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Abstract

A Query-Driven Simulation system Cassandra® is described that allows end-users to ask
queries about outcomes of running simulation models written in various simulation languages.
The architecture of Cassandrat, its query language Sim@L, and the implementation of the
system are described. It is argued that Query-Driven Simulations provide a more declarative,
flexible, and interactive approach to asking questions about simulation outcomes than the tra-
ditional approaches of letting the end-users run simulations and gather statistics on the trace
files being produced.
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1 Introduction

Throughout their daily activities, decision makers in various organizations have to anticipate future
events in order to make better decisions and adopt effective strategies for reaching desired goals.
For example in a manufacturing organization, a foreman on the shop floor may want to know
which machines will have a utilization ratio of more than 90% during the next two days, or a
finance manager may want to know what will the average cost of producing jobs of type-A be, or a
salesman needs to know if it is possible to complete job-5 in four days if it is assigned the highest
priority. In the banking industry, a manager may want to know how much cash reserves will the
bank have within a month’s time. In the sea freight industry, a dockyard manager or a customs
official may want to know what cargo will be delivered to his/her dockyard within the next week

and in what quantities.

To deal with these types of questions in complex industrial and organizational settings, simula-

tions are often used [LK91, BC84]. To answer questions such as the ones presented above, summary
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statistics are usually collected in one of the following two ways. In the first approach, summary
statistics are computed inside the simulation program, and the program prints these statistics. In
the second approach, various simulated events are recorded in the trace files, and then statistics are
collected from these trace files by either writing programs in one of the programming languages,
such as Fortran or C, or by using one of the statistical packages, such as SAS [SAS89]. We will call

this traditional approach simulate-and-gather-statistics (SAGS) approach.

Since most of the people who ask questions about future outcomes of business processes in
their organizations, such as a foreman, a salesman, or a bank manager, do not know much about
simulations, programming languages, or statistical packages, they cannot ask ad-hoc questions
about future outcomes of their business processes as the questions arise “on-the-fly.” Instead, they
have to rely on the systems developed by information systems departments that support a fixed
set of “canned” questions. Clearly, this situation is unsatisfactory in many organizations, such as
manufacturing, transportation, or in the military, where various users want to ask many different

questions about simulation outcomes of various models [BT93].

In this paper, we describe the Query Driven Simulations (QQDS) approach, that addresses this
problem. QDS is an approach to simulations in which the user first asks queries about outcomes
of simulations expressed in a declarative query language and then, depending on the query being
asked, appropriate simulations are launched and events necessary to answer the query are recorded
in the trace files. After the simulation runs are completed, the query is evaluated on the trace
files(s) of events recorded by the simulation program. For example, assume an operations manager
at a car manufacturing plant wants to know how many cars will be produced at the plant within
the next week, and assume that he/she asks this query on the simulation model Manufact-Model-
3. According to the QDS approach, it should be determined first what events in the Manufact-
Model-3 model should be traced and for how long in order to answer the query (i.e. the event
Finished(Car, Time) should be traced for a week of simulated time). Then simulations are launched
for that amount of time, the trace file for the event Finished is generated, and the query is answered

based on the information contained in this trace file.

In the paper, we also present a specific QDS system, called Cassandra®™ and describe its
architecture. As part of Cassandra®, we describe the language SimQL for asking queries about
simulation outcomes. We designed SimQL to make it simple enough for a non-technical user to

understand and use it, and powerful enough to be used in complex simulations.

The QDS approach has the following advantages over the SAGS approach:

o Declarativeness. The user can ask a question in a declarative query language and does not




have to know any simulation and statistical packages, or write programs in conventional

programming languages!.

o Flexibility. QDS user can ask any query expressible in the query language of that system.
This is in contrast to the fixed set of “canned” queries supported by the simulation specialist

in the SAGS approach.

e Interactiveness. QDS user can ask queries “on-the-fly” as they arise without any help from a

simulation specialist.

Query languages in the context of simulations were studied before. In [Len93], a database of
simulation models, called a modelbase, was constructed based on the structured modeling approach
[Geo87]. As part of the structured modeling approach. [Len93] uses the query language defined
for this approach by Geoffrion[Geo87]. Although the system supports queries, these queries are
used in a totally different context: they are used for asking questions about the models themselves
(e.g. which models stored in the modelbase are manufacturing models), not about simulation traces

produced by running the models.

In [MW89], Miller and Weyrich developed the SIMODULA system that has its own SQL-like
query language (with object-oriented features added to it) for asking questions about simulations.
Each model has a relation of input parameters and outcomes of previously executed simulations
associated with that model. For example. a banking model may have a BankScenario relation
associated with it that has input parameters. such as number of tellers, mean interarrival rate,
mean service time, and the output parameters, such as throughput and the service time, as its
attributes. If the user wants to ask a question about throughput and average waiting time for the
banking model with input parameters mean interarrival rate being 4.0, mean service time being
6.0 and the number of tellers equal to 2. then SINNODULA checks in the BankScenario relation
if this model has been run before. If it was, it retrieves the answer from relation BankScenario
(values of attributes Throughput and AverageWaitingTime). Otherwise, SIMODULA launches the
simulation with the input parameters retrieved from the query and the rest of them set to defaults.

The authors call this approach “query driven simulations.”

SIMODULA provides a good first approach to asking questions about outcomes of simulations.
However, the work in [MW89] can be expanded in various ways. First of all, SIMODULA queries
do not really drive simulations; they just launch them. Once SIMODULA determines that the

'We can draw a comparison between Query-Driven Simulations and relational query languages such as SQL. As
the relational query languages are much more declarative than the earlier navigational query languages, such as DL/1
[Dat77], so is the QDS approach in comparison with SAGS,
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simulation has to be run, the query does not interact with the model or influence its execution in
any way; only at the end of the run. does the query select the statistics of interest to the user.
Secondly, SIMODULA users cannot ask arbitrary ad-hoc queries about simulation outcomes of
SIMODULA models because the queries are restricted to questions about statistics pre-defined by
the modeler in the schema of the model instance relation (e.g. BankScenario relation). The major
reason for this is that SIMODULA queries are not evaluated against the trace files generated by
simulations but are only limited to the predefined set of statistical outcomes. Thirdly, as related to
the second point, the users can ask queries only about statistical values. They cannot ask questions
of a more general nature dealing with non-single-valued outputs, such as lists of customers who
visited the bank on a certain day, or some of the questions presented at the beginning of this section
(e.g. which machines have a utilization ratios of more than 90%). Finally, SIMODULA lets the
user ask queries only in one query language (extension of SQL) against the models written in one

simulation language (Modula [Wir85]).

In this paper we present a more extensive approach to Query-Driven Simulations by allowing
SimQL queries to drive simulations and not just launch them. We also allow the user to query
simulation traces in an ad-hoc manner instead of letting him/her ask a fixed set of questions on
summary statistics about a single simulation run. Furthermore, we express answers in statistical
terms that require more than a single simulation run to obtain the answer. Finally, we allow a
loose coupling between any database query language and any simulation language as long as trace

files generated by simulation programs conform to a certain standard.

In [Tuz92, Tuz93], the idea of asking queries on simulation traces was proposed, and a SimTL
language was presented. SimTL consists of the simulation and the querying components. The
simulation component is based on a temporal logic programming language [AM89], and the querying
component is based on temporal logic [MP92]. Thus queries about simulation outcomes expressed
in temporal logic are asked about simulations generated by temporal logic programs. This means
that SimTL is a tightly coupled simulation and querying system, in which both components depend

on the formalism of temporal logic.

