambiguity as a [I] . cogs and a [I] . g r a t e , respectively.

Ope ra to r s a n d Functions: The definition of functional attributes involves operators like

+ and -, scalar functions like SQRT and ABS, and list functions like SUM and AVG. The

operators and the scalar functions operate on single-valued operands (attributes or con-

stants), whereas the arguments of the list functions are lists of values, implemented in FRL

as relational projections. Without getting into implementation details, suffice is to say that

every spreadsheet operator and f~inction has an equivalent definition in the FRL language

with a slightly modified syntax.

Case s t ructures : In addition to the standard spreadsheet operators and functions, FRL

supports case structures that are reminiscent of inductive, or recursive, function definitions.

In its most general form, the case construct has the following form:

a t t r i b u t e : il < n < iz H expl
i2 < n < iJ H exp2

This construct reads: "for tuples il, il + 1, . . . , i2 - 1, bind the attribute to expl; for tuples

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

i2, i2 + 1,. . . , i3 - 1, binel the attribute to esps:" and so on. Case structures are inlplicitly

used in spreaclsheet nlocleling, where i t is quite common to specify a nloclel by provicling

base values for some tuples ancl defining the formulae that control subsecluent tuples in an

iterative fashion. In Figure 2, for example, this construction by cases is usecl to define the

p . sales attribute.

We note in passing that all attribute definitions in FRL are in fact functions of key values.

To illustrate, recall that an attribute definition like inc : sales-lease-cogs is actually a

shorthand of p [n] . i n c : p [nl . sa les -p [n] . lease-p [n] . cogs. From a functional stand-

point, this is equivalent to the expression f(x) = p[x].sales - p[x].lense - p[s].cogs. Thus,

to obtain the value of the i nc attribute of tuple number i (in the order of the relation's

key), one binds i n c to the value f (i). In a similar way, an expression like l e a s e : numeric

is in fact equivalent to the functional expression p [nl . l e a s e = I (numeric) : where I (z)

is the identity function and numeric is whatever number the user chooses to enter for

that year. \Ve see that all the attributes in FRL are bound to functions, thus the name

functional-relations.

It is instructive to compare the Excell-based PkL spreadsheet model at the top of Figure

2 with its respective schema at the figure's bottom left. In the former representation, the

spreadsheet's data, physical layout, and logical structure are intermingled in one format.

In the latter representation, the model is expressed in a platform-independent language -

FRL - yielding a clear and succinct description of the model's underlying structure.

The description of FRL was given in an appendix because the language proper plays a

secondary role in the paper. The paper's main focus is the duality between the physical

and logical views of spreadsheets, and the fact that they can be generated from each other

using factoring and synthesis. To that end, any formal language that supports factoring

and synthesis will do, and FRL is only one example which we found to be quite useful for

our purposes. As i t stands now, FRL is a "version-0" language that can benefit from many

additional features, e.g. module definition capabilities and the ability to capture circular

attribute definitions. We intend to improve the language in these directions as we continue

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

our researcll in tlie area of spreadsheet model nlanagement, where a more powerful language

will be necessary.

FRL in BNF

ModelSchema : : = R-schema I
R-schema Model-Schema

R-schema : : = R-def K e y J t t r - d e s c r I
R-def KeyAt t r -descr Res t A t t r - d e s c r

R-def : : = relation RJIame alias R-a l iasname I
RJame alias R-al iasname (type vector)

RJIame : : = Name

Name . . .= . S t r i n g

R-a l i a sname : := L e t t e r

K e y A t t r - d e s c r : : = D a t a A t t r - d e s c r key

At t r -desc r : := D a t a A t t r - d e s c r I
FuncAt t r-descr

D a t a A t t r - d e s c r : := A t t r n a m e : Type

Type : := number I string I date I logical

A t t r n a m e . .= .. Name

F u n c A t t r - d e s c r : : = A t t r n a m e : Expr

Expr
Expr

: : = S i m p l e I x p r
: : = CaseXxpr

C a s e I x p r : := Boolean-Cond H SimpleXxpr 1
Boolean-Cond H S i m p l e I x p r CaseXxpr

