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Ratio-Scale Elicit at ion of Subjective Degrees of Support 

Abstract: During the last decade, the computational paradigms known as inflzcence di- 
agrams and belief networks have become to dominate the diagnostic expert systems field. 
Using elaborate collections of nodes and arcs, these representations describe how proposi- 
tions of interest interact with each other through a variety of causal and predictive links. 
The links are parameterized with inexact degrees of support, typically expressed as sub- 
jective conditional probabilities or likelihood ratios. To date, most of the research in this 
area has focused on developing efficient belief-revision calculi to support decision making 
under uncertainty. Taking a different perspective, this paper focuses on the inputs of these 
calculi, i.e. on the human-supplied degrees of support which provide the currency of the 
belief revision process. Traditional methods for eliciting subjective probability functions 
are of little use in rule-based settings, where propositions of interest represent causally re- 
lated and mostly discrete random variables. We describe ratio-scale and graphical methods 
for (i) eliciting degrees of support from human experts in a credible manner, and (ii) trans- 
forming them into the conditional probabilities and likelihood-ratios required by standard 
belief revision algorithms. As a secondary contribution, the paper offers a new graphi- 
cal justification to eigenvector techniques for smoothing subjective answers to pair-wise 
elicitation questions. 
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Int soduct ion 

Diagnostic expert systems are designed to support inference tasks that are inherently inex- 
act: medical diagnosis, mechanical fault-detection, classification of fuzzy sonas images, and 
other problems that involve a mixture of nonnative decision models and informal human 
judgement. In these systems, inference is carried out by traversing chains of rules that link 
a set of prospective hypotheses H (e-g. copier machine malfunctions) to a set of pieces of 
evidence, or observations, E (e.g. error messages) through several layers of intermediate 
propositions (e.g. paper jams and other disorders). Normally, the propositions are arranged 
as a belief network or an influence diagram, as we treat later in the paper. When a body of 
evidence E' E E is known to obtain, the system's "inference enginen attempts to discern a 
subset of hypotheses H' E H which seems to provide the best explanation to 8'. Typically, 
though, the rules that link H and E are non-categorical, describing causal, diapostic, or 
simply correlated relationships. For example, consider the following reasoning chain, taken 
from a medicd diagnosis example: the habit of smoking (a disposition) increases the likeli- 
hood of a coronary heart disease (an hypothesis), which, in turn, is sometimes manifested 
through a swollen ankles symptom (an observation). Note that even though this line of 
reasoning is plausible, it is not categorical; many smokers will not develop heart prob- 
lems, and swollen ankles is not a unique manifestation of a heart disease. Hence, although 
causal information is generally useful, any inference drawn from it must be qualified by 
the impreciseness of the underlying rules and the uncertainty associated with the available 
observations. 

The rule-bases of early diagnostic expert systems, most notably hfycin and prospector 
(Duda & Shortliffe, 198 I), were constructed as forward reasoning architectures, Specifi- 
cdy ,  the rules followed the pattern of "IF a particular observation e; is present, THEV 
conclude hypothesis hj with degree of support d(hjlei),n where the latter parameter was 
typically implemented as a certainty factor (Buchanan and Shortliffe, 1984). The present 
generation of diagnostic systems is quite different in two important respects. First, follow- 
ing results from cognitive psychology and descriptive decision theory, A1 researchers seem 
to agree that backward reasoning - from hypotheses to evidence - is a far more credible 
elicitation technique than forward reasoning - from evidence to hypotheses (Shachter 9t 
Heckerman, 1987). Today, instead of trying to replicate in machine form the cognitive bi- 
ases that characterize the reasoning of human diagnosticians, knowledge engineers attempt 
to uncover and then simulate the "physical" process through which prospective hypotheses 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-29 



cause the manifestation of various observations. The basic ar,(gurnent is that whereas hu- 
man experts are quite good at suggesting causal relationships in their respective domains 
of expertise, they are not nearly as good in performing diagnosis - a cognitive process 
which is mired by such biases as illusionary correlation, c o h a t i o n ,  representativeness, 
and availability (Einhorn & Hogarth, 1987, Kahneman, Slovic, and Tversky, 1982). 

The second important characteristic of contemporary diagnostic systems is that they no 
longer rely on quasi-probabilistic and ad-hoc belief revision calculi. Instead, most of today's 
systems itre inherently probabilistic - using subjective probabilities and Bayesian algorithms 
to represent and combine, respectively, the degrees of support the parameterize the system's 
rules. The renewed interest in Bayesian methods for uncertainty management in A1 systems 
has led to  the development of several computational architectures that are consistent with 
probability theory. Today, the two leading architectures in this field are influence diagrams 
(Howard & blathexm, 1981) and Boyes networks, also known as belief ne twork  (Pearl, 
1986). 

Formally, a belief network is an acyclic, directed graph, consisting of propositional nodes 
and dependency arcs. The network has a dual logical/probabilistic interpretation, as fol- 

d lows. From a logical perspective, the arc x 4 y is normally interpreted as x causes y or 
x ezplains y. From a probabilistic standpoint, the nodes z and y are viewed as discrete 
random variables, and the arc x 2 y codes that y is conditionally dependant on x. The 
'strength' of this association is modeled through the conditional probability P(ylz), which 
is bound to the arc's label d. Since its inception about ten years ago, the belief network 
paradign was implemented in many areas, ranging from sleep disorder analysis to gas tur- 
bine diagnosis to oil price forecasting. Perhaps the largest belief network implementation 
to date has been the QMR (Quick Medical Reference) system (Shsve et al, 1991), an excerpt 
of which is depicted in fiewe 1. Developed by researchers at the University of Pittsburgh, 
Carnegie-Mellon University, and Stanford University, QMR encodes textbook and human- 
supplied knowledge about 600 diseases, 4,000 observations (dispositions, symptoms, lab 
results, and patient data), and 40,000 links between them. 

Automatic reasoning in a belief network begins by clamping a subset of nodes to observed 
values, and then letting a belief revision algorithm propagate their impact on other proposi- 
tions. In the process, the system computes the posterior probabilities of certain propositions 
that are interpreted as hypotheses. The values of these revised "beliefs" are then used to 
direct the system's inference engine to pursue additional information (through consulta- 
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. - 
tion with the user) about promising hypotheses. Although the general task of computing ' 
posterior probabilities in an arbitrary belief network is NP-hard (Cooper, 1987), some net- 
work topologies lend themselves to efficient belief revision algorithms. For example, in the 
case of singly-connected networks (polytrees), there exists belief revision algorithms whose 
run-time is polynomial with the network's size (Pearl, 1986). 

Indeed, most of the research on belief networks to date has focused on developing nonnative 
and heuristic belief revision calculi for a variety of different network topologies. The con- 
sistency and validity of the network's inputs - the human-supplied degrees of support that 
parameterize the network's edges - has received little attention in the A1 literature. The 
research reported in this paper is an attempt to fill in this void by drawing and integrating 
relevant r d t s  from decision theory and cognitive psycholo& In particular, we present a 
new elicitation procedure that enables human experts to uncover subjective degrees of sup- 
port using graphical and comparative terms. The plan of the paper is as follows. Section 2 
gives a formal description of the elicitation problem. Section 3 presents three independent 
ideas that can be used to promote the validity and consistency of human-supplied degrees 
of support. This material sets the stage for sections 4 and 5, which describe a general 
purpose elicitation procedure that can support the construction of influence diagrams and 
belief networks, Section 6 comments on applicability and future research issues. 