In this paper, we extend the work of [Tuz92. Tuz93] by integrating an arbitrary temporal query
language with an arbitrary simulation language. Therefore, unlike SimTL, where the interface
between querying and simulating compouents is well-understood and is based on temporal logic,
we have to develop a proper interface between these components in order to achieve independence
between the query and simulation languages. In addition to this interface, we also describe an

architecture that supports query-driven simulations.




We begin our description of the QDS system Cassandrat by informally introducing its query
language component SimQL in Section 2. In Section 3, we formally define the syntax and the
semantics of the language. In Section 4 we describe how QDS system integrates querying and
simulation subcomponents. In Section 5. the architecture of a specific QDS system Cassandra® is

described. Finally, in Section 6 we describe the implementation of the system.

2 Overview of SImQL

SimQL is a language for asking queries about outcomes of simulations. It consists of two subcom-
ponents: the core query language subcomponent.and the shell into which the core query language
is embedded. The core query language subcomponent is the “heart” of SimQL and is used for
asking temporal queries about simulation traces. We have chosen a temporal query language as a
core query language because queries expressed in it are about process evolving over time. In the
Query-Driven Simulation approach, we can ask queries about simulations in any temporal query
language as long as it supports the same data model as the simulation component 2. In this paper,
we selected the temporally ungrouped historical data model [CCT93] as the underlying model for
storing simulation traces and the model for the query language. Therefore, we can use any temporal
query language based on this temporally ungrouped data model, e.g. we can use TQuel [Sno87],
TSQL [NASS], or temporal logic calculus [TC90, CC'T93].

The second subcomponent of SimQL is the shell into which the temporal query language is em-
bedded. This shell provides an interfacc between the querying and simulation parts of Cassandra®t
that integrates the two components into one system. Ior example, we specify in the shell such
information as the simulation model against which the query is asked, the parameters for that
model, for how long simulations should be run, what answer we expect back, i.e. a full relation or
just a number, and various additional information that the simulation component of Cassandra®

needs in order to provide the answer to the query.
Example 1 Consider the following query:
How many parts can be finished in the next 10 hours?

It can be expressed in SimQL as:

2We will discuss this point further in Section 3.




Initialization: Real-time

Type: Event-based

Answer-Semantics: Numeric

Core Query: { COUNT(Part) | within_time (10) Finished(Part) }
Model-Name: Mfec-Model-4

Confidence-coefficient: 90

Error-of-estimation: 10

The core query in this example is
{ COUNT(Part) | within_time (10) Finished(Part) }

It is expressed in temporal logic, where within_time (7°) P is a bounded temporal operator [Koy90,

Tuz92)] specifying that predicate P is sometimes true between now and now + T

Note that this core-query is embedded in the SimQL shell that provides additional information
about the meaning of the query. For example, the parameter Model-Name in the shell specifies
the name of the simulation model, Model-Name = Mfc-Model-4. It tells Cassandra®™ that the

query is asked against the model Mfc-Model-4.

The parameter Initialization = Real-time, specifies that simulations should be done in “real-
time,” i.e. they should start from some initial state of the system for the model Mfe-Model-4.
Alternatively, they could be done “ofl-line,” meaning that the initial state of the system is not
specified, and simulations should be run for some time until, e.g., the steady state is reached, and

only then the query should be evaluated.

The second parameter in the query. Type = Event-based, specifies that the trace file(s) of the
simulation model Mfc-Model-4 must be stored as a historical event relation [Sno87]. In particular,
the trace file of Finished has a single timestamp associated with it. If Type = Event-based
then the simulation trace file(s) are copied into the temporal database without any conversion.
Alternatively, the Type parameter can be “predicate-based,” and this requires conversion from
the event-based to a historical interval relation [Sno87]. This conversion will be described below in
Section 5.6.

The value of the Answer-Semantics parameter in the shell is numeric. It specifies that the
query returns back a single number (the number of finished parts in our case). Alternatively, the
answer-semantics can be non-numeric. In this case, the query returns back a relation. We will
discuss this semantics in Example 2. We have to distinguish between numeric and non-numeric

semantics because the types of answers are different in these two cases as Example 2 will show.

Finally, the parameters Error-of-estimation and Confidence-coefficient specify what should
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the estimation error of the answer be and with what confidence we can provide the answer [MWS90].
In our example, the user wants the estimation error to be within 10% of the mean and the confidence

of the answer should be 90%.

A possible answer to this query can be:

The average number of parts produced within the next 10 hours is 32 + 3, and we can

make this statement with confidence 90%.

In other words, the probability that the answer to the query falls between 29 and 35 parts is 90%.

a

When the user issues a SimQL query, Cassandra™ determines the simulation model to which the
query refers, determines how many simulation runs (/N) are needed to obtain the answer within the
estimates specified by the user (parameters Error-of-estimation and Confidence-coefficient)?,
runs this simulation model for N simulation runs, storing simulation traces in trace files, converts
the resulting simulation trace files into the temporal database format according to the Type pa-
rameter, issues the temporal query against each simulation trace, and statistically analyses the

answers to these queries.

We considered the first example of a SimQL query. and described some of the shell parameters.
It turns out that there are other parameters in the query that were taken as default parameters.
For example, TIME is one of such parameters. If not specified, it is “extracted” from the query
(10 hours in our case). If it is present then we assume that the time domain in the temporal logic

operators appearing in the query is restricted by this parameter, as the next example shows.
Example 2 Consider the following question that a foreman may want to ask:
What are the parts that will always stay in Cell-1 for the next 5 hours?

This query can be expressed in SimQL as

3We will discuss the process of estimating N in Section 5.




Initialization: - Real-time

Type: Predicate-based

Time: 5 hours

Answer-Semantics: Relational

Core-query: {Part | always Visits(Part, C1)}
Model-Name: Mfe-Model-2

Parameters: number_of_cells = 5, job_arrival_rate = 10
Confidence-coefficient: 95

Error-of-estimation: 10

Number-of-answers: 2

The core query in this example is

{Part | always Visits(Part,C1)}
where always P is a temporal necessity operator that is true now if P is always true in the future
[MP92]. Note that the core query is unbounded in the sense that we need to know the values of
the Visits predicate at all the (arbitrarily far away) points in the future to evaluate its value at
present. To solve this problem, we specify the Time parameter in the shell. The Time parameter
restricts the temporal domain to the bounded set of times (up to 5 hours from now), and the

temporal operators are evaluated on {hat domain.

This query has additional parameters that did not appear in the previous example since
default values were assumed for them in Example 1. One of these parameters is Parameters
that specifies the parameters passed to the simulation model specified in the query. For example,
number_of _cells = 5 and job_arrival rate = 10 mean that these parameters are passed to the

Mfc-Model-2 model.

The Answer-semantics parameter in the query in this example has relational as its value.
This means that the query returns relations as its answer. Relational is one example of non-
numeric type of the Answer-semantics parameter, the other type being tuple. Both values
of the non-numeric type return relations as answers to SimQL queries. However, there are some
differences between these two values. We will discuss these differences when we describe the tuple

value of the Answer-semantics parameter in Example 3.

The Type parameter has value predicate-based. This means that the relations in the core-
query are predicates with two timestamp attributes, begin-time and end-time (unlike events that
have only one timestamp attribute). LFor example, predicate Visits(Part,Cell) has two times
associated with it i.e., when a part begins and ends its visit to a cell. Finally, the parameter
Number-of-answers specifies the number of the most likely answers the user wants specified

in the order of decreasing probabilities of these answers. This parameter can appear only in the




SimQL queries that have non-numeric values in the Answer-semantics parameter.

A possible answer to the query from this example can be

Most likely, parts PY346, PY378, and PZ216 will always be in Cell-1 within the next five
hours; the probability of this is 24% =+ 2%, and we make this statement with confidence
95%. The second most likely answer is that parts PZ289 and PY378 will always be in
Cell-1 within the next five hours; the probability of this is 21% + 2%, and we make this

statement with confidence 95%.

The query returns two most likely answers because the parameter Number-of-answers s 2 in this
case. Furthermore, the answers are returned in the decreasing order of their average probability

estimates.

Note that the answer to this query is different from the answer to the query in Example 1.
This query returns the relation that is the most likely answer to the query and an estimation of the
probability of that answer (e.g. probability estimate is 24% + 2%). In contrast to this, the answer
to the query with the numeric value of the Answer-semantics parameter returns the average
estimate of the value of the numeric parameter and the estimation error for this value (32 & 3 parts

in that example).
a
In Example 2, we considered the relational value of the Answer-semantics parameter. This

value directs Cassandra®t to return the most likely answer(s) to the query. However, the user may

sometimes want a different kind of the answer. as the following example shows.

Example 3

Consider the query

How many days would it take to complete order number JC-243 by each of the three

manufacturing plants (PL-1, PL-2. PL3)%?

The relational semantics would return a certain answer, e.g. { (PL-1, 10days), (PL-2,
14days), (PL-3, 12days) } and would assign a probability estimate for the whole relation, e.g.
probability 26% + 2% that the above relation is the answer. However, we may need a different

answer. We may want to know probability estimates for each plant separately, e.g., { (PL-1,

“We assume that it should not take more than 30 days to complete the order in all 3 plants.

9
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10days) with probability 23 + 2%, (PL-2, 14days) with probability 34 + 3%, (PL-3, 12days)
with probability 21 + 2% }.

To accommodate for this type of answer, we provide the tuple value for the Answer-semantics

parameter, as the following SimQL query shows

Type: Event-based
Time: 30 days
Answer-Semantics: Tuple
Core-query: { Plant, Days | sometimes Completed(Order,Plant,Days) and
Order = JC-243 and (Plant = PL-1 or Plant = PL-2 or Plant = PL-3) }
Model-Name: Mfc-Model-6 '

(]

There are two additional issues related to the process of interaction between SimQL queries
and simulations. First, there is a model management issue [Bla92]. Cassandrat must store a set of
simulation models against which the user can ask queries. For instance, in Example 1, the query
was issued against the manufacturing model Mfc-Model-4, in Example 2 against model Mfc-Model-
2 and in Example 3 against model Mfc-Model-6. Therefore, Cassandra™ must store, retrieve and

update various models. We will discuss this issue further in Section 5.3.

Second, different models in the modelbase can be written in different simulation languages. For
example, Mfc-Model-2 can be written in MODSIM [BDMR90], Mfe-Model-4 in Simscript [Con87],
and Bank-Model-12 in Simkit [Int85]. As was stated already in the introduction, one of the im-
portant advantages of Cassandra™ is that it can support any temporal query language and any
simulation language as long as the two agree on the data model (so that temporal queries can be

asked against the corresponding traces)’.

The next example shows that SimQL queries can be asked not only about the future but also

about the past®, and simultaneously about the past and the future.

Example 4 How many parts will be produced this month, assuming that now is September 15.

®The only convention is that the trace files generated by programs written in different simulation languages must
have a certain format. The structure of this format will be discussed in Section 5.5.

$To simplify the presentation, we assume that the present is a special case of the past throughout the paper. The
past and the present are grouped together since in both cases we know the state of the system and do not have to do
simulations to answer the queries about the past and/or the present (just do the retrieval from the database).
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Initialization: Real-time

Type: Event-based

Answer-Semantics: Numeric

Time: Combined(Past(15), Future(15))

Core-query: { COUNT(Part) | within_time (15days) Finished(Part)}
Model-Name: Mfce-Model-1

Note that the Time parameter in the query indicates that the simulation model Mfc-Model-1
should be run for 15 days and then the simulation results should be combined with the history of
relation Finished over the past 15 days’. Finally. the core query is evaluated on the combined

relation that has the lifespan of 30 days.

The next example shows how SimQIL queries can be used in the experimental design.

Example 5 How many customers will be serviced in the bank per day if we vary the number of

tellers between 5 and 87

Initialization: Off-line(Steady-state)

Type: Predicate-hased

Answer-Semantics: Numeric

Time: 1 day

Core-query: {COUNT(Customer) | within_time (1day) Serviced(Customer,Teller)}
Model-Name: Bank-Model-7

Model-parameter: number_of_tellers = 5..8

Confidence-coefficient: 95

Error-of-estimation: 10

This query is called a range query because it gives rise to four individual queries, one query for
each number of tellers (5, 6, 7, and 8) specified in the Model-parameter parameter. As a result

of this, SimQL returns four different answers to the user. one answer per one value of parameter.

Also note that this is an off-line query. This means that simulations are run initially until
Bank-Model-7 reaches a steady state [LK91]. Only after that, simulations will be run for one day

of simulated time and traces will be generated starting from that time.

a

In this section we informally introduced the language SimQL through a series of examples. In

the next section, we formally define the syntax and the semantics of SimQL.

"The historical data can be obtained by gathering the transactional real-time data about all the events and
activities happening in the enterprise, as is done in [FDJGT92]. and then processing this data and storing it in the
historical relational database format.

11




3 Formal Description of SimQL

We begin the formal description of SimQL with the specification of its syntax. In Section 3.2, we

describe: the semantics of the language.

3.1 Syntax of SimQL queries

The BNF grammar for SimQL is presented in Figure 1. We assume that entities value, number,
INTEGER, REAL, and STRING are terminal symbols, and we do not decompose them any further. We
explained most of the SimQL’s features informally in Section 2 already. Therefore, we will briefly

describe some of the most important parts of SimQL that received less attention in Section 2.

We start with the shell parameters. First each parameter in the shell has a default value.
The default values for the parameters in Figure 1 are italicized. Second, the core query can be
expressed in any temporally ungrouped historical query language [CCT93]. In Section 2, examples
were presented in temporal logic calculus that was described in [Tuz92]. However, we could have
done it in any other temporally ungrouped query language [CCT93], such as TQuel [Sno87] or
TSQL [NAS8S]®. Third, as Figure 1 shows. the off-line value of the Initialization parameter can be
Steady-state, Zero, or Time = number. This means that the initial state of the system from which
simulations begin their executions is obtained as follows. If the value is “Steady-state” then the
initial state is obtained by running simulations until the steady state is reached. This steady state
serves as the initial state for simulations. This is the standard approach often taken in simulations
[LK91]. If the value is “Zero” then the initial state is obtained by setting all the values of all the
parameters to zero. For example, in a banking application. we can start simulations by assuming
that the bank just opened, and its brauches have no customers yet. If the value is “Time = ¢”
then the initial state is obtained by ruunning simulations for time ¢ and taking that state as the
initial state. Fourth, the Time parameter has values “future,” “past,” and “combined.” For the
“future” and “combined” values of the Time parameter, simulations are launched as described in
Section 2. If the parameter has the value “past™ then the query is evaluated on the past history of
the database, and most of the other parameters are not applicable in this case. The only parameters

that can be used in this case besides the Core-query parameter are Time and Model-name.

We next describe the syntax of the core queries from TFigure 1. As we said already, any

temporally ungrouped query language can be used as a core query language. Since examples of

8 Although a core query can be expressed in any of these query langunages, it is an entirely different matter how
Cassandrat can accommodate different DBMScs that support these query langunages. We will address this question
is Section 6.
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queries :

initialization :
off-line-type :

type :

answer-semantics :

non-numeric :

confidence-coefficient :

error-of-estimation :
number-of-answers :

time :

simple query:

model-name :
model-parameters :
value :

number :

range :

[initialization][type][answer-semantics] [time] simple-query
[model-name] [model-parameters]

[error-of-estimation] [confidence-coefficient]

[number-of-answers]

Initialization: Off-line ( off-line-type ) | Initialization: Real-time
Steady-statc | Zero | Time = number

Type: Event-based | Type: Predicate-based

Answer-Semantics: Nuneric |
Answer-Semantics: non-numeric

Tuple | Relational
Confidence-Coefficient: number
Error-of-estimation: number
Number-of-answers: number

Time: Past(range) | Time: [Future] (range) |
Time: Combined(Past(range), Future(range))

Core-Query:
< Expressed in any temporal query language >

STRING

Model-parameter: naime = range {. name = range}
INTEGER | REAL | STRING

INTEGER | REAL

INTEGER..INTEGER STEP INTEGER | INTEGER

Figure 1: BNF Grammar of SimQL

13
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core queries in Section 2 were described in temporal logic calculus, we will use this calculus as the
core query language in the paper. Furthermore, it also does not matter what kind of temporal logic

is used in this calculus, since various types of temporal logics can be incorporated into Cassandrat.

Temporal logic is obtained from first-order logic by adding various temporal operators to
it. The most commonly used temporal operators are the future operators sometimes_in_the_-
future (o), always_in_the_future (0), next (o), until and their past “mirror” images some-
times_in_the_past (#), always_in_the_past (m). previous (), and since®. Besides these eight
standard operators, other temporal operators can be defined, such as before, after, while [Kro87],
and bounded necessity, for_time (T) (Or), and possibility, within_time (T) (o), operators
[Tuz92]. The meaning of future operators is defined in Fig. 2. The meaning of past “mirror”
images of these operators is defined similarly to the future operators except time is referenced only
in the past. Kroger [Kro87] shows how temporal operators before, after, and while can be ex-
pressed in terms of the operators until and since [KroS87]. Furthermore, it easily follows from the
expressive completeness of the temporal logic (7S [IKam68] for the discrete or continuous model of
time, that the operators of bounded necessity and possibility can also be expressed in terms of the

until, since, next, and previous operators for these models of time.

The following example illustrates the use of temporal logic.

Example 6 The statement

If a person is promoted from the Associate to the Full Professor he/she cannot be

demoted back in the future to the rank of Associate Professor at the same school.

can be expressed in temporal logic as

FNote that the operators ¢ and [0 can be derived from o and until; and ¢ and B from ® and since [MP92]. Also
note that if we consider operators next and previous then time must be discrete. Alternatively, we can remove
these operators and consider the continuous model of time.

[JA  is true now if A is always true in the future (necessity)

oA is true now if A is sometimes truc in the future (possibility)

oA is true now if A is true at the next moment of time (next)

[JrA s true now if A is always true within the next 7' time moments (bounded necessity)

orA is true now if A is sometimes true within the next 7' time moments (bounded
possibility)

Figure 2: Temporal Logic Operators
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& EMPLOY (Name, School, Associale_Prof) A EM PLOY (Name, School, Full_Prof) —
o~EMPLOY (N ame, School, Associatc _Prof)

or using a different syntax as

IF sometimes_in_the_past EMPLOY L'IX(Name, School, Associate_Prof) and EMPLOYEE(Name,
School, Full_Prof) THEN always_in_the_future not EMPLOYEE(Name, School, Associate_Prof)

O

A temporal logic query is an expression of the form

(X5 Xn | (X000 Vo))

where ¢ is a predicate temporal logic formula in the language just described containing free variables
Xi...X,. The answer to this query consists of all the tuples X;...X, that make the formula

¢(X1,...,Xy) true. Core queries in Examples 1 - 5 provide examples of temporal logic queries.

3.2 Semantics of SImQL queries

In this section we will explain what an “answer™ to a SimQL query means. Recall that in Exam-
ples 1, 2 and 3 the answer to the query is defined in statistical terms, and that it is necessary to do
several simulation runs to produce that answer. In order to define semantics of queries for multiple
simulation runs, we first have to explain what tlie answer to a query means for a single simulation

run.

3.2.1 Semantics of a Core Query for a Single Simulation Run

A SimQL query on a single simulation run is evaluated as follows. As will be explained in Sec-
tion 5.5, a single simulation run generates a trace file that contains occurrences of the events traced
by the simulation program. After that. this simulation trace file is converted into a temporal
database containing one temporal relation per each event being traced. Furthermore, all the tem-
poral predicates referred to in the core query must appear in this temporal database. Then the
core query is evaluated on this temporal database according to the semantics of the language in
which the core query is expressed. In particular, if it is expressed in temporal calculus then it is
evaluated according to the semantics of that calculus [TC'90, CCT93]. This semantics assumes that

the temporal database forms a temporal siructurc [KroS7] for the temporal logic formula, and then
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model checking is done against this temporal structure, i.e. the truth value of the formula at the

present moment of time is evaluated in terms of this temporal structure.

For instance, consider the query from Example 1. The execution of simulation model Mfc-
Model-4 specified in that query results in the generation of the trace file containing all the occur-
rences of the event Finished(Part) that happen within 10 hours of simulated time from now. For
example, some events in this trace file may be { Finished(P3, 10:23), Finished(P6, 10:47),
Finished(P8, 11:13) }. Since the type of the query is event-based, events are moved from the
simulation trace file into a temporal database without any additional conversion. Let FINISHED be

the temporal relation storing these events. Then the core query
{ COUNT(Part) | within_time (10 hours) Finished(Part) }

is evaluated on the temporal relation FINISHED, and the result is a single number equal to the

number of finished parts.

We want to point out one caveat in this evaluation process within the context of query driven
simulations. When the user specifies the TIME parameter in the query shell, it means that the
temporal domain for the core query is restricted to the times specified by the user. For example, if
the parameter is TIME = 10hours, and it is 11 a.m. on 10/12/93 now, then the temporal domain
is from 11 a.m. 10/12/93 to 9 p.m. 10/12/93 for the core query in this example, and all the

temporal operators in the query are evaluated for this domain.

3.2.2 Semantics of SimQL Queries for Multiple Simulation Runs

Once we know the answer to a SimQL query for a single simulation run, we can explain the semantics
of the query for multiple simulation runs. However. as we mentioned before, we have to distinguish
between the two cases when the core query returns a numeric and when it returns a non-numeric

answer because the answers for multiple runs are quite different in these two cases.

Numeric Semantics of Answers. In this case. a query returns a number per a single simulation
run, and thus multiple simulation runs generate sets of numbers, one number per run. Also, some
of these numbers may be repeated in the set. For instance, assume we do five simulation runs for
the query from Example 1 and assume we get the answers { 18, 20, 19, 18, 19 } for these runs. To
determine the answer to a “numeric™ query, we assume that this answer is normally distributed.
Then we estimate the mean and variance of this normal distribution from the sample of answers to
individual runs and determine the confidence intcreal [N'WS90] for the average answer based on the

confidence coefficient specified in the query. Il this confidence interval has an error of estimations
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not greater than the one specified by the user in the query, we stop the simulations. If not, we
increase the number of simulations to be run in order to get the confidence interval within the

imits and run that many simulations again.
limits and that y lations ag

Therefore, the semantics of a SimQl. query for the numeric type of an answer is defined by an
estimate of the average value of the answer, by the error of estimation and the confidence coefficient
specified in the query. For example, if the mean value of the number of parts that will be finished
within the next 10 hours is 20, the estimation error is 15%, and the probability that this number
is between 17 and 23 is 95% then the answer that Cassandra™® returns to the user who asked this

query is

The average number of parts produced within the next 10 hours is 20 + 3, and we can

make this statement with confidence 95%.

Non-Numeric Semantics of Answers. In this case, the query returns a relation, and not a
single number!®. Since we consider relations instead of numbers, we cannot make statements about
averages for these relations. Instead, we want to determine which answers are the most likely ones.
However, there are two ways of doing this. The first alternative is to determine which answer, as a
relation, is the most likely one. This alternative can be selected by specifying Answer-semantics
= relational in the query. The other choice is to determine which tuples in the answer are the
most likely ones. This alternative can be selected by specifving Answer-semantics = tuple. We
describe relational and tuple semantics ol answers now. assuming that the parameter Number-of-

answers in the query is equal to N.

If relational semantics is selected in the query then we compute frequencies for each relation
returned as an answer for all the simulation runs. In this case we treat each answer as an alternative
outcome of simulations and want to know the most probable outcomes. For instance, assume that
we made five simulation runs for the query from Example 2 “what are the parts that will always
stay in Cell-1 for the neat 5 hours,” and assuimne we get the frequencies for each of the resulting

answers as shown in Figure 3.

As we increase the number of simulation runs. the distribution of the estimate of the frequencies
of each simulation outcome converges to a normal distribution[MWS90]. Then our goal is to
estimate N largest frequencies based on the parameters error-of-estimation and confidence

coefficient specified in the query.

1%0f course, the relation can also consist of a single number in the degenerate case. For example, we could specify
Answer-Semantics = Relational for the query in Example 1. Iowever. if we did so, we could not talk about an
average number of parts produced in 10 hours.




| ANSWER | FREQUENCY |

{PY346, PY378, PZ216} 0.4
{PY346. PZ216} 0.2
{PUG29, PY378, PZ216} 0.4

Figure 3: Frequencies of Different Answers for the Query From Example 2.

The semantics of a SimQL query for the relational type of an answer is defined by N relations
having N largest frequencies in this distribution (based on the estimation of their means), i.e. the
query returns the first NV most likely answers. If N = 1 then the query returns a most likely answer.
If there is more than one most likely answer then either all of them can be returned, or one of them
selected at random. In our example, either both most likely answers, { PY346, PY378, PZ216 }
and {PUG29, PY378, PZ216}, having frequency 0.4. or one of them chosen at random is returned
if relational semantics is selected. We assume that N = 1 as the default value for the relational

semantics of answers.

If tuple semantics is selected in the query, then we compute frequency of occurrence of each
tuple in the set of answers. In other words. we want to know the chance of each tuple belonging
to the answer. For example, if we made A" simulation runs. and the tuple (aq,...,a,) occurred
in answers for £ runs, then the frequency of (ay.....a,) is ﬁ Then the semantics of a SimQL
query for the tuple type of an answer is defined by the first N tuples having the highest frequencies.
Furthermore the default value for the parameter Number-of-answers is All, i.e. the user wants
to know frequencies of occurrence of all of the tuples in the answers. For example, if five simulation
runs produce answers as presented in Figure 3. then the answer to the query from Example 2 based
on the tuple semantics is shown in Figure 4 for Number-of-answers = All. In other words, the
tuple semantics for this query specifies the chance various parts will always stay in Cell-1 for the

next 5 hours.

In summary, we showed how the same non-numeric query can have two different answers
depending on whether the semantics is relational or tuple-based. The two examples presented
above show that both semantics may be needed in practice. and that it is up to the user to select

the semantics he or she wants.

Once we know the semantics of answers for SimQL queries, our next task is to determine the
number of simulation runs necessary to answer a query. We describe how this number is obtained

in Section 5 when we present the query c¢valuation strategy of Cassandra®.
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TUPLE | FREQUENCY
P7216 100%
PY378 R0%
PY346 60%
PUG29 20%

Figure 4: A Sample Tuple Semantics Answer

4 Query Driven Simulation

As explained in the introduction, Query Driven Simulations (QDS) is an approach to simulations
in which the user first asks queries about outcomes of simulations and then, depending on the
query being asked, appropriate simulations are launched. and events necessary to answer the query
are recorded in the trace files. After simulations are finished, the query expressed by the user is

evaluated on the trace files(s) being gencrated by simulations.

In Sections 1 and 2 we showed the kind of questions that people ask about future outcomes of
business process in organizations. Currently. to answer such questions, users rely on systems devel-
oped by the information systems departments that support a fixed set of questions, one program
handling only a few questions (only a single question in the worst-case scenario). This “program-per-
question™ approach can be satisfactory when users have few questions. However in other situations,
decision makers might have very many questions of interest. and it makes a-program-per-question

approach either impossible or very costly.

The situation becomes even more difficult when an organization has multiple simulation models
since a program has to be written per each question per each model in the worst-case scenario. For
example, if decision makers want to ask 500 different questions against 20 different manufacturing
models then this means that one may have to write 10.000 programs in the worst case that handle

these questions.

This discussion suggests the types of applications wlere QDS systems, and Cassandra® in
particular, are most useful. These applications can be measured in terms of two dimensions: how
many models are there in the modelbase and how many questions different users of a QDS system

want to ask about these models.

The best types of applications are those where users want to ask many queries about various

types of models since in this case the alternative program-per-question approach is the most ex-
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Models
Few Many

Few [air Good

Queries

Many | Good | Excellent

Table 1: Applicability of Query-Driven Simulations to Different Types of Applications.

pensive. The worst application is when there are few models and the users want to ask only few
questions about simulation results since in this case the program-per-question approach is feasible.

This discussion leads to the following characterization of the QDS applications presented in Table 1.

5 Architecture of Cassandra™

The architecture of the Cassandra® system that supports query-driven simulations is described in
Figure 5. We describe how it works from the time the user submits a query to the Cassandra™

system until it returns the final answer back to the user.

When the user submits a query to (‘assandra® it is passed to the interpreter. The interpreter
parses the query and checks for syntactic errors. If no errors occur, the interpreter then passes the
query to the controller. The controller determines the query type, i.e. past, future, or combined.
Based on the query type, it decides if simulations have to be run in case of future and combined
queries, or if a simple database retrieval has to be made in case the query is about the past. The
controller determines the name of the model for the query based on the Model-name parameter
and checks the modelbase, containing the collection of various simulation models, to see if this
model exists. If the model exists and the query is about the past. the controller accesses the past

history for the model and evaluates the query against its past history.

If the query is about the future the default simulation parameters are retrieved for the model
from the modelbase. Some of these default parameters are over-written by the parameters specified
by the user in the Parameters clause of the SimQL query. If the query is “combined” the two

processing methods (about the past and [uture) are combined.

In order to explain how Cassandra®™ processes a query for a given simulation model, we have

to explain the following points. First. we have 1o explain how Cassandrat determines the number
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Interpreter for the query language

Parameters
query fype

Parameters

Manager

stantiated models

Simulation parameters

Statistical Controller Trace parameters

Analyser

Simulator
Interface

Simulator

[ Query Processor

[ Query optimizer ]

Initializer

Historical
database

[ Simulation/DB ]‘ Simulation Trace

l Converter j

Figure 5: Architecture of Cassandra™
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of simulation runs. Secondly, we have 1o explain how Cassandra™ processes one individual run.
Finally, we have to explain how answers to queries for individual runs are combined together and
are statistically analyzed. We first describe the second part, i.e. how Cassandrat answers a query

for a single simulation run.

As a first step towards answering a query on a single simulation run, the simulation model
specified in the query is instantiated with the input parameters. Some of these parameters are taken
as default values from the modelbase and others from the query itself. Also, the simulation model
is initialized with the initialization information as will be described in Section 5.4. Furthermore,
the query passes the information to the simulation model about the events the model should trace.

We will describe this further in Section 5.10.

Once the simulation model is initialized. the actual simulation is launched. During the simu-
lation process, the simulation program writes various events that the query asked it to trace into
the trace files, one file per one event. lor example as we pointed out already in Section 3.2,
various occurrences of event FINISIHIED for the query from Example 1 are recorded into the
trace file FINISHED that may have the cvents { Finished(P3, 10:23), Finished(P6, 10:47),
Finished(P8, 11:13) } recorded in it.

After that, the trace files containing events are converted into the temporal database relations.
If Type parameter in the query is “event-based™ then the conversion process is simple and is done
on a record-by-record basis: one event in the trace file generates the corresponding record in the
temporal relation. If Type parameter in the query is “predicate-based” then we have to convert
events into predicates using conversiou routines stored in the modelbase. After the conversion
process, the trace files are stored in the temporally ungrouped historical database format [CCT93].
If the query is of the type “combined™ then Cassandra® merges the past history of predicates
and/or events with the simulation traces converted to the database form. After that, the core
query is evaluated on the temporal database. We will describe the details of this process below.

This completes the description of how a SimQL query is evaluated on a single simulation run.

Another important task for the controller is to determine the number of simulations to be
run if the query is about the future. To do this we start with an initial set of simulation runs,
run them and see if the answer satisfies the estimation error and confidence level specified in the
query. If it does not, the number of runs is increased. and the process continues until the answer
satisfies the constraints specified in the query. For example, assume that we do five simulation
runs for the query from Example 1 and we get the following answers {18, 22, 19, 25, 17 } for

these runs. The mean value of this sample is 20.2 and the variance is 10.7. We then calculate
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the 95% confidence interval for the parameter which in this case is 20.2 £+ 5.38. If the user wants
the estimation error of the answer to be within 10% of the mean, then we have not satisfied that
constraint and we have to increase the number of simulation runs N and continue the simulations.
For example if the user wants the answer to be within 2 parts, we increase the number of simulation
runs to 11 using the calculations described in [TB93]. Assume that we get the following answers
{18, 19, 18, 20, 19, 18, 19, 17, 19, 20, 19 }. We again compute the confidence interval which in this
case turns out to be 18.72 + 1.48. This value is again outside the bounds that the user specified
(2 parts). Therefore, we again compute the new sample size and continue this process until the
confidence interval falls within the bounds specified in the query by the Error-of-estimation and

Confidence-coefficient parameters. Details of this algorithm can be found in [TB93].

This completes our description of the query processing method used in Cassandrat. In the
next section we describe components of (‘assandrat architecture, as presented in Figure 5, i.e.,
interpreter, controller, modelbase, simulation interface. simulator, simulation/database converter,

query processor, statistical analyzer, presentation manager. and query optimization modules.

5.1 Interpreter

The queries that the user enters are sent to the interpreter which parses the query to determine
query type, model name and model parameters. simulation time, the answer semantics, etc., and
passes this information to the controller. The core-query remains untouched by the interpreter
which means that it is passed to the controller and later to the query processor as an unparsed
string without any modifications. As Example 5 and Iigure 1 show, SimQL supports range queries.
Therefore, the interpreter also determiues the ranges in model parameters specified in the query
and passes this information to the controller. Ior instance. when the interpreter parses the query
in Example 5, it will tell the controller that Bank-Model-7 has to be run with the number of tellers

ranging from 5 to 8.

5.2 Controller

The controller manages the query processing activities by delegating various processing tasks to
different modules, receiving results back [rom these modules and interpreting these results. Broadly,

the functions of the controller can be classilied as follows:

e Determination of the query type

e Model manipulation
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|| Number of tellers | Simi_st I Sim_fin ‘ Number_of_runs | Trace_file "

5 0 3 20) tracel
6 0 8 20 trace2
7 0 8 20 trace3
8 0 8 2(0) traced

Figure 6: Instances in the working-modelbase for Example 5.
e Determination of the number of simulation runs

We describe each of these functions now.

5.2.1 Determination of the Query Type

The first task of the controller is the determination of the query type, i.e. whether the query is
about the past, the future, or is combined, and setting up the query processing strategy for that

query type. As Figure 1 shows, query type can be past. future, or combined.

Past Query Type. If the query is about the past. the controller initiates a simple historical
database retrieval from the past history ol activities for the model. The past history of the model
is obtained by recording all the activitics of the model in a temporal ungrouped historical database
[CCT93]. For example, in the LMS system [FDJG192]. all the transactional data from a manufac-

turing shop floor is captured in real time and is recorded in a database for subsequent retrieval.

As an example of the past query, consider the question “how many jobs of various types were
made in the last 10 days based on thc model Mfe-Model-4.” To answer this query the controller
determines from the modelbase for model Mfe-Model--1 where the data about the past history of .
the model is stored in historical relations. whether this data is sufficient to answer the query, and

if it is sufficient, it issues the (historical) query against these relations.

Future Query Type. In this case. the controller launches simulations. However before doing it,
the controller determines if the query is a range query (i.e. has several sets of parameters for the
simulation model). If it is a range query. the controller creates a working modelbase that contains
one entry for each set of parameters. For example, when the query from Example 5 is evaluated, the
resulting working modelbase is shown in Iigure G. The parameters that change from one instance
of the model to the next are the numboer ol tellers shown in the first column of the table and the

name of the trace file shown in the last columun.
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After that, a separate instance of the query is issued for each entry in the working modelbase
table. Each request generates a separate answer which is shown to the user. For example, the first

instance in the working modelbase (with 5 tellers) may return the answer:

The average number of customers serviced within the next 8 hours is 150 + 10, and we

can make this statement with confidence 90%.
The second instance in the working modelbase (with G tellers) may return the answer:

The average number of customers serviced within the next 8 hours is 226 & 12, and we

can make this statement with coulidence 90%.

Combined Query Type When the query is about both the past and the future, the controller
runs simulations for the future part of the query as it does for the pure future type. Once the
simulation trace is converted into the temporal database format, it is merged with the past history
of the model that is obtained as for the case of pure past queries. After the “past” is merged with

the “future,” the core query is asked on the merged temporal database.

5.2.2 Model Manipulation

This part of the controller is responsible [or selecting the model from the modelbase specified in
the query. Furthermore, the controller retrieves all the default parameters for that model from
the modelbase. If the query is a range query. then the initialization of the model with the default
parameters should be done for each entry in the working modelbase as shown in Figure 6. Finally,
the controller overrides the default valucs of simulation model parameters with the values specified

by the user in the query.

5.2.3 Determination of the Number of Simulation Runs

This part of the controller determines Low many simulation runs should be performed in order to
bring the estimation error for the answer within the bounds specified in the query. We explained

how to do this at the beginning of Section 5.

5.3 Modelbase

The modelbase contains information about the simulation models that the user can query. It is

a central repository of all the information about all the models used in an organization. The
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modelbase is needed in order to instantiate and run simulation models and to convert their outputs
into historical relational database formats. In Cassandra™, we store the modelbase as a set of
relational tables since the information we need in the modelbase is not normalized (for example,
we store the descriptions of all the types of events a model generates), and thus it is better not
to place this information in a single table. However. one table in the modelbase is the main table

having model name as its key. Some of the fields in this table are listed below:

o Model name, that serves as a key. For instance, Mfc-Model-4, Banking-Model-6 are examples

of model names.

e Target simulation language: the language in which the simulation model is written, e.g.

Modsim, Simscript, etc.

o Name of the simulation program. This ficld contains the name of the object module for the
simulation model, as stored in the secondary storage. When the actual simulation is ready
to be run, this object module is dynamically linked to Cassandrat module using the name of

the module stored in this field.

o Default simulation parameters: paraeters that are used in the model. These parameters are

taken as defaults. They can be over-written by the parameters that the user specified in the

query.

o Events traced by the model: this ficld contains the name of the relation that describes all the

events traced by the simulation model.

e Eveni-lo-predicate conversion programs: this field contains the name of the relation that
contains the names of the programs that build various predicates from the events described

in the previous entry.

e Past information: the field contains the name of relation that stores past information about

events and predicates pertinent to the simulation maodel.

o Optimization flag: this is a boolean field specifyving if queries on this simulation model can
be optimized. In order for a query to be optimized on a simulation model, the model should
have its PRINT statements written according to a certain convention so that the query could

pass the optimization information to the simulation model.
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5.4 Simulation interface

Once we have determined the simulation model to be run and the parameters we have to use to run
the model, an instance of the model to be executed is created in the working modelbase (Figure
6). The simulation interface is responsible for creating a run-time version of every instance of the

simulation model created for the query in the working modelbase. The run-time version contains

e the initialization file containing the data about the initial state of the system to be simulated

e the simulation input file containing the simulation model parameters, simulation time taken

from the query, and the number of simulation runs

e the ezecutable simulation program containing the simulation model.

Therefore, the simulation interface generates the initialization and simulation input files and pre-

pares the simulation program for the exccution.

The way the initialization file is created depends on the value of the Initialization parameter
in the SimQL query. If the initialization parameter is set to the “real time” value, then the initial
state of the simulation model is set to the current state of the physical model being simulated. This
is achieved by retrieving the records (rom the historical database corresponding to the simulated
model with the time attribute equal to now. Then these values are passed to the simulation model

as the values of the initial state of that model.

Alternatively, the initialization parameter can have the type “off-line.” This means that the
initial state from which actual simulations are run is not based on any actual state of the physical
system being modeled but is obtained {rom some “hypothetical” state. This hypothetical off-line
state can be obtained in the following three ways depending on the value that the “off-line” type
of the Initialization parameter takes (sce Figure 1). If it takes the value “steady-state,” then
simulations should be run until the steady state is reached. and then this state serves as the initial
state for simulations. This is the most popular approach taken in classical simulations [LK91].
If the value of the Initialization paramcter is “zero.” then the initial state for the simulation
model is specified by setting all of its initial variables to zeroes. This situation arises in a banking
application, where at the beginning of cach dayv we assume that there are no customers in the bank
and no tasks pending. Finally, the last case is when the value of the Initialization parameter is
“Time = ¢.” This means that the simulation model must be simulated for time ¢ starting from the
zero state, and the state of the model at time ¢ should be taken as the initial value of the simulation

model.
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Besides creating the run-time version of the simulation model, the simulation interface also

links dynamically the object module containing the simulation program to the Cassandra®™ module.

5.5 Simulator

The simulator module is responsible for tlie actual execution of the simulation program. As we men-
tioned in Section 2, simulation models can be written in any simulation language, such as SIMAN
[PSS90], SIMSCRIPT [Con87], MODSIN [BDMRY0]. GPSS [IBM70], etc. The only requirement
for the language is that it must be a compiled language. so that the names of object modules of

programs written in this language can be stored in the modelbase as described in Section 5.3.

Another requirement for the simulation program is that it should produce traces of events of

the form
EVENT(parmy,...,parmy, timc)

where EVENT is the name of the event being traced. parmy....,parm, are parameters of the
event, and time is the time when the cvent occurred. For example, the event ARRIVED(part3,
cell4, 10:45am ) says that the part “part3™ arrived at the cell “cell4” at time 10:45 a.m. Furthermore,
there should be an agreement across diflerent simulation nodels and languages on the exact format

of the trace files of events so that differcut simulation models be compatible in their outputs.

If the optimization flag in the modelbase for a simulation model is set off, then the query does
not pass any optimization information to the model. This means that the simulation model does
not know which events the query needs hack [rom the simulation program, and therefore, it must

record all its events in the trace file(s).

If the optimization flag in the modelbase is set on for a simulation model, this means that
the query passes information about the events that it wants the model to record. In this case, the
print statements in the simulation model must have a special form described in Section 5.10 and
in [TB93].

5.6 Simulation/database converter

This module converts the simulation trace files generated by the simulator into historical relations.
Since we comsider temporal databases aud query languages based on the relational data model,
this means that we have to convert simulation trace files into the temporally ungrouped historical
relations [CCT93].

Depending on the value of the Type parameter in the query. we either have to convert events
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into historical event relations [Sno87] (if the the Type parameter is event-based), or convert events
into historical interval relations [Sno87] according to some conversion procedures (if the Type

parameter is predicate-based).

Conversion of events into the historical event relations is a straightforward procedure. Since
the trace files are stored in the format described in Section 5.5, the conversion procedure consists
of a single COPY command that converts the plain comma-delimited ASCII file into a relational

database file!!.

If the Type parameter specified by the user is “predicate-based,” then we do the ac-
tual conversion from events to interval based historical relations. This is achieved by ex-
ecuting the events-to-predicates conversion programs supplied by the systems administrator.
For instance, consider the query from Example 2. This query deals with the temporal
predicate Visits that can be represeuted in the interval-based temporal relational model as
Visits(Part,Cell,From-Time,To-Time). Furthermore, assume that the model Mfc-Model-2 has
trace files for the two events Arrives(Part,Cell,Time) and Departs(Part,Cell,Time). To con-
struct the predicate Visits, the systems administrator writes the procedure that computes the

values of attributes From-Time and To-Time in Visits from the events Arrives and Departs.

5.7 Query processor

As we stated in Section 5.1, the core query is separated from the SimQL query shell by the

Cassandra™’s interpreter and is kept unparsed.

The query processor evaluates this core query on the simulation traces converted into the
temporal database format if the query is strictly about the future. This evaluation is done according
to the query processing algorithms for the core query language and the temporal database being
used. For example, if the database is Ingres and the query language is embedded SQL with
timestamps, then the core query expressed in SQL is passed to Ingres and is evaluated by Ingres on
the trace files that simulation/database converter generates. If the query is combined (is about the
future and the past) then the future part of the database is merged with the past, and the query

is evaluated on the merged database.

The result of this evaluation is either a number if the answer-semantics parameter is “numeric,”

or a relation if the answer-semantics parameter in the query is “non-numeric.”

"In our implementation of Cassandra®, we used Ingres [Ing89] as the relational database and its COPY TABLE
command [Ing89] to do this.
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5.8 Statistical Analyzer

Statistical analyzer generates the answer to an SimQlL query, that is presented to the user, in the
form described in Section 3.2. This answer is computed in statistical terms from the set of answers

for individual simulation runs, as is also described in Section 3.2.

As we pointed out in Section 3.2. the answers and the statistical analysis techniques differ
depending on the value of the Answer-semantics parameter. For the “numeric” parameter, the
answer is in terms of the average answer of the numeric value, error of estimation and confidence
interval for the estimation. For the “non-numeric”™ parameter, the answer is in terms of the most
likely answer, its probability, error of estimation of this probability and the confidence of the

estimation. The process of obtaining these estimates was described in Section 3.2.

5.9 Presentation Manager

This subsystem is responsible for converting the answers to the queries as determined by the query
processor into outputs for the user. The outputs can be of various forms such as tables, charts, or
graphs. For instance, the answer to the query from Example 3, i.e., “how many days will it take
to complete order JC-243 by each of the threc manufacturing plants (PL-1, PL-2, PL-3)" can be
displayed to the user in one of the three forins presented in Iigure 7. As in Example 3, we assume

that the answer-semantics of the query is of tvpe “tuple.”

5.10 Query Optimizer

The query optimizer finds more eflicient ways to process SimQL queries. However, unlike query
optimizers in database management systcins, it concentrates not on the query itself but on how to

record only the events that are necessary for answering the query. In particular, it determines

e which events for a given SimQL query should be traced

e which event instances in these trace liles should be recorded.

The query optimizer obtains this information from the query and provides appropriate directives
to the simulation module. The details ol this procedure. as well as other optimization issues, are
described in [TB93].

Since the optimizer tells the simulator which events it should trace depending on the query, the

trace files for the same simulation model can differ from cach other for different queries. Therefore,
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- -0.2
Nomber of days PL-1 10 +0
PL-2 14 +03
PL-3 12 401
PL-1 PL-2 PL-3
(A)
PL-2
PL-1 10 +-02
Number of days
PL-2 14 +-03
PL-1 K3
PL-3 12 +01
(B)

Figure 7: An Example of an Answer displayed by Cassandra™

the query in our approach selects the simulation model. and the query optimizer tells the model

what it should trace. It is for this reason that we call this approach Query-Driven Simulations.

The optimizer imposes certain constraints on how events are recorded in a simulation model.
These constraints are described in [TBY3]. This means. among other things, that the simulation
model has to be “prepared” for optimization. To distinguish prepared from unprepared models in
the modelbase, we have the “optimization {lag™ as one of the fields in the modelbase. If this flag is
set on, this means that the model is prepared for the optimization (its PRINT statements satisfy

a certain convention); otherwise, the model is unprepared.

6 Implementation of Cassandra®

The architecture of Cassandrat described in this paper was implemented in C under UNIX.
Since there are no commercially available temporal databases when the system was devel-
oped, we selected Ingres [Ing89, StoSG] as the database that stores historical and simulated
data. We simulated a temporal database in Ingres by adding two timestamp columns to
the interval based relation and a single timestamp column to the event-based relations. For

example, the interval based relation Visits has two additional time columns and therefore
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has the schema Visits(Part,Cell,From-Time,To-Time). Similarly, the event-based relation
Arrives(Part,Cell,Time) has only one temporal attribute that specifies when a part arrives

at a cell.

Instead of using temporal logic calculus for the core queries, we use SQL since SQL is one of
the two query languages that comes with Ingres (the other one being Quel). However, we allow
SQL queries to explicitly reference time. This makes temporal queries look “ugly,” but still they

can express a wide range of queries.

For example, the query from Example 1 “how many parts will be finished in the next 10 hours?”

can be expressed in SQL as:

Initialization: Real-time
Type: Event-hased
Time: 10 hours

Answer-Semantics: Numeric
Core-query:

SELECT Count(Part)

FROM Finished

WHERE SNOW < Finish_Time .AND. Finish_Time < $NOW + 10;
Model-Name: Mfe-Model-1

As we said already, the modelbase can store simulation models written in various simulation
languages, such as Modsim [BDMR90]. Simscript [C'on87]. Siman [PSS90]. In fact, these programs
are stored as object modules in the modelbase. and are dynamically linked to the Cassandra™

module when queries are asked against these models.

We store modelbase as an Ingres database because the modelbase can be quite large and
because building and maintaining these models can be time-consuming and error-prone activity
[Len93]. The modelbase is stored in several tables (3 in the current implementation) because, as we
pointed out in Section 5.3, the data stored in it is unnormalized. The Cassandra®™ system interacts
with the modelbase by using dynamic SQL [Ing89, EN90] since it is necessary to formulate SQL

queries against the modelbase dynamically “on-the-fly.”

In Section 2, we claimed that the core query language can be implemented in any temporally
ungrouped historical query language. Tlhis is the case hecause it does not matter for Cassandra™
to which temporal database simulation trace files are converted and how temporal (core) queries
are evaluated on these databases since these queries are passed to the temporal database as text

strings without parsing.

However, in the current implementation ol Cassandra™ we cannot easily switch from one
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database to another, as we can do it for thie simulation languages. For example, it is not possible to
switch from Ingres to Oracle in the current implementation of Cassandra® without rewriting (small)
portions of its code handling dynamic SQL. This is because the database is used in Cassandra®t
for four reasons. First of all, it is used for storing simulation traces and historical information
and for asking queries about them. Secondly, it is used for the internal implementation purposes
to support modelbase. In particular, Cassandra® uses dynamic SQL for generating “on-the-fly”
queries in order to retrieve data from the modelbase and for passing the core-query to the database
to be evaluated. Since the implementation of dynamic SQL is systems dependent, we cannot
automatically switch from one DBMS to another. Furthermore, the conversion routines from ASCII
trace files to the database format are also system dependent. For these reasons, we have to provide
some modifications to the Cassandrat’s code when we move from one DBMS to another in the
current version of Cassandrat. However. these modifications are relatively small and are quite

“local” to the code. Therefore, we belicve that they can be easily automated in the future.

7 Conclusions

In this paper, we described a Query-Driven Simuldtion system Cassandra®t that allows end-users to
ask various questions about outcomes of simulations. \We presented its query language SimQL, its
architecture, and described how Cassandra®™ was implemented. One of the important features of
Cassandrat is that it can support any temporal relational query language asked about simulation
models written in any simulation language as long as trace files generated by these models conform

to a certain standard.

Query-driven simulations provide more declarative. flexible, and interactive ways of ask-
ing questions about simulation outcomes than the traditional simulate-and-gather-statistics ap-
proaches. They allow end-users to ask various questions in a declarative query language in an
ad-hoc manner “on the fly”, just as relational query languages allow the users to ask questions

about the data stored in databases.
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