
CASSANDRA+: A SYSTEM FOR DOING
QUERY-DRIVEN SIMULATIONS

P. Balasubramanian

Alexander Tuzhilin

Information Systems Department
Stern School of Business

New York University

Workinq Paper Series
STERN IS-93-42

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Cassandra+: A System for Doing Query-Driven Simulations

Illformatioil Syst ellis Department
Leonard N. Stern Scliool of Business

Abs t r ac t

A Query-Driven Simulation systein C a s s n ~ ~ d r n S is deqcrihed that allows end-users to ask
queries about outcomes of runnillg siinttlation models written in various simulation languages.
The architecture of Cassandra+, its rlttery language SZIZIQL, and the implementation of the
system are described. It is argued that Query-Dri\ic>it Simulations provide a more declarative,
flexible, and interactive approacll to asltiitg cluestions about siitlulatioit outcomes than the tra-
ditional approaches of letting the end-ubers run simulations and gather statistics on the trace
files being produced.

KEY WORDS: Decision Support, Query-Driven Simulation, Discrete-Event Simulations,
Temporal databases, Temporal Query Languages.

1 Introduction

Throughout their daily activities, decisiolt nla1iei.s it1 various organizations have to anticipate future

events in order to make better decisions ant1 atlopt effective strategies for reaching desired goals.

For example in a manufacturing organization, a foreman on the shop floor may want to know

wllicl~ machines will have a utilization ratio of illore tllan 90% during the nest two days, or a

finance manager may want to know rvhat will the average cost of producing jobs of type-A be, or a

salesmail needs to know if i t is possible to coil~plete job-$ in four days if it is assigned the highest

priority. In the banking industry, a manages may want to know how much cash reserves will the

bank have within a month's time. In the sea freight industry, a dockyard manager or a customs

official may want to know what cargo will 1)e delivered to his/her clockyard within the next week

and in what quantities.

To deal wit11 these types of questiolrs ill co~nples intlustrial and organizational settings, simula-

tions are often used [LIiSl, BCS4]. To answer questions such as the ones presented above, summary

'Address: 44 West 4th Street, Room 9-78. Nctv Yolk. NY 10012, e-mail: pbalasubQrnd.stern.nyu.edu,
atuz1iiliQmd.stern .nyu.edu

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

statistics are usually collected in one of tlie following tnro mays. In the first approach, summary

statistics are computed inside the simulation program, and the program prints these statistics. In

the second approach, various simulated events are recorded in the trace files, and then statistics are

collected from these trace files by either writing prograills in one of the programming languages,

sucli as Fortran or C, or by using one of the statistical packages, such as SAS [SAS89]. We will call

this traditional approach sirnulate-arzd-gccther-st[cti.stic.s (,SAGS) approach.

Since most of tlie people who asli questions about future outcomes of business processes in

their organizations, sucli as a foreman, a salesman, or a bank manager, do not know much about

simulations, programming languages, or statistical pacliages, they cannot ask ad-hoc questions

about future outcomes of their business processes as the questions arise "on-the-fly." Instead, they

have to rely on the systems deveIoped by information systems departments that support a fixed

set of "canned" questions. Clearly, this situation is uitsatisfactory in many organizations, such as

manufacturing, transportation, or in the military, n-here various users want t o ask many different

questions about sinlulation outcomes of various ntotlclb [BT93].

In this paper, we describe tlie Qucry Driz-e~z Si~12nIc1fior2s (QDS) approach, that addresses this

problem. QDS is an approach to simulations in ivliicli the user first asks queries about outcomes

of simulations expressed in a cleclrrrcrtivc query language and then, depending on the query being

asked, appropriate simulations are launched and events necessary to answer the query are recorded

in the trace files. After the silnulation rttns are completed, the query is evaluated on the trace

files(s) of events recorded by the simulatiol> program. For example, assume an operations manager

a t a car nianufacturing plant wants to Iil~ow llo\v Illany cars will be produced at the plant within

the next week, and assume that he/she aslis this query on tlle si~iiulation model h4anufact-Model-

3. According to the QDS approach, it should be cleterlnined first what events in the Manufact-

A4odel-3 model should be traced and for how long in order t o answer the query (i.e, the event

Finishetl(Car, Time) should be traced for a weeli of simulated time). Then simulations are launched

for that amount of time, the trace file for the event Fit?i.shctl is generated, and the query is answered

based on the information contained in t l l i5 trace file.

In the paper, we also present a bpecific ()US hyhtem. called Cassa12dm+ and describe its

architecture. As part of Cassandraf, we describe tlie language ,SinzQL for asking queries about

simulation outconles. We designed SimQI, to nialie i t hinlple enough for a lion-technical user t o

understand and use it, and poxverful enough to be used in coniples simulations.

The QDS approach has the f o l l o ~ i ~ ~ g aclvantageh over tlle SAGS approach:

a Decinrc~tiae12e.s.s. The user can asli a tlnestioii in a declarative query language alld does not

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

have t o know any sinlulation ancl statistical pacliages, or write programs in conventional

programming languages1.

Flexibility. QDS user can ask cc~zy query expressible in the query language of that system.

This is in contrast to the fixed set of '*cannedv queries supported by the simulation specialist

in the SAGS approach.

Interactiveness. QDS user ca,n a,sli clueries "on-the-fly" a.s they a.rise without any help from a

simulation specialist.

Query languages in the context of siniulations were studied before. In [Len93], a database of

simulation models, called a modelbase. was constructed based on the structured modeling approach

[Gees?]. As part of the structured modeling approach, [Len931 uses the query language defined

for this approach by Geoffrion[GeoSi']. Although tlle system supports queries, these queries are

used in a totally different context: they are used for asliillg questions about the models themselves

fe.g. whicll models stored in the modell~asc are n~anufacturing moclels), not about simulation traces

produced by running the models.

In [MWSS], Miller and IZreyric1l developed the SIhIODULA system that has its own SQL-like

query language (with object-oriented features added to i t) for asliing questions about simulations.

Each model has a relation of input garalneters and olitcomes of previously executed simulations

associated with that model. For esantple, a halt liittg ntodel may have a BankScenario relation

associated with it that has input para~neters: such as number of tellers, mean interarrival rate,

lllean service time, and the output paraitletel.>. sucll as tllro~~glll~ilt and the service time, as its

attributes. If the user wants to ask a clucstion al,oltt tl~rougllput and average waiting time for the

banking model with input parameters n-tean interarrival rate being 4.0, mean service time being

6.0 and the number of tellers equal to 2. the11 S1hIODllLr\ checks in the BankScenario relation

if this model has been run before. If it \\.as, it retrieves the answer from relation BankScenario

(values of attributes Throughput and AverageIVaitingTillle). Otherwise, SIMODULA launches the

simulation with the input parameters retrieved from the query and the rest of them set to defaults.

The authors call this approach "query driven simulations.''

SIMODULA provides a good first approach to asltil~g questions about outcomes of simulations.

However, the work in [MW89] can be expanded in various ~vays. First of all, SIhilODULA queries

do not really drive simulations: they just lctuncl~ them. Once SIMODULA determines that the

'We can draw a comparison between Qnely-Dlivet~ Silnulations ancl relational query languages such as SQL. As
the relational query languages are mocli mole dcclalati\.e tlr411 the ea~liel navigational query languages, such as DL/ l
[Dat77], so is the QDS approach ill colnparisol~ \\.itlt SX(;b.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

silnulatioil has to be run, the query does not interact with the lnodel or influence its execution in

any way; oilly a t the end of the run. does the query select the statistics of interest to the user.

Secondly, SIMODULA users cannot asli arbitrary ncl-hoe queries about simulation outcomes of

SIMODULA models because the queries are restricted to questions about statistics pre-defined by

the modeler in the schema of the model instalrce rela tion (e.g. BankScenario relation). The major

reason for this is that SIMODULA queries are not evaluated against the trace files generated by

simulatiolls but are only limited to the predefined set of statistical outcomes. Thirdly, as related to

the secoild point, the users can ask queries only about statistical ti'ulues. They cannot ask questions

of a more general nature dealing with non-single-valuec1alul outputs, such as lists of customers who

visited the bank on a certain day, or some of the cluestiolrs presented a t the beginning of this section

(e.g. which machines have a utilization ratios of more than 90%). Finally, SIMODULA lets the

user ask queries only in one query language (estension of SQL) against the models written in one

siinulatioll language (Modula [LtiirS5]).

In this paper we present a more estensive approach to Query-Driven Simulations by allowing

SimQL queries to drive simulations ant1 1101 ju>t ltrrii,cli t ltem. V7e also allow the user to query

simulatioll traces in an ad-hoc manner inbtead of letting him/her ask a fised set of questions on

summary statistics about a single siirlulation run. Furthermore, we express answers in statistical

terms that require more than a single si~nulation run to ol~tain the answer. Finally, we allow a

loose coupling between any database query language and crny si~nulation language as long as trace

files generated by simulatioll program> collfornl to a certain standard.

In [Tuz92, Tuz931, the idea of asliing cluerie:, oil simulation traces was proposed, and a SimTL

language was presented. SimTL consist> of t l ~ c >i~ltnlation and the querying components, The

simulation colnpone~lt is based on a tenlporal logic progt.ailiming language [AMSS], and the querying

component is based on temporal logic [111'92]. T h n ~ queries about simulation outcomes expressed

in temporal logic are asked about sinlulations gentlratcd by tenlporal logic programs. This means

that SiinTL is a tightly coupled simulation and cluerying system, in which both components depend

on the formalism of temporal logic.

In this paper, we extend the i\~orli of [TuzS'L. T1izD:3] by integrating an arbitrary temporal query

language with an arbitrcrry sinlulatiolt language. Tl~ercfore. unlilie SimTL, ~vhere the interface

between querying and simulating contltol~tl~tz is \\ell-titidcrstood and is based on temporal logic,

we have to develop a proper interface bet\\ eel1 these components in order to achieve independence

between the query and simula ti011 languages. In atlditio~t to this interface, we also describe an

architecture that supports query-driven >i~itulat ion\.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

We begin our description of the QDS system C'assanclra+ by informally introducing its query

language component SilnQL in Section 2. In Section 3, we formally define the syntax and the

semantics of tlre language. In Section 4 we descril~e how QDS system integrates querying and

simulatiolr subcomponents. In Section .5, the architecture of a specific QDS system Cassandra+ is

described. Finally, in Section G we dehcril~e the inrplelitentation of tlre system.