RELEVAHT DATA 

DISEASES 

OBSERVATIONS 

Figure 1: An excerpt from QMR-BN - one of the largest belief network implementations 
to date. A belief network is a directed acyclic graph in which nodes represent (mostly 
random) .variabIes and links represent causes or explains relationships. In order to fully 
specify a belief network, each arc of the form x -+ y must be parameterized with the con- 
ditional probability P(y Jx). These probabilities are elicited through an exchange between 
a knowIedge engineer and a domain expert. 
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2 The Problem 

Consider the left side of fiogxre 2, which describes a many-to-many relationship between 
two sets of propositions labeled H = {hl,.. . , and E = {el,. . . , e,). For convenience, 
we refer to  elements of H and E as hypotheses and olseruutions, respectively. Let us 
suppose that the pal of the elicitation procedure is to obtain the conditional probabilities 
that characterize all the possible rules that relate every single proposition in E to every 
single proposition in H, and vice versa. That is, for each observation ei and hypothesis 
hi, we wish to  estimate both P(elhj)  and P ( h j l ~ ) .  For the sake of brevity, we denote the 
collection of these probabilities P, and the triplet < E, H, P > a model Our objective is 
to  describe an elicitation procedure that, given E and H, helps a knowledge engineer elicit 
P from a human expert in a credible way. 

Figure 2: A canonical many-to-many model < E,  H, P > (left side) and a canonical one-to- 
many model < E, h, P > (right side). In both cases, the h7s are interpreted as prospective 
hypotheses and the e7s as observations that are likely to be "caused* by the hypotheses, 
according to the expert whose knowledge the network represents. A key idea in modern 
diagnostic systems is to elicit and construct networks in a forward fashion (from hypotheses 
to observations) and then use ~ a ~ e s i a n  techniques to carry out backward, or "abductive" 
reasoning (from available observations to prospective hypotheses). 
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Our line of attack consists of two stages. First, we describe an elicitation procedure for 
models of the form < E, h, P >, i.e. models that describe a one-to-many relationship 
between a single hypothesis and a set of relevant observations (see right side of figure 
2). Next, we extend the method to deal with many-temany models. It's important to 
note in passing that any belief network can be seen as a modular collection of interacting 
< El H, P > models. For example, the network depicted in figure 1 consists of two layers, 
each being an instance of our notion of a many-to-many modeL Thus, if the elicitation 
problem will receive a satisfactory solution at the single model's level, the same solution 
can be applied et cetera for alI the models that make up a given network. 

For simplicity, we assume for now that all the propositions in question are two-valued, and 
we denote the assertions q is tme and q is false by q and p, respectively. Focusing on the 
right side of figure 2, we interpret h as a possible cause of the e;'s, and we take the model 
to represent a set of inexact rules of the form "h -, e; with degree of support d(e;[h),= 
i = I, . . . , m. Further, we encode d(ei 1 h) a s  the conditional likelihood-ratio d(% 1 h) = 
~ ( e ; l  h)/P(e;lz). Importantly, our choice of degrees of support is free of any semantic 
interpretation. That is, it simply states that the odds of observing ei when h obtains are 
~ ( e ;  1 h)/ ~ ( e ;  lx), irrespective of whether the relationship between the two propositions is 
causal, diagnostic, or simply correlational.' 

If the conditiond likelihood-ratios were credibly available for aIl the observations in ques- 
tion, a belief revision procedure could be used to compute their combined impact on the 
h hypothesis. To illustrate, suppose that a subset of observations were known to ob- 
tain. Without loss of generality, and in order to avoid reindexing, we denote this subset 
E' = {el,. . . k). If the prior odds favoring h on 7; were known to be P(h)/P(X), the 
posterior odds in light of the body of evidence E' could be computed according to the 

. . ratio-form version of Bayes rule, as follows: 

Further, if the n observations are assumed to be ratio-independent with respect to the 
proposition h - an assumption that we treat Iater in the paper - the computation could be 

'To avoid clutter, we use q to refer both to the uninstantiated proposition q as well as to the assertion 
q is true. The distinction between the two references will be clear from the context of the sentence. 
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factored into: 

In the decision theory literature, formula (2)  is sometimes referred to as the Bayesian belief 
revision process - a "rationaln prescription for revising one's belief in a pair of propositions 
when new and relevant evidence is brought to bear. In addition for being a normative 
belief revision prescription that can be easily derived from the axioms of subjective proba- 
bility, formula ( 2 )  has certain extra-probabilistic and qualitative properties that go beyond 
mathematical details. For example, human diagnosticians are prone to many evidence 
presentation and clustering biases, such as primacy, recency, salience, and bundling effects 
(Fischhoff & Beyth-Marom, 1983). In contrast, formula (2) is commutative and associative, 
and therefore it is insensitive to the order and packaging in which the evidence unfolds. 
Therefore, if we let E' stand for the currently available body of evidence, f o d a  ( 2 )  can 
be used to compute the current odds P ( ~ [ E ' ) / P ( ~ I E ' )  recursively, as follows. First, in 
the absence of any relevant evidence, which we denote by E' = 0, the current odds are 
initialized to the prior odds p ( h ) / ~ ( X ) .  When the truth value of a certain observation e; 
becomes available, the current odds are revised, or updated, through the step-wise formula: 

P(h[Ef n ek) - P(e;lh) P(hlEt) - 
P(X[E'  n e;) p(e;[E) P(%[E') 

And E' becomes E' n ek.  As more observations become available, the current odds are 
updated in a similar fashion. Alan Turing, who had a side interest in belief revision models, 
called the ratio P(e;lh)/~(e;lE) the "weight of evidence carried by e; to the assertion h 
is more likely than p(Good, 1950). Note that the neutral element in this multiplicative 
calculus is the observation ej for which P(ejlh) = P(ej[x) .  This observation provides no 
"added valuen in terms of discriminating between h or x. 
Suppose now that some version of formula (3) were embodied in a diagnostic system de- 
signed to carry out rde-based reasoning under uncertainty. In order to construct such a 
system, a knowledge engineer would have to elicit, for each rule of the form h -+ e;, a degree 

P e- h of support of the form a. HOW can such numbers be elicited from human experts in 
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a credible way? The next section presents three independent techniques that address this 
challenge. 

3 Elicit at ion Support Techniques 

To reiterate, we consider a two-valued hypothesis h and n rules of the form h -+ e;, 
i = I,.. . , n. For now, we take the goal of the elicitation procedure to ac uire, through 
interactions with a human expert, a set of likelihood-ratios of the form P ( e ; , j  . 

P(ei lh) z = 1, ..., n. 
We propose three steps that can be used to promote the validity and efficiency of this task: 

To minimize the use of numeric guestimates, we describe a graphical elicitation in- 
terface that combines the logical and probabilistic backdrops of the inference model 
in one representation. 

To help experts overcome certain estimation biases, we propose to use an isotropic 
elicitation procedure in which questions can be turned around, allowing reasoning 
from hypotheses to evidence and vice versa. 

To minimize cognitive strain and to promote consistency, we describe an elicitation 
modality in which the expert is asked to compare, rather than specify, the evidential 
impacts of various propositions. 

Although the above three points are independent of each other, implementing them within 
the same elicitation procedure can lead to synergistic results. The remainder of this section 
discusses the three points in detail, as they unfold in the context of an illustrative diagnostic 
problem. 

A graphical user-interface: Consider a population of "casesn partitioned into cases 
which are characterized by the condition h and cases which are characterized by the 
complementary condition X. Each case can be subjected to a series of individual "testsn 
e;, i = 1, . . . , n that come up either positive or negative. The prevalences of each positive 
test result in the population are given by the parameters P(e;l h) and ~ ( e i l X ) .  Given the 
above nomenclature, what should be the evidential impact of learning that a certain test 
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comes up positive? An inspection of the belief revision process (3) reveals that the admit- 
tance of a new piece of evidence e; can either increase, decrease, or leave the same, the 
current belief in h. More specifically, we have five prototypical cases, as follows: 

e; confirms h if ~ (e ; lh ) /~ (e ; lx )  4cm 
e; supports h if ~ (e ; lh ) /~ (e ; lx )  > l  

impact of q on h = e; is irrelevant to h if ~ ( e i l h ) / ~ ( e ; l x )  = 1 (4) 
e; supports X if ~ (e ; jh ) /~ (e ; lx )  < l 
e; confirms X if ~ (e ; lh ) /~ (e ; lx )  4 - m  

Said otherwise, the conditional likelihood ratios ~ ( e j l  h)/ ~ ( e i  ix) form the currency of the 
belief revision process. One way to "determine* the values of these ratios is to ask a domain 
expert to estimate them directly. Unfortunately, there is no evidence that human beings - 
whether laymen or experts - are capable of translating implicit degrees of support into a 
numeric [-co, co] scale whose neutral point is 1. Therefore, it seems prudent to seek alter- 
native means to express primitive beliefs. We propose a computer graphics technique that 
can be used to elicit degrees of support from humans indirectly, via a certain representation 
that we call d-graphs (d for "diagnosticn). 

The notion of d-graphs is illustrated in figure 3, which depicts the evidential impacts of 
three independent observations on the same hypothesis. In each graph, the exterior left 
(right) bar represents the subset of the population that has (does not have) the condition 
h. The interior left (right) bar represents the h cases (cases who have no h) for whom e; is 
also known to be true, i = 1,2,3. For example, let h be a prostate cancer condition. Figure 
3 (left) describes the diagnostic impact of a supportive observation, e.g. el = urinary 
disorders. Figure 3 (middle) describes the impact of a confirmatory test, e.g. e = positive 
biopsy. Figure 3 (right) describes the problematic nature of a non-categorical test, e.g. 
4 5 PSA 5 20. The clinical characteristics of the Prostate Specific Antigen blood test are 
such that rates above 20 and below 4 are indicative of h and X, respectively. "Greyp PSA 
values in the interval [4,20] are inconclusive. The test is controversial because (i) many 
middle-aged males who take it score in the grey area, and (ii) even though grey scores are 
prevalent in healthy as well as in predisposed patients, they tend to cause a great deal of 
concern to the tested individual, to the extent that some urologists recommend not to take 
the test unless other evidence suggests that the patient is predisposed. We speculate that 
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this anxiety and confusion could be alleviated if the clinical characteristics of the PSA t a t  
were presented to the individual using a d-graph Like representation. 

In generd, d-graphs can play a role in (i) eliciting degrees of support from human experts, 
and in (ii) explaining the results of a diagnostic process to consulting users. Because of 
its dual format, the d-graph forces the expert (or the user) to give equal and simultaneous 
consideration to both h and %; in doing so, it serves to mitigate potential confirmation 
biases. According to the well-known Popperian principle, when one suspects that h is true, 
the most rational course of action is to try to falsify h, i.e. to see4 evidence that supports - 
h (Popper, 1950). Yet in reality, humans are known to behave in an opposite way: a 
suspected h typically leads to a judicious search for confirmatory clues (Hamilton, 1979), 
resulting with an undue suppression of the possibility For example, in the process of 
building "forward reasoning" d e  based systems, experts are routinely asked to specify - 
numbers that describe the &ent to which various clues support various conclusions Iike h 
is true. In the context of a d-graph, this amounts to eliciting only half of the picture. I£ 
the system will not be fed with the degree to which the same observations support x, the 
posterior belief in h will be overestimated during consultations. Since the posterior beliefs - 

are normally used to guide the inference engine to promising directions, the system will 
attempt to pursue reasoning chains that collect additional evidence about h. Ironically, 
the reasoning process might exhibit the very same confirmation bias that characterizes the 
human expert that the system is attempting to simulate. 

Figure 3: A series of d-graphs, describing the clinical characteristics of three different obser- 
vations related to the same hypothesis: supportive evidence (left), confirmatory evidence 
(middle), and non-categorical evidence (right). Note that the transformation between the 
ith d-graph and the conditional likelihood ratio ~ ( e ;  1 h)/ ~ ( e ;  IT) is straightforward. 
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In addition to their balanced format, d-graphs are explicit about the prior likelihood of the 
background hypothesis, which is the ratio between the areas of the two exterior bars. A well 
documented bias - representativeness - is known to systematically cause human experts to 
ignore or discount base rate probabilities and to overestimate the cl inid impact of inexact 
.evidence, especialIy if the evidence is more salient, recent, or interesting, than the back- 
ground information (Tversky & Khaneman, 1974). The spatial arrangement of a d-graph 
can effectively debias this tendency, since the background information (exterior bars) is as 
vivid and explicit as the clinical information (interior bars). The d-graph representation 
packs all this information into one representation, dong with other characteristics such as 
hit-rates, false alarm rates, and type 11 errors (the part of the left exterior bar which is not 
covered by the left interior bar). 

In sum, we believe that d-graphs can play an important role both in building and in ex- 
plaining diagnostic expert systems. First, we foresee a graphical elicitation interface that 
enables experts to express implicit degrees of supports by performing spatial manipulations 
on d-graphs. Second, we foresee a user interface that employs d-graphs to ezplain the clin- 
ical characteristics of various tests (along with. their costs) and the process through which 
newly admitted evidence causes the system to update its beliefs in competing hypotheses. 

Bi-directional elicitation procedures: When eliciting inexact inferential relationships, 
some questions can be easier to answer if you turn them around. To illustrate, suppose 
that e and h stand for the propositions the patient smokes and the patient is predisposed 
to a certain heart condition, respectively. PVhich subjective probability is more credibly 
available from a human expert, P(h1e) or P(e(h)? Several authors addressed this question 
from a cognitive perspective, suggesting that =backward reasoningn and "thinking forward 
in reversen (from hypotheses to evidence) is generally a more effective elicitation modality 
(Shachter & Heckeman, 1987, Einhom & Hogarth, 1987). Although we agree with this 
recommendation when everything else is held equal, we postulate that the direction of the 
elicitation should also depend on the clinical experience of the expert, and, in particular, 
on his ability to retrieve relevant examples from the e and h populations. 

If the expert is a general physician who knows relatively more smokers (e) than patients 
with heart diseases (h), it is probabIy safer to use the smokers population as a reference 
group and go on to assess P(h1e). If a rigid elicitation language will force this expert to 
reason "forward," he will have to resort (in his mind) to the small conditioning sample h, 
thus yielding an unreliable estimate of P(el h). The situation would be quite different if the 
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expert were a cardiologist. in that case, the expert would probably find it easier to assess 
P(elh), due to the large sample of people with heart diseases that he can retrieve fiom his . 

clinical work experience. 

tVe see that the validity of elicited degrees of support is iduenced by two factors: (i) 
availability, and (ii) the Yaw of small numbers" (Tversky and Kahnemas, 1974). The 
availability heuristic leads the expert to focus on the sample of cases which is more salient or 
vivid in his mind. This heuristic would be beneficial only if it coincides with a large sample 
of cases. If the selected background sample is small, the literature indicates that many 
experts will still be willing to use it as a characteristic image of a much larger population 
- a maaifestation of the "law of small numbersn bias. To correct this fallacy, the expert 
should be encouraged to retrieve as many examples as possible from both populations, 
using his clinical experience as well as organizational memories and relevant case histories. 
The larger sample should then be selected as the conditioning assumption. 

Hence, we propose to employ an isotropic elicitation modality that enables knowledge 
engineers and domain experts to reason about the same inference problem using either 
diagnostic (from evidence to hypotheses) or clinical (from hypotheses to evidence) modes 
of reasoning. It is here where the reliance on Bayesian inference methods is particularly 
useful: unlike uni-directional belief cdculi, such as the certainty factors model (Buchanan 
and Shortliffe, 1984) and the theory of evidence (Shafer, 1987), Bayesian methods &ow the 
knowledge engineer to invert and validate elicited probabilities using a normative frame; 
work. tVe711 return to this point later in the paper, when we discuss the notion of a two-way 
elicitation procedure. 

Relative versus absolute elicitation questions: A substantial body of psychometric 
evidence indicates that when expressing physical stimuli like brightness, weight, and dis- 
tance, humans find it easier to use ordinal, rather than cardinal, scales of measurement 
(Stevens, 1959, Stevens & Galanter, 1964, Krantz, 1972). In a typical experiment, most 
subjects displayed considerable errors when asked to specify the aerial distances between 
different cities. At the same time, the subjects were quite good at providing answers such 
as "Cairo is about twice as far away from New York as London is.* In general, the evi- 
dence suggests that people find it easier to gauge physical quantities (as well as priorities) 
using relative and pair-wise judgements. This observation is the hallmark of the analytic . 

hierarchy process ( A H P )  technique for eliciting preferences over multi-at tribute alternatives 
(Saaty, 1980). 
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There are two reasons why Saaty's technique could lend itself to eliciting conditional prob- 
abilities and likelihood ratios as well. From an analytic standpoint, the elicitation of prob- 
abilities is very similar to the elicitation of normalized preferences over uncertain outcomes 
(Savage, 1954). Since the advantages and limitations of Saaty's method for the latter are 
well understood, it seems reasonable, in light of Savage's insight, to try to apply them for 
the former as well. Further, it is unlikely that people are capable of encoding primitive 
beliefs in various propositions using a closed-form, cardinal scale. It seems more prudent 
to attempt to elicit implicit beliefs indirectly, in a "revealedn fashion, using pair-wise and 
perhaps verbal comparisons. 

To illustrate the notion of ratio-scale pairwise comparisons, consider an hypothesis h and 
three relevant observations el, e2, and es. First, we ask the expert to assume that h is true. 
Next, we ask him to compare the likelihoods of the three potential observations in light of 
that information. Suppose that the expert responds that in light of h, el is about twice as 
likely as ez and about three times as likely as e3. Further, the expert says that e2 is about 
twice as likely as e3. Before we go on to describe how this information should be processed, 
we point out that the expert's responses are inconsistent: if el is twice as likely as es and 
three times as likely as e3, e2 must be 1.5 as likely as e3. 

The example illustrates the impreciseness that is likely to mire any subjective, or human- 
supplied, set of inputs. In this particular case, the inconsistency could be resolved in a 
number of different ways, e.g. by setting the third human-supplied ratio to 1.5. However, 
such a "correctionn would amount to tinkering with the genuine data provided by the 
expert. If the expert is a qualified specialist, his inputs must be treated with great care; 
Further, there is absolutely no way to pinpoint the culprit of the inconsistency, which may 
well be any one of the expert's answers (or combinations thereof). 

- .. 
There is a "positiven way to think about this inconsistency, though. First, the inconsis- 
tency is inevitable. Second, because of the algebraic properties of the elicited inputs, the 
inconsistency produces a variance of subjective opinions about each one of the desired ra- 
tios, and these opinions can perhaps be "pooledn into some sort of a "mean opinion." FOP 
example, the value of P(e31 h)/P(el 1 h) can be derived by (1) asking the human to specify 
it directly, (2) inverting the human-supplied value of P(ellh)/P(e31h), and (3) multiply- 
ing the human-supplied values P(e3 / h)/P(ezlh) and P(ezlh)/P(el J h) ,  If the expert were a 
perfect estimator, the three "opinionsn would be identical. What should we do when they 
are not? 
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This is a general probIem that goes beyond the specialized context of this paper. The 
problem arises in any elicitation procedure that asks the same question several times, 
either explicitly or implicitly. In such cases, the expert's answers can be viewed as noisy 
observations that are dispersed around a certain subjective mean, Indeed, several authors 
proposed to use regressive methods to smooth such inputs, e.g. logarithmic least squares 
(De Graan, 1980), and ridge regression (Harker k Vargas, 1987). However, when the 
expert's answers form a square and reciprocal matrix, as we will see shortly, the most 
robust smoothing method is the normalized eigenvector technique proposed by Saaty. The 
next section justifies the technique and adapts it to our probabilistic elicitation context. 

4 One-Way Elicit at ion 

The one-way elicitation problem is defined as follows. Given a single hypothesis h and a 
series of inexact ndes of the form h 4 ei, i = 1, . . . , n, the goal is to obtain a credible esti- 
mate of the degrees of support that parameterize these rules, which we denote by the vector 
P = (P(e,lh), . . . , P(eJh)) (the task of obtaining the vector P = (P(eIlK), . . . , ~ ( ~ 1 7 ; ) )  
follows exactly the same procedure which we now turn to describe). The choice of a vector 
notation reflects our relative approach to the elicitation problem: instead of asking the 
expert to specify P(e;l h) and P(ej 1 h) directly, as in commody done in rule-based settings, 
we ask him to estimate the extent to which e; is more likely to be observed than ej  when 
h obtains, 1 < i < j 5 n. TO illustrate, consider the following excerpt from such an 
elicit ation scenario: 

Suppose that a patient has a certain heart condition, denoted h, and consider 
the following potential observations: 

el: the patient has a chest ache radiating to the left a m  
ez: The patient has swollen ankles 

In your opinion, which observation is more likely in light of h? 

(let us assume that the ezpert answered el) 
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To what extent is el more likely than e2? If you think that they are equally 
likely, enter the number 1. If you think that el is twice as likely as e2, enter the 
number 2. Feel free to enter any number greater than or equaI to 1, using your 
clinical judgement and work experience. 

With n observations, the expert is required to answer no more than $ . n - (n - 1) such 
questions (the rationale for this upper bound will be explained shortly). Note that before 
the conditional likelihood ratio P(ei 1 h)/ P(e j  1 h) is elicited, the expert is asked which of the 
two observations is more likely in light of h. With n observations, the elicitation procedure 
will begin by asking the expert to rank-order the observations in terms of their (perceived) 
decreasing likelihoods in light of h. Without loss of generality, we can use the expert's 
ranking to reindex the observations, so that el and e, represent the most and the least 
likely observation, respectively, in light of h. As a result, (el,. . . , e,) becomes an ordered 
set in which P(e;lh) 2 P(ejlh) if i < j, according to the expert, 

In what follows, we use the symbol P to stand for a subjective estimate of an unknown 
probability, which we denote Po. We record the expert-supplied estimates in an n x n like- 
lihood matrix, denoted A, in which a;,j represents P(eilh)/P(ejlh) - the expert's estimate 
of Po(eilh)/Po(ejlh). For example, suppose that the three rules h 4 e;, i = 1,2,3 were 
parameterized by the following (objective) conditional probabilities2: 

Had we had access to an "ideal expertn whose subjective judgement were perfektly cali- 
brated with reality, we would obtain the A. matrix given in the left side of figure 4. 

'All the vectors that are mentioned in this paper are column vectors. We use row notation as in (5) in 
order to conserve space. 
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Figure 4: A consistent (left) and inconsistent (right) likelihood matrices. Every 
likelihood matrix is square and reciprocal, with aid = l/a;,i. A likelihood matrix 
is said to be consistent if and only if its column vectors are aU proportional to 
each other. In this research, each likelihood matrix is constructed under a fixed 
hypothesis h. 

In a likelihood matrix, each entry a i j  stands for a subjective (expert-supplied) ratio 
P(eilh)/P(eilh). That is, the expert estimates that in light of h, e; is aid more likely 

P(~. l ih)  = 0-8 - 8. to be observed than e;. For example, a*,. = P(e31h) O.l - 

Likelihood matrices have three desirable properties that can be used to structure the elici- 
tation process. First, since aj,i = l/q throughout the matrix, only the entries above the 
diagonal can be elicited, giving a total of i . n (n - 1) pair-wise comparison questions. 
Second, all the elicited entries must be greater than or equal to 1. Third, the relation 
a i j  < must persist for all rows i and columns j < k. The latter two properties are a 
consequence of our preprocessing stage, in which the observations were reindexed according 
to their decreasing (perceived) likelihoods in light of h. Since the three properties constrain 
the inputs 'that go into the matrix, they can be used to test the expert's raw answers at 
the point of elicitation for first-order inconsistency violations. 

Second order inconsistencies occur when the expert's answers induce an inconsistent matrix. 
Formally, we have the following definitions: 
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Definition 1: Two vectors U and V are said to be proportional if U = a - V for some 
scalar a, which we c d  the proportionality constant. 

Definition 2: Two vectors U = (ul,. . . ,u,) and V = (v*,. . .,v,) are said to be ratio- 
equivalent if u;/uj = v;/vj for d 1 5 i, j, 5 n. 

Definition 3: A likelihood matrix is said to be consistent if all its columns are proportional 
to each other. 

It is not difficult to show that two vectors are proportional if and only of they are ratio- 
equivalent. Hence, either definition 1 or 2 is theoretically unnecessary. Yet from a cogni- 
tive standpoint, proportionality is sometimes more salient than ratio-equivalence, and vice 
versa. Therefore, we will use both definitions interchangeably, according to the discussion's 
context. 

Using definition 3, we see by inspection that A. is a consistent matrix. This is not surprising, 
because & represents the opinions of an "ideal expertn whose estimates of the ratio- 
properties of Po are perfectly calibrated with reality. Since alI the colu38n vectors in A. 
are proportional to each other, any one of them can serve as  a credible ratio-estimate of 
Po. Yet in reality, Po is unknown ex-ante, and the very goal of the elicitation procedure 
is to estimate it fram a set of imperfect human inputs. Since such inputs are bound to be 
biased, they induce an inconsistent likelihood matrix - a matrix which contains at least 
two disproportional columns. The source of the inconsistency can be traced to the fact 
that some of the answers to the 4 -n. (n - 1) questions presented to the expert exhibit what 
may be termed "muItiplicative intransitivity." For example, suppose that three entries in 
a certain likelihood matrix A were such that: 

1 ai,j . a j , k  7" ai,k 

This, along with the semantics of the aij's, would imply the nonsensical relationship: 

Clearly, such a result would indicate that one or more of the human-supplied aij's is off- 
target. There seem to be two ways to deal with the problem: the "revision method," 
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and the "smoothing method." The revision method is based on going back to the expert 
and asking him to revise one or more of his original estimates in order to "correct" the 
inconsistency. This approach is deceptively simple, because it breaks down rather quickly 
when n > 3. Further, there reaches a point at which the expert will no longer be able 
or willing to tinker with his estimates, at which stage we would still have to deal with an 
inconsistent matrix. It is at that point that the second method - smoothing - enters the 
picture. 

The smoothing method is based on the pragmatic premise that regardless of the efforts 
of the knowledge engineer and the domain expert, the likelihood matrix is bound to be 
inconsistent. Yet for the smoothing method, the inconsistency is not altogether bad. To 
explain this subtlety, we reiterate that the inconsistency stems from the fact that the 
elicitation procedure involves "too manyn questions. Theoretically, if the goal is to elicit 
all the ratios of the form P(eilh)/P(ejlh), 1 < i, j < n, it is sufficient to elicit the n - 1 
ratios P(e;l h)/ P(ei+l 1 h), i = I, . . . , n - 1. Given this series, any desired ratio of the form 
P(ei 1 h)/ P(ei 1 h) can be computed through a product of some of the ratios in the series. Yet, 
going back to our example, in addition to asking the expert to specify P(el lh)/P(e21h) and 
P(e21 h)/ P(e31 h), we have also asked him to specify P(el lh)/P(eslh). Mathematically, one 
of these questions is redundant, because every one of the three ratios could be computed 
from the other two. By asking the expert to estimate all ratios directly, we open the door 
to inconsistency. In the general case, instead of asking the expert to specify a vector of 
n ratios directly, our series of pair-wise comparisons yields an n x n likelihood matrix. 
Taken together, each column of the matrix can be interpreted as a different ratio-scale 
estimate of the unknown vector Po. The columns may be Qisproportional, but every one 
of them represents genuine information that must be taken into consideration, especially if 
the expert is highly qualified. 

Said otherwise, the smoothing approach views the (inconsistent) likelihood matrix as a col- 
lection of inexact but nonetheless genuine opinions (column vectors) from which a composite 
ratio-scale estimate can be synthesized using a certain algebraic procedure. To illustrate, 
let us return to figure 4 and assume that the expert's above-diagonal judgement al,z7 al,3, 
and a2,3 were +25%, -25% and +50% off the mark compared to their A. counterparts. Such 
an expert would yield the inconsistent matrix A given in the right hand side of figure 4. 
Following standard methods from linear algebra, one way to "summarize" the column vec- 
tors of a square and reciprocal matrix is to compute the normalized eigenvector associated 
with the matrix's m ~ ~ i m a l  eigen value. In the case of A, this eigenvector is: 
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At the end of the paper, we offer an appendix that shows that W is as good a ratio-estimate 
of Po as we can get from A. Now, if this assumption were valid, then had we had some 
ex-ante knowledge of one of the elementary probabilities in the objective Po, we could 
compute the proportionaIity constant between W and Po and then use it to unfold the 
entire estimate of the latter. For example, suppose we knew that Po(e21h) = 0.2. Using 
this information, we compute a = = Si?- 0.195 and proceed as follows: 

The difference between this result and the target vector Po = (0.8,0.2,0.1) stems from 
the imperfect knowledge that A represents. However, considering the biasdeness of the 
expert's original answers, this result is surprisingly good, illustrating the robustness of the 
normalized eigenvector' to data perturbations. 

Of course, the technique's abiLity to construct Po hinges on a-priori knowledge of one of 
the desired probabilities. Anticipating that requirement, we can augment the initial set 
of observations (el,. . . , e,,) with as additional clue, say e*, whose conditional probabil- 
ity Po(e*l h) is known to the expert. For example, in the heart disease scenario, e* can 
stand for the observation the patient is a male, the assumption being that the probability 
Po(malefheart disease) is credibly available to the expert. 

There exist situations, however, in which no prior knowledge will be available about any 
one of the constituent probabilities in Po. In such a case, instead of estimating the vector 
(Po(ellh), . . . , Po(enlh)), an extension of the technique described in this section can be used 
to estimate the likelihood-ratio vector (po(el 1 h) /  p0(el IT), . . . , po(enl h) /  ~~(e,lX)).  Methods 
for estimating such likelihood vectors for dichotomous and multi-valued propositions are 
described in the remainder of the paper. We conclude the present section with a comment 
on verbal and graphical elicitation techniques. 
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Non-numeric elicitation inputs: Up to this point, our approach to the elicitation prob- 
lem was based on the assumption that humans are capable of describing likelihood-ratios 
using numbers. This controversial assumption has been chauenged by many, not the least 
of them is H.R. Haldeman, President Nixon's Chief of Staff. Describing Kissinger7s persis- 
tent concern about a Russian attack on China, Haldeman recalls how "I used to tease him 
about his use of percentages. He would say there was a 60% chance of a Soviet strike on 
China, for example, and I would say: why 60, Henry? Couldn't it be 65% or 58%? (Kotz 
and Stroup, 1983, p. 18). Clearly, Haldeman's point is well taken, and the credibility of 
any numeric measure of intuitive judgement should always be suspect for error. With that 
in mind, it is important to note that the eigenvector method yields a proportional estimate 
that is insensitive to the absolute magnitudes of the expert's inputs, so long as the inputs 
retain certain ratio-scale properties. This observation led Saaty to propose a 9-point scale 
of verbal assessments in which the value 1 corresponds (in our context) to the proposition 
u given h, e; is as likely as ejln and the value 9 corresponds to "given h, e; is a6solutely 

more likely than ej." 

The choice of the 9-points scale of reference is not arbitrary, and can be justified on ana- 
lytical and experimental grounds (Saaty, 1980). Further, Lichtenstein and Newman (1967) 
have shown empirically that verbal descriptions of uncertainty can be mapped quite effec- 
tively on ranges of probabilities. That said, it is important to note that nothing in the 
eigenvector method requires a %point scale. As Harker and Vargas (1987) pointed out, 
u One scale may be appropriate for one application and may not be appropriate for another 
... a different scale could and should be chosen for each application." For example, in 
situations where little is known about a particular set of propositions, a 1 to 5 or even a 
1 to 3 scale could be more credible than a 1 to 9 scale. Clearly, the freedom to modify 
the input scale or use more than one scale in the context of the same problem makes the 
elicitation task more flexible. 

In addition to the numerical and verbal methods, the language of d-graphs (figure 3) can 
also serve as a vehicle for expressing primitive beliefs. Specifically, we foresee a system 
that presents the expert with of a series of d-graphs, one for each observation e;, arranged 
on the same frame of reference (e.g. a single computer screen). Next, the expert is asked 
to simultaneously adjust the relative heights of the interior bars in all the d-graphs. The 
heights of the exterior bars are kept constant, since they reflect the prior odds on h, which 
is fixed across all the ei's. When the expert signals that the data entry has been completed, 
the ratios among the bar heights that he has specified can be fed into a standard likelihood 
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matrix. Since the d-graphs are structured around the h/x dichotomy, the expert will end 
up providing all the inputs that are necessary to compute P(ellh), . . . , P(e,lh) as well as 
~ ( e ~ l x ) ,  . . . , P(e,lx) simultaneously. This will entail the manipulation of two independent 
likelihood matrices, but the detaiIs of the computations will be exactly the same in each 
case. Note in passing that the computations and the matrix notation are completely hidden 
from the expert, although the outputs of the computations can be displayed graphically 
using the d-graphs interface. 

5 Two-way Elicitation 

All the examples that we have discussed thus far were structured as < E, h, P > models 
(right side of figure 2), where subsets of a series of n observations were used to update 
one's belief in a single dichotomous hypothesis. Needless to say, most interesting diagnos- 
tic problems involve multiple hypotheses (left side of figure 2). FOP example, in a lymph 
node pathology case, a human expert attempts to map a subset of n microscopic observa- 
tions from a section of a lymph tissue (obtained through biopsy) onto a set of m classes of 
malignant lymphoma. As it turns out, this classification is one of the most difficult tasks of 
surgical pathology (Henrion, Breese, & Horvitz, 1991). Technically speaking, the problem 
is that every one of the hypotheses can manifest itself through overlapping combinations of 
observations, leading to an alarming number of misdiagnoses, especially by inexperienced 
pathologists (Velez-Garcia et al, 1983). Thus, the ability to augment the clinical findings of 
a practicing pathologist by computing their posterior beliefs (in light of different observa- . 
tions and based on the experience of expert pathologists) is an important decision support 
objective. 
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Formally, we consider a many-to-many model < E, H, P > which describes a set of sela- 
tionships between m hypotheses, labeled H = {hl,.. . , h), and n related observations, 
labeled E = {el,. . . , e,). For the sake of brevity, we introduce the following notation: 

Let us suppose that, given a particular n . n-i model < E, X, P > (where P is unknown), 
we are required to estimates all the conditional likelihood-ratios of types (12) and (13). 
The brute force approach, which involves asking a domain expert to specify all these ratios 
directly, requires a total, of nrn - (nm - 1) questions, one question per ratio. For example, a 
3 x 10 model would entail 870 questions - obviously an unrealistic number, given that the 
model can be merely a s m d  subset in a complex belief network or influence diagram. The 
elicitation procedure that we now turn to describe requires an upper-bound of n (rn -i== 1)  
questions, which, in the 3 x 10 example, entails 40 questions. 

The two-way elicitation procedure makes an extensive use of a construct that we call 
likelihood graphs, or L-graphs for brevity. Formally, we have the following definition: 

Definition 4: Each model < E,  H, P > can be associated with a causal L-graph and a 
diagnostic L-graph, as follows. The causal L-graph consists of a set of nodes, one for 
each subjective probability of type Ei j .  Each two nodes EiTi and E ~ J  may or may not 
be connected, as follows. If the conditional likelihood-ratio Ei,j,k,l is known, the two 
nodes are connected by an arc; Otherwise, the nodes are left unconnected. When the 
arcs set of an L-graph is null, the graph is said to be empty. A diagnostic L-graph is 
exactly the same as a causal L-graph, except that it is built from H-type rather than 
E-type nodes and arcs. 
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C a d  Grapk Diasssuc Graph. 

Fi,gue 5: Three 'snapshotsn from a two-way elicitation process designed to determine 
the P element of a < ( e l ,  ez, e3),  (hl ,  h2, h3),  P > model. The ekitation process begins 
with empty causal and diagnostic L-graphs and terminates when both graphs are fully 
connected. In each graph, the nodes are clustered according to their second index, which 
also determines the cluster number. In the causal (diagnostic) graph, cluster number k 
contains information about the reIative likelihoods of the e;'s (h;'s) under the background 
assump tion that hk ( e k )  is present. 
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To illustrate, consider the L-graph depicted in figure 5-b, which refers to a 3 x 3 model 
in which H = {hl, h2, h3} and E = {el, e2, e3}. The graph contains 9 nodes, one for each 
conditional probability E;,.. The nodes are arranged spatially in clusters, according their 
second index. Some of the nodes are connected by arcs, and the arcs's labels are set to the 
conditional likelihood-ratios associated with their end-nodes. For example, the label of the 
arc that connects E2,1 = P(ezlhl) and E2,2 = P(ezlhz) is E2,1,2,2 = P(ezlhl)/P(ezlh2). The 
special connectivity in this particular example will be discussed shortly. We now turn to 
describe some general properties of L-graphs. 

Definition 5: An L-graph is said to be connected if every two nodes in the graph are 
connected by a path. 

Definition 6: An L-graph is said to  be fully-connected if every two nodes in the graph are 
connected by an arc. 

Definition 7: Let x and y be two connected nodes in an L-graph. The intensity of the 
path between x and y is taken to be the product of all the labels of the arcs along 
the path. 

Lemma 1: If x and y are two connected nodes in an L-graph, then all the paths between 
x and y have the same intensity. 

Lemma 2: If an L-graph is connected, it is also fully-connected. 

Lemma 3: Let Eij and Ei,k be two nodes in a causal L-graph, and let HjVi and Hk,i be 
the two nodes in the respective diagnostic L-graph with their indices reversed. It 
follows that the labels of the arcs (Eij, E;,k) and (Hj,;, are proportional to each 
other. In particular, Ei,j,i,k = Hj,i,k,i . Okjr where Ok,. = P(hk)/P(hj) is the prior 
odds favoring hypothesis hk on hypothesis hj. 

We sketch the proofs as follows. Since the intensity of a directed path is the product of all 
the arc labels along the path (def. ?), we immediately get from the arcs's definition that 
this is a telescopic product. For example, the intensity of the path ((E3,1, El,l), (&,I7 &,I), 

(E2,1, E2,2)7 (E2,2, E3,2)) is: 
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In other words, the topology of a path has no impact on its intensity. Also, the intensity of 
a loop is 1, and thus loops do not change the intensity either. It follows that in an L-graph, 
all the paths that connect the same pair of nodes have the same intensity (lemma 1). Now, 
let E;j  and Ek,l be two arbitrary nodes in a connected L-graph (def. 6 ) .  Since the two 
nodes are connected by a path, we can compute the intensity of that path. This intensity 
will characterize all the paths that connect Ej j  and Ek,[, including the single-step path 
( E  E ) .  Said otherwise, the fact that two nodes are connected by a path implies that 
their respective conditional likelihood-ratio can be computed, and thus that they can be 
connected by an arc (def. 4). It follows that a connected graph is fully-connected (lemma 
2). 

Lemma 3 is the likelihood-ratio version of Bayes rule, stated in the language of L-graphs. 
The proof follows immediately from formulas (2), (12), and (13), and the definition of Oi,j 
in lemma 3. The lemma implies that the causal and diagnostic L-graphs of any given model 
< E, H, P > mirror each other. Specifically, every inter-cluster arc E;,j,;,k in the former is 
proportionally related to an intra-cluster arc Hj,i,k,i in the latter. For example, in figure 
5-b, the cross-triangle circuit that connects E2,1, E2,2, and E2y in the diagnostic graph 
is the dual image of the within-triangle circuit that connects and H3,2 in the 
diagnostic graph. 

Taken together, lemmas 1-3 imply that the L-graphs of a model < E, H, P > provide 
a convenient way to organize the process through which P is elicited from a human ex- 
pert. It's important to note however that neither the expert nor the knowledge engineer 
need ever see these graphs - they are merely a graphical means to explain and study 
the dynamics of the elicitation process. In a nutshell, the process begins by setting up 
the empty causal and diagnostic L-graphs associated with E and H, respectively, leaving 
all the arcs in both graphs unspecified (see figure 5-a, and assume that the arcs on the 
left are not there). Subsequently, when we estimate or compute a particular conditional 
likelihood-ratio, we draw its respective arc in the relevant graph. Therefore, the elicitation 
procedure commences with a pair of empty L-graphs and terminates when both graphs are 
fully-connected. Specifically, we have the following steps: 
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1. Given: an n x m model < E, H, P >, where P is unknown. 

2. Use the elements of E and H to draw empty causal and diagnostic L- 
graphs, respectively; 

3. Using a series of rn one-way elicitation procedures, connect all the nodes 
within each cluster in the causal L-graph; 

4. Using a single one-way elicitation procedure, connect all the nodes within 
one cluster in the diagnostic L-graph; 

5. Connect aIl the nodes in the causal graph; 

6 .  Connect aIl the nodes in the diagnostic graph. 

The remainder of this section demonstrates the procedure in the case of a 3 x 3 model of 
the form < {el,  e,, e3) ,  (h l ,  h2, h3), P >. The extension to n x n models is straightforward. 

The procedure begins by const~ucting the causal and diagnostic graphs of the model, as 
depicted in figure 5-a (the spatid clustering of the nodes according to their second index is 
not necessary, and is done here to promote clarity). In step 2, the knowledge engineer and 
the expert focus on the model's causal graph, considering one cluster of nodes at a time. 
Specificdy, by successively fixing the background hypothesis on the values hi, i = 1, .  . . m ,  
the knowledge engineer administers m one-way elicitation procedures with h; being the 
conditioning proposition. Taken in isolation, each one of these eIicitation procedure is 
precisely the same as the procedure that we have described in section 4. Therefore, when 
step 2 is completed, each cluster k, k = I, . . . , m in the L-graph is characterized by the 
output of its respective one-way elicitation procedure, which can be arranged as a vector 
of the form3: 

Or, using our L-graph notation: 

(E2,k,l,kp E3,k,2,k, - . t E*,k,n-1,k) 

3 ~ n  L-graphs, the term "cluster k" refers to all the nodes Ei ,k  (or Hi,k)  whose second index is k. 

24 
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For any given k, this vector gives the labels of all the arcs that connect all the nodes within 
the kth cluster. Thus, when step 2 is completed, all the nodes within each cluster in the 
causal graph can be connected, leading to the three triangles in fi,pure 5-a. 

In step 3, the knowledge engineer and the expert shift their attention to the model's 
diagnostic graph. Their first action is to select one particular cluster of H nodes. The 
selection rationale should follow the guidelines given in section 3. For example, let ek and 
ej stand for chest ache radiating t o  the lej? a r m  and swollen ankles, respectively. If the 
expert can retrieve from his experience more ek cases than ej cases, the knowledge engineer 
should focus on the kth cluster in the diagnostic graph. In any event, it's important to 
note that any one cluster will do. Having selected one such cluster, the knowledge engineer 
proceeds to administer a diagnostic, or "forward reasoning," elicitation procedure, with ek 
being the conditioning proposition. That is, the questions will follow the format: usuppose 
that a patient suffers from a certain symptom ek. To what extent is hi more likely than 
hi?" Note that even though the direction of the questions is reversed compared to the 
one-way elicitation procedure described in section 4, both procedures follow exactly the 
same structure. Algebraically, the diagnostic procedure (associated with the kth cluster) 
yields a single output vector, as follows: 

Or, using our L-graph notation: 

As we have argued following formula (16), the availability of this vector enables us to 
connect all the nodes in the kth diagnostic cluster. This is illustrated in the right side of 
figure 5-b for k = 2. 

In Stage 4 of the process, and assuming k = 2, we invoke lemma 3 and vector (18) to carry 
out the following calculations: 
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By varying the index i over 1,2,3 and the index j over 2,3,1, formula (19) is applied three 
times, yielding the arc labels E2,1,2,2, J??~,~ ,~ ,~ ,  and E2,3,2,1. Following our graph conventions, 
these labels enable us to construct the across-triangle circuit that connects all the E2,; 
nodes in the left side of fi,gure 5-b, i = 1,2,3. As a result, every two nodes in the diagnostic 
graph become connected by a path. Invoking lemma 2, we proceed to compute the labels 
of all the arcs that connect all the nodes in the diagnostic graph. Said otherwise, the causal 
graph becomes fully connected. 

In step 5, lemma 3 is used in an inverted fashion (and with different indices): now that we 
have computed all the arc labels in the causal graph, we use lemma 3 to compute all the 
(yet unknown) arc labels in the diagnostic graph. As a result, both graphs become fully 
connected. This completes the elicitation procedure. 

We note in closing that the elicitation procedure is somewhat of an overkill, in the sense 
that it produces (in the way of connectivity) more likelihood-ratios than would normally 
be necessary, and some of these ratios are more "interesting" than others. For example, 
inter-cluster ratios like e;,k,j,k = P(e; 1 hk)/P(ej 1 hk) are not particularly useful for most 
belief revision algorithms. At the same time, some intra-cluster ratios such as e;,j,;,k = 
P(e;lhj)/P(eilhk) are very relevant, as they measure the extent to which observation ej 
serves to discriminate between the competing hypotheses hj and hk. These are the famous 
weights of evidence parameters that can be found in the writings of Good (1950), Peirce 
(1956), and Minsky & Selfridge (1961). 

Estimating prior rates: Stages 5 and 6 of the elicitation procedure assume that the 
prior likelihood ratios of the hypotheses are known. In some situations, e.g. when the hi's - - 
represent a set of well-documented diseases, the prevalence of the diseases in the general 
population are available Gom textbook information and field records. In other situations, 
the base-rate ratios will have to be elicited from a domain expert. This can be done through 
an unconditional version of the one-way elicitation procedure described in Section 4. That 
is, the expert will be asked to compare the relative likelihoods of . n - (n - 1) hypotheses, 
forming an unconditional likelihood matrix. The maximal eigenvector of the matrix will 
then be taken to be a ratio-estimate of the desired base-rate likelihood vector. 
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Conclusion 

Our elicitation approach relies heavily on the eigenvector method, the cornerstone of Saa.ty7s 
"Analytic Hierarchy P r o ~ e s s . ~  As Harker and Vargas (1987) put it, the AHP framework 
is designed to cope with intuitive, rational, and irrational judgement, with and without 
certainty. It is thus natural, in our opinion, to attempt to apply it to the problem of 
eIiciting degrees of support, where rational knowledge is often combined with intuitive guts 
feeling and inconsistent judgement. In general, we concur with Fischhoff et a1 (1980) that 
it is inappropriate to "think of a person's opinion about a set of events as existing within 
that person's head in a precise, fixed fashion, just waiting to be measured." Yet asking 
experts to provide numeric degrees of support and then plugging them verbatim into a 
knowledge-base is a common practice among many knowledge engineers. We believe that 
the elicitation problem merits a more rigorous treatment, and this paper provides a step 
in that direction. 

We conclude with some comments on limitations and future research directions. The belief 
revision process that our elicitation methods seek to support is based on several restrictive 
assumptions regarding the probabilistic backdrop of the < E, H, P > model. First, given 
any one hypothesis h E H, any two observations ei ,  ej E E are assumed to be conditionally 
independent with respect to h. Second, the hypotheses set H is assumed to be exhaustive 
and mutually exclusive. Finally, it is implicitly assumed that a "noisy-orn relationship 
exists between H and E. That is, it is assumed that any one hypotheses h E H can cause 
any one of the e E E with probability P(el h). 

The above assumptions are quite restrictive, and trying to relax them is an important chal- 
lenge that goes beyond the scope of this research. &loreover, the reader should understand 
that the assumptions are not a limitation of the elicitation procedures presented in this 
paper; rather, they are inherent in the representations that we seek to support, namely be- 
lief networks and influence diagrams. That said, it is important to note that many real life 
diagnostic problems are characterized by these assumptions, and operational systems that 
were built under them, e.g. Pathfinder (Heckerman, 1991) and QMR-DT (Shwe, 1991),  
were shown to perform extremely well in the field. 

The research program that we have undertaken will not be complete until our elicitation 
procedures will be tested, either in controlled experiments or in the field. To construct a 
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laboratory elicitation experiment, one can expose a group of subjects to many instances 
drawn from a certain < E, H, Po > model (where Po is known to the experimenter but not 
to the subjects), and then go on to elicit P. For example, H can range over the hypotheses 
"no risk," "moderate risk," and "high risk," and E can contain a variety of financial and 
business data about companies that seek commercial loans. Using Po, the experimenter 
can generate (through computer simulation) many examples of "companies" drawn from 
the < E, H > space and present them to the subject, one at a time. At some point, the 
experimenter can stop the training session and proceed to elicit P. By comparing P to 
Po (where the latter is the probability vector that generated the examples presented to 
the subject during training), the experimenter can obtain a measure of external validity 
for a variety of different elicitation techniques. A general methodology for comparing the 
validity of "competing" belief languages was described in Schocken and Wang (1993), and 
we intend to use it in the near future to test the elicitation procedures described in this 
paper. Since these procedures are quite general and "off-the-shelf," we hope that other 
researchers and practitioners will put them to the test in the context of building belief 
networks and influence diagrams. 

Appendix: A Graphical Justification of t h e  Eigenvector Method 

This appendix justifies the mathematical background of the one-way elicitation procedure 
described in section 4. The justification is based on a 3 x 1 model < (el, e2, es), h, P > in 
which a single hypothesis h manifests itself through three relevant observations, or pieces 
of evidence. The P symbol represents a subjective ratio-scale estimate of the "true" prob- 
abilities Po(el 1 h),Po(e21 h), and Po(e3 1 h). In what follows, we'll refer to these probabilities 
through the vector notation Po = (P;, P,2, Pz). In figure 6, this vector is the 3-dimensional 
point Po, Figure 6, which plays a central role in this appendix, appears at the end of the 
paper. 

The goal of the elicitation procedure is to elicit a vector, say P, so that P = a. Po for some 
scalar a. In terms of the figure, the goal is to determine one point - ariy point - that lies 
on the ray that goes through the points (0,0,0) and Po. Said otherwise, the goal of the 
elicitation procedure is to estimate the direction of Po from the origin. 

To help us in this task, we consult a human expert who knows something about the domain 
< E ,  h, P >. After asking the expert to assume that the hypothesis h obtains, we ask him 
to estimate (1) the degree to which el is more likely than e2, (2) the degree to which el is 
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more likely than e3, and (3) the degree to which ez is more likely than e3. The expert's 
responses - P2/Pl, P2/P3 and P3/PI - determine the slopes of the rays marked A, B, and 
C in the figure. Taken together, the three slopes define an infinite series of proportional 
boxes anchored in (O,0, 0). If the expert were a perfect estimator, the far vertex of one 
of these boxes (the vertex which is opposite to the (0,0,0) vertex) would coincide exactly 
with Po, as is the case in the figure, However, if one or more of the human-specified slopes 
were somewhat off target, the far vertex of the box will also be off target with respect to 
Po- 

We note is passing that the case of n = 3 is somewhat deceiving because the number of 
pair-wise comparisons between three objects also happens to be three. In the general case, 
the goal of the elicitation procedure is to simplify the task of estimating an n dimensional 
point by administrating a series of i . n (n - 1) two-dimensional questions; in terms of the 
geometry, the method seeks to pinpoint the direction of a single point in an n-dimensional 
space by drawing rays (lines that extend from the origin) on any one of the space's f -n.(n-1) 
orthogonal planes. 

Now, the slopes that the expert specifies are not independent of each other. For example, 
the slope P2/ Pl can be drawn according to the number that the expert supplied, but it 
can also be drawn according to the product of the expert-supplied'slopes P1/P3 and P3/P2. 
Using this rationale, it can be seen that the expert's answers end up specifying not three - 
slopes, but actually nine slopes, or three "versionsn of the same slope for each one of the 
space's three orthogonal planes. If the expert's estimates were consistent, the three versions 
of each slope would coincide. But this is a very unlikely to happen: in reality, we will end 
up having three different (but hopefully not too different) versions of the rays A, B, and 
C* 

If we plug the expert's answers into a 3 x 3 likelihood matrix, a similar analysis occurs. 
Although the expert is asked to specify only the three entries above the matrix's diagonal, he 
ends up specifying three 3-dimensional vector columns (because the matrix is reciprocal). 
Each one of these vectors can be seen as a different subjective attempt to pinpoint the 
direction of the ray that extends from (O,O, 0) to the elusive target Po. In the figure, these 
vectors are denoted &, &, and &. Taken together, the three vectors define a 3-dimensional 
ellipsoid, or a football, in the (PI: Pz, PJ) space. 

Now, it's important to understand that the holy grail of this process - the point Po - does 
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not exist ex-ante. In other words, it is not an objective probability vector that we are after. 
Rather, we are trying to put the finger on a subjective probability vector that exists in 
the expert's head. The entire objective of the elicitation procedure is to help the expert 
ezpress this vector through a series of 2-dimensional, painvise comparison questions. 

Because of the algebraic properties of the likelihood matrix that these questions induce, 
and because of the Utransitive redundancy" of the questions, the expert ends up producing 
three different estimates of the desired vector (K, x, and G). With that in mind, it is 
reasonable to try to synthesize a point that lies in the general direction of these vectors. 
Graphically, we wish to determine the principle axis of the 3-dimensional ellipsoid defined 
by x, x, and G. As it turns out, this direction is given by the eigenvector associated with 
the largest eigen value that characterizes the three vectors. 

TaKng this graphical analysis one step further, we can also shed light on the extent of 
the inconsistency that the expert displays. If the expert were perfectly consistent, the 
"football" defined by &, x, and would be completely deflated, amounting to a subset 
of the ray defined by (0,0,0) and Po. Said otherwise, the inconsistency of the expert 
'can be measured in terms of the football's volume: the greater the volume, the greater 
the inconsistency. As the figure indicates, this volume is determined by the eigen vectors 
associated with the second and the third largest eigen values associated with K, I$, and 
x. Since the football is not symmetric, some of its (non-primary) axes will be longer than 
others; these axes literdy point at the expert's answers (2-dimensional orthogonal planes) 
that are mostly responsible for the inconsistency. We believe that this analysis provides a 
much better estimate of the expert's inconsistency and ways to resolve it compared to the 
heuristic way in which inconsistency is presently treated in the standard AHP model. 
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Fi,gure 6: A pictorial depiction of the process through which the P element of a < 
{el, e2, e3) ,  {h), P > model is determined. The goal of the elicitation procedure is to con- 
struct a ratio-scale estimate of the point Po = (Pi, Pi, Pi),  which represents the expert's 
implicit beliefs about the relative conditional likelihoods of the three observations. Since 
this n-dimensional point is not readily available (from a cognitive standpoint), the expert 
is asked to "plotn three 2-dimensional rays on the orthogonal planes of the (PI, P2, P.3) 
space. More specifically, the expert is given "three trialsn for each ray. Together, these 
trials determine the vectors K,  &, and V3. The expert perception of Po is then taken to be 
a point which lies on the principle &xis of the ellipsoid that the three vectors specify. The 
direction of this axis is the maximal eigenvector that characterizes the matrix [K, &, GI. 
The expert's inconsistency is given by the volume of the ellipsoid, which is determined by 
the eigenvectors of the second and third largest eigen values of the same matrix. 
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