Boolean-Cond : : = n Comparator NUM I
NUM < n < NUM

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Constan t

Reference

Ref

A t t r -expr

FUNC

Bool-Cond
Comparator

NUM
NAT
STRING
DATE
LOGICAL

: := Type I
Const a n t [
Refe rence 1
If E x p r

: : = NUM / STRING I DATE I LOGICAL

: : = R-al iasname [key = Ref] . At t rname I
R-al iasname [Ref] . At t rname

: := n I Num-expr + NAT I Num-expr - NAT

: : = A t t r n a m e F U N C (A ~ ~ ~ - e x p)

: : = n e x t I p r e v I g l b I l u b

: : = I F (Bool-Cond, s i m p l e 3 x p r , s imp le1xpr)

: : = Refe rence Comparator Reference
: := < I < I = (> / >

. .= . . numeric c o n s t a n t s , (any r a t i o n a l number)
: : = n a t u r a l number c o n s t a n t s , 1,2,3, . . .
: := s t r i n g c o n s t a n t s
: := d a t e c o n s t a n t s
: : = l o g i c a l c o n s t a n t s

Constraints:

1. Types. Although the language is not typed, it is simple to obtain a strongly typed lan-
guage by assigning types to the different spreadsheet functions and enforcing typing
at the language definition level. We have chosen the untyped version of the language
for the sake of brevity.

2. Keys and orderings. We assume that each relation r has a key, i.e., there is an
attribute x of r such that no two tuples of r have the same value for x.

In addition, we require that the domains of key attributes (the sets of values that the
attributes can attain) be totally ordered. That is, there is a relation < defined on
the domain Dk of a key k, such that < is asymmetric and transitive, and that for any

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

two elements vl , 212 of Dk, either rvl < u2 or tT2 < vl. The orclering anlong the keys of
r induces an ortlering on the tuples of r as follows. Let k be the lie_\- of relation r, anci
let t l , t2 be tuples of r. then

tl < t2 iff tl.k < t2.k

3. Successors ant1 pretlecessors. Since each relation contains only finitely many tuples,
we can define the notions of immediate predecessor and immediate successor as follows.

Let t l , . . . ,t, be all the tuples in a relation r, ordered by their keys. Then
for 1 < i < n, ti immediately precedes t;+l (denoted ti<<rti+l.) and ti+l
immediately succeeds ti (denoted ti+1>>rti).

Hence, it makes sense to talk about the next or previous tuple, and about the tuple
closest from below to a certain value v in the domain Dk (i.e., the tuple with key
glbT(v) = max(t.klt E r and t.k < v)); and of the tuple closest from aboue, i.e. the
tuple with key lubr(v) = min(t.klt E r and t.k > v).

Note that the notion of immediacy depends on the relation r. If r and r ' are two
relations with the same schema but different data, it might happen that a tuple t
immediately precedes a tuple t' in r, but not in r'.

4. References. These are of the general form rLrefl.2. There are three kinds of refs, as
follows:

(a) Absolute: denoted by i, where i is a number. This is a reference to the i th tuple
of r , in the order of the keys.

(b) Relative: denoted by an expression of the form n, or n ' j for some number j .
The interpretation of n is the current tuple of r , n-j is the j t h previous tuple,
and n + j is the j th next tuple, as defined above.

(c) Named Attribute: denoted by an attribute name att, or an expression involving
att and the functors prev, next, lub, glb. A reference r[key= att] points to the
tuple in r whose key value equals the value of the attribute at! in the current
tuple. References with prev, next, lub, glb are interpreted by the immediate
predecessor, immediate successor, glbT(v) and lub,.(v) functions described above.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

References

[I] Robert H. Bonczek, Clyde LV. Holsapple, and Andrew B. Winston. Foltndations of
Decision St~pport Systems. Academic Press, Kew York, 1981.

[2] Polly S. Brown and John D. Gould. An Experimental Study of People Creating
Spreadsheets. AChI Tra~zsactions on OJ3ce Information Systems, 5(3):258-272, July
1957.

[3] Alessandro Campioli and Luciano Lucchesi. SPREADVIEWS. In D. Karagiannis,
editor, Proceedings of the International Conference on Databases and Expert Systems
Applications (DEiYA-91) Berlin, Germany, 21-23 August,, pages 525-530. Springer-
Verlag, 1991.

[4] Paul B. Crag and Malcolm King. Spradsheet Modeling Abuse: An Opportunity for
OR? J. Opl. res. Soc., (forthcoming), 1992.

[5] Steve Ditlea. Spreadsheets Can Be Hazardous to Your Health. Personal Computing,
pages 60-93, January 1987.

[6] Daniel R. Dolk and Benn R. Konsynski. Model Management in Organizations. Infor-
mation &' rVlanagement, 9:35-47, 1985.

[7] Barry D. Floyd and Jisurk Pyun. Errors in Spreadsheet Use. Working paper 167, Cen-
ter for Research in Information Systems, New York University, Information systems
Department, New York, NY 10012, 1987.

181 R. hl. Freeman. A Slip of the Chip on Computer Spreadsheets Can Cost Millions. The
Wall Street Journal, August 4 1986.

[9] Dennis F. Galletta, D. Abraham, &I. E. Louadi, W. Leske, Y. A. Pollalis, and J . L.
Sampler. An Empirical Study of Spreadsheet Error-Finding Performance. Accounting,
hlanagement, and Information Technologies, Forthcoming, 1993.

[lo] Narain H. Gehani. Databases and Units of Measure. IEEE Transactions on Software
Engineering, SE-8(6):605-611, November 1982.

[ll] Seymour Ginzburg and Stephen Kurtzman. Spreadsheet Histories, Object-Histories
and Projection Simulation. In ICDT - Proceedings of the 2nd International Confer-
ence on Database Theory - Lecture Notes in Computer Science no. 326, Berlin, 1988.
Springer-Verlag.

[12] Scott Hudson and Roger King. The Cactis Project: Database Support for Software
Engineering. IEEE Transactions on Software Engineering, June 1988,

[13] Scott Hudson and Roger King. Cactis Project: A Self-Adaptive, Concurrent Imple-
mentation of an Object-Oriented Database Management System. A CrVi Transactions
on Database Systems, 14(3):291-321, September 1989.

[14] Javelin Software Corporation. Javelin Reference Manual, 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

[I51 D. Iinuth. Semantics of Contest Free Languages. i~~afhenzatical Sg.s;tems Theory.
2(2): 127-145, 1968.

1161 Lotus Development Corporation. Inzpro v for T.Virzdo ws Release 2.0, 1993.

[17] David Naier. The Theory of Relational Databases, chapter 14, pages 533-549. Com-
puter Science Press, 1988.

[IS] D. Mason and D. Keane. Spreadsheet modeling in practice: solution or problem.
Interface, pages 82-84) 1989.

[19] P.L. Mcmickle. Troubleshooting spreadsheets. Journal of Accounting and EDP,
3(2):69-71.

1201 Boaz Ronen, Michael Palley, and Henry C. Lucas Jr. Spreasdheet Analysis and Design.
Communications of the ACA17 32(1):84-93, January 1989.

[21] b1.G. Simkin. Micros in Accounting - how to validate spreadsheets. Journal of Ac-
countancy, pages 130-138, August 1987.

[22] Ralph H. Sprague and Eric D. Carlson. A Framework For Decision Support Systems.
Database, 4:l-13, 1980.

1231 Steven P. Wesier and Frederick H. Lochovsky. Object-Oriented Concepts, Databases
and Applications. In Won Kim and Frederick H. Lochovsky, editors, 0Z+: An Object-
Oriented Database System, chapter 13, pages 309-340. ACM Press, 1989.

[24] T . Williams. Spreadsheet Standards. Technical report, Touche Ross Sr, Co., 1987.

1251 Niklaus Wirth. Algorithms + Data Structures = Programs. Series in Automatic Com-
puting. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Figure 1: The P&L Spreadsheet, in Excell

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

grate ovhead cogs tax
I 1 t

qrowth overhead CCGS tar rate
assumptions: I 108 $2,500 60% 4 8 4

s a l e s
COCS
overhead
l e a s e
gross
tax .

net income

P a Forecast (a l l f igures i n 000's)

relation p

Schema (S)

.relation assumptions alias a type vector
grate: numeric .
ovhead: numeric
cog: numeric
tax: numeric

I rdation proforma alias p
year: numeric key
sales: n=1 M numeric

2 5 n<5 H p[n-l].sales*(l+ a-grate)
n 2 5 w 0.5+(~[n-l].s~es+p[n-2].s~e~)*1.2 I

cogs: sales+a.cogs
ovhead: a.ovhead .

lease: numeric
inc: sales - lease - cogs
tax: if(inc>O,inc+a.tax,O)
net: inc - t k Y

f- sales
f----. cogs + ovhead + lease
<- inc + tax

+-- net

Data (D)

relation a:
grate I ovhead (cogs (tax
0.1 1 2500 1 0.6 1 0.48

Figure 2: The outlined PSrL spreadsheet (top) and its respective schema (left) and data
property (right).

relation p:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

lease
100
100
500
500
500
500

inc (tax I ovhead
C
C

C
C
C
C
C
C

cogs
C

. C
C C C
C C C
C C C
C C C

r

C
c
C
C
C
C 1

Year
1992
1993
1994
1995
1996
1997

sales
6000
C

a Cll .grate
aCl] . ovhead
a Cll . cogs
aCil .tax

pCll .year
pC2l. year
pC3l .year

pCl] . sales
pC2l. sales
pC3l. sales

p Cll . cogs
p [a] . cogs
p C3l. cogs

p [l] . ovhead
p [2] . ovhead
p C31. ovhead

p [I] . inc
p C21 . inc
p C31 . inc

B1: 'grouth
C1: 'overhead
Dl: 'COGS
El: 'tax rate
A2: 'assumptions:
B2: 0.1
C2: 2500
02: 0.6
E2: 0.48
B4: 'P&L Forecast (all figures in 000's)
B5: '-----------------------------------
B7: 1992
C7: 1993
07: 1994
B8: \=
C8: \=
D8: \=
A9: 'sales
B9: 6000
C9: +B9*(1+B2)
D9: +C9*(1+B2)
AiO: 'COGS
BiO: +B9*D2
ClO: +C9*D2
D10: +D9*D2
All: 'overhead
Bii: +C2
C11: +C2
Dli: +C2
A12: 'lease
B12: 100
C12: 100
D12: 500
A13: 'gross
B13: +B9-B10-Bll-B12
C13: +C9-C10-Cll-C12
013: +D9-D10-Dll-Dl2
A14: 'tax
B14: QIF(B13>OJB13*E2,0)
C14: QIF(C13>O,C13*E2,0)
D14: ~1F(D13>0,D13*E2,0)
B15: \-
C15: \-
D15: \-
A16: 'net income
B16: +B13-B14
C16: +C13-C14
D16: +D13-Dl4

Figure 3: The annotated map of the P&L spreadsheet, as produced by the outlining macro.
Because of space limitations, the map covers only 'years 1992, 1993, and 1994, of the
spreadsheet. To avoid clutter, the formatting-specificatio~ls of the cells are not depicted
here.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

F1: For each constant map-entry of the form (r[i] .x: cell-address, constant), rewrite
the entry as (r[i] .x: cell-crclrlress, data-type). where data-type is the type of the
constant.

F2: For each formula map-entry of the form (r[i] .x: cell-address, formula), rewrite
the entry as (rli1.x: cell-address, forrnuln 9, where formula' is the same as
formula, except that all the physical cell-addresses that appear in formula are
substituted with the labels of their correspoilding map-entries, using a lookup
operation. If a physical cell address is prefixed by a $ sign in formula, insert
a $ sign before the tuple index of its respective label in formula' as well.

F3: Remove the cell-address terms from all the map-entries. I
F4: Collate the map entries r[i] .x in clusters. so that each cluster contains entries

that have identical relation names (r) and attribute names (x) . IVithin each
cluster, sort the map entries by the tuple index (i).

Figure 4: T h e first four steps of t he factoring algorithm. wliich t,ransform a physical spread-
sheet map into a logical map.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

. B2
C 2
D 2
E2
B 7
C7
D7
B 9
C9
D9
B10
C10
Dl 0
Bll
C11
Dl 1
B1 2
C12
Dl 2
B13
C13
Dl 3
B14
C14
Dl 4
B1 6
C16
Dl 6

p[l] .sales: numeric
p[2].sales: p[l].sales*(l+a[$l].grate)
p[3].sales: p[2].sales*(l+a[$1].grate)
p[l],cogs: p[l],sales*a[$l].cogs
p[2] ,cogs: p[2] .sales*a[$l] .cogs
p[3],cogs: p[3].sales*a[$l].cogs
p[l] .ouhead: all] .ouhead
p[2].ouhead: a[l].ouhead
p[3] ,ouhead: a[l] .ouhead
p[l] ,lease: numeric
p[2],lease: numeric
p[3] ,lease: numeric
p[l] ,inc: p[l] .sales-p[l] ,cogs-p[l] -ouhead-p[l] .lease
,p[2] .inc: p[2].sales-p[2].cogs-p[2].ouhead-p[2].lease
p[3] .inc: p[3],sales-p[3].cogs-p[3].ouhead-p[3].lease
p[l] .tax: @IF(p[l] .inc>O,p[l] .inc*a[$l] .tax,0)
p[2] .tax: @IF(p[2] .inc>O,p[2] .inc*a[$l] .tax, O)
p[3] .tax: @IF(p[3] .inc>O,p[3] .inc*a[$l] .tax,Oj
p[l] .net: p[l] .inc-p[l] .tax
p[2] .net: p[2].inc-p[2].tax
p[3] ,net: p[3].inc-p[3].tax

Figure 5: The P&L spreadsheet's logical map - the output of steps F1-Fd of the factoring
algorithm. The cell addresses on t.he left margin axe not part of the logical map, and are
listed here only for reference purposes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

F5: Convert absolute tuple references into relative tuple references. For each map-
entry whose label is r[i].x: if the entry's definition contains a related and non-
fixed attribute-reference r[j]. y (an attribute-reference with the same relation
prefix whose tuple index is not prefixed by a $), let d = j - i. If d > 0, rewrite
the related attribute-reference as: r[n + d1.y; if d < 0, rewrite it as r[n - d1.y;
if d = 0, rewrite it as rml.2. Complete this operation throughout the map. t

Next, for each attribute-reference of the form r[$i].x, rewrite the reference as
rli] .x (i.e. delete the S prefixes from all the attribute-references throughout
the map).

F6: Contract the map. (Following F5, some r.x-clusters in the map contain one or
more sets of repetitive map entries, i.e. entries that have exactly the same
right hand side definition.) For each set of repetitive entries, eliminate all but
the first entry in the set (the entry with the lowest index).

Compute tuple index ranges. (At this point, each T.X cluster consists of one or
more entries, each with a different definition.) Let the cluster's entry-labels
be r[kl].x, [k2].x, . . . , r[k,].x. For each cluster, rewrite the entry-labels as
r[kl < n < k2].x, ~ [k 2 5 n < k3].x, . . . : r[n > k,].x. If a rewritten entry-label

a becomes r [j 5 n < j + 1j.x for some j, rewrite it again as r[n = j1.x; If a
rewritten entry-label becomes r [l < n < j].x, rewrite it again as r[n < j1.x.
If the cluster consists of only one entry, rewrite its single label as r[n].x.

F7: Complete the schema. Consult the user-defined spreadsheet's outline to obtain
each relation's (i) full name; (ii) cardinality (single vs multiple tuples); and
(iii) key. Use these specifications and FRL's syntax default rules to transform
the map into a formal spreadsheet schema.

t Notational comment: throughout the algorithm, i, j , and d represent numbers,
whereas n is a textual tag, i.e. the fixed character 'n'.

Figure 6: The last three steps of t he factoring algorithm, which transform a spreadsheet's
logical map into a spreadsheet schema.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

b :

p[l] .sales: numeric
p[2].sales: p[l] .sales*(l+a[S l].grate)
p[3].sales: p[2].sales*(l+a[Sl].grate)
p[4].sales: p[3].sales+(l+a[Sl].grate)
p[.-j].sales: 0.5*(p[4].sales+p[3].sales)*l.2
p[G].sales: 0.5*(p[5].sale~+~[4].sales)*l.2

S4 C :

p[l] .sales: numeric
p[2].sdes: p[n-l].sdes*(l+a[l].grate)
p[3].sales: p[n-l] .sdes*(l+a[l].gra~e)
p[4].sdes: p[n-l].sdes*(l+a[l].gra~e)
p[5].sales: 0.5r(p[n-l] .sdes+p[n-2].sdes)*1.2
p[6].sales: 0.5*(~[n-l].sdes+p[n-2].sales)*l.2

F 6

p[n= l] .sales: numeric
p[2<=n<5].sales: p(n-l].sdest(l+a[l].grate)
p[n>=.!j].sdes: 0.5t(P(n-1].sales+p[n-2].sdes)*1.2

Sl:S2

- n (5 -) p[n-l].sales (l* a-grate) - -) 0.5-(p[n-l] .sales*p[n-21 .sales) -1 -2
ales * a-cogs

ouhead: a - o u h ~ a d
lease: numerlc

Figure 7: A step-wise illustration of the various stages of factoring and synthesis, as they
operate on the p . sales attribute of t he P&L spreadsheet.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Figure 8: Three snapshots of the factoring process. The background window is the original
PLL spreadsheet, in Excell. The foreground window is an excerpt of the spreadsheet's
schema. The middle window - an interim result that the user does not normally see - is
the spreadsheet's processed logical map.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

S1: Let the schema of relation r consist of one or more lines of the form
(x: definition), where x is an attribute name.

(a) If x's definition contains no case structures, rewrite the line as
(r[n].x: definition). t

(b) If x's definition contains lines of the form conditionj +-definitionj: rewrite
the lines as (~[condi t ionj] .~: definitionJ).

S2: For each attribute-references that occurs in the definition part of each line,
use FRL's syntax rules t o rewrite the attribute-references in an estended, no-
defaults syntax. If an attribute-reference becomes r[j].x for some constant j,
rewrite it further as r[$j].x.

Nest, eliminate the header of r from the schema.

1 53: Let m be the cardinality (the number of tuples) of r. I
(a) Replace each line of the form (r[n].x: definition) with a series of m lines

of the form (r[l].x : definition), . . . , (r[m] .x: definition).

(b) Replace each line of the form (r[kl < n < k2].x: definition) with a series
of lip - kl + 1 lines of the form (r[kl].x: definition), . . . , (r[k2 - 11.2:
definition).

(c) Replace each line of the form (r[n 2 k]-x: definition) with a series of
m - k + 1 lines of the form (r[k].x: definition),. . . , (r[m].x: definition).

(d) Replace each line of the form (r[n = i]-x: definition) for some i with a
single line of the form (r[i].x: definition).

S4: If r[i].x is the label of a line, and r[n $ j1.y is a related attribute-reference in
the line's definition (i.e. an attribute-reference whose relation prefix is also
r) , let d = i + j (note: j may be either negative, zero, or positive). For each
such line, rewrite its related attribute-references as r[d].y.

t Notational comment: throughout the algorithm, m, i, j, and d represent numbers,
whereas n is a textual tag, i.e. the fixed character 'n'.

Figure 9: T h e first four steps of t h e synthesis algorithm, which transform a spreadsheet
schema t o a logical map.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-24

S5: Construct the physical spreadsheet map: For each logical map-entry of the form
(r [i] . z : definition) and a matching binding-entry (element of the list' E) of
the form (r[i].x: cell-address), create a physical map-entry of the form (r[i].x:
cell-address, definition).

S 6 : Convert relational references to cell addresses: For each map-entry of the form
(r[i] .x: cell-address, formula), replace formula with formula', where fonnula'
is the same as form~lla, except that each attribute-reference r[i].x that appears
in formula is substituted with the cell-address of the map-entry whose entry-
label is r[i].x.

S7: Add the editorial entries: Merge the list of map-entries produced S1-S7 with
the list of editorial entries From B.

Figure 10: T h e last three steps of t he synthesis algorithm: adding the editorial and binding
components.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

Conventional
Spreadsheet

Spreadsheet

Map

Factoring / Spthesis w
fjj

Base
a Libr

Figure 11: A spreadsheet model and its fouc~omponents. Up arrows represent synthesis;
down arrows factoring.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-24

