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Abs t r ac t  

A Query-Driven Simulation systein C a s s n ~ ~ d r n S  is deqcrihed that allows end-users to ask 
queries about outcomes of runnillg siinttlation models written in various simulation languages. 
The architecture of Cassandra+, its rlttery language SZIZIQL,  and the implementation of the 
system are described. It is argued that Query-Dri\ic>it Simulations provide a more declarative, 
flexible, and interactive approacll to asltiitg cluestions about siitlulatioit outcomes than the tra- 
ditional approaches of letting the end-ubers run simulations and gather statistics on the trace 
files being produced. 

KEY WORDS: Decision Support, Query-Driven Simulation, Discrete-Event Simulations, 
Temporal databases, Temporal Query Languages. 

1 Introduction 

Throughout their daily activities, decisiolt nla1iei.s it1 various organizations have to  anticipate future 

events in order to  make better decisions ant1 atlopt effective strategies for reaching desired goals. 

For example in a manufacturing organization, a foreman on the shop floor may want to  know 

wllicl~ machines will have a utilization ratio of illore tllan 90% during the nest two days, or a 

finance manager may want to know rvhat will the average cost of producing jobs of type-A be, or a 

salesmail needs to  know if i t  is possible to coil~plete job-$ in four days if it is assigned the highest 

priority. In the banking industry, a manages may want to know how much cash reserves will the 

bank have within a month's time. In the sea freight industry, a dockyard manager or a customs 

official may want to know what cargo will 1)e delivered to his/her clockyard within the next week 

and in what quantities. 

To deal wit11 these types of questiolrs ill co~nples intlustrial and organizational settings, simula- 

tions are often used [LIiSl, BCS4]. To answer questions such as the ones presented above, summary 
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statistics are usually collected in one of tlie following tnro mays. In the first approach, summary 

statistics are computed inside the simulation program, and the program prints these statistics. In 

the second approach, various simulated events are recorded in the trace files, and then statistics are 

collected from these trace files by either writing prograills in one of the programming languages, 

sucli as Fortran or C, or by using one of the statistical packages, such as SAS [SAS89]. We will call 

this traditional approach sirnulate-arzd-gccther-st[cti.stic.s (,SAGS) approach. 

Since most of tlie people who asli questions about future outcomes of business processes in 

their organizations, sucli as a foreman, a salesman, or a bank manager, do not know much about 

simulations, programming languages, or statistical pacliages, they cannot ask ad-hoc questions 

about future outcomes of their business processes as the questions arise "on-the-fly." Instead, they 

have to  rely on the systems deveIoped by information systems departments that support a fixed 

set of "canned" questions. Clearly, this situation is uitsatisfactory in many organizations, such as 

manufacturing, transportation, or in the military, n-here various users want t o  ask many different 

questions about sinlulation outcomes of various ntotlclb [BT93]. 

In this paper, we describe tlie Qucry Driz-e~z Si~12nIc1fior2s (QDS) approach, that addresses this 

problem. QDS is an approach to  simulations in ivliicli the user first asks queries about outcomes 

of simulations expressed in a cleclrrrcrtivc query language and then, depending on the query being 

asked, appropriate simulations are launched and events necessary to answer the query are recorded 

in the trace files. After the silnulation rttns are completed, the query is evaluated on the trace 

files(s) of events recorded by the simulatiol> program. For example, assume an operations manager 

a t  a car nianufacturing plant wants to Iil~ow llo\v Illany cars will be produced at the plant within 

the next week, and assume that he/she aslis this query on tlle si~iiulation model h4anufact-Model- 

3. According to  the QDS approach, it should be cleterlnined first what events in the Manufact- 

A4odel-3 model should be traced and for how long in order t o  answer the query (i.e, the event 

Finishetl(Car, Time) should be traced for a weeli of simulated time). Then simulations are launched 

for that amount of time, the trace file for the event Fit?i.shctl is generated, and the query is answered 

based on the information contained in t l l i5  trace file. 

In the paper, we also present a bpecific ()US hyhtem. called Cassa12dm+ and describe its 

architecture. As part of Cassandraf, we describe tlie language ,SinzQL for asking queries about 

simulation outconles. We designed SimQI, to  nialie i t  hinlple enough for a lion-technical user t o  

understand and use it, and poxverful enough to be used in coniples simulations. 

The QDS approach has the f o l l o ~ i ~ ~ g  aclvantageh over tlle SAGS approach: 

a Decinrc~tiae12e.s.s. The user can asli a tlnestioii in a declarative query language alld does not 
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have t o  know any sinlulation ancl statistical pacliages, or write programs in conventional 

programming languages1. 

Flexibility. QDS user can ask cc~zy query expressible in the query language of that system. 

This is in contrast to  the fixed set of '*cannedv queries supported by the simulation specialist 

in the SAGS approach. 

Interactiveness. QDS user ca,n a,sli clueries "on-the-fly" a.s they a.rise without any help from a 

simulation specialist. 

Query languages in the context of siniulations were studied before. In [Len93], a database of 

simulation models, called a modelbase. was constructed based on the structured modeling approach 

[Gees?]. As part of the structured modeling approach, [Len931 uses the query language defined 

for this approach by Geoffrion[GeoSi']. Although tlle system supports queries, these queries are 

used in a totally different context: they are used for asliillg questions about the models themselves 

fe.g. whicll models stored in the modell~asc are n~anufacturing moclels), not about simulation traces 

produced by running the models. 

In [MWSS], Miller and IZreyric1l developed the SIhIODULA system that has its own SQL-like 

query language (with object-oriented features added to i t )  for asliing questions about simulations. 

Each model has a relation of input garalneters and olitcomes of previously executed simulations 

associated with that model. For esantple, a halt liittg ntodel may have a BankScenario relation 

associated with it that has input para~neters: such as  number of tellers, mean interarrival rate, 

lllean service time, and the output paraitletel.>. sucll as tllro~~glll~ilt and the service time, as its 

attributes. If the user wants to ask a clucstion al,oltt tl~rougllput and average waiting time for the 

banking model with input parameters n-tean interarrival rate being 4.0, mean service time being 

6.0 and the number of tellers equal to  2. the11 S1hIODllLr\ checks in the BankScenario relation 

if this model has been run before. If it \\.as, it retrieves the answer from relation BankScenario 

(values of attributes Throughput and AverageIVaitingTillle). Otherwise, SIMODULA launches the 

simulation with the input parameters retrieved from the query and the rest of them set to  defaults. 

The authors call this approach "query driven simulations.'' 

SIMODULA provides a good first approach to asltil~g questions about outcomes of simulations. 

However, the work in [MW89] can be expanded in various ~vays. First of all, SIhilODULA queries 

do not really drive simulations: they just lctuncl~ them. Once SIMODULA determines that the  

'We can draw a comparison between Qnely-Dlivet~ Silnulations ancl relational query languages such as SQL. As 
the relational query languages are mocli mole dcclalati\.e tlr411 the ea~liel navigational query languages, such as DL/ l  
[Dat77], so is the QDS approach ill colnparisol~ \\.itlt SX(;b. 
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silnulatioil has to  be run, the query does not interact with the lnodel or influence its execution in 

any way; oilly a t  the end of the run. does the query select the statistics of interest to the user. 

Secondly, SIMODULA users cannot asli arbitrary ncl-hoe queries about simulation outcomes of 

SIMODULA models because the queries are restricted to questions about statistics pre-defined by 

the modeler in the schema of the model instalrce rela tion (e.g. BankScenario relation). The major 

reason for this is that SIMODULA queries are not evaluated against the trace files generated by 

simulatiolls but are only limited to the predefined set of statistical outcomes. Thirdly, as related to  

the secoild point, the users can ask queries only about statistical ti'ulues. They cannot ask questions 

of a more general nature dealing with non-single-valuec1alul outputs, such as lists of customers who 

visited the bank on a certain day, or some of the cluestiolrs presented a t  the beginning of this section 

(e.g. which machines have a utilization ratios of more than 90%). Finally, SIMODULA lets the 

user ask queries only in one query language (estension of SQL) against the models written in one 

siinulatioll language (Modula [LtiirS5] ). 

In this paper we present a more estensive approach to Query-Driven Simulations by allowing 

SimQL queries to  drive simulations ant1 1101 ju>t ltrrii,cli t ltem. V7e also allow the user to  query 

simulatioll traces in an ad-hoc manner inbtead of letting him/her ask a fised set of questions on 

summary statistics about a single siirlulation run. Furthermore, we express answers in statistical 

terms that require more than a single si~nulation run to ol~tain the answer. Finally, we allow a 

loose coupling between any database query language and crny si~nulation language as long as trace 

files generated by simulatioll program> collfornl to a certain standard. 

In [Tuz92, Tuz931, the idea of asliing cluerie:, oil simulation traces was proposed, and a SimTL 

language was presented. SimTL consist> of t l ~ c  >i~ltnlation and the querying components, The 

simulation colnpone~lt is based on a tenlporal logic progt.ailiming language [AMSS], and the querying 

component is based on temporal logic [111'92]. T h n ~  queries about simulation outcomes expressed 

in temporal logic are asked about sinlulations gentlratcd by tenlporal logic programs. This means 

that SiinTL is a tightly coupled simulation and cluerying system, in which both components depend 

on the formalism of temporal logic. 

In this paper, we extend the i\~orli of [TuzS'L. T1izD:3] by integrating an arbitrary temporal query 

language with an arbitrcrry sinlulatiolt language. Tl~ercfore. unlilie SimTL, ~vhere the interface 

between querying and simulating contltol~tl~tz is \\ell-titidcrstood and is based on temporal logic, 

we have to  develop a proper interface bet\\ eel1 these components in order to  achieve independence 

between the query and simula ti011 languages. In atlditio~t to this interface, we also describe an 

architecture that supports query-driven >i~itulat ion\. 
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We begin our description of the QDS system C'assanclra+ by informally introducing its query 

language component SilnQL in Section 2. In Section 3, we formally define the syntax and the 

semantics of tlre language. In Section 4 we descril~e how QDS system integrates querying and 

simulatiolr subcomponents. In Section .5, the architecture of a specific QDS system Cassandra+ is 

described. Finally, in Section G we dehcril~e the inrplelitentation of tlre system. 

2 Overview of SirnQL 

SimQL is a language for asking queries about outcomes of simulations. It consists of two subcom- 

ponent~: the core query language subcomponent ancl the shell into which the core query language 

is embedded. The core query language subcompoitent is tlre "heart" of SimQL and is used for 

asking temporal queries about sinlulatio~t traceh. \\ have chosen a tc~izyorul query language as a 

core query language because queries csl)ressetl in i t  are about process evolving over time. In the 

Query-Driven Simulation approach, n e  can asli queries about si~nulations in any temporal query 

language as long as it supports the sanle data nlodcl as the siirrulation component 2 .  In this paper, 

we selected the temporally ungrouped hihtorical data nlodel [C:CT93] as tlre underlying model for 

storing silnulatiolr traces and tlre ~noclel for the query language. Therefore, we can use any temporal 

query language based on this temporally ungi.onpetl data n~odel, e.g. we can use TQuel [Sno87], 

TSQL [NAS$], or tenrporal logic calculu\ [TC'90, ('C'T9:3]. 

The second subcomponent of SimQI, i \  the .\larll i~ t to  \vhich tlre tenlporal query language is em- 

bedded. This shell provides an i,,icrjiccc betnreen the q~~erying ancl simulation parts of Cassandra+ 

that integrates tlre two comporrents illto one sgstelrl. For example, we specify in the shell such 

information as the silnulation lnodel against \vhicll tlte query is asked, the parameters for that 

model, for how long simulations slroulcl be run, iv11at anslver we expect back, i.e. a full relation or 

just a number, and various additional information that the simulation component of Cassandra+ 

needs in order to provide tlre answer to tlrc query. 

Example 1 Consider the follo\ving cl11ct.y: 

How many parts can be finislretl i l r  t he nest 10 hours? 

It ca,n be expressed in SinrQL a.s: 

2We wilt discuss this point fur the^ in  Sectiol~ J 
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Init ial ization: Real- time 
Type: Event- based 
Answer-Semant ics :  Nulneric 
Core Query:  { COUXT(Part) I within- t ime (10) Fiaisl~ed(Part) } 
Model -Name:  Mfc-MotIcl-dl 
Confidence-coefficient: 90 
Error-of-estimation: 10 

The core query in this exa,mple is 

( COUNT(Part) ( within- t ime (10) Fiaisherl(Part) J 

It is expressed in temporal logic, where wi t  h in- t ime ( 2') P is a bounded temporal operator [KoySO, 

Tuz921 specifying that  predicate P is sollletimes true between now and now + 2'. 
Note that  this core-query is embedtled in the SilllQL shell that provides additional information 

about the meaning of the query. For esan lple, the paralneter M o d e l - N a m e  in the shell specifies 

the name of the  simulation model, Mode l -Naine  = hIfc-Model-4. It tells Cassandra+ that the 

query is asked against the lnodel hilfc-llotlel--1. 

The parameter Init ial ization = Real-time, specifies that simulations should be done in "real- 

time," i.e. they should start  from sonle initial state of the system for the model Mfc-Model-4. 

Alternatively, they could be done "ofl'-li~tc," nieaning that the initial state of the system is not 

specified, and simulations shor11d be 1.1111 for sotuc1 t irne until, e.g., the steady state is reached, and 

only then the query shoulcl l)e evaluatctl. 

The second paranleter in the query. T y p e  = I:vcnt-l~ased, specifies that  the trace file($) of the 

simulation model hffc-Model-4 must l)e stored as a historical event relation [Sno8'i]. In particular, 

the trace file of Finished has a singlr t inlesta~ilp ahsociated ~v i th  it. If Type = Event-based 

then the simulation trace file(s) are copicd into the t e ~ ~ t p o r a l  database without ally conversion. 

Alternatively, the T y p e  parameter cait l)e "~~redicate-l~ased," and this requires conversion from 

the event-based t o  a historical interval 1.clatio11 [SiioS;]. Tltis conversion will be described below in 

Section 5.6. 

The value of the Answer -Semant ics  paranleter in the shell is ~zumeric. It specifies that  the 

query returns back a single number (tltc number of finislted parts in our case). Alternatively, the 

answer-semantics call be non-nunzeric. I n  this caw. the query returns back a relation. We will 

discuss this semantics in Example 2. \Yo have to di~ting~iish between numeric and non-numeric 

semantics because the types of ans-weus are different in these two cases as Example 2 will show. 

Finally, the parameters Error-of-es t imat ion and Confidence-coefficient specify what should 
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the estimation error of the answer be and with what confidence we can provide the answer [MWSSO]. 

III our example, the user wants the estilllation error to  be within 10% of the mean and the confidence 

of the answer should be 90%. 

A possible answer to  this query can be: 

The average number of parts produced within the next 10 hours is 32 f 3, and we can 

make this statement with confidence 90%. 

In other words, the probability that the answer to the query falls between 29 and 35 parts is 90%. 

When the user issues a SimQL query, Cassandra+ determines the simulation model to  which the 

query refers, determines how many siniulation runs ( M )  are needed to obtain the answer within the 

estimates specified by the user (parameters Error-of-estimation and Confidence-~oefficient)~, 

runs this simulation model for N simulation runs, storing simulation traces in trace files, converts 

the resulting simulation trace files into the tenlporal database format according to the Type pa- 

rameter, issues the temporal query agai~lst each silnulation trace, and statistically analyses the 

answers t o  these queries. 

We considered the first example of a SililQL cluery, and described some of the shell parameters. 

It turns out that there are other parameters in the cjuery that were taken as default parameters. 

For example, TIME is one of such parameters. If not specified, it is "extracted7' from the query 

(10 hours in our case). If it is present then we assume that the time domain in the temporal logic 

operators appearing in the query is restricted by this parameter, as the nest example shows. 

Example 2 Consider the following question that a foreman may want to  ask: 

What are the parts that will always stay in Cell-1 for the nest 5 hours? 

This query can be expressed in SimQL a,s 

3We will discuss the  process of estimating n' in  Section 5. 
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Initialization: . 

Type: 
Time: 
Answer-Semant ics: 
Core-query : 
Model-Name: 
Parameters: 
Confidence-coefGcient : 
Error-of-estimation: 
Number-of-answers: 

Real- time 
Predicate-ba.sed 
5 hours 
Relational 
{Pa.rt I always Visit,s(Pa.rt,, C:l)) 
Mfc-Model-2 
number-otcells = 5 ,  job-a.rri\!al-rate = 10 
95 
10 
2 

The core query in this example is 

{Part I always Visits(Part, C l ) )  

where always P is a temporal necessity operator that  is true now if P is always true in the future 

[hiIP92]. Note that  the core query is unbounded in the sense that we need t o  know the values of 

the Visits predicate a t  all the (arbitrarily far arvay) points in the future t o  evaluate its value a t  

present. To solve this problem, we specify the Time parameter in the shell. The Time parameter 

restricts the temporal do~llailr to  the l)ot~nded set of tiliies (up to  5 hours from now), and the 

temporal operators are evaluated on tliot clomain. 

This query has additional paraliicte1.s that did not appear in the previous example since 

default values were assumed for thein in Esan~ple  1. Oiie of these parameters is Parameters 

that  specifies the parameters passed to tlie simulation lnoclel specified in the query. For example, 

number-of-cells = 5 and j o b - a r r i v a l r a t e  = 10 Incan tliat these parameters are passed t o  the 

Mf c-Model-2 model. 

The Answer-semantics parameter in tile query in this example has r e l a t i o n a l  as its value. 

This means that  the query returns relations as its anslver. Relat ional  is one example of non- 

numeric type of the Answer-seinai~tics parameter. tlie other type being tup le .  Both values 

of the non-numeric type return relatiolis as ans\vers to  SilnQL queries. However, there are some 

differences between these two valiles. \Ye \vill tliscuss t l~ese differences when we describe the t u p l e  

value of the Answer-semantics paranlctcr i l l  Es;t~nl)le 3. 

The Type parameter has value pred ica t  e-based. This means that  the relations in the  core- 

query are predicates with two timestamp attril~utes. begin-time and end-time (unlike events that  

have only one timestamp attribute). &'or esaniple, predicate V i s i t s (Pa r t  ,Cel l )  has two times 

associated with it i.e., when a part begin:, and e~icls its visit to  a cell. Finally, the parameter 

Number-of-answers specifies the nuiul)er of tlie i i~ost  liliely answers the user wants specified 

in the order of decreasing probabilitie:, of the5c aii,\ver:,. This parameter can appear only in the 
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SinlQL queries that have 11011-numeric values in the Answer-semantics parameter. 

A possible answer to the query front this esainplc can be 

Most likely, parts PY346, PY378, and PZ216 ivill alivays be in Cell-1 within the next five 

hours; the probability of this is 24% f 2%. ant1 we nlalie this statement with confidence 

95%. The second most likely ansxver is that parts PZ289 and PY378 will always be in 

Cell-1 within the next five hours; the probability of this is 21% f 2%, and we make this 

statement with confidence 95%. 

The query returns two most likely answers because the parameter Number-of-answers is 2 in this 

case. Furthermore, the answers are returned in thcl decreasing order of their average probability 

Note that the answer to this query i5 different from the answer to the query in Example 1. 

This query returns the relation that is t l ~ c  lllost likely answer to the query and an estimation of the 

probability of that answer (e.g. probability estimate is 24% f 2%). In contrast to  this, the answer 

to  the query with the numeric value of the Answer-semantics parameter returns the average 

estimate of the valzre of the nuineric paranrc.ter and the estimation error for this value (32 f 3 parts 

in that exainple). 

In Example 2, we considered the relatiolral value of the Answer-semantics parameter. This 

value directs Cassandraf to return the i~lost lilitly ansiver(s) to the query. However, the user may 

sometimes want a different liind of the ansnTer, as the follonring esa~nple sllows. 

Example  3 

Consider the query 

How Inally days would it talie to  coil~plcte order number JC-243 by each of the three 

manufacturing plants (PL- 1, PL-2. 1'1,3)4? 

The relational semantics would return a certain answer, e.g. { (PL-1, lodays), (PL-2, 

14days), (PL-3, 12days) ) and would assign a probal~ility estimate for the eolzo~e relation, e.g. 

probability 26% f 2% that the above ralation is tlre answer. Ho\vever, we inay need a different 

answer. We inay want to Ii110\\~ probal)ility c,t i~\~atch for each plant seprtmtely, e.g., { (PL-1, 

*We assume that it shoi~ld not take lriole t l i , in j o  clay, to toli~l>letr the order in all 3 plaiits 

9 
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lodays) with probability 23 Ifr 2%, (PL-2, l4days) with probability 34 f 3%, (PL-3, 12days) 

with   rob ability 21 f 2% }. 

To accommodate for this type of anbwer, we provide the tuple value for the Answer-semantics 

parameter, as the following SiinQL query shows 

Type: Event-based 
Time: 30 days 
Answer-Semantics: Tuple 
Core-query: { Plant, Dais / soinetiilles Completed(Order,Plant,Days) and 

Order = JC-243 and (Plant = PL-1 or Plant = PL-2 or Plant = PL-3) } 
Model-Name: Mfc-Model-G 

There are two additional issues relatecl to  the proce\s of interaction between SimQL queries 

and simulations. First, there is a nzotlcl r ~ t c c r z i c ~ c  rtlc r t t  i>bile [Bla92]. Cassandra+ must store a set of 

simulation models against which the user can asli queries. For instance, in Example 1, the query 

was issued against the manufacturing nlodel Mfc-hloclel-4, in Example 2 against model Mfc-Model- 

2 and in Example 3 against lllodel hffc-Model-6. Therefore, Cassandra+ iliust store, retrieve and 

update various models. We will discuss tltis is\i~e furtller in Section 5.3. 

Second, different niodels in the modcll~ase call be \vritten in different simulation languages. For 

example, Mfc-Model-2 can be written ill >IOUSIlf [13DhIR90], hlffc-hilodel-4 in Simscript [Con87], 

and Bank-Model-12 in Sirnkit [Int85]. -4s was stated already in the introduction, one of the im- 

portant advantages of Cassandras is t11at it call support orzy temporal query language and any 

simulation language as long as the two agree 011 the data lllodel (so that teniporal queries can be 

asked against the corresponding traces)'. 

The nest example shows that SimQL queries call be aslied not only about the future but also 

about the past6, and siiilultaneously allout the. pa\t t r i ld  the future. 

Example 4 How many parts will be protlucetl this n ~ o n t h ,  assun~ing t11a.t now is September 15. 

5 T l ~ e  only conventioll is that the trace files generat,ed by programs writt,en in different sirnulation languages must 
have a certain format. The structure of this for~nat will be discussed in Section 5.5. 

6To simplify the presentation, we assume t,hat the present. is a special case of t,he past throughout the paper. The 
past and the present are grouped t.oget,her since i n  botll cases nre kttolv tIte state of t,he system and do not have to do 
simulations to answer t,he queries ahout the past  ttr~c-l/or tile present (jnst do the ret,rieval from the database). 
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Initialization: Real-time 
Type:  Event-based 
Answer-Semantics: Numeric 
Time:  Combined(Paht(1.5), Future(l.5)) 
Core-query: { COUNT(Past) I within-time (l5days) Finished(Part)} 
Model-Name: Rllfc-RiIodel- l 

Note that the Ti ine  paranleter in tlie query indicates that the silnulation model Mfc-Model-1 

should be run for 15 days and the11 tile sinlulatioi~ results should be combined with the history of 

relation Finished over tlle past 15 days7. Fiaa1l.i.. llle core query is evaluated on the combined 

relation that has the 1ifespa.n of 30 dajrs. 

The next example shows horv SimQT, queries$ call bc used in tlie experimental design. 

Example  5 How many custolners will 1)e scrvictd in the bank per day if we vary the number of 

tellers between 5 and 8? 

Initialization: Off-line(Stcady-stat e )  
Type: Predicate-1)ahctl 
Answer-Semantics: Numeric 
Time:  1 day 
Core-query: {COUNT(('ttstolitcrj / withill-time ( lday)  Serviced(Customer,TeIler)} 
Model-Name: Bank-hloclel-7 
Model-parameter:  number-of-tcller = 5..S 
Confidence-coefficient: 95 
Error-of-estimation: 10 

This query is called a rcrnyc query becaltse i t  gives rise to four individual queries, one query for 

each nunlber of tellers (5, 6, 7, and 8) sl)ccified in tlie Model -parameter  parameter. As a result 

of this, SinlQL returns four different ailh\i.crs to the uher, one ans\ver per one value of parameter. 

Also note that this is an ofl-line cluery. This mean.; that siillulations are run initially until 

Bank-Model-7 reaches a steady state [l,Ii9 I]. Onlj. aft er tlla t ,  silllulatiolls will be run for one day 

of simulated time and traces will be gcl~crated htarting from that time. 

In this section we informally introtl ucctti t lle language SilllQL through a series of examples. In 

the next section, we formally define tllc s!*ntas aiicl tlic sellrantics of SimQL. 

'The historical data  can be  obtained by g,tt lrrii~~;: ( l r t*  t ~ n i ~ ~ n c t l o n a l  real-time d a t a  a b o t ~ t  all the events and 
activities happening in the enterpli.se, as ii: tloitc~ 111 [PI) I (  lt 021, a tit1 t lie11 plocessing this d a t a  and storing it  in the 
historical relational database f o ~ ~ n a t  . 
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3 Formal Description of SirnQL 

We begin the formal description of SintQT, with the specification of its syntax. In Section 3.2, we 

describe the semantics of the language. 

3.1 Syntax of SiillQL queries 

The BNF grammar for SilnQL is presented in Figure 1. \Ye assume that  entities value, number, 

INTEGER, REAL, and STRING are terminal symbols. and \ye do not decompose them any further. We 

explained most of the SimQL's features informally in Section 2 already. Therefore, we will briefly 

describe some of the ~llost  iinportant parts of SimQI, that received less attention in Section 2. 

We start  with the shell parameters. First each parameter in the shell has a default value. 

The default values for the parameters in Figure 1 are italicized. Second, the core query can be 

expressed in any tenlporally ungroupecl hi5torical query language [CCT93]. In Section 2, examples 

were presented in teillporal logic calcull~, that was clcscribed in [Tuz92]. However, we could have 

done it in any other tenlporally ungrouj)c~tl qr~ery language [C'CT93], such as TQuel [Sno87] or 

TSQL [NA88I8. Tllild, as Figure 1 slro\\.,, t l ~ e  ofl-lino value of tlre Init ial ization parameter can be 

Steady-state, Zero, or Time = ~zu~izber. 'L'llis nleanh that tlre initial state of the systelll from which 

siinulatioils begin their executions is oljt ailled as follows. If the value is "Steady-state" then the 

initial state is obtained by running sinrulations until tlre steady state is reached. This steady state 

serves as the initial state for simulations. Tliis is the ,tatldard aj)proach often taken in simulations 

[LI<91]. If the value is "Zero" then tllc i~iitial state i, ol)lained by setting all the values of all the 

parameters t o  zero. Fbr example, in a I);ttrliii~g appli~ittiolr. we can start silllulations by assuming 

that  the bank just opened, and its b~.a~icl~e:, ha\*e n o  cu,toiiiers yet. If the value is "Time = t" 

then the initial state is obtained by ru~~l l ing  si~nulatioll, for tinle t ancl taking that state as the 

initial state. Fourth, the Tiine paranictcr has values "future," "past," and "combined." For the 

"future" and "combined" values of tlle T i m e  paranictcr, simulations are launched as described in 

Section 2. If the parallleter has the value "past" tllen tlte query is evaluated on the past history of 

the database, and nlost of the other parair~eters are not applicable in this case. The only parameters 

that  can be used in this case besides t l ~ c  Core -query  pasanleter are T i m e  and Mode l -name.  

We next describe the syntax of' tlle core queries fro111 Figure 1. As we said already, any 

temporally ungrouped query language (a11 1~ u,t t l  a, a cole query language. Since examples of 

8Altllougl~ a core qnelg can be expres5etl ~ r r  nit). oi thc,e c l u c . 1 ~  languages, it is an entilely different matter  how 
 assa and la^ call accommodate diffelent DBhlS<\  that \111,1mlt tlir'e q u e ~ y  languages. We will address this question 
is Section 6. 
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queries : [initializatioii][type][anh\ver-semantics] [time] simple-query 
[model-name] [motlel-Parameters] 
[error-of-est inlation] [coiifidence-coeEcient] 
[number-oS-;~l~hwers] 

initialization : Init ial ization:  Off-line ( off-line-type ) I Ini t ial ization:  Real-time 

off-line-type : Stecidy-stcrlc / Zero / Tinie = number 

type : T y p e :  Et~r,t-ltcrsecl I T y p e :  Predicate-based 

answer-semantics : Answer-Semant ics :  S~rliicsic I 
Answer-Semant ics :  lion-numeric 

non-numeric : Tuple I Xcl(rtio1tcr1 

confidence-coefficient : Confidence- Coefficient : numl~er 

error-of-estimation : Error-of-est i l~lat iolz:  n1tilil)tr 

number-of-answers : Number-of-answers :  I I I ~ I I ~ ~ I C I  

time : T i m e :  Pa\t(range) I T i m e :  [Ftrlurr] (range) I 
Tinie :  C'ol11I)illc~tl(Past(1.ange), Fxlture(ralige)) 

simple query: Core -Query :  
< Expressed in ccriy tenlporal query la,ngua,ge > 

model-name : STRING 

model-parameters : M o d e l - p a r a m e t e r :  I I ; I I I I O  = range {, name = range) 

value : INTEGEIt 1 1tl2A1, / Sr1'ItII\ITG 

llulnber : 1ItTEC;EIt 1 1iE-41, 

range : INTEGEI\)..lSTEGER STEP INTEGER I INTEGER 

Figure 1: 1jSF G r a ~ n n t a ~  of SitnQL 
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core queries in Section 2 were describetl in tenlporal logic calculus, we will use this calculus as the 

core query language in the paper. Furtllcrnlore, it also does not matter what kind of temporal logic 

is used in this calculus, since various types of tenrporal logics can be incorporated into Cassandra+. 

Temporal logic is obtained from first-order logic by adding various temporal operators to 

it. The most comnlonly used tempora l operators arc the future operators somet imes in- t  he,- 

f u t u r e  (o), always-in-the-future (D), nex t  (0). until and their past "mirror" images some- 

t imes in- the-pas t  (+), always-in-the-past ( m ) .  previous (e), and sinceg. Besides these eight 

standard operators, other temporal operators can be tlefined, such as before, af ter ,  while [Kro87], 

and bounded necessity, for-t ime (T) (or), and possibility, within-time (T) (oT), operators 

[Tuz92]. The meaning of future operators is defined in Fig. 2. The meaning of past "mirror" 

images of these operators is defined sinlilarly to the filttire operators except time is referenced only 

in the past. I<roger [I<roS'i] sho\vs ho\v tenlporal operators before, af ter ,  and while can be ex- 

pressed in terms of the operators until ; t ~ l t l  since [IiroSi]. I;'rtrtlrerrnore, it easily follows from the 

expressive colllpleteiress of the temporal logic 17S [li;iii~(iS] for tlle discrete or continuous model of 

time, that the operators of bounded nccclhsity ancl pobhil,ility can also be expressed in terms of the 

until ,  since, nex t ,  and previous operators for tllcw nlodels of time. 

The following exanlple illustrates t 11(' use of tci~t poral logic. 

Example  6 The statenlent 

If a person is pro~noted from t l t v  -\\>ociatc to the Full Professor he/she cannot be 

demoted back in the future to t It(. t.allli of' a \ \ \ o ~ i i ~ t  c l'rofessor at the same scllool. 

can be expressed in temporal logic as 

'Note that the operators o and C7 can be tlciivcrl flotn o ant1 uiltil; and + and n fionl and since [MP92]. Also 
note that if we consider operators next and previous tlien time most be discrete. Alternatively, we can remove 
these operators and co~lsider tlle continuous t~~odc l  of tittle. 

n A  is true now if A is always true i n  the fut u1.c (necessi ty)  
OA is true now if A is sometimes trttc i n  t l t c .  flit r ~ r c  (possibil i ty) 
oA is true now if A is true at the lliotr~tiit of tiin<. ( n e x t )  
&A is true now if A is always true \vit l r i i l  tlrc nest 7' tinic monlents (bounded  necessity) 
olrA is true now if A is sometin~es t l.ttc witlli~i tltc nrst i" ti~iie nroments (bounded  

possibility) 

Figure 2: 'l'c~i1r1)oral 1,ogic Operators 
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+ EMPLOY(Nanze,  School, Associaic-/-'PO f )  A li '_\lPLOT'(hTnn~e, School, Full_Prof) -, 

~ . E A I P L O Y ( N ~ I ~ ? ~ ,  School, Assocint( -1'r.o f )  

or using a different syntas as 

IF s o m e t i m e s i n - t  he-past EAlPLO I ~ I ~ I ~ ( I I ~ c I I ~ ? c ,  S'chool, .-1.ssocirc te-Prof) and EMPLOYEE(Name, 

School, Full-Prof) THEN always-in-the-future ]lot 1~~.\11'I,OT'EE(A~(1iize, School, Associate-Prof) 

A te~nporal logic query is an expression of tlle form 

where 4 is a predicate temporal logic for~riula in tlte language just described containing free variables 

XI. .  .X,. The answer to  this query conhists of all the tuples .Til . . .ayn that  make the formula 

q5(Xl,. . . , X,) true. Core queries in Esaniples 1 - .-j pro~*itle esanlples of temporal logic queries. 

In this section we will esplain what an "attswcr" to a SinlQL query means. Recall that  in Exam- 

ples 1, 2 and 3 the answer to  tlie querj, i b  tltliirctl i t 1  .it at i5t ical ternis, and that  i t  is necessary t o  do 

several silnulation runs to  produce that ,tl~s\vct. 111 or (lor to dcfi ne semantics of queries for multiple 

simulation runs, we first have to esplai 11 I\ lla t t lrc i l l l \ \ \  ct to a query illeans for a single simulation 

run. 

3.2.1 Semant ics  o f  a C o r e  Q u e r y  for a Single Silllulatioil R u n  

A SimQL query on a single silllulatio~~ I 1111 is evaluated as follows. As will be explained in Sec- 

tion 5.5, a single sinlulation run generate5 a trace file t lrat colltains occurrences of the events traced 

by the sinlulation program. After tltat. t l l i h  silrrulation trace file is converted into a temporal 

database containing one temporal relatiorr per cwclt cvcnt I~eiilg traced. Furthermore, all the  tem- 

poral predicates referred to  in the torch qtLery nluht appear in thih temporal database. Then the 

core query is evaluated on this temporal tlatal>ascl according to  the senlantics of the language in 

which the core query is espressed. In particular. if it is expressed in temporal calculus then it is 

evaluated according to  the semantics of' t ltat c:tlculuh [T('90, ('C'T931. This semantics assumes that  

the temporal database forms a temyor~cil .\ti i r c t u r c  IIil.oS7j for tlte temporal logic formula, and then 
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xnodel checking is done against tlris tc111l)oral structure. i.e. tlre truth value of the formula at  the 

present moment of time is evaluated i n  terilrs of this tenlporal structure. 

For instance, consider the query from Example 1. Tlre execution of sinlulation model Mfc- 

Model-4 specified in that query results i u  the generation of the trace file containing all the occur- 

rences of the event Finished(Part) that happen witliin 10 hours of simulated time from now. For 

example, some events in this trace file ]]lay be { Finished(P3, 10: 23), Finished(P6, 10:47), 

Finished(P8, 11 : 13) ). Since tlre tj.j)e of the c1ttel.y is event-based, events are moved from the 

simulation trace file into a telnporal database rvitlrout any additional conversion. Let FINISHED be 

the temporal relation storing these events. Then tlre core query 

{ COUNT(Part) I within- t ime (10 hours) Fi~~islied(Part)  ) 

is evaluated on the telnporal relation FINISHED, ant1 tire rehult is a single number equal to  the 

xlu~nber of finished parts. 

\We want to  point out one caveat in this eva.luatioll process within the context of query driven 

simulations. When the user specifies tllc T I M E  paranieter in the query shell, it means that the 

tenzporul donzcrin for the core query is rebtricted to tlre tilllcs specified by the user. For example, if 

the parameter is T I M E  = lOhours, ant1 i t  is 11 a.m. on 10/12/93 now, then the temporal domain 

is from 11 a.m. 10112193 to 9 p.m. 10/12/9:3 for t l ~ c  core query in this example, and all the 

temporal operators in the query are evilluated for [Itis doiuain. 

3.2.2 Semant ics  of Si inQL Queries  for Mult iple  Simulatioiz R u n s  

Once we know the answer to a SiiilQL c ~ I I ( ~ I . ~  for a s i l ~ g l ~  siitlt~latioii run, we can explain the semantics 

of the query for multiple sinlulation run\. lioivever. a, \v(' iliciltionecl before, we have to  distinguish 

between the two cases when the core qucry return?, a ~tu~~ ,c i . i c  and ~vlren it returns a non-numeric 

answer because the answers for multiplc 1.111is are c l t ~ i t t  cliff(\l.ent in these two cases. 

N u m e r i c  Seinantics of Answers .  11) t l ~ i s  cast. ;I cluel!. leturns a number per a single simulation 

run, and thus lnultiple simulation runs gcll~cratc. set, of' nuilllters, one nuinber per run. Also, some 

of these numbers may be repeated in t l ~ c  set. ror ilrstance, assume we do five silnulation runs for 

the query from Exa~nple 1 and assume n c gct t lle arl\\i.cr:, { 1s. 20. 19, 18, 19 ) for these runs. To 

determine the answer to a "numeric" q u c ~  y, n.e as,ulllc that this answer is normally distributed. 

Then we estimate tlre lnean and variance. of' this norinal distri1,ution from the sample of answers to  

individual runs and determine tlre col?.fi(lr/lcr iizfc 1.vo1 [S1\\-S90] for the average answer based on the 

confidence coefficient specified in the quclly. IS t lli\ cot~fitlcnce interval has an error of estimations 
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not greater than t l ~ e  one specified b!+ t l ~ e  user in the query, we stop the simulations. If not, we 

increase the number of simulations to I)c run in order to get the confidence interval within the 

limits and run that lnany silnulations again. 

Therefore, the senlantics of a SimQI, query for the ~zunzcric type of an answer is defined by an 

estimate of the average value of the ans\\-cr, by the crror of esti~nation and the confidence coefficient 

specified in the query. Fbr example, if I lie nleail value of the number of parts that will be finished 

within the next 10 hours is 20, the estitilatioll error i \  15%, and the probability that this number 

is between 17 and 23 is 95% then the a~~swer  that <'assandraf returns to the user who asked this 

query is . 

The average nulnber of parts protl~tced witlriir the nest 10 hours is 20 IfI: 3, and we can 

make this statelllent with confidc~ic~c 95%. 

Non-Numeric  Seinantics of Answers.  In tltis cabc, the query returns a relation, and not a 

single numberlo. Since we consider relat iolts iiistead of irll~llbers, we cannot make statements about 

averages for these relations. Instead, \vc \i ant to deternliire nliich ansivers are the most likely ones. 

However, there are two ways of doing tlri5. Tlte firht alternative is to  determine which answer, as a 

relotion, is the most likely one. This alternative can be selected by specifying Answer-semantics 

= r e l a t i o n a l  in the query. The other clroice is to ilctcr~rrine which tuples in the answer are the 

lnost likely ones. This alternative call 1)c \clectctl 1)). specifying Answer-seinantics = tup le .  We 

describe relational and tuple semantics of' 'I I I \ ~  c .15 iio\\ . ; ~ \ \ r t ~ ~ ~ i l ~ g  1 lrat the parameter Number-of- 

answers  in the query is equal to A'. 

If relatioszcil senantztics is selected in t lie querjr then \\-e cotnpute frequencies for each relation 

returned as an answer for all tlre simulatiol~ runs. 111 Illis case we treat each answer as an alternative 

outco~ne of silnulations and want to kno\v t lie lilost probable out comes. For instance, assume that 

we made five simulation runs for the query froirr Esaniple 2 "whot ccrc the purts that will always 

stay iiz Cell-1 for the n e ~ t  5 hotrrs," a11c1 dssuliie \ve get tlie frequencies for each of the resulting 

answers as shown in Figure 3. 

As we illcrease the number of simltlirtio~~ S I I I ~ \ .  t Ilc tlistril~ution of tlie esti~nate of the frequencies 

of each silnulation outconle converges to a 11or111nl clist ril~ution[hI\VSSO]. Then our goal is to 

estimate N largest frequencies based o ~ t  t lie pir i'it  ~iiet ~ 1 . s  en-01--of-estiillation and confidence 

coefficient specified in the query. 

''Of course, the relation call also consist of ii hi~rgle 11111i1hcr in the tlegenerat,e case. For example, we could specify 
Answer-Semantics = Relational for t.he rlt1c.l.y i l l  Esanll)lc 1 .  l lo~\r~ver.  if nre did so. me could not talk about an 
average number of part,s proclucecl i n  10 lto111.h. 
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Figure 3: Frequencies of Different i2nswcr\ for tlte Query From Example 2. 

Tile semailtics of a SimQL query for the ~ ~ c l o t i o ~ ~ o l  type of an  answer is defined by N relations 

having N largest frequencies in this distril~ution (based on tlte estimation of their means), i.e. the 

query returns the  first AT nzost likely ansureibs. If IT = 1 tlten the query returns a most likely answer. 

If there is more than one most likely anh\\rer then eitltcr all of them can be returned, or one of them 

selected a t  random. In our esainl>le. eit Itcr 1)otlt ulo\t likely answers, { PY346, PY378, PZ216 } 

and (PUG29, PY378, PZ216), having f ic~1u~acy 0.1. (11. oitc of thela cllosen a t  random is returned 

if relational semantics is selected. \I> i i \ \u l t l c>  t lla t .\' = I ai, the clefcltllt value for the relational 

senlailtics of answers. 

If tuple senza~ztics is selected in the query. tllclt ive compute frequency of occurrence of each 

tuple in the set of answers. In other wordh. Ire want to lillow the chance of each tuple belonging 

t o  the answer. For example, if nre lilatle 1; hiluulatioit run\. and the tuple ( a l , .  . .,a,) occurred 

in answers for k runs, then the f reque i~c~  of' ( a l .  . . . . a?, ) is k. Then tlte selnantics of a SimQL 

query for the  fzcple type of an answer is clelirlccl 1)y t Irc firht L\' tuples having the highest frequencies. 

Furthermore the default value for the p~~lall lcter  Number-of-answers is All, i.e. the user wants 

t o  know frequeilcies of occurrence of all of tlte tul)lcs in  tlte anhwers. For example, if five simulation 

runs produce ailswers as presented in F i g ~ ~ r e  3. t l t ~ l l  t l t e  ani,\ver to  tlte query from Example 2 based 

on the tuple semantics is shown in Figlire -1 for Number-of-answers = All. I11 other words, the 

tuple semantics for this query specifies t l ~ c x  clta11c.c various parts xi11 always stay in Cell-1 for the 

nest 5 hours. 

In summary, we showed how tllc b;rirtci ~lotr-~~tr~trclric q11ery can have two different answers 

depending on whether the semantics i \  ~.c'lat iolt a1 0 1 %  t t~ 1)lc-l)asetl. The two examples presented 

above show that  both senlantics may 1 ) ~  11cc.tlct1 i l r  itct ic.c.. aiitl that i t  is up to  the user to  select 

the semailtics he or she wants. 

Once we kilow the semantics of ans\<crs for SiillQI, clueries, our nest  task is to  determine the  

number of simulation runs necessary to alr\n.cr a query. 11% describe how this number is obtained 

in Section 5 when we present the c1ue1.j. c ~ \ ; ~ l u ; t t  ioir htmt egy of ( 'a>sandraS. 
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Figure 4: A Sanlple Tuple Sen~antics Answer 

4 Query Driven Simulation 

As explained in the introduction, Qucr.,y Drivetl S'ir),ulcrtio~s (QDS) is an approach to  simulations 

in which the user first asks queries a1)out outco~tlc\ of xinullations and then, depending on the 

query being asked, appropriate simulation, arc lanncllcd. and events necessary t o  answer the query 

are recorded in the trace files. After si~~lt~lations are finished, the query expressed by the user is 

evaluated on the trace files(s) being gcncratetl by hiniulations. 

In Sections 1 and 2 we shotved the liincl of ciuestiorii; that people ask about future outcomes of 

business process in organizations. Curre~rt I!,, to atl,\icr sucli c-luestions, users rely on systems devel- 

oped by the informatioll systems depa1.t ~i~c.ilts tliat <upport a fixed set of questions, one program 

handling only a few questions (only a silrgle c1uc,t ion i n  t llc \\.orst-case scenario). This "program-per- 

question" approach can be satisfactory \vli t \n uhcrs lla\.e fe\v cluestions. However in other situations, 

decision makers might have very mall. clt~cstiotls of intcrcst. and it makes a-program-per-question 

approach either inlpossible or very cost1.i.. 

The situation beconles even nlore difficult \ihcn an organization has multiple simulation models 

since a program has to be written per eaclt cluestion per each model in tlle tvorst-case scenario. For 

example, if decision maliers want to asli .500 difrcrclit qt~cstions against 20 different lnanufacturing 

models then this means that one lnay 1 r i r \  c. to \\.I i t( .  10.000 pl.ograms in the worst case that handle 

. these questions. 

This discussion suggests the types ol al)plica t ions ivllere QDS systems, and Cassandra+ in 

partic~ilar, are most useful. These app1ic;it ion, call I)() 111casnrec1 in terms of two dimensions: how 

many models are there ill tlle modelbasc. itnc-1 ]lo\\. I I I ;L I I J .  cll~cstiont different users of a QDS system 

want to  ask about these models. 

The best types of applications are I Ilow \i Irere n\crs \\ant to ask many queries about various 

types of models since in tliis case the alt 11i1t i \  c ] ) I  ~ ) g t  ail)-per-questioil approach is the most ex- 
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M o d e l s  

Quer ies  

Table 1: Applicability of Query-Driven Sinlulations to Different Types of Applications. 

pensive. The worst application is whelr tliere are lclw models and the users want t o  ask only few 

questions about sinlulation results since iir this cast t11c progranl-per-cluestion approach is feasible. 

This discussion leads to  the following clra~.;rctcrizatioli o f t  lic QDS applications presented in Table 1. 

5 Architecture of Cassandras 

The architecture of the CassandraS s y s t c ~ ~ ~  that supl)orts query-driven siinulations is described in 

Figure 5. We describe llo~v it works fro111 tlir ti~rie tlit  u,er submits a query t o  the  Cassandra+ 

system until it returns the final ansivcr I),rcl; to tlrc u\or. 

When the user subnlits a query to  ('a,,antlra+ it i, pas\ecl to  the interpreter. The interpreter 

parses the query and checks for syntactic cl.ro~s. If no c ~ ~ o r i  occur. tlle interpreter then passes the 

query to  the controller. Tlle controller tlct ernlints t llc query type, i.e. past, future, or combined. 

Based on the query type, it decides if sinlulatioiis 1iai.c to 1)e run in case of future and combined 

queries, or if a simple database retrieval Ira, to  I)(> ~rr;rtlc i l l  case tlle query is about the past. The 

controller determines the nanle of the ittotlcl for t l i t  cjttcr~. I)ased on the M o d e l - n a m e  parameter 

and checks the modelbase, containi~ig t 1 1 c k  collectioti of' \rarious silnulation models, t o  see if this 

model exists. If the model exists and t11(1 qutt.y i, ;~l)otlt tile past. tlle controller accesses the past 

history for the nlodel and evaluates tllt  query against its pa,t history. 

If the query is about the future clcf'r~ult siltililatioli parameters are retrieved for the model 

fro111 the modelbase. Sonle of these default paranletcrs are over-written by the parameters specified 

by tlre user in the P a r a m e t e r s  clause of' t l t ~  Sitrt(>I, query. If the query is "combined" the two 

processing methods (about the past ant1 Itrturc) ast  coni1)ittcd. 

In order to  explain how Cassandra+ l ) ~ o c c , ~ ,  a qucrj. for a given sinlulation model, we have 

to  explain the follo~ving points. Firqt. \\ c It(ivt1 t o  c\;l)lnil~ I~ow C'assanclra+ determines the number 
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of sinlulatioll runs. Secondly, we have to explain how Cassandra+ processes one individual run. 

Finally, we have t o  explain how answers to queries for individual runs are combined together and 

are statistically analyzed. We first describe the secolld part, i.e. how Cassandra+ answers a query 

for a single simulation run. 

As a first step towards answering ;I query oli a single simulation run, the simulation model 

specified in the query is instantiated wit11 tile input parameters. Some of these parameters are taken 

as default values fronl the modelbase and others from the query itself. Also, the simulation model 

is initialized with the initialization inforillation as \\.ill be described in Section 5.4. Furthermore, 

the query passes the information t o  the sitllulatio~l ~noclel about the events the model should trace. 

We will describe this further in Section 5.10. 

Once the simulation model is initialized. t l ~ e  actual simulation is launched. During the simu- 

lation process, the sinlulation progranl \\rites various events that the query asked it t o  trace into 

the trnce files, one file per one event. I'or r s a ~ ~ l p l c  as \ye pointed out already in Section 3.2, 

various occurrences of event FINISII1:I) for tllc query from Example 1 are recorded into the 

trace file FINISHED that  may have tlrc c\.ottt:, { Finished(P3, 10:23) , Finished(P6, 10:47), 

Finished(P8, 11 : 13) ) recorded in it. 

After that, the trace files containing events are converted into the temporal database relations. 

If Type parameter in the query is "evettt-1)ascd" tlleil tllc conversion process is simple and is done 

on a record-by-record basis: one event i t r  the trace file generates the corresponding record in the 

temporal relation. If Type parameter i t 1  the queiy is "preclicate-based" then we have t o  convert 

events into predicates using conversiot~ ~.otttilrc-, htored in the n~odelbase. After the conversion 

process, the trace files are stored in tllc tcl~~j)o~,ally u~tgrouped llistorical database format [CCT93]. 

If the query is of the type "combinctl" tltc~t ( ' a s \ i t ~ ~ t l ~ a +  itlcrgcs the past history of predicates 

and/or events with the simulation tr;lt.t\ cotrvct tctl to tllc database form. After that ,  tlle core 

query is evaluated on the temporal data1)ase. \\-e \\-ill describe the details of this process below. 

This conlpletes the description of ho1v a SilnQl, c1ucl.y is evaluated on a single simulation run. 

Another important task for the co~ltr.oller is to detern~ine the number of simulations t o  be 

run if the query is about tlle future. '1'0 tlo this \vc :,tart ~vi th  an initial set of simulation runs, 

run them and see if the answer satisfies tllc c\tituation crlor and confidence level specified in the 

query. If it does not, the number of r~irrs is ilici.ea\ctl. and the process continues until the answer 

satisfies the constraints specified in tlic query. For c~san~ltle, assume that  we do five simulation 

runs for the query from Example 1 ant1 \te get tile following answers (18, 22, 19, 25, 17 ) for 

these runs. The lllean value of tliis s i ~ ~ r p l c  i s  20.2 i111tl tlie variance is 10.7. We then calculate 
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tlie 95% confidence interval for the par,tl~ieter \\liitl~ il l  thi\ case is 20.2 f 5.38. If the user wants 

the estimation error of the answer to  bc \vitllisl 10% of tile mean, then we have not satisfied that  

constraint and we have to  increase the number of sinlulation runs N and continue the simulations. 

f i r  example if the user wants the answer to be ~vitliin 2 parts, we increase the number of simulation 

runs t o  11 using the calculations descril)ed in [TU93]. Xs\ume that  we get the following answers 

(18, 19, 18, 20, 19, 18, 19, 1'7, 19, 20, 19 ). lire again compute the confidence interval which in this 

case turns out t o  be 18.72 f 1.48. Tlii, value is again outside the bounds that the user specified 

(2 parts). Therefore, we again compute tlie i~e\v salnple size and contiliue this process until the 

confidence interval falls ~vitliin the bounds specified in the query by the Error-of-estimation and 

Confidence-coefficient parameters. 1)ctails of this algorithm can be found in [TB93]. 

This completes our description of the query processing method used in Cassandra+. In the 

next section we describe components ol' ('as\ands.a+ i~rcl~itecture, as presented in Figure 5, i.e., 

interpreter, controller, modelbase. siniulation isttcrfacc, silllulator, simulation/database converter, 

query processor, statistical analyzer, ])I  ci \c3~i t ; l l  ior~ Ili;\llilgcl.. a ~ i d  c11ie1.y optiinization modules. 

5.1 Interpreter 

The queries that  the user enters are scrlt to tlte interp~.eter which parses the query to  determine 

query type, model name and model parallieters, sirrltllatioti time, the answer semantics, etc., and 

passes this inforlnation t o  the controllc~. Tltc core-cjtlcry remains u~ztouchecl by tlie interpreter 

which ineails that  it is passed to the co~~t~.ol lcr  and later to the query processor as an unparsed 

string without any modifications. As 1lsiri11l)lc .j ;tntl 1'igur.e 1 show, SimQL supports range queries. 

Therefore, the interpreter also detenl i i~~c\  tli(3 ranges il l  iiloclel l~arameters specified in the query 

and passes this information to  the coitttoller. For iit\t;tstce.  hen the interpreter parses the query 

in Example 5, it will tell the controller f 1 1 ~ 1 t  l3a1tl;-3Iotlcl-7 has to  be run \vith the number of tellers 

ranging from 5 to  8. 

The coiltroller manages the query plot cl,>i~rg <let i \  i t  i c b ,  I,) tlclcgatislg various processing tasks t o  

different modules, receiving results I~acl, I I U I I I  r l~c \c  111otlt11c> ant1 interpreting these results. Broadly, 

the functions of the controller can be tl,rt~ifiecl as follo\i ,: 

Determination of the query type 
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Figure 6: Instances in the wor1;irrg-modelbase for Example 5 .  

Determination of the il~iillber of sir~tulation rr111.l 

- 

We describe ea.cl1 of these functions no\\.. 

Xi\'unrber-of-runs 

2 0 
2 0 
2 0 
2 0 

5.2.1 Determination of the  Query Type 

Traceftle 

trace1 
trace2 
t race3 
trace4 

Number of tellers 

5 
G 
7 
8 

The first task of the controller is tllc tlct c>rlnin;tt iw of' t lie query type, i.e. whether the query is 

about the past, the future, or is co~lrl)i~ictl. atrd setting i ~ p  the query processing strategy for that 

query type. As Figure 1 slro~vs, query 1yl)c calt 11c pa,t. fi~ture, or combined. 

Past Query Type. If the query is ,tl~out tlrc I ) , I \ ~ .  the col-ttroller initiates a simple historical 

database retrieval from tlre past liistoi.~ ol act i\.itic, lo1 t lrc 111otlel. The past history of the model 

is obtaiiled by recording all tlre activit icx, of t 1 1 ~  i r  lo(lc1 i 11 a t cn~ltoral ungrouped historical database 

[CCT93]. For example, in tlre LhllS sy,tclll~ [171).1C;+92]. all tl-te transactional data from a manufac- 

turing shop floor is captured in real ti~lrcl it11(1 i, r ~ c o ~ t l ~ t l  in a database for subsequent retrieval. 

Sini-st 

0 
0 
0 
0 

As an example of tile past query, colt,itlct tlrc cltirstiorr "houy rlacrny jobs of various types were 

nzade in the last 10 clcrys bcisccl 01, t l t r  11lodt1 .llJc-.l/odcl-4." To answer this query the controller 

deterllzilles from the lllodelbase for nlotlc\l Slfc-llotlcl--1 wlrcre tlre data about the past history of 

the model is stored in historical relatiurr,. \vlrclt lrc.1 t l r  i ,  tli11 a is sufficient to answer the query, and 

if it is sufficient, it issues tlre (llistoricitl ) clricl.y itg<~ilr,t t Irc.ye sclations. 

Silrr-fin 

S 
8 
S 
8 

Future Query Type. In this case, I I I O  cotrtrollt~~ 1<\111i(lre\ bitnulations. However before doing it, 

the coiltroller deter~llilles if tlre query i, a talrgc qr~csy (i.e. has several sets of parameters for the 

simulatioll model). If it is a range q u c ~ ~ .  t lie co~rt l.ollcr cl.cate:, a tilorking nzorlelbase that contains 

one entry for each set of parameters. l i ) ~  c~x~~rr~l)lc. \L I I ( \ I I  t 11c (lilery fro111 Exai11ple 5 is evaluated, the 

resulting workiilg modell>ase is s11ow11 i 1 1  I 'igu I c 0. '1'I1(1 I ~ ~ I I  c r ~ r r c ) t  css that cllange from one instance 

of the illode1 to  the nest are the luinl I J O I  ol t clllci , ,l~o\i I I  i 1 1  t Irc first coli~lllil of the table and the 

ilaine of the trace file sho~vll in the lax1 c ~ J ~ ~ I I I I I I .  
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After that, a sepcircite instance of t 1 1 ~  query is issuecl for each entry in the working modelbase 

table. Each request generates a separate1 ans1ver wlliclr is sl~own to the user. For example, the first 

illstailce in the working modelbase (\\.it 1 1  5 teller>) 1r1;i.v rct urn the answer: 

The average number of customet~~ service(1 within tltc nest 8 hours is 1.50 f 10, and we 

can make this statement with colr fitlelice 90%. 

Tlie secolid illstallce in the workillg motlclbase (wit11 f i  tellers) may return the answer: 

The average llulllber of customel.s serviced wit l ~ i t t  t 11e nest 8 hours is 226 f 12, and we 

can make this statement with co~~lidcnce 90%. 

Combined  Q u e r y  T y p e  \ZTl~en t11c (111c~ry i, a l ) o ~ t  13otl1 the past and the future, the cotltroller 

runs simulations for tlle future part ol' the q~t t ry  as i t  does for the pure future type. Once the 

simulatioll trace is converted into the t cr I I  poral (la t al~asc fonnat , it is lllerged with the past history 

of the iilodel that is obtained as for t l l r  case of ~)ure  past queries. After the "past" is merged with 

the "future," the core query is aslied O I I  t l r c l  n~crgcd tc~llporal database. 

5.2.2 M o d e l  Manipulat ion 

This part of the coiltroller is responsil)lo lor hclcctit~g the illoclel from the modelbase specified in 

the query. Furthermore, the controllrr. ictric\.cb all t l ~ c  clefault parameters for that model from 

the modelbase. If the query is a range cl~rc>l..\:. t1tc11 t11(. i~ritialization of the model with the default 

paraltleters should be done for eclch el11 1.). i l l  t l ~ c  \\ o~,l,ing tuode1l)ase as sllowil in Figure 6. Finally, 

tlie colltroller overrides the default val uclb of \ i  I I I I I I ' ~  t io11 I I  todcl par;\tl~eters wit11 the values specified 

by the user in the query. 

5.2.3 Deter ininat ioi l  of t h e  Numbel.  of Silllulatioit R u n s  

This part of the colltroller determines I~on. itl;trry sit11111ation run:, should be performed in order to 

bring tlie estimation error for the ans\\cl isit l~irr t 11c l)ou~rds specified ill the query. We explained 

how t o  do this a t  the l~egillllillg of Sectioti 5. 

5.3 Modelbase 

Tlie itlodelbase colltailrs infol.mation al)vt~t t l ~ c '  sill~l~latioll 11iodc1~ that the user call query. It is 

a central repository of all the itlforlri;ltio~~ al)0111 ill1 t l 1 ~ 1  ~ilotlels used in an organization. The 
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inodelbase is needed in order to instantiate and rult bill~ulatiol~ lnodels and to  convert their outputs 

into historical relational database for t~~nts .  In C'absandra+', we store the inodelbase as a set of 

relational tables since the inforinatioli \i e need in the motlelbase is not normalized (for example, 

we store the descriptions of all the t\,l,c%:, of events a lt~otlel generates), and thus it is better not 

to  place this information in a single t;111lc. IIowc~c~r. one table in the modelbase is the main table 

having inodel name as its key. Sonle ol' tlte fieltlh i n  tl~ib tal~le are listed below: 

hlodel name, that serves as a key. 170s instance, llfc-Alodel-4, Banking-Model-6 are examples 

of inodel names. 

s Target simulution langunge: thc language in nrhich the simulation niodel is written, e.g. 

Modsim, Simscript, etc. 

a ATarize of the si~izrrlcrtion progrcrr~i. ' l ' lri, fic.ltl contaiir\ the i?ernze of the object module for the 

simulatioll model, as stored in tlrtl \c~c.o~itlat.y htol.~~gt\. \\'hen the actual simulation is ready 

to  be run, this object lllodule is d\.t~;lluically li~tlitcl to C'assandra+ lnodule using the name of 

the module stored in this field. 

Default sinztrlation pctmnzeters: p;r~.a~lietct.s I l lat  are used in the model. These parameters are 

taken as defaults. They can be o\.tli.-\~~.it t ett I)\. t lrc paranleters that the user specified in the 

query. 

Events trucecl by  the n~oclel: this ficxl t l  cot~taiiis tlic naute of the relation that describes all the 

events traced by the simulation ~~rotlcl. 

Event-to-precliccrfe coiz1~ersior2 p~.oyrurr,,s: this ficlcl cotttains the name of the relation that 

contains the names of tlte psogra 111s t lrat 1)uiltl \.ariou\ predicates from the events described 

in the previous entry. 

s Past infon?z[~tion: the field ront ai 11, 11i ( s  11;1111(~ of ~ . ~ l ; - t t  it111 tllat stores past inforinatioil about 

events and predicates pertinent to t lio hi t ~ r u l ' r t  io11 tirotlcl. 

Ol~tinzization flag: this is a boo1c;llt ficltl ,pccifyil~g if clueries on this silnulation model can 

be optimized. In order for a query to bc optinrized on a sinlulation model, the model should 

have its PRINT statenlents \vrittctt acrortling to it certain convention so that the query could 

pass the optimization informatio~i to thc hil~lulatiotr   nod el. 
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5.4 Siillulatioi~ interface 

Once we have determined the simulatio~t 1node1 to l)e t.uti a~rd  the parameters we have to use to  run 

the model, an instance of tlie model t o  I)c eseclttcd i:, created in the working modelbase (Figure 

6). The siinulatioil interface is responsil)lc fol. crmt ing a run-time version of every instance of the 

sinlulatioi~ model created for the query in  the \vorl;ing nlotlclbase. The run-time version contains 

tlie initializatio~z file containing ti l t .  data al~out the initial state of the system to be simulated 

the simulatiotz. i~zpzct file conta.ining the simula,tion nlodel pa.ra,meters, simulation time taken 

from the query, a,nd the nulnber of simulation runs 

the executable sinzt~latiorz progrcr~~, containing tlre silitl~lation model. 

Therefore, the sinlulation interface gettc\r.;~tc\ t l ~ c  initi;tli~ation and simulation input files and pre- 

pares the simulation progranl for the csclcl~tiot~. 

The way the initializatioli file is crc%atccl dcpentl\ on the value of the Init ialization parameter 

in the SimQL query. If the initializatiot~ paralnetcr is :,pi to the '+real time" value, then the initial 

state of the silnulation model is set to t I r c x  tur~.(~lrt \fat(' of t I I C  pltybical inodel being simulated. This 

is achieved by retrieving the records flu111 tl1(1 Iti\to~icitl i l i~ t i t l~a~e  corresponding to  the simulated 

nlodel with the time attribute equal to r r o i c * .  1 I IPI I  tIic\c ~;tltte\ are passed to the simulation model 

as the values of tlie initial state of that rtiotlel. 

Alternatively, the initialization pal'1111ettt call have tlre type "off-line." This means that the 

initial state from which actual simulatio~i\ arc. I ~ I I  i \  not based on any actual state of the physical 

system being modeled but is obtained lrulii :,on~c "hypothetical" state. This hypothetical off-line 

t state can be obtained in the following tlr~ce nay:, del)ending on tlie value that the "off-line" type 

of the Initialization parameter take\ ( w e  1-'igu~c I ) .  If  it takes the value "steady-state," then 

simulations should be run until the stc,ttl! \ t  ; l t c l  i \  I c.nclrccl. aircl then this state serves as the initial 

state for simulations. Tlris is the nio\t ~ ) O ~ ) ~ I I ' I I  ;tj)~)~oclcIi taliell in classical silnulations [LK91]. 

If the value of the Init ialization pa~nrrrc~tc~r i:, "zero." t l ~ e ~ r  tlle initial state for the simulation 

lnodel is specified by setting all of its initi;tl ~,~rial,lc\ to zeroes. Tlris situation arises in a banking 

application, where at  tlie beginning of c,~c.fi t l ;~~ .  \\ c a\\tr i~te  that there are no customers in the bank 

and 110 tasks pending. Finally, the laht c;~\c i \  \vlreti t 1 1 ~  \alne of tlre Init ialization parameter is 

"Time = t." This ltleans tliat the sim111'1t i o r t  111otlr1 r t r r r \ t  I)c \i~nulated for time t starting from the 

zero state, and tlie state of tlre lnoclel at 1 i111c / \lrorrItl I ) ( )  tiil\cn as the initial value of the simulation 

model. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-42 



Besides creating the run-time verhioli of t l ~ e  sininlation model, the simulation interface also 

links dynamically the object nlodule co111 >lilting t l l t  sinmlation program to  the Cassandra+ module. 

The siinulator module is responsible for I I t ( *  actual csccution of t 11e sililulation program. As we men- 

tioned in Section 2, simulation rnodels c;~n be ~ v r i t t ~ i t  it1 trlzy sinlulation language, such as SIMAN 

[PSSSO], SIMSCRIPT [Con87], hilODSl11 [BDIIIi90]. GI'SS [IBhil70], etc. The only requirement 

for the language is tliat it must be a colupiletl lal~guage. so that the nailles of object modules of 

programs written in this language call 1)e btored in tlte illodelbase as described in Section 5.3. 

Allother requirement for the simul~~tion progl.ai11 i h  tirat it should produce traces of events of 

the forin 

ET'EATT(pnrml, . . . ,1j(ir?n,,, fi111~ ) 

where E I / E h T T  is the llanle of the evc~it 11ci11g tracctl. pr11.1)zl.. . . ,pn~.nz, are parameters of the 

event, and tinze is the time ~vllen tlle c . \ - c 1 ~ ~ t  occtii.retl. 1'01 example, the event ARRIVED(part3, 

ce114, 10:45am) says that the part "part:l" arrivetl at tlic cell '-cell-l" at time 10:45 a.m. Furthermore, 

there should be an agreeillent across dil lcl t>~~t bi~~iltlation l~~oclels and languages on the exact format 

of the trace files of events so tliat diffeic\iil ~ i~ i lu la t io i~  ittotlel:, l ~ e  coiilpatible in their outputs. 

If the optinlization flag in tlre mod(~ll),~,e lo1 a ~ii l~ulalion model is set off, then the query does 

not pass any optimization infortnatiotr to t l ~ r  ~ ~ ~ o t l c l .  ' I ' l ~ i ,  itleans tliat the simulation model does 

not know wliich events the query need, I,,~cli I I . O ~ I I  1 1 1 ~ 1  5ir1r 11liit ion program, and therefore, it must 

record ull its events in the trace file(s). 

If the opti~llization flag in the motl(~ll)asc is hct 011 for a sinlulation model, this means that  

the query passes information about the cvcnts that i t  \vant 5 the nlodel t o  record. I11 this case, the 

print statements in the si~nulation motlcl ntl15t ll;l\.c a ,l)ccial for111 described in Section 5.10 and 

in iTB9.31. 

Tltis nlodule converts the simulation tr;ic.c files gcncra t ctl 1)). t lie sinlulator into historical relations. 

Since we coilsider temporal database5 autl query 1;lllgu;igeh 1)ased on the relational data model, 

this means that  we have t o  convert siltrtilation trace file, illto tlle temporally ungrouped historical 

relations [CCT93]. 

Depending on tlle value of tlie Type 1)arii111ctcr i ~ r  111c clucry. we either have to  convert events 
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into historical event relations [SnoSIT] ( i f  the tlie Type parameter is event-based), or convert events 

into historical interval relations [SnoS;] according to solnc conversion procedures (if the Type 

parameter is predicate-based). 

Conversion of events into the histo~.ical event relations is a straightforward procedure. Since 

the  trace files are stored in the forn~at tlcscril>etl in Scct ion 5.5, the conversion procedure consists 

of a single COPY conllnand that convci.1b tlit plain coillnta-delimited ASCII file into a relational 

database file1'. 

If the Type parameter specified by the user is -'predicate-based," then we do the ac- 

tual conversion from events to  interval based llistorical relations. This is achieved by ex- 

ecuting the events-to-predicates convc~.sion progl.ants supplied by the systems administrator. 

For instance, consider the query frotii Esailrl)lc 2. Tliis query deals with the temporal 

pretlictlte Visits that  can be represciitc~tl i l l  t l ~ c  i~itc~.\.;~l-i)ased temporal relational model as 

Visits (Part ,Cell ,From-Time ,To-Time). Ful t licril~ol p, a,\unle that the nlodel Mfc-Model-2 has 

trace files for the two events Arrives(Part ,Cell ,Time) and Departs(Part ,Cell ,Time). To con- 

struct the predicate Visits, the systeirr\ adlninihtrat or writes the procedure that  computes the 

values of attri1)utes From-Time and To-Time iit Visits from the events Arrives and Departs. 

5.7 Query processor 

As we stated in Section 5.1, the core (111(~r!. i, \ ~ j ) ~ ~ i i t t ( ~ l  f1.011l the SirnQL query shell by the 

Cassandra+'s interpreter and is kept u t r  I , C I I  \ctl. 

The query processor evaluates thi, core clt~c~.!. o ~ t  tlic ~inrulation traces converted into the 

temporal database fornlat if the query i5 ,t I ictly al>olit t lrc future. This evaluation is done according 

t o  the query processing algorithins for t lit. c o ~ c  c1t1cl.y language and the temporal database being 

used. For example, if the database ii; Tngrci; and tltc query language is embedded SQL with 

timestamps, then the core query espres5cltl in S o l ,  i, pa,,ctl to Ingres and is evaluated by Ingres on 

the trace files that  si1~1ulation/databasc c orivci*tclb gct~cl~;~t t,. IS tlte query is combined (is about the 

future and the past) then the future pat t of tltc clatal)a,c i, nlergcd with the past, and the query 

is evaluated on the merged database. 

The result of this evaluation is eitl~cr a t~unt1)er il' tlie al~h\i.er-semantics paralueter is "numeric," 

or a relation if the answer-semantics pal ; t ~ l ~ ~ t t r  in tltc query is '.non-numeric." 

"In our implemet~tatioii of CassandraS, .rvc uwtl Iikglc., [I~rgxl)] '1, the ielatioi~al database and its COPY TABLE 
co~ntnand [Ing89] to do this. 
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5.8 Statistical A i ~ a l y z e ~  

Statistical analyzer generates the ansucl to an Si~rl(]I, query, that  is presented t o  the user, in the 

form described in Section 3.2. This ansuer is c o i ~ ~ p ~ ~ t e t l  in >tatistical ternls from the set of answers 

for individual simulatioil runs, as is also tlescril)ccl i l l  Section 3.2. 

As we pointed out in Section 3.2. t lie answers and the statistical analysis techniques differ 

depending on the value of the Answer-seii iai i t  ics paranlet er. For the "numeric" parameter, the 

answer is in terms of the average answer of tlie nunleric value, error of estimation and confidence 

interval for the estimation. For the "~OII-numeric" paraitleter, the answer is in terms of the most 

likely answer, its probability, error of estilllatioii of this probability and the confidence of the 

estimation. The process of obtaining thcl\e estililat es was described in Section 3.2. 

This subsystelll is responsible for collvel till:: t l ~ c  all,\\ t r s  to the queries as determined by the query 

processor into outputs for the user. Tht* outputs ci111 1)c of ~.arious f o r m  such as tables, charts, or 

graphs. For instance, the answer to thc clucl.!. fro111 1:s;ilnl)le 3, i.e., '.lioul nzn~zy days will it take 

to co~~z l~ le t e  order JC-243 b y  ench of I / / (  tltrrc ~t~oitl~J(rcItr~.irtg plants (PL-1, PL-2, PL-3)" can be 

displayed t o  tlie user in one of the thrcc lo1 111s prc,c~rttbtl in Figure 7. .4s in Example 3, we assume 

that  the answer-semantics of tlie query i, of t>'l)c "t~~l)lc."  

5.10 Query Optiillizer 

The query optimizer Ellids more eflicie111 ngay, to j)t.oc*c,, SimQL queries. However, unlike query 

optimizers in database lilanageinent sj-st c ~ ~ i , ,  i t  ( * O I I C C J I ~  ra t e, not on the query itself but on how to  

record only the events that  are nece.s.5c11 y lo1 II,\ \  ~ r i i l g  t 110 query. In ~~ar t i cu la r ,  it determines 

wlxich events for a given SiinQL C ~ ~ I C \ I . J .  s11o1ilCI 1)c 11.accd 

which event i12stctrzce.s in these traccl lilcs sllor~ltl 1)c. recorded. 

The query optimizer obtains this infor~i~ation 1'10111 t11(' (111c1.y and provides appropriate directives 

t o  the silnulation module. The details 01 t h i >  ~) loc .c~l~~l .c~.  n.cll a, other optimization issues, are 

described in [TB93]. 

Since the optimizer tells the simnlat OI. \\.l~ich c ~ ~ l t t s  j t  ~lroulcl trace clepending on the query, the 

trace files for the same silnulatio~l lliotlcl c ; t r r  t l ifir S ~ . O I I I  each ctther for different queries. Therefore, 
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Figure 7: An Esanlplv of'all .-I~tsn.c~r tlisplayecl by CassandraS 

Fl 
+- 0.1 

the query in our approach selects the sitriulatioti model. alrcl tlie query optimizer tells the model 

what i t  should trace. It is for this reasoir tlrat n.e call this approach Query-Driven Simulations. 

Number of Gays 

The optimizer iml>oses certain con51 I ai n t  s OII Ira\\ c\clnt s are recorded in a simulatioll model. 

These constraints are described in [TI30:3]. l ' l r i ,  lrrcalr,. airlong other things, that  the simulation 

model has t o  be "prepared" for o p t i m i / ' ~ ~ i o ~ ~ .  '1'0 tli,tilrgt~i,lr prepared from unprepared models in 

the modelbase, we have the "optimizatio~~ Ilag" as o~tcl of tile fields in the modelbase. If this flag is 

set on, this illealls that the model is prcl)ared for the optiluization (i ts  PRINT statements satisfy 

a certain coavention); otherwise, the modcl is unl)rcl)ared. 

1'1.-2 

Pi.-3 Fl 
PL- I 

PL-3 +- 0.1 

6 Implementation of Cassandrat 

(B) 

The architecture of Cassandra+ descri1)cicl irr  this paper nras ililplemellted in C under UNIX. 

Since there are no coiilmercially avaiICrl)Ie tc111por;tl <li l~al)ase~ when the system was devel- 

oped, we selected Illgres [Ing89, StoSO] as t l ~ c  tlat ;ll>;tsc that stores historical and simulated 

data. We silllulated a temporal dat;tl,a,cb in Ingrts by adding two tilllestarnp columns t o  

the interval based relation and a silrglc tinlchta~np rolunln to the event-based relations. For 

esample, the interval based relation Visits has two adtlit ional time colulnils and therefore 
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has the scl~eina Visits ( P a r t  , C e l l ,  From-Time ,To-Time). Similarly, the event-based relation 

Ar r ives (Par t ,Ce l l ,T ime)  has only orle tenlporal attribute that  specifies when a part arrives 

at a cell. 

Instead of using temporal logic calculus for ille core queries, we use SQL since SQL is one of 

the  two query languages that  colnes \\.it11 Ingrcs (tlre otlter oire being Quel). However, we allow 

SQL queries t o  explicitly reference time. This ltlalicx teltlporal queries look "ugly," but still they 

call express a wide range of queries. 

For example, the query from Exainl)le 1 "I~ou1 n z o r t y  y c r r t . 5  u:ill be Jirzished in the next 10 hours?" 

call be expressed in SQL as: 

Init ial ization:  Real-time 
Type: lEve~rt-l)a~ocl 
T ime:  10 hours 
Answer-Semant ics :  Nu~rreric 
Core -query  : 

S E L E C T  Count ( Pa 1 t ) 
FROM Finished 
WHERE $NOIT < I'il~isll-l'inle . r \NU,  Fillisll-Time < $NOW + 10; 

M o d e l - N a m e :  Mfc-hloclci- l 

As we said already, tlre modell~asc c ,tlr store silllu1;ttion models written in various simulation 

languages, such as h4odsim [BDhlRSO]. Sil~~sc~.il>t [('onS;]. Siinail [PSSSO]. In fact, these programs 

are stored as object nloclules in tlie irlotlcll);~,e. ittltl  it^^ dyttanlically linked t o  the Cassandra+ 

 nodule when queries are aslted against I lrc'\e rr~otlcl\. 

\Ire store modelbase as an Ingre, tl~rt;tl)a~r 1)ccauxe the nlotlelbase can be quite large and 

because building and irraintaining tlrexc. ~i~otlcls  call 1 ) ~  tirlrc-consuming and error-prone activity 

[Len93]. The modelbase is stored in se~cr.;tl tal)lc, ( 3  i r r  t l ~ c  current implementation) because, as we 

pointed out in Section 5.3, the data stor ctl i l l  i t  is ~ ~ i r ~ ~ o ~ ~ ~ i i a l i z c t l .  The Cassandra+ system interacts 

with the modelbase by using rlyrzclntic .SQL [IngS9. I:K!)O] since if is necessary t o  formulate SQL 

queries against the modelbase dynamic all^ "on-the-fly." 

In Section 2, we clainred that  the t.olt1 query language call 1)c implemented in any temporally 

uilgrouped historical query language. 'Tli i, is t llr ca,c I)ccau\e it does not matter  for Cassandra+ 

t o  \vllich temporal database simulatioll t I a t  c file, ale coil\-el t ed and how temporal (core) queries 

are evaluated on these databases since tlit1,c c j \ ~ ~ i i c ,  <tl.c pn,,etl t o  tlte temporal database as text 

strings without parsing. 

Ilowever. in the cur~,errt iniplciltc~l~~ ,I t io~i ol' ( ';I,,;I ~ r t l r  ,t+ \i.r cannot easily switclr from one 
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database to  another, as we can do it for t 11e ~ i ~ t t ~ i l ' i t i o ~ ~  la~~gr~q,es.  170r example, it is not possible to 

switcli from Ingres to Oracle in the cur rc~~t  ilnplcti~c~~t ;r t  ioli of (:assandra+ without rewriting (small) 

portions of its code handling dynamic SOL.  This is 11ecause the database is used in Cassandra+ 

for four reasons. First of all, it is usctl for storing sillllilation traces and historical information 

and for asking queries about them. Sctolitllp, it is nscd for the i~~ferncil implementation purposes 

t o  support modelbase. In particular, ('as5andra+ uses dynamic SQL for generating "on-the-fly" 

queries in order to retrieve data from tlic nlode1l)ase and for passing the core-query t o  the database 

t o  be evaluated. Since the implementittion of dynanlic SQL is systems dependent, we cannot 

automatically switch from one DBMS to ,t nother. k'i1l.t ltcrn~ore, the conversion routines from ASCII 

trace files to  the database format are al\o systenl clepcntlent. For these reasons, we have to  provide 

some modifications to the Cassandra+'> code whei~ IVC move from one DBMS to another in the 

current version of Cassandra+. IIowevcl. thcht ~noclifications are relatively small and are quite 

"local" to  the code. Therefore, we l)elic\c) that they can l)e easily automated in the future. 

7 Conclusions 

In this paper, we described a Q u e r y - D I ~ \ ~ I I  Sin~uliktio~~ 5~ stc.~n ('assanclra+ that allows end-users to 

ask various questions about outconlc\ ol si~llulatioiis. \ \ c  p~tsentecl its query language SimQL, its 

architecture, and described ho~v \lassail ( 1 1  <if I\ ds  implciilented. One of the important features of 

Cassandra+ is that it can support nr,y t(~11i1)01~11 lelatioilal c111ery language asked about simulation 

~llodels written in cr~ay simulation languCiqc' '1s long '1s t l ~ l t e  files generated by these models conform 

to  a certain standard. 

Query-driven simulations provitlc I I I O ~ . ~ ~  tlcrliirat ive. flesil~le, and interactive ways of ask- 

ing questions about sirnl~latioll o u t c o ~ ~ ~ o ~  t l i i i l ~  t11(1 t ~~\ ( l i t io~ la l  siltlulate-and-gather-statistics ap- 

proaches. They allow end-users to asl, \,<il.io~~\ qt~cxstio~~s in a declarative query language in an 

ad-hoc manner "on the fly", just as ~cl,ition:~l quciy languages allow the users t o  ask questions 

about the data stored in databases. 

References 

[AM891 M. Abadi and Z. hlann;~. I I I I  l o g  l ~ o r a i i i i .  ,Synzbolic Computation, 

$277-295, 1989. 

IBC8.11 J. Banks and J.S. (::arson. 1 1 1  \\...I. 17al)r~~~c.li~. a11tl J.II. Mize, editors, Discrete-Event 

System ,fiin~zrlatio~~. P~*cnt iw- I [all 111r.. I:~lgl(~\\.ootl ( 'lifi's. Kcw Jersey 07632, 1st edition, 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-42 



[BDMRSO] R. Belanger, B. Donovan, Ii .  llorst>. and 11. Rocl<ower. A30DSIAf I1 Beference Manual. 

CACI, 1990. 

[Bla92] Blanning, R. and \iVhinsto~r, .A. ant1 *\i-( ' l~ang. hil. and Dhar, V. and Holsapple, C. 

and Jarke, M. and I<imbro~igli, S. ant1 1,ct~li. .J. and Prietula, M. Model management 

systems. In Edward A. Stolir and I3enn R.  Iionsynslii, editors, Information Systems 

and Decision Processes. IEI:E Conlputcs Society Press, 1992, 

[BT93] P. Balasubramanian and 11. 'l'uzhilin. Query I1riven Silnulation for Decision Support. 

Ilrorking Paper (S tem School of13lisiric.s.s. .\*I*t'), (IS-93-38), 1993. 

[CCT93] J Clifford, A Crol;er, and .\. Ttlzl~ili~t. 011 the conlpleteness of query languages for 

grouped and ungrouped histoi'ical niotlel. In -4. Tansel. J .  Clifford, S. Gadia, S. Jajodia, 

A. Segev, and R.  Snodgras,. editors, Tcntl~or~crl Dnfab(r.scs. Benjamin Cummings, 1993. 

[Con871 Consolidated Analysis C'cnt ~ 1 . 5 .  Inc. 17.YI.Y .S'I.lI.S'C'RIPT 11.5 User's Arklnual, 1987. 

[Dat77] C.J. Date. A72 Ir)troclucfio~r lo I)e~tcrbir.~~ .Yy.<fc~~t.$. Addison-\Vesley, 2nd edition, 1977. 

[EN901 R. Ellllasri and S. Nava t c. l~zrr~dartic rite11 of DN trrbcrse Systems. The Ben- 

jamin/Cummings Pul~lishi~ig ('o~iipa~ij.. 211tl ctlit ion, 1990. 

[FDJG+92] I<. Fordyce, R. Dunki-Jacul),, U .  Cicra~.tl. I<. Sell. and G. Sullivan. Logistics Man- 

agenlent Systeln (LAIS): -AIL .\tlvaliced Decision Supl~ort  Systeln for Dispatch or Short 

Interval Scheduling. Procll~t.lcurr c r l t d  01)( ~rrtior,.< .\Icrr~aycritc~tt, 1(1):70-$6, Winter 1992. 

[Geo87] A.M. Geoffrion. An Intrc~tluctio~r to Strttcturcd hlocleling. A!(lnageinent Science, 

33(5):.547-588, hlay 1987. 

[IBM7O] IBM. Gcnerirl Purpose ,Si~~trrlcrfiort .S'y.slcrrr/.3GO trscr'.s AIcrr~trtrl, 1970. 

[Ing89] Ingres. IA7GREAS/Ol~c I~,SQI, I I f  Ji rr 11rc ,ll(r 11 lie11 for. lltc ITJiIdY nnd I/A!i,S' Operating Sys- 

tem. Relational Technology I I I C . .  1 9S9. 

[Int85] IntelliCorp, Mountain \'it\\.. ('alif'. l'lit ,S'l,\lliIl ,S'y.<tcrt): Ii~aozulcclge-Based Simulation 

Tools ila IiEE, 198.5. 

[I<amG8] R. I<amp. 0 1 2  the Tense La(/it t111r1 flte 3 1rco1,y (I{ Ol.(lrr.. PltD thesis, UCLA, 1968. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-42 



[Iioy9O] R. Iioymans. Specifying rcal-tinie ~)sopertieh with metric tenlporal logic. Journal of 

Real- Time Systen~s,  2, 1990. 

[IiroS'?] F. Iiroger . Tenq~orcrl Logic oJ' 1'r.ogr.cr rtrs. Spri n ger-Verlag, 1937. EATCS Moilographs 

on Tllcorctical Computer Sciclice. 

[LIi9 11 

[RIP921 

fMI.11891 

[h4'CVS9O] 

[NASS] 

M.L. Lenard. A Prototype Implenlcntatioi~ of a Model Management System for 

Discrete-Event Sirnulatioil TIodels. In Pi.occcdir,gs of fhe 1993 Winter Simulation Con- 

ference, pages 33-39, 1993. 

A.M. Law and W.D. Iielt on. In J a t ~ i c ~ ~  1,. I{ iggs, editor, ,Sinzulation A4odeling and 

Analysis. h.IcGraw-Hill Booli ( 'ontp;t~r\.. 'Ltr t l  ctlition, 1991. 

Z. Manna and A. Pnueli. 7'ltc ircrltl)o/.ol I,o!jic of Rcocfizlc nnd Concurrent S31sterns. 

Springer-J'erlag, 1992. 

J.A. hliller and O.R. \Veyric.lr. Query Ilrivcn Siniulation Using SIMODULA. In Pro- 

ceedings of the 221'~ -4 izntrnl .Si/,c ulotio/, .S',y/upo.qi(~t)~. 1989. 

iC;. h4endeiihal1, D.D. CT'a~lic~~l~. and 11.1,. Scltcaffcr. illcithenzcrticnl ,Statistics with Ap- 

plic~rtiorzs. PCVS-KENT, 41 1 1  edit iolr . 19!)0. 

S. B. Navatlle and R. Xlr~r~cltl. 1'S()I, a la~rguage interface for history databases. 

In C. Rolland, F. Boclart. ai~tl  11. I.corrast1. rditors. Zir,?porcrl Aspects in  Information 

.Sy.ste~izs, pages 109-122. KOI  I 11-llollantl. 1 SSS. 

C.D. Pegden, R.E. Shannolr. and 13.P. SatIo\\.hlii. Ir~trodurtion to simulation using 

SIA4AiV. McGraw-Hill. Ne\\ 1;)l.k. 1090. 

SAS Institute, Raleigh, X('. .5'.I.';' 1 -..r I . * S  ((I'otil(. 1SSS. 

R. Snodgrass. The tempor.;rl c l t~c~ t I ~ I I I ~ I I ~ I ~ ~ ~  'I'()uel. .1CAII lr*rrnscrctions On Database 

Sgstenas, 12(2):247-298, 19s;. 

h4. Stonebarker. The I l~ '( ; l~12S' I'crpc I:<: ..l , r c~ to /~y  of a Rclcrtioi~crl Database System. 

Addisoil C44Tesle-y Publishing ( ' o l~~pany,  Inc.. lOs(i. 

A. Tuzhilin and P. B a l a s u l ) l t r ~ ~ ~ a ~ r i a ~ ~ .  (Zu(1i.j. I)r.i\.cn Sirnulation: Issues and Solutions. 

1993. (in preperation). 

A. Tuzhilin and J .  Clifford. .\ tc~lrltor.;rl icliltio~\al ;rlgeltsa as a basis for temporal 

relational conlpltteness. 111 C ' o 1 1 f i  1.1 I / (  c o/t l i I.!/ 1,crrgc Dc/trrbrr.scs, pages 13-23, 1990. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-42 



[Tuz92] A. Tuzhilin. SinlTL: A Siltit~latioll I.ai~guagc Ijased on Teinporal Logic. TRANSAC- 

TIOiYs of Tlte Society for (bu,l)utt 1. ,S'ir~tul~/tio~~. 9(2):086-099, 1992. 

[Tuz93] A. Tuzhilin. Applications of ten~potal  tlatal,a>es to linowledge-based simulations. In 

A. Tansel, J. Clifford, S. (iaclia, S. Jajodia .  A. Segev, and R. Snodgrass, editors, 

Tenz11orul Dntcrb~ses. Relijnlt~iit C'u~lruii~~gs, 109:J. 

8 5 ]  N. Wirt 11. P~ograi7z1~2ii2g il? .llo(lu1(1-2. Sl)ri~lger-\'erlag, 3rd edition, 1985. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-42 