2 Overview of SirnQL

SimQL is a language for asking queries about outcomes of simulations. It consists of two subcom-

ponent~: the core query language subcomponent ancl the shell into which the core query language

is embedded. The core query language subcompoitent is tlre "heart" of SimQL and is used for

asking temporal queries about sinlulatio~t traceh. \\ have chosen a tc~izyorul query language as a

core query language because queries csl)ressetl in i t are about process evolving over time. In the

Query-Driven Simulation approach, n e can asli queries about si~nulations in any temporal query

language as long as it supports the sanle data nlodcl as the siirrulation component 2 . In this paper,

we selected the temporally ungrouped hihtorical data nlodel [C:CT93] as tlre underlying model for

storing silnulatiolr traces and tlre ~noclel for the query language. Therefore, we can use any temporal

query language based on this temporally ungi.onpetl data n~odel, e.g. we can use TQuel [Sno87],

TSQL [NAS$], or tenrporal logic calculu\ [TC'90, ('C'T9:3].

The second subcomponent of SimQI, i \ the .\larll i~ t to \vhich tlre tenlporal query language is em-

bedded. This shell provides an i,,icrjiccc betnreen the q~~erying ancl simulation parts of Cassandra+

that integrates tlre two comporrents illto one sgstelrl. For example, we specify in the shell such

information as the silnulation lnodel against \vhicll tlte query is asked, the parameters for that

model, for how long simulations slroulcl be run, iv11at anslver we expect back, i.e. a full relation or

just a number, and various additional information that the simulation component of Cassandra+

needs in order to provide tlre answer to tlrc query.

Example 1 Consider the follo\ving cl11ct.y:

How many parts can be finislretl i l r t he nest 10 hours?

It ca,n be expressed in SinrQL a.s:

2We wilt discuss this point fur the^ in Sectiol~ J

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Init ial ization: Real- time
Type: Event- based
Answer-Semant ics : Nulneric
Core Query: { COUXT(Part) I within- t ime (10) Fiaisl~ed(Part) }
Model -Name: Mfc-MotIcl-dl
Confidence-coefficient: 90
Error-of-estimation: 10

The core query in this exa,mple is

(COUNT(Part) (within- t ime (10) Fiaisherl(Part) J

It is expressed in temporal logic, where wi t h in- t ime (2') P is a bounded temporal operator [KoySO,

Tuz921 specifying that predicate P is sollletimes true between now and now + 2'.
Note that this core-query is embedtled in the SilllQL shell that provides additional information

about the meaning of the query. For esan lple, the paralneter M o d e l - N a m e in the shell specifies

the name of the simulation model, Mode l -Naine = hIfc-Model-4. It tells Cassandra+ that the

query is asked against the lnodel hilfc-llotlel--1.

The parameter Init ial ization = Real-time, specifies that simulations should be done in "real-

time," i.e. they should start from sonle initial state of the system for the model Mfc-Model-4.

Alternatively, they could be done "ofl'-li~tc," nieaning that the initial state of the system is not

specified, and simulations shor11d be 1.1111 for sotuc1 t irne until, e.g., the steady state is reached, and

only then the query shoulcl l)e evaluatctl.

The second paranleter in the query. T y p e = I:vcnt-l~ased, specifies that the trace file($) of the

simulation model hffc-Model-4 must l)e stored as a historical event relation [Sno8'i]. In particular,

the trace file of Finished has a singlr t inlesta~ilp ahsociated ~v i th it. If Type = Event-based

then the simulation trace file(s) are copicd into the t e ~ ~ t p o r a l database without ally conversion.

Alternatively, the T y p e parameter cait l)e "~~redicate-l~ased," and this requires conversion from

the event-based t o a historical interval 1.clatio11 [SiioS;]. Tltis conversion will be described below in

Section 5.6.

The value of the Answer -Semant ics paranleter in the shell is ~zumeric. It specifies that the

query returns back a single number (tltc number of finislted parts in our case). Alternatively, the

answer-semantics call be non-nunzeric. I n this caw. the query returns back a relation. We will

discuss this semantics in Example 2. \Yo have to di~ting~iish between numeric and non-numeric

semantics because the types of ans-weus are different in these two cases as Example 2 will show.

Finally, the parameters Error-of-es t imat ion and Confidence-coefficient specify what should

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

the estimation error of the answer be and with what confidence we can provide the answer [MWSSO].

III our example, the user wants the estilllation error to be within 10% of the mean and the confidence

of the answer should be 90%.

A possible answer to this query can be:

The average number of parts produced within the next 10 hours is 32 f 3, and we can

make this statement with confidence 90%.

In other words, the probability that the answer to the query falls between 29 and 35 parts is 90%.

When the user issues a SimQL query, Cassandra+ determines the simulation model to which the

query refers, determines how many siniulation runs (M) are needed to obtain the answer within the

estimates specified by the user (parameters Error-of-estimation and Confidence-~oefficient)~,

runs this simulation model for N simulation runs, storing simulation traces in trace files, converts

the resulting simulation trace files into the tenlporal database format according to the Type pa-

rameter, issues the temporal query agai~lst each silnulation trace, and statistically analyses the

answers t o these queries.

We considered the first example of a SililQL cluery, and described some of the shell parameters.

It turns out that there are other parameters in the cjuery that were taken as default parameters.

For example, TIME is one of such parameters. If not specified, it is "extracted7' from the query

(10 hours in our case). If it is present then we assume that the time domain in the temporal logic

operators appearing in the query is restricted by this parameter, as the nest example shows.

Example 2 Consider the following question that a foreman may want to ask:

What are the parts that will always stay in Cell-1 for the nest 5 hours?

This query can be expressed in SimQL a,s

3We will discuss the process of estimating n' in Section 5.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Initialization: .

Type:
Time:
Answer-Semant ics:
Core-query :
Model-Name:
Parameters:
Confidence-coefGcient :
Error-of-estimation:
Number-of-answers:

Real- time
Predicate-ba.sed
5 hours
Relational
{Pa.rt I always Visit,s(Pa.rt,, C:l))
Mfc-Model-2
number-otcells = 5 , job-a.rri\!al-rate = 10
95
10
2

The core query in this example is

{Part I always Visits(Part, C l))

where always P is a temporal necessity operator that is true now if P is always true in the future

[hiIP92]. Note that the core query is unbounded in the sense that we need t o know the values of

the Visits predicate a t all the (arbitrarily far arvay) points in the future t o evaluate its value a t

present. To solve this problem, we specify the Time parameter in the shell. The Time parameter

restricts the temporal do~llailr to the l)ot~nded set of tiliies (up to 5 hours from now), and the

temporal operators are evaluated on tliot clomain.

This query has additional paraliicte1.s that did not appear in the previous example since

default values were assumed for thein in Esan~ple 1. Oiie of these parameters is Parameters

that specifies the parameters passed to tlie simulation lnoclel specified in the query. For example,

number-of-cells = 5 and j o b - a r r i v a l r a t e = 10 Incan tliat these parameters are passed t o the

Mf c-Model-2 model.

The Answer-semantics parameter in tile query in this example has r e l a t i o n a l as its value.

This means that the query returns relations as its anslver. Relat ional is one example of non-

numeric type of the Answer-seinai~tics parameter. tlie other type being tup le . Both values

of the non-numeric type return relatiolis as ans\vers to SilnQL queries. However, there are some

differences between these two valiles. \Ye \vill tliscuss t l~ese differences when we describe the t u p l e

value of the Answer-semantics paranlctcr i l l Es;t~nl)le 3.

The Type parameter has value pred ica t e-based. This means that the relations in the core-

query are predicates with two timestamp attril~utes. begin-time and end-time (unlike events that

have only one timestamp attribute). &'or esaniple, predicate V i s i t s (Pa r t ,Cel l) has two times

associated with it i.e., when a part begin:, and e~icls its visit to a cell. Finally, the parameter

Number-of-answers specifies the nuiul)er of tlie i i~ost liliely answers the user wants specified

in the order of decreasing probabilitie:, of the5c aii,\ver:,. This parameter can appear only in the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

SinlQL queries that have 11011-numeric values in the Answer-semantics parameter.

A possible answer to the query front this esainplc can be

Most likely, parts PY346, PY378, and PZ216 ivill alivays be in Cell-1 within the next five

hours; the probability of this is 24% f 2%. ant1 we nlalie this statement with confidence

95%. The second most likely ansxver is that parts PZ289 and PY378 will always be in

Cell-1 within the next five hours; the probability of this is 21% f 2%, and we make this

statement with confidence 95%.

The query returns two most likely answers because the parameter Number-of-answers is 2 in this

case. Furthermore, the answers are returned in thcl decreasing order of their average probability

Note that the answer to this query i5 different from the answer to the query in Example 1.

This query returns the relation that is t l ~ c lllost likely answer to the query and an estimation of the

probability of that answer (e.g. probability estimate is 24% f 2%). In contrast to this, the answer

to the query with the numeric value of the Answer-semantics parameter returns the average

estimate of the valzre of the nuineric paranrc.ter and the estimation error for this value (32 f 3 parts

in that exainple).

In Example 2, we considered the relatiolral value of the Answer-semantics parameter. This

value directs Cassandraf to return the i~lost lilitly ansiver(s) to the query. However, the user may

sometimes want a different liind of the ansnTer, as the follonring esa~nple sllows.

Example 3

Consider the query

How Inally days would it talie to coil~plcte order number JC-243 by each of the three

manufacturing plants (PL- 1, PL-2. 1'1,3)4?

The relational semantics would return a certain answer, e.g. { (PL-1, lodays), (PL-2,

14days), (PL-3, 12days)) and would assign a probal~ility estimate for the eolzo~e relation, e.g.

probability 26% f 2% that the above ralation is tlre answer. Ho\vever, we inay need a different

answer. We inay want to Ii110\\~ probal)ility c,t i~\~atch for each plant seprtmtely, e.g., { (PL-1,

*We assume that it shoi~ld not take lriole t l i , in j o clay, to toli~l>letr the order in all 3 plaiits

9

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

lodays) with probability 23 Ifr 2%, (PL-2, l4days) with probability 34 f 3%, (PL-3, 12days)

with rob ability 21 f 2% }.

To accommodate for this type of anbwer, we provide the tuple value for the Answer-semantics

parameter, as the following SiinQL query shows

Type: Event-based
Time: 30 days
Answer-Semantics: Tuple
Core-query: { Plant, Dais / soinetiilles Completed(Order,Plant,Days) and

Order = JC-243 and (Plant = PL-1 or Plant = PL-2 or Plant = PL-3) }
Model-Name: Mfc-Model-G

There are two additional issues relatecl to the proce\s of interaction between SimQL queries

and simulations. First, there is a nzotlcl r ~ t c c r z i c ~ c rtlc r t t i>bile [Bla92]. Cassandra+ must store a set of

simulation models against which the user can asli queries. For instance, in Example 1, the query

was issued against the manufacturing nlodel Mfc-hloclel-4, in Example 2 against model Mfc-Model-

2 and in Example 3 against lllodel hffc-Model-6. Therefore, Cassandra+ iliust store, retrieve and

update various models. We will discuss tltis is\i~e furtller in Section 5.3.

Second, different niodels in the modcll~ase call be \vritten in different simulation languages. For

example, Mfc-Model-2 can be written ill >IOUSIlf [13DhIR90], hlffc-hilodel-4 in Simscript [Con87],

and Bank-Model-12 in Sirnkit [Int85]. -4s was stated already in the introduction, one of the im-

portant advantages of Cassandras is t11at it call support orzy temporal query language and any

simulation language as long as the two agree 011 the data lllodel (so that teniporal queries can be

asked against the corresponding traces)'.

The nest example shows that SimQL queries call be aslied not only about the future but also

about the past6, and siiilultaneously allout the. pa\t t r i ld the future.

Example 4 How many parts will be protlucetl this n ~ o n t h , assun~ing t11a.t now is September 15.

5 T l ~ e only conventioll is that the trace files generat,ed by programs writt,en in different sirnulation languages must
have a certain format. The structure of this for~nat will be discussed in Section 5.5.

6To simplify the presentation, we assume t,hat the present. is a special case of t,he past throughout the paper. The
past and the present are grouped t.oget,her since i n botll cases nre kttolv tIte state of t,he system and do not have to do
simulations to answer t,he queries ahout the past ttr~c-l/or tile present (jnst do the ret,rieval from the database).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Initialization: Real-time
Type: Event-based
Answer-Semantics: Numeric
Time: Combined(Paht(1.5), Future(l.5))
Core-query: { COUNT(Past) I within-time (l5days) Finished(Part)}
Model-Name: Rllfc-RiIodel- l

Note that the Ti ine paranleter in tlie query indicates that the silnulation model Mfc-Model-1

should be run for 15 days and the11 tile sinlulatioi~ results should be combined with the history of

relation Finished over tlle past 15 days7. Fiaa1l.i.. llle core query is evaluated on the combined

relation that has the 1ifespa.n of 30 dajrs.

The next example shows horv SimQT, queries$ call bc used in tlie experimental design.

Example 5 How many custolners will 1)e scrvictd in the bank per day if we vary the number of

tellers between 5 and 8?

Initialization: Off-line(Stcady-stat e)
Type: Predicate-1)ahctl
Answer-Semantics: Numeric
Time: 1 day
Core-query: {COUNT(('ttstolitcrj / withill-time (lday) Serviced(Customer,TeIler)}
Model-Name: Bank-hloclel-7
Model-parameter: number-of-tcller = 5..S
Confidence-coefficient: 95
Error-of-estimation: 10

This query is called a rcrnyc query becaltse i t gives rise to four individual queries, one query for

each nunlber of tellers (5, 6, 7, and 8) sl)ccified in tlie Model -parameter parameter. As a result

of this, SinlQL returns four different ailh\i.crs to the uher, one ans\ver per one value of parameter.

Also note that this is an ofl-line cluery. This mean.; that siillulations are run initially until

Bank-Model-7 reaches a steady state [l,Ii9 I]. Onlj. aft er tlla t , silllulatiolls will be run for one day

of simulated time and traces will be gcl~crated htarting from that time.

In this section we informally introtl ucctti t lle language SilllQL through a series of examples. In

the next section, we formally define tllc s!*ntas aiicl tlic sellrantics of SimQL.

'The historical data can be obtained by g,tt lrrii~~;: (l r t* t ~ n i ~ ~ n c t l o n a l real-time d a t a a b o t ~ t all the events and
activities happening in the enterpli.se, as ii: tloitc~ 111 [PI) I (lt 021, a tit1 t lie11 plocessing this d a t a and storing it in the
historical relational database f o ~ ~ n a t .

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-42

3 Formal Description of SirnQL

We begin the formal description of SintQT, with the specification of its syntax. In Section 3.2, we

describe the semantics of the language.

3.1 Syntax of SiillQL queries

The BNF grammar for SilnQL is presented in Figure 1. \Ye assume that entities value, number,

INTEGER, REAL, and STRING are terminal symbols. and \ye do not decompose them any further. We

explained most of the SimQL's features informally in Section 2 already. Therefore, we will briefly

describe some of the ~llost iinportant parts of SimQI, that received less attention in Section 2.

We start with the shell parameters. First each parameter in the shell has a default value.

The default values for the parameters in Figure 1 are italicized. Second, the core query can be

expressed in any tenlporally ungroupecl hi5torical query language [CCT93]. In Section 2, examples

were presented in teillporal logic calcull~, that was clcscribed in [Tuz92]. However, we could have

done it in any other tenlporally ungrouj)c~tl qr~ery language [C'CT93], such as TQuel [Sno87] or

TSQL [NA88I8. Tllild, as Figure 1 slro\\.,, t l ~ e ofl-lino value of tlre Init ial ization parameter can be

Steady-state, Zero, or Time = ~zu~izber. 'L'llis nleanh that tlre initial state of the systelll from which

siinulatioils begin their executions is oljt ailled as follows. If the value is "Steady-state" then the

initial state is obtained by running sinrulations until tlre steady state is reached. This steady state

serves as the initial state for simulations. Tliis is the ,tatldard aj)proach often taken in simulations

[LI<91]. If the value is "Zero" then tllc i~iitial state i, ol)lained by setting all the values of all the

parameters t o zero. Fbr example, in a I);ttrliii~g appli~ittiolr. we can start silllulations by assuming

that the bank just opened, and its b~.a~icl~e:, ha*e n o cu,toiiiers yet. If the value is "Time = t"

then the initial state is obtained by ru~~l l ing si~nulatioll, for tinle t ancl taking that state as the

initial state. Fourth, the Tiine paranictcr has values "future," "past," and "combined." For the

"future" and "combined" values of tlle T i m e paranictcr, simulations are launched as described in

Section 2. If the parallleter has the value "past" tllen tlte query is evaluated on the past history of

the database, and nlost of the other parair~eters are not applicable in this case. The only parameters

that can be used in this case besides t l ~ c Core -query pasanleter are T i m e and Mode l -name.

We next describe the syntax of' tlle core queries fro111 Figure 1. As we said already, any

temporally ungrouped query language (a11 1~ u,t t l a, a cole query language. Since examples of

8Altllougl~ a core qnelg can be expres5etl ~ r r nit). oi thc,e c l u c . 1 ~ languages, it is an entilely different matter how
 assa and la^ call accommodate diffelent DBhlS<\ that \111,1mlt tlir'e q u e ~ y languages. We will address this question
is Section 6.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

queries : [initializatioii][type][anh\ver-semantics] [time] simple-query
[model-name] [motlel-Parameters]
[error-of-est inlation] [coiifidence-coeEcient]
[number-oS-;~l~hwers]

initialization : Init ial ization: Off-line (off-line-type) I Ini t ial ization: Real-time

off-line-type : Stecidy-stcrlc / Zero / Tinie = number

type : T y p e : Et~r,t-ltcrsecl I T y p e : Predicate-based

answer-semantics : Answer-Semant ics : S~rliicsic I
Answer-Semant ics : lion-numeric

non-numeric : Tuple I Xcl(rtio1tcr1

confidence-coefficient : Confidence- Coefficient : numl~er

error-of-estimation : Error-of-est i l~lat iolz: n1tilil)tr

number-of-answers : Number-of-answers : I I I ~ I I ~ ~ I C I

time : T i m e : Pa\t(range) I T i m e : [Ftrlurr] (range) I
Tinie : C'ol11I)illc~tl(Past(1.ange), Fxlture(ralige))

simple query: Core -Query :
< Expressed in ccriy tenlporal query la,ngua,ge >

model-name : STRING

model-parameters : M o d e l - p a r a m e t e r : I I ; I I I I O = range {, name = range)

value : INTEGEIt 1 1tl2A1, / Sr1'ItII\ITG

llulnber : 1ItTEC;EIt 1 1iE-41,

range : INTEGEI\)..lSTEGER STEP INTEGER I INTEGER

Figure 1: 1jSF G r a ~ n n t a ~ of SitnQL

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

core queries in Section 2 were describetl in tenlporal logic calculus, we will use this calculus as the

core query language in the paper. Furtllcrnlore, it also does not matter what kind of temporal logic

is used in this calculus, since various types of tenrporal logics can be incorporated into Cassandra+.

Temporal logic is obtained from first-order logic by adding various temporal operators to

it. The most comnlonly used tempora l operators arc the future operators somet imes in- t he,-

f u t u r e (o), always-in-the-future (D), nex t (0). until and their past "mirror" images some-

t imes in- the-pas t (+), always-in-the-past (m) . previous (e), and sinceg. Besides these eight

standard operators, other temporal operators can be tlefined, such as before, af ter , while [Kro87],

and bounded necessity, for-t ime (T) (or), and possibility, within-time (T) (oT), operators

[Tuz92]. The meaning of future operators is defined in Fig. 2. The meaning of past "mirror"

images of these operators is defined sinlilarly to the filttire operators except time is referenced only

in the past. I<roger [I<roS'i] sho\vs ho\v tenlporal operators before, af ter , and while can be ex-

pressed in terms of the operators until ; t ~ l t l since [IiroSi]. I;'rtrtlrerrnore, it easily follows from the

expressive colllpleteiress of the temporal logic 17S [li;iii~(iS] for tlle discrete or continuous model of

time, that the operators of bounded nccclhsity ancl pobhil,ility can also be expressed in terms of the

until , since, nex t , and previous operators for tllcw nlodels of time.

The following exanlple illustrates t 11(' use of tci~t poral logic.

Example 6 The statenlent

If a person is pro~noted from t l t v -\\>ociatc to the Full Professor he/she cannot be

demoted back in the future to t It(. t.allli of' a \ \ \ o ~ i i ~ t c l'rofessor at the same scllool.

can be expressed in temporal logic as

'Note that the operators o and C7 can be tlciivcrl flotn o ant1 uiltil; and + and n fionl and since [MP92]. Also
note that if we consider operators next and previous tlien time most be discrete. Alternatively, we can remove
these operators and co~lsider tlle continuous t~~odc l of tittle.

n A is true now if A is always true i n the fut u1.c (necessi ty)
OA is true now if A is sometimes trttc i n t l t c . flit r ~ r c (possibil i ty)
oA is true now if A is true at the lliotr~tiit of tiin<. (n e x t)
&A is true now if A is always true \vit l r i i l tlrc nest 7' tinic monlents (bounded necessity)
olrA is true now if A is sometin~es t l.ttc witlli~i tltc nrst i" ti~iie nroments (bounded

possibility)

Figure 2: 'l'c~i1r1)oral 1,ogic Operators

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

+ EMPLOY(Nanze, School, Associaic-/-'PO f) A li '_\lPLOT'(hTnn~e, School, Full_Prof) -,

~ . E A I P L O Y (N ~ I ~ ? ~ , School, Assocint(-1'r.o f)

or using a different syntas as

IF s o m e t i m e s i n - t he-past EAlPLO I ~ I ~ I ~ (I I ~ c I I ~ ? c , S'chool, .-1.ssocirc te-Prof) and EMPLOYEE(Name,

School, Full-Prof) THEN always-in-the-future]lot 1~~.\11'I,OT'EE(A~(1iize, School, Associate-Prof)

A te~nporal logic query is an expression of tlle form

where 4 is a predicate temporal logic for~riula in tlte language just described containing free variables

XI. . .X,. The answer to this query conhists of all the tuples .Til . . .ayn that make the formula

q5(Xl,. . . , X,) true. Core queries in Esaniples 1 - .-j pro~*itle esanlples of temporal logic queries.

In this section we will esplain what an "attswcr" to a SinlQL query means. Recall that in Exam-

ples 1, 2 and 3 the answer to tlie querj, i b tltliirctl i t 1 .it at i5t ical ternis, and that i t is necessary t o do

several silnulation runs to produce that ,tl~s\vct. 111 or (lor to dcfi ne semantics of queries for multiple

simulation runs, we first have to esplai 11 I\ lla t t lrc i l l l \ \ \ ct to a query illeans for a single simulation

run.

3.2.1 Semant ics o f a C o r e Q u e r y for a Single Silllulatioil R u n

A SimQL query on a single silllulatio~~ I 1111 is evaluated as follows. As will be explained in Sec-

tion 5.5, a single sinlulation run generate5 a trace file t lrat colltains occurrences of the events traced

by the sinlulation program. After tltat. t l l i h silrrulation trace file is converted into a temporal

database containing one temporal relatiorr per cwclt cvcnt I~eiilg traced. Furthermore, all the tem-

poral predicates referred to in the torch qtLery nluht appear in thih temporal database. Then the

core query is evaluated on this temporal tlatal>ascl according to the senlantics of the language in

which the core query is espressed. In particular. if it is expressed in temporal calculus then it is

evaluated according to the semantics of' t ltat c:tlculuh [T('90, ('C'T931. This semantics assumes that

the temporal database forms a temyor~cil .\ti i r c t u r c IIil.oS7j for tlte temporal logic formula, and then

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

xnodel checking is done against tlris tc111l)oral structure. i.e. tlre truth value of the formula at the

present moment of time is evaluated i n terilrs of this tenlporal structure.

For instance, consider the query from Example 1. Tlre execution of sinlulation model Mfc-

Model-4 specified in that query results i u the generation of the trace file containing all the occur-

rences of the event Finished(Part) that happen witliin 10 hours of simulated time from now. For

example, some events in this trace file]]lay be { Finished(P3, 10: 23), Finished(P6, 10:47),

Finished(P8, 11 : 13)). Since tlre tj.j)e of the c1ttel.y is event-based, events are moved from the

simulation trace file into a telnporal database rvitlrout any additional conversion. Let FINISHED be

the temporal relation storing these events. Then tlre core query

{ COUNT(Part) I within- t ime (10 hours) Fi~~islied(Part))

is evaluated on the telnporal relation FINISHED, ant1 tire rehult is a single number equal to the

xlu~nber of finished parts.

\We want to point out one caveat in this eva.luatioll process within the context of query driven

simulations. When the user specifies tllc T I M E paranieter in the query shell, it means that the

tenzporul donzcrin for the core query is rebtricted to tlre tilllcs specified by the user. For example, if

the parameter is T I M E = lOhours, ant1 i t is 11 a.m. on 10/12/93 now, then the temporal domain

is from 11 a.m. 10112193 to 9 p.m. 10/12/9:3 for t l ~ c core query in this example, and all the

temporal operators in the query are evilluated for [Itis doiuain.

3.2.2 Semant ics of Si inQL Queries for Mult iple Simulatioiz R u n s

Once we know the answer to a SiiilQL c ~ I I (~ I . ~ for a s i l ~ g l ~ siitlt~latioii run, we can explain the semantics

of the query for multiple sinlulation run\. lioivever. a, \v(' iliciltionecl before, we have to distinguish

between the two cases when the core qucry return?, a ~tu~~ ,c i . i c and ~vlren it returns a non-numeric

answer because the answers for multiplc 1.111is are c l t ~ i t t cliff(\l.ent in these two cases.

N u m e r i c Seinantics of Answers . 11) t l ~ i s cast. ;I cluel!. leturns a number per a single simulation

run, and thus lnultiple simulation runs gcll~cratc. set, of' nuilllters, one nuinber per run. Also, some

of these numbers may be repeated in t l ~ c set. ror ilrstance, assume we do five silnulation runs for

the query from Exa~nple 1 and assume n c gct t lle arl\\i.cr:, { 1s. 20. 19, 18, 19) for these runs. To

determine the answer to a "numeric" q u c ~ y, n.e as,ulllc that this answer is normally distributed.

Then we estimate tlre lnean and variance. of' this norinal distri1,ution from the sample of answers to

individual runs and determine tlre col?.fi(lr/lcr iizfc 1.vo1 [S1\\-S90] for the average answer based on the

confidence coefficient specified in the quclly. IS t lli\ cot~fitlcnce interval has an error of estimations

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

not greater than t l ~ e one specified b!+ t l ~ e user in the query, we stop the simulations. If not, we

increase the number of simulations to I)c run in order to get the confidence interval within the

limits and run that lnany silnulations again.

Therefore, the senlantics of a SimQI, query for the ~zunzcric type of an answer is defined by an

estimate of the average value of the ans\\-cr, by the crror of esti~nation and the confidence coefficient

specified in the query. Fbr example, if I lie nleail value of the number of parts that will be finished

within the next 10 hours is 20, the estitilatioll error i \ 15%, and the probability that this number

is between 17 and 23 is 95% then the a~~swer that <'assandraf returns to the user who asked this

query is .

The average nulnber of parts protl~tced witlriir the nest 10 hours is 20 IfI: 3, and we can

make this statelllent with confidc~ic~c 95%.

Non-Numeric Seinantics of Answers. In tltis cabc, the query returns a relation, and not a

single numberlo. Since we consider relat iolts iiistead of irll~llbers, we cannot make statements about

averages for these relations. Instead, \vc \i ant to deternliire nliich ansivers are the most likely ones.

However, there are two ways of doing tlri5. Tlte firht alternative is to determine which answer, as a

relotion, is the most likely one. This alternative can be selected by specifying Answer-semantics

= r e l a t i o n a l in the query. The other clroice is to ilctcr~rrine which tuples in the answer are the

lnost likely ones. This alternative call 1)c \clectctl 1)). specifying Answer-seinantics = tup le . We

describe relational and tuple semantics of' 'I I I \ ~ c .15 iio\\ . ; ~ \ \ r t ~ ~ ~ i l ~ g 1 lrat the parameter Number-of-

answers in the query is equal to A'.

If relatioszcil senantztics is selected in t lie querjr then \\-e cotnpute frequencies for each relation

returned as an answer for all tlre simulatiol~ runs. 111 Illis case we treat each answer as an alternative

outco~ne of silnulations and want to kno\v t lie lilost probable out comes. For instance, assume that

we made five simulation runs for the query froirr Esaniple 2 "whot ccrc the purts that will always

stay iiz Cell-1 for the n e ~ t 5 hotrrs," a11c1 dssuliie \ve get tlie frequencies for each of the resulting

answers as shown in Figure 3.

As we illcrease the number of simltlirtio~~ S I I I ~ \ . t Ilc tlistril~ution of tlie esti~nate of the frequencies

of each silnulation outconle converges to a 11or111nl clist ril~ution[hI\VSSO]. Then our goal is to

estimate N largest frequencies based o ~ t t lie pir i'it ~iiet ~ 1 . s en-01--of-estiillation and confidence

coefficient specified in the query.

''Of course, the relation call also consist of ii hi~rgle 11111i1hcr in the tlegenerat,e case. For example, we could specify
Answer-Semantics = Relational for t.he rlt1c.l.y i l l Esanll)lc 1 . l lo~\r~ver. if nre did so. me could not talk about an
average number of part,s proclucecl i n 10 lto111.h.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Figure 3: Frequencies of Different i2nswcr\ for tlte Query From Example 2.

Tile semailtics of a SimQL query for the ~ ~ c l o t i o ~ ~ o l type of an answer is defined by N relations

having N largest frequencies in this distril~ution (based on tlte estimation of their means), i.e. the

query returns the first AT nzost likely ansureibs. If IT = 1 tlten the query returns a most likely answer.

If there is more than one most likely anh\\rer then eitltcr all of them can be returned, or one of them

selected a t random. In our esainl>le. eit Itcr 1)otlt ulo\t likely answers, { PY346, PY378, PZ216 }

and (PUG29, PY378, PZ216), having f ic~1u~acy 0.1. (11. oitc of thela cllosen a t random is returned

if relational semantics is selected. \I> i i \ \u l t l c> t lla t .\' = I ai, the clefcltllt value for the relational

senlailtics of answers.

If tuple senza~ztics is selected in the query. tllclt ive compute frequency of occurrence of each

tuple in the set of answers. In other wordh. Ire want to lillow the chance of each tuple belonging

t o the answer. For example, if nre lilatle 1; hiluulatioit run\. and the tuple (a l , . . .,a,) occurred

in answers for k runs, then the f reque i~c~ of' (a l a?,) is k. Then tlte selnantics of a SimQL

query for the fzcple type of an answer is clelirlccl 1)y t Irc firht L\' tuples having the highest frequencies.

Furthermore the default value for the p~~lall lcter Number-of-answers is All, i.e. the user wants

t o know frequeilcies of occurrence of all of tlte tul)lcs in tlte anhwers. For example, if five simulation

runs produce ailswers as presented in F i g ~ ~ r e 3. t l t ~ l l t l t e ani,\ver to tlte query from Example 2 based

on the tuple semantics is shown in Figlire -1 for Number-of-answers = All. I11 other words, the

tuple semantics for this query specifies t l ~ c x clta11c.c various parts xi11 always stay in Cell-1 for the

nest 5 hours.

In summary, we showed how tllc b;rirtci ~lotr-~~tr~trclric q11ery can have two different answers

depending on whether the semantics i \ ~.c'lat iolt a1 0 1 % t t~ 1)lc-l)asetl. The two examples presented

above show that both senlantics may 1) ~ 11cc.tlct1 i l r itct ic.c.. aiitl that i t is up to the user to select

the semailtics he or she wants.

Once we kilow the semantics of ans\<crs for SiillQI, clueries, our nest task is to determine the

number of simulation runs necessary to alr\n.cr a query. 11% describe how this number is obtained

in Section 5 when we present the c1ue1.j. c ~ \ ; ~ l u ; t t ioir htmt egy of ('a>sandraS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Figure 4: A Sanlple Tuple Sen~antics Answer

4 Query Driven Simulation

As explained in the introduction, Qucr.,y Drivetl S'ir),ulcrtio~s (QDS) is an approach to simulations

in which the user first asks queries a1)out outco~tlc\ of xinullations and then, depending on the

query being asked, appropriate simulation, arc lanncllcd. and events necessary t o answer the query

are recorded in the trace files. After si~~lt~lations are finished, the query expressed by the user is

evaluated on the trace files(s) being gcncratetl by hiniulations.

In Sections 1 and 2 we shotved the liincl of ciuestiorii; that people ask about future outcomes of

business process in organizations. Curre~rt I!,, to atl,\icr sucli c-luestions, users rely on systems devel-

oped by the informatioll systems depa1.t ~i~c.ilts tliat <upport a fixed set of questions, one program

handling only a few questions (only a silrgle c1uc,t ion i n t llc \\.orst-case scenario). This "program-per-

question" approach can be satisfactory \vli t \n uhcrs lla\.e fe\v cluestions. However in other situations,

decision makers might have very mall. clt~cstiotls of intcrcst. and it makes a-program-per-question

approach either inlpossible or very cost1.i..

The situation beconles even nlore difficult \ihcn an organization has multiple simulation models

since a program has to be written per eaclt cluestion per each model in tlle tvorst-case scenario. For

example, if decision maliers want to asli .500 difrcrclit qt~cstions against 20 different lnanufacturing

models then this means that one lnay 1 r i r \ c. to \\.I i t(. 10.000 pl.ograms in the worst case that handle

. these questions.

This discussion suggests the types ol al)plica t ions ivllere QDS systems, and Cassandra+ in

partic~ilar, are most useful. These app1ic;it ion, call I)() 111casnrec1 in terms of two dimensions: how

many models are there ill tlle modelbasc. itnc-1]lo\\. I I I ;L I I J . cll~cstiont different users of a QDS system

want to ask about these models.

The best types of applications are I Ilow \i Irere n\crs \\ant to ask many queries about various

types of models since in tliis case the alt 11i1t i \ c]) I ~) g t ail)-per-questioil approach is the most ex-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

M o d e l s

Quer ies

Table 1: Applicability of Query-Driven Sinlulations to Different Types of Applications.

pensive. The worst application is whelr tliere are lclw models and the users want t o ask only few

questions about sinlulation results since iir this cast t11c progranl-per-cluestion approach is feasible.

This discussion leads to the following clra~.;rctcrizatioli o f t lic QDS applications presented in Table 1.

5 Architecture of Cassandras

The architecture of the CassandraS s y s t c ~ ~ ~ that supl)orts query-driven siinulations is described in

Figure 5. We describe llo~v it works fro111 tlir ti~rie tlit u,er submits a query t o the Cassandra+

system until it returns the final ansivcr I),rcl; to tlrc u\or.

When the user subnlits a query to ('a,,antlra+ it i, pas\ecl to the interpreter. The interpreter

parses the query and checks for syntactic cl.ro~s. If no c ~ ~ o r i occur. tlle interpreter then passes the

query to the controller. Tlle controller tlct ernlints t llc query type, i.e. past, future, or combined.

Based on the query type, it decides if sinlulatioiis 1iai.c to 1)e run in case of future and combined

queries, or if a simple database retrieval Ira, to I)(> ~rr;rtlc i l l case tlle query is about the past. The

controller determines the nanle of the ittotlcl for t l i t cjttcr~. I)ased on the M o d e l - n a m e parameter

and checks the modelbase, containi~ig t 1 1 c k collectioti of' \rarious silnulation models, t o see if this

model exists. If the model exists and t11(1 qutt.y i, ;~l)otlt tile past. tlle controller accesses the past

history for the nlodel and evaluates tllt query against its pa,t history.

If the query is about the future clcf'r~ult siltililatioli parameters are retrieved for the model

fro111 the modelbase. Sonle of these default paranletcrs are over-written by the parameters specified

by tlre user in the P a r a m e t e r s clause of' t l t ~ Sitrt(>I, query. If the query is "combined" the two

processing methods (about the past ant1 Itrturc) ast coni1)ittcd.

In order to explain how Cassandra+ l) ~ o c c , ~ , a qucrj. for a given sinlulation model, we have

to explain the follo~ving points. Firqt. \\ c It(ivt1 t o c\;l)lnil~ I~ow C'assanclra+ determines the number

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

of sinlulatioll runs. Secondly, we have to explain how Cassandra+ processes one individual run.

Finally, we have t o explain how answers to queries for individual runs are combined together and

are statistically analyzed. We first describe the secolld part, i.e. how Cassandra+ answers a query

for a single simulation run.

As a first step towards answering ;I query oli a single simulation run, the simulation model

specified in the query is instantiated wit11 tile input parameters. Some of these parameters are taken

as default values fronl the modelbase and others from the query itself. Also, the simulation model

is initialized with the initialization inforillation as \\.ill be described in Section 5.4. Furthermore,

the query passes the information t o the sitllulatio~l ~noclel about the events the model should trace.

We will describe this further in Section 5.10.

Once the simulation model is initialized. t l ~ e actual simulation is launched. During the simu-

lation process, the sinlulation progranl \\rites various events that the query asked it t o trace into

the trnce files, one file per one event. I'or r s a ~ ~ l p l c as \ye pointed out already in Section 3.2,

various occurrences of event FINISII1:I) for tllc query from Example 1 are recorded into the

trace file FINISHED that may have tlrc c\.ottt:, { Finished(P3, 10:23) , Finished(P6, 10:47),

Finished(P8, 11 : 13)) recorded in it.

After that, the trace files containing events are converted into the temporal database relations.

If Type parameter in the query is "evettt-1)ascd" tlleil tllc conversion process is simple and is done

on a record-by-record basis: one event i t r the trace file generates the corresponding record in the

temporal relation. If Type parameter i t 1 the queiy is "preclicate-based" then we have t o convert

events into predicates using conversiot~ ~.otttilrc-, htored in the n~odelbase. After the conversion

process, the trace files are stored in tllc tcl~~j)o~,ally u~tgrouped llistorical database format [CCT93].

If the query is of the type "combinctl" tltc~t (' a s \ i t ~ ~ t l ~ a + itlcrgcs the past history of predicates

and/or events with the simulation tr;lt.t\ cotrvct tctl to tllc database form. After that , tlle core

query is evaluated on the temporal data1)ase. \\-e \\-ill describe the details of this process below.

This conlpletes the description of ho1v a SilnQl, c1ucl.y is evaluated on a single simulation run.

Another important task for the co~ltr.oller is to detern~ine the number of simulations t o be

run if the query is about tlle future. '1'0 tlo this \vc :,tart ~vi th an initial set of simulation runs,

run them and see if the answer satisfies tllc c\tituation crlor and confidence level specified in the

query. If it does not, the number of r~irrs is ilici.ea\ctl. and the process continues until the answer

satisfies the constraints specified in tlic query. For c~san~ltle, assume that we do five simulation

runs for the query from Example 1 ant1 \te get tile following answers (18, 22, 19, 25, 17) for

these runs. The lllean value of tliis s i ~ ~ r p l c i s 20.2 i111tl tlie variance is 10.7. We then calculate

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

tlie 95% confidence interval for the par,tl~ieter \\liitl~ il l thi\ case is 20.2 f 5.38. If the user wants

the estimation error of the answer to bc \vitllisl 10% of tile mean, then we have not satisfied that

constraint and we have to increase the number of sinlulation runs N and continue the simulations.

f i r example if the user wants the answer to be ~vitliin 2 parts, we increase the number of simulation

runs t o 11 using the calculations descril)ed in [TU93]. Xs\ume that we get the following answers

(18, 19, 18, 20, 19, 18, 19, 1'7, 19, 20, 19). lire again compute the confidence interval which in this

case turns out t o be 18.72 f 1.48. Tlii, value is again outside the bounds that the user specified

(2 parts). Therefore, we again compute tlie i~e\v salnple size and contiliue this process until the

confidence interval falls ~vitliin the bounds specified in the query by the Error-of-estimation and

Confidence-coefficient parameters. 1)ctails of this algorithm can be found in [TB93].

This completes our description of the query processing method used in Cassandra+. In the

next section we describe components ol' ('as\ands.a+ i~rcl~itecture, as presented in Figure 5, i.e.,

interpreter, controller, modelbase. siniulation isttcrfacc, silllulator, simulation/database converter,

query processor, statistical analyzer,])I ci \c3~i t ; l l ior~ Ili;\llilgcl.. a ~ i d c11ie1.y optiinization modules.

5.1 Interpreter

The queries that the user enters are scrlt to tlte interp~.eter which parses the query to determine

query type, model name and model parallieters, sirrltllatioti time, the answer semantics, etc., and

passes this inforlnation t o the controllc~. Tltc core-cjtlcry remains u~ztouchecl by tlie interpreter

which ineails that it is passed to the co~~t~.ol lcr and later to the query processor as an unparsed

string without any modifications. As 1lsiri11l)lc .j ;tntl 1'igur.e 1 show, SimQL supports range queries.

Therefore, the interpreter also detenl i i~~c\ tli(3 ranges il l iiloclel l~arameters specified in the query

and passes this information to the coitttoller. For iit\t;tstce. hen the interpreter parses the query

in Example 5, it will tell the controller f 1 1 ~ 1 t l3a1tl;-3Iotlcl-7 has to be run \vith the number of tellers

ranging from 5 to 8.

The coiltroller manages the query plot cl,>i~rg <let i \ i t i c b , I,) tlclcgatislg various processing tasks t o

different modules, receiving results I~acl, I I U I I I r l~c \c 111otlt11c> ant1 interpreting these results. Broadly,

the functions of the controller can be tl,rt~ifiecl as follo\i ,:

Determination of the query type

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Figure 6: Instances in the wor1;irrg-modelbase for Example 5 .

Determination of the il~iillber of sir~tulation rr111.l

-

We describe ea.cl1 of these functions no\\..

Xi\'unrber-of-runs

2 0
2 0
2 0
2 0

5.2.1 Determination of the Query Type

Traceftle

trace1
trace2
t race3
trace4

Number of tellers

5
G
7
8

The first task of the controller is tllc tlct c>rlnin;tt iw of' t lie query type, i.e. whether the query is

about the past, the future, or is co~lrl)i~ictl. atrd setting i ~ p the query processing strategy for that

query type. As Figure 1 slro~vs, query 1yl)c calt 11c pa,t. fi~ture, or combined.

Past Query Type. If the query is ,tl~out tlrc I) , I \ ~ . the col-ttroller initiates a simple historical

database retrieval from tlre past liistoi.~ ol act i\.itic, lo1 t lrc 111otlel. The past history of the model

is obtaiiled by recording all tlre activit icx, of t 1 1 ~ i r lo(lc1 i 11 a t cn~ltoral ungrouped historical database

[CCT93]. For example, in tlre LhllS sy,tclll~ [171).1C;+92]. all tl-te transactional data from a manufac-

turing shop floor is captured in real ti~lrcl it11(1 i, r ~ c o ~ t l ~ t l in a database for subsequent retrieval.

Sini-st

0
0
0
0

As an example of tile past query, colt,itlct tlrc cltirstiorr "houy rlacrny jobs of various types were

nzade in the last 10 clcrys bcisccl 01, t l t r 11lodt1 .llJc-.l/odcl-4." To answer this query the controller

deterllzilles from the lllodelbase for nlotlc\l Slfc-llotlcl--1 wlrcre tlre data about the past history of

the model is stored in historical relatiurr,. \vlrclt lrc.1 t l r i , tli11 a is sufficient to answer the query, and

if it is sufficient, it issues tlre (llistoricitl) clricl.y itg<~ilr,t t Irc.ye sclations.

Silrr-fin

S
8
S
8

Future Query Type. In this case, I I I O cotrtrollt~~ 1<\111i(lre\ bitnulations. However before doing it,

the coiltroller deter~llilles if tlre query i, a talrgc qr~csy (i.e. has several sets of parameters for the

simulatioll model). If it is a range q u c ~ ~ . t lie co~rt l.ollcr cl.cate:, a tilorking nzorlelbase that contains

one entry for each set of parameters. l i) ~ c~x~~rr~l)lc. \L I I (\ I I t 11c (lilery fro111 Exai11ple 5 is evaluated, the

resulting workiilg modell>ase is s11ow11 i 1 1 I 'igu I c 0. '1'I1(1 I ~ ~ I I c r ~ r r c) t css that cllange from one instance

of the illode1 to the nest are the luinl I J O I ol t clllci , ,l~o\i I I i 1 1 t Irc first coli~lllil of the table and the

ilaine of the trace file sho~vll in the lax1 c ~ J ~ ~ I I I I I I .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

After that, a sepcircite instance of t 1 1 ~ query is issuecl for each entry in the working modelbase

table. Each request generates a separate1 ans1ver wlliclr is sl~own to the user. For example, the first

illstailce in the working modelbase (\\.it 1 1 5 teller>) 1r1;i.v rct urn the answer:

The average number of customet~~ service(1 within tltc nest 8 hours is 1.50 f 10, and we

can make this statement with colr fitlelice 90%.

Tlie secolid illstallce in the workillg motlclbase (wit11 f i tellers) may return the answer:

The average llulllber of customel.s serviced wit l ~ i t t t 11e nest 8 hours is 226 f 12, and we

can make this statement with co~~lidcnce 90%.

Combined Q u e r y T y p e \ZTl~en t11c (111c~ry i, a l) o ~ t 13otl1 the past and the future, the cotltroller

runs simulations for tlle future part ol' the q~t t ry as i t does for the pure future type. Once the

simulatioll trace is converted into the t cr I I poral (la t al~asc fonnat , it is lllerged with the past history

of the iilodel that is obtained as for t l l r case of ~)ure past queries. After the "past" is merged with

the "future," the core query is aslied O I I t l r c l n~crgcd tc~llporal database.

5.2.2 M o d e l Manipulat ion

This part of the coiltroller is responsil)lo lor hclcctit~g the illoclel from the modelbase specified in

the query. Furthermore, the controllrr. ictric\.cb all t l ~ c clefault parameters for that model from

the modelbase. If the query is a range cl~rc>l..\:. t1tc11 t11(. i~ritialization of the model with the default

paraltleters should be done for eclch el11 1.). i l l t l ~ c \\ o~,l,ing tuode1l)ase as sllowil in Figure 6. Finally,

tlie colltroller overrides the default val uclb of \ i I I I I I I ' ~ t io11 I I todcl par;\tl~eters wit11 the values specified

by the user in the query.

5.2.3 Deter ininat ioi l of t h e Numbel. of Silllulatioit R u n s

This part of the colltroller determines I~on. itl;trry sit11111ation run:, should be performed in order to

bring tlie estimation error for the ans\\cl isit l~irr t 11c l)ou~rds specified ill the query. We explained

how t o do this a t the l~egillllillg of Sectioti 5.

5.3 Modelbase

Tlie itlodelbase colltailrs infol.mation al)vt~t t l ~ c ' sill~l~latioll 11iodc1~ that the user call query. It is

a central repository of all the itlforlri;ltio~~ al)0111 ill1 t l 1 ~ 1 ~ilotlels used in an organization. The

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

inodelbase is needed in order to instantiate and rult bill~ulatiol~ lnodels and to convert their outputs

into historical relational database for t~~nts . In C'absandra+', we store the inodelbase as a set of

relational tables since the inforinatioli \i e need in the motlelbase is not normalized (for example,

we store the descriptions of all the t\,l,c%:, of events a lt~otlel generates), and thus it is better not

to place this information in a single t;111lc. IIowc~c~r. one table in the modelbase is the main table

having inodel name as its key. Sonle ol' tlte fieltlh i n tl~ib tal~le are listed below:

hlodel name, that serves as a key. 170s instance, llfc-Alodel-4, Banking-Model-6 are examples

of inodel names.

s Target simulution langunge: thc language in nrhich the simulation niodel is written, e.g.

Modsim, Simscript, etc.

a ATarize of the si~izrrlcrtion progrcrr~i. ' l ' lri, fic.ltl contaiir\ the i?ernze of the object module for the

simulatioll model, as stored in tlrtl \c~c.o~itlat.y htol.~~gt\. \\'hen the actual simulation is ready

to be run, this object lllodule is d\.t~;lluically li~tlitcl to C'assandra+ lnodule using the name of

the module stored in this field.

Default sinztrlation pctmnzeters: p;r~.a~lietct.s I l lat are used in the model. These parameters are

taken as defaults. They can be o\.tli.-\~~.it t ett I)\. t lrc paranleters that the user specified in the

query.

Events trucecl by the n~oclel: this ficxl t l cot~taiiis tlic naute of the relation that describes all the

events traced by the simulation ~~rotlcl.

Event-to-precliccrfe coiz1~ersior2 p~.oyrurr,,s: this ficlcl cotttains the name of the relation that

contains the names of tlte psogra 111s t lrat 1)uiltl \.ariou\ predicates from the events described

in the previous entry.

s Past infon?z[~tion: the field ront ai 11, 11i (s 11;1111(~ of ~ . ~ l ; - t t it111 tllat stores past inforinatioil about

events and predicates pertinent to t lio hi t ~ r u l ' r t io11 tirotlcl.

Ol~tinzization flag: this is a boo1c;llt ficltl ,pccifyil~g if clueries on this silnulation model can

be optimized. In order for a query to bc optinrized on a sinlulation model, the model should

have its PRINT statenlents \vrittctt acrortling to it certain convention so that the query could

pass the optimization informatio~i to thc hil~lulatiotr nod el.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

5.4 Siillulatioi~ interface

Once we have determined the simulatio~t 1node1 to l)e t.uti a~rd the parameters we have to use to run

the model, an instance of tlie model t o I)c eseclttcd i:, created in the working modelbase (Figure

6). The siinulatioil interface is responsil)lc fol. crmt ing a run-time version of every instance of the

sinlulatioi~ model created for the query in the \vorl;ing nlotlclbase. The run-time version contains

tlie initializatio~z file containing ti l t . data al~out the initial state of the system to be simulated

the simulatiotz. i~zpzct file conta.ining the simula,tion nlodel pa.ra,meters, simulation time taken

from the query, a,nd the nulnber of simulation runs

the executable sinzt~latiorz progrcr~~, containing tlre silitl~lation model.

Therefore, the sinlulation interface gettc\r.;~tc\ t l ~ c initi;tli~ation and simulation input files and pre-

pares the simulation progranl for the csclcl~tiot~.

The way the initializatioli file is crc%atccl dcpentl\ on the value of the Init ialization parameter

in the SimQL query. If the initializatiot~ paralnetcr is :,pi to the '+real time" value, then the initial

state of the silnulation model is set to t I r c x tur~.(~lrt \fat(' of t I I C pltybical inodel being simulated. This

is achieved by retrieving the records flu111 tl1(1 Iti\to~icitl i l i~ t i t l~a~e corresponding to the simulated

nlodel with the time attribute equal to r r o i c * . 1 I IPI I tIic\c ~;tltte\ are passed to the simulation model

as the values of tlie initial state of that rtiotlel.

Alternatively, the initialization pal'1111ettt call have tlre type "off-line." This means that the

initial state from which actual simulatio~i\ arc. I ~ I I i \ not based on any actual state of the physical

system being modeled but is obtained lrulii :,on~c "hypothetical" state. This hypothetical off-line

t state can be obtained in the following tlr~ce nay:, del)ending on tlie value that the "off-line" type

of the Initialization parameter take\ (w e 1-'igu~c I) . If it takes the value "steady-state," then

simulations should be run until the stc,ttl! \ t ; l t c l i \ I c.nclrccl. aircl then this state serves as the initial

state for simulations. Tlris is the nio\t ~) O ~) ~ I I ' I I ;tj)~)~oclcIi taliell in classical silnulations [LK91].

If the value of the Init ialization pa~nrrrc~tc~r i:, "zero." t l ~ e ~ r tlle initial state for the simulation

lnodel is specified by setting all of its initi;tl ~,~rial,lc\ to zeroes. Tlris situation arises in a banking

application, where at tlie beginning of c,~c.fi t l ;~~ . \\ c a\\tr i~te that there are no customers in the bank

and 110 tasks pending. Finally, the laht c;~\c i \ \vlreti t 1 1 ~ \alne of tlre Init ialization parameter is

"Time = t." This ltleans tliat the sim111'1t i o r t 111otlr1 r t r r r \ t I)c \i~nulated for time t starting from the

zero state, and tlie state of tlre lnoclel at 1 i111c / \lrorrItl I) () tiil\cn as the initial value of the simulation

model.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Besides creating the run-time verhioli of t l ~ e sininlation model, the simulation interface also

links dynamically the object nlodule co111 >lilting t l l t sinmlation program to the Cassandra+ module.

The siinulator module is responsible for I I t (* actual csccution of t 11e sililulation program. As we men-

tioned in Section 2, simulation rnodels c;~n be ~ v r i t t ~ i t it1 trlzy sinlulation language, such as SIMAN

[PSSSO], SIMSCRIPT [Con87], hilODSl11 [BDIIIi90]. GI'SS [IBhil70], etc. The only requirement

for the language is tliat it must be a colupiletl lal~guage. so that the nailles of object modules of

programs written in this language call 1)e btored in tlte illodelbase as described in Section 5.3.

Allother requirement for the simul~~tion progl.ai11 i h tirat it should produce traces of events of

the forin

ET'EATT(pnrml, . . . ,1j(ir?n,,, fi111~)

where E I / E h T T is the llanle of the evc~it 11ci11g tracctl. pr11.1)zl.. . . ,pn~.nz, are parameters of the

event, and tinze is the time ~vllen tlle c . \ - c 1 ~ ~ t occtii.retl. 1'01 example, the event ARRIVED(part3,

ce114, 10:45am) says that the part "part:l" arrivetl at tlic cell '-cell-l" at time 10:45 a.m. Furthermore,

there should be an agreeillent across dil lcl t>~~t bi~~iltlation l~~oclels and languages on the exact format

of the trace files of events so tliat diffeic\iil ~ i~ i lu la t io i~ ittotlel:, l ~ e coiilpatible in their outputs.

If the optinlization flag in tlre mod(~ll),~,e lo1 a ~ii l~ulalion model is set off, then the query does

not pass any optimization infortnatiotr to t l ~ r ~ ~ ~ o t l c l . ' I ' l ~ i , itleans tliat the simulation model does

not know wliich events the query need, I,,~cli I I . O ~ I I 1 1 1 ~ 1 5ir1r 11liit ion program, and therefore, it must

record ull its events in the trace file(s).

If the opti~llization flag in the motl(~ll)asc is hct 011 for a sinlulation model, this means that

the query passes information about the cvcnts that i t \vant 5 the nlodel t o record. I11 this case, the

print statements in the si~nulation motlcl ntl15t ll;l\.c a ,l)ccial for111 described in Section 5.10 and

in iTB9.31.

Tltis nlodule converts the simulation tr;ic.c files gcncra t ctl 1)). t lie sinlulator into historical relations.

Since we coilsider temporal database5 autl query 1;lllgu;igeh 1)ased on the relational data model,

this means that we have t o convert siltrtilation trace file, illto tlle temporally ungrouped historical

relations [CCT93].

Depending on tlle value of tlie Type 1)arii111ctcr i ~ r 111c clucry. we either have to convert events

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

into historical event relations [SnoSIT] (i f the tlie Type parameter is event-based), or convert events

into historical interval relations [SnoS;] according to solnc conversion procedures (if the Type

parameter is predicate-based).

Conversion of events into the histo~.ical event relations is a straightforward procedure. Since

the trace files are stored in the forn~at tlcscril>etl in Scct ion 5.5, the conversion procedure consists

of a single COPY conllnand that convci.1b tlit plain coillnta-delimited ASCII file into a relational

database file1'.

If the Type parameter specified by the user is -'predicate-based," then we do the ac-

tual conversion from events to interval based llistorical relations. This is achieved by ex-

ecuting the events-to-predicates convc~.sion progl.ants supplied by the systems administrator.

For instance, consider the query frotii Esailrl)lc 2. Tliis query deals with the temporal

pretlictlte Visits that can be represciitc~tl i l l t l ~ c i~itc~.\.;~l-i)ased temporal relational model as

Visits (Part ,Cell ,From-Time ,To-Time). Ful t licril~ol p, a,\unle that the nlodel Mfc-Model-2 has

trace files for the two events Arrives(Part ,Cell ,Time) and Departs(Part ,Cell ,Time). To con-

struct the predicate Visits, the systeirr\ adlninihtrat or writes the procedure that computes the

values of attri1)utes From-Time and To-Time iit Visits from the events Arrives and Departs.

5.7 Query processor

As we stated in Section 5.1, the core (111(~r!. i, \ ~ j) ~ ~ i i t t (~ l f1.011l the SirnQL query shell by the

Cassandra+'s interpreter and is kept u t r I , C I I \ctl.

The query processor evaluates thi, core clt~c~.!. o ~ t tlic ~inrulation traces converted into the

temporal database fornlat if the query i5 ,t I ictly al>olit t lrc future. This evaluation is done according

t o the query processing algorithins for t lit. c o ~ c c1t1cl.y language and the temporal database being

used. For example, if the database ii; Tngrci; and tltc query language is embedded SQL with

timestamps, then the core query espres5cltl in S o l , i, pa,,ctl to Ingres and is evaluated by Ingres on

the trace files that si1~1ulation/databasc c orivci*tclb gct~cl~;~t t,. IS tlte query is combined (is about the

future and the past) then the future pat t of tltc clatal)a,c i, nlergcd with the past, and the query

is evaluated on the merged database.

The result of this evaluation is eitl~cr a t~unt1)er il' tlie al~h\i.er-semantics paralueter is "numeric,"

or a relation if the answer-semantics pal ; t ~ l ~ ~ t t r in tltc query is '.non-numeric."

"In our implemet~tatioii of CassandraS, .rvc uwtl Iikglc., [I~rgxl)] '1, the ielatioi~al database and its COPY TABLE
co~ntnand [Ing89] to do this.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

5.8 Statistical A i ~ a l y z e ~

Statistical analyzer generates the ansucl to an Si~rl(]I, query, that is presented t o the user, in the

form described in Section 3.2. This ansuer is c o i ~ ~ p ~ ~ t e t l in >tatistical ternls from the set of answers

for individual simulatioil runs, as is also tlescril)ccl i l l Section 3.2.

As we pointed out in Section 3.2. t lie answers and the statistical analysis techniques differ

depending on the value of the Answer-seii iai i t ics paranlet er. For the "numeric" parameter, the

answer is in terms of the average answer of tlie nunleric value, error of estimation and confidence

interval for the estimation. For the "~OII-numeric" paraitleter, the answer is in terms of the most

likely answer, its probability, error of estilllatioii of this probability and the confidence of the

estimation. The process of obtaining thcl\e estililat es was described in Section 3.2.

This subsystelll is responsible for collvel till:: t l ~ c all,\\ t r s to the queries as determined by the query

processor into outputs for the user. Tht* outputs ci111 1)c of ~.arious f o r m such as tables, charts, or

graphs. For instance, the answer to thc clucl.!. fro111 1:s;ilnl)le 3, i.e., '.lioul nzn~zy days will it take

to co~~z l~ le t e order JC-243 b y ench of I / / (tltrrc ~t~oitl~J(rcItr~.irtg plants (PL-1, PL-2, PL-3)" can be

displayed t o tlie user in one of the thrcc lo1 111s prc,c~rttbtl in Figure 7. .4s in Example 3, we assume

that the answer-semantics of tlie query i, of t>'l)c "t~~l)lc."

5.10 Query Optiillizer

The query optimizer Ellids more eflicie111 ngay, to j)t.oc*c,, SimQL queries. However, unlike query

optimizers in database lilanageinent sj-st c ~ ~ i , , i t (* O I I C C J I ~ ra t e, not on the query itself but on how to

record only the events that are nece.s.5c11 y lo1 II,\ \ ~ r i i l g t 110 query. In ~~ar t i cu la r , it determines

wlxich events for a given SiinQL C ~ ~ I C \ I . J . s11o1ilCI 1)c 11.accd

which event i12stctrzce.s in these traccl lilcs sllor~ltl 1)c. recorded.

The query optimizer obtains this infor~i~ation 1'10111 t11(' (111c1.y and provides appropriate directives

t o the silnulation module. The details 01 t h i > ~) loc .c~l~~l .c~. n.cll a, other optimization issues, are

described in [TB93].

Since the optimizer tells the simnlat OI. \\.l~ich c ~ ~ l t t s j t ~lroulcl trace clepending on the query, the

trace files for the same silnulatio~l lliotlcl c ; t r r t l ifir S ~ . O I I I each ctther for different queries. Therefore,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

Figure 7: An Esanlplv of'all .-I~tsn.c~r tlisplayecl by CassandraS

Fl
+- 0.1

the query in our approach selects the sitriulatioti model. alrcl tlie query optimizer tells the model

what i t should trace. It is for this reasoir tlrat n.e call this approach Query-Driven Simulations.

Number of Gays

The optimizer iml>oses certain con51 I ai n t s OII Ira\\ c\clnt s are recorded in a simulatioll model.

These constraints are described in [TI30:3]. l ' l r i , lrrcalr,. airlong other things, that the simulation

model has t o be "prepared" for o p t i m i / ' ~ ~ i o ~ ~ . '1'0 tli,tilrgt~i,lr prepared from unprepared models in

the modelbase, we have the "optimizatio~~ Ilag" as o~tcl of tile fields in the modelbase. If this flag is

set on, this illealls that the model is prcl)ared for the optiluization (i ts PRINT statements satisfy

a certain coavention); otherwise, the modcl is unl)rcl)ared.

1'1.-2

Pi.-3 Fl
PL- I

PL-3 +- 0.1

6 Implementation of Cassandrat

(B)

The architecture of Cassandra+ descri1)cicl irr this paper nras ililplemellted in C under UNIX.

Since there are no coiilmercially avaiICrl)Ie tc111por;tl <li l~al)ase~ when the system was devel-

oped, we selected Illgres [Ing89, StoSO] as t l ~ c tlat ;ll>;tsc that stores historical and simulated

data. We silllulated a temporal dat;tl,a,cb in Ingrts by adding two tilllestarnp columns t o

the interval based relation and a silrglc tinlchta~np rolunln to the event-based relations. For

esample, the interval based relation Visits has two adtlit ional time colulnils and therefore

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

has the scl~eina Visits (P a r t , C e l l , From-Time ,To-Time). Similarly, the event-based relation

Ar r ives (Par t ,Ce l l ,T ime) has only orle tenlporal attribute that specifies when a part arrives

at a cell.

Instead of using temporal logic calculus for ille core queries, we use SQL since SQL is one of

the two query languages that colnes \\.it11 Ingrcs (tlre otlter oire being Quel). However, we allow

SQL queries t o explicitly reference time. This ltlalicx teltlporal queries look "ugly," but still they

call express a wide range of queries.

For example, the query from Exainl)le 1 "I~ou1 n z o r t y y c r r t . 5 u:ill be Jirzished in the next 10 hours?"

call be expressed in SQL as:

Init ial ization: Real-time
Type: lEve~rt-l)a~ocl
T ime: 10 hours
Answer-Semant ics : Nu~rreric
Core -query :

S E L E C T Count (Pa 1 t)
FROM Finished
WHERE $NOIT < I'il~isll-l'inle . r \NU, Fillisll-Time < $NOW + 10;

M o d e l - N a m e : Mfc-hloclci- l

As we said already, tlre modell~asc c ,tlr store silllu1;ttion models written in various simulation

languages, such as h4odsim [BDhlRSO]. Sil~~sc~.il>t [('onS;]. Siinail [PSSSO]. In fact, these programs

are stored as object nloclules in tlie irlotlcll);~,e. ittltl it^^ dyttanlically linked t o the Cassandra+

 nodule when queries are aslted against I lrc'\e rr~otlcl\.

\Ire store modelbase as an Ingre, tl~rt;tl)a~r 1)ccauxe the nlotlelbase can be quite large and

because building and irraintaining tlrexc. ~i~otlcls call 1) ~ tirlrc-consuming and error-prone activity

[Len93]. The modelbase is stored in se~cr.;tl tal)lc, (3 i r r t l ~ c current implementation) because, as we

pointed out in Section 5.3, the data stor ctl i l l i t is ~ ~ i r ~ ~ o ~ ~ ~ i i a l i z c t l . The Cassandra+ system interacts

with the modelbase by using rlyrzclntic .SQL [IngS9. I:K!)O] since if is necessary t o formulate SQL

queries against the modelbase dynamic all^ "on-the-fly."

In Section 2, we clainred that the t.olt1 query language call 1)c implemented in any temporally

uilgrouped historical query language. 'Tli i, is t llr ca,c I)ccau\e it does not matter for Cassandra+

t o \vllich temporal database simulatioll t I a t c file, ale coil\-el t ed and how temporal (core) queries

are evaluated on these databases since tlit1,c c j \ ~ ~ i i c , <tl.c pn,,etl t o tlte temporal database as text

strings without parsing.

Ilowever. in the cur~,errt iniplciltc~l~~ ,I t io~i ol' (';I,,;I ~ r t l r ,t+ \i.r cannot easily switclr from one

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

database to another, as we can do it for t 11e ~ i ~ t t ~ i l ' i t i o ~ ~ la~~gr~q,es. 170r example, it is not possible to

switcli from Ingres to Oracle in the cur rc~~t ilnplcti~c~~t ;r t ioli of (:assandra+ without rewriting (small)

portions of its code handling dynamic SOL. This is 11ecause the database is used in Cassandra+

for four reasons. First of all, it is usctl for storing sillllilation traces and historical information

and for asking queries about them. Sctolitllp, it is nscd for the i~~ferncil implementation purposes

t o support modelbase. In particular, ('as5andra+ uses dynamic SQL for generating "on-the-fly"

queries in order to retrieve data from tlic nlode1l)ase and for passing the core-query t o the database

t o be evaluated. Since the implementittion of dynanlic SQL is systems dependent, we cannot

automatically switch from one DBMS to ,t nother. k'i1l.t ltcrn~ore, the conversion routines from ASCII

trace files to the database format are al\o systenl clepcntlent. For these reasons, we have to provide

some modifications to the Cassandra+'> code whei~ IVC move from one DBMS to another in the

current version of Cassandra+. IIowevcl. thcht ~noclifications are relatively small and are quite

"local" to the code. Therefore, we l)elic\c) that they can l)e easily automated in the future.

7 Conclusions

In this paper, we described a Q u e r y - D I ~ \ ~ I I Sin~uliktio~~ 5~ stc.~n ('assanclra+ that allows end-users to

ask various questions about outconlc\ ol si~llulatioiis. \ \ c p~tsentecl its query language SimQL, its

architecture, and described ho~v \lassail (1 1 <if I\ ds implciilented. One of the important features of

Cassandra+ is that it can support nr,y t(~11i1)01~11 lelatioilal c111ery language asked about simulation

~llodels written in cr~ay simulation languCiqc' '1s long '1s t l ~ l t e files generated by these models conform

to a certain standard.

Query-driven simulations provitlc I I I O ~ . ~ ~ tlcrliirat ive. flesil~le, and interactive ways of ask-

ing questions about sirnl~latioll o u t c o ~ ~ ~ o ~ t l i i i l ~ t11(1 t ~~\ (l i t io~ la l siltlulate-and-gather-statistics ap-

proaches. They allow end-users to asl, \,<il.io~~\ qt~cxstio~~s in a declarative query language in an

ad-hoc manner "on the fly", just as ~cl,ition:~l quciy languages allow the users t o ask questions

about the data stored in databases.

References

[AM891 M. Abadi and Z. hlann;~. I I I I l o g l ~ o r a i i i i . ,Synzbolic Computation,

$277-295, 1989.

IBC8.11 J. Banks and J.S. (::arson. 1 1 1 \\...I. 17al)r~~~c.li~. a11tl J.II. Mize, editors, Discrete-Event

System ,fiin~zrlatio~~. P~*cnt iw- I [all 111r.. I:~lgl(~\\.ootl ('lifi's. Kcw Jersey 07632, 1st edition,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

[BDMRSO] R. Belanger, B. Donovan, Ii . llorst>. and 11. Rocl<ower. A30DSIAf I1 Beference Manual.

CACI, 1990.

[Bla92] Blanning, R. and \iVhinsto~r, .A. ant1 *\i-(' l~ang. hil. and Dhar, V. and Holsapple, C.

and Jarke, M. and I<imbro~igli, S. ant1 1,ct~li. .J. and Prietula, M. Model management

systems. In Edward A. Stolir and I3enn R. Iionsynslii, editors, Information Systems

and Decision Processes. IEI:E Conlputcs Society Press, 1992,

[BT93] P. Balasubramanian and 11. 'l'uzhilin. Query I1riven Silnulation for Decision Support.

Ilrorking Paper (S tem School of13lisiric.s.s. .*I*t'), (IS-93-38), 1993.

[CCT93] J Clifford, A Crol;er, and .\. Ttlzl~ili~t. 011 the conlpleteness of query languages for

grouped and ungrouped histoi'ical niotlel. In -4. Tansel. J . Clifford, S. Gadia, S. Jajodia,

A. Segev, and R. Snodgras,. editors, Tcntl~or~crl Dnfab(r.scs. Benjamin Cummings, 1993.

[Con871 Consolidated Analysis C'cnt ~ 1 . 5 . Inc. 17.YI.Y .S'I.lI.S'C'RIPT 11.5 User's Arklnual, 1987.

[Dat77] C.J. Date. A72 Ir)troclucfio~r lo I)e~tcrbir.~~ .Yy.<fc~~t.$. Addison-\Vesley, 2nd edition, 1977.

[EN901 R. Ellllasri and S. Nava t c. l~zrr~dartic rite11 of DN trrbcrse Systems. The Ben-

jamin/Cummings Pul~lishi~ig ('o~iipa~ij.. 211tl ctlit ion, 1990.

[FDJG+92] I<. Fordyce, R. Dunki-Jacul),, U . Cicra~.tl. I<. Sell. and G. Sullivan. Logistics Man-

agenlent Systeln (LAIS): -AIL .\tlvaliced Decision Supl~ort Systeln for Dispatch or Short

Interval Scheduling. Procll~t.lcurr c r l t d 01)(~rrtior,.< .\Icrr~aycritc~tt, 1(1):70-$6, Winter 1992.

[Geo87] A.M. Geoffrion. An Intrc~tluctio~r to Strttcturcd hlocleling. A!(lnageinent Science,

33(5):.547-588, hlay 1987.

[IBM7O] IBM. Gcnerirl Purpose ,Si~~trrlcrfiort .S'y.slcrrr/.3GO trscr'.s AIcrr~trtrl, 1970.

[Ing89] Ingres. IA7GREAS/Ol~c I~,SQI, I I f Ji rr 11rc ,ll(r 11 lie11 for. lltc ITJiIdY nnd I/A!i,S' Operating Sys-

tem. Relational Technology I I I C . . 1 9S9.

[Int85] IntelliCorp, Mountain \'it\\.. ('alif'. l'lit ,S'l,\lliIl ,S'y.<tcrt): Ii~aozulcclge-Based Simulation

Tools ila IiEE, 198.5.

[I<amG8] R. I<amp. 0 1 2 the Tense La(/it t111r1 flte 3 1rco1,y (I{ Ol.(lrr.. PltD thesis, UCLA, 1968.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

[Iioy9O] R. Iioymans. Specifying rcal-tinie ~)sopertieh with metric tenlporal logic. Journal of

Real- Time Systen~s, 2, 1990.

[IiroS'?] F. Iiroger . Tenq~orcrl Logic oJ' 1'r.ogr.cr rtrs. Spri n ger-Verlag, 1937. EATCS Moilographs

on Tllcorctical Computer Sciclice.

[LIi9 11

[RIP921

fMI.11891

[h4'CVS9O]

[NASS]

M.L. Lenard. A Prototype Implenlcntatioi~ of a Model Management System for

Discrete-Event Sirnulatioil TIodels. In Pi.occcdir,gs of fhe 1993 Winter Simulation Con-

ference, pages 33-39, 1993.

A.M. Law and W.D. Iielt on. In J a t ~ i c ~ ~ 1,. I{ iggs, editor, ,Sinzulation A4odeling and

Analysis. h.IcGraw-Hill Booli ('ontp;t~r\.. 'Ltr t l ctlition, 1991.

Z. Manna and A. Pnueli. 7'ltc ircrltl)o/.ol I,o!jic of Rcocfizlc nnd Concurrent S31sterns.

Springer-J'erlag, 1992.

J.A. hliller and O.R. \Veyric.lr. Query Ilrivcn Siniulation Using SIMODULA. In Pro-

ceedings of the 221'~ -4 izntrnl .Si/,c ulotio/, .S',y/upo.qi(~t)~. 1989.

iC;. h4endeiihal1, D.D. CT'a~lic~~l~. and 11.1,. Scltcaffcr. illcithenzcrticnl ,Statistics with Ap-

plic~rtiorzs. PCVS-KENT, 41 1 1 edit iolr . 19!)0.

S. B. Navatlle and R. Xlr~r~cltl. 1'S()I, a la~rguage interface for history databases.

In C. Rolland, F. Boclart. ai~tl 11. I.corrast1. rditors. Zir,?porcrl Aspects in Information

.Sy.ste~izs, pages 109-122. KOI I 11-llollantl. 1 SSS.

C.D. Pegden, R.E. Shannolr. and 13.P. SatIo\\.hlii. Ir~trodurtion to simulation using

SIA4AiV. McGraw-Hill. Ne\\ 1;)l.k. 1090.

SAS Institute, Raleigh, X('. .5'.I.';' 1 -..r I . * S ((I'otil(. 1SSS.

R. Snodgrass. The tempor.;rl c l t~c~ t I ~ I I I ~ I I ~ I ~ ~ ~ 'I'()uel. .1CAII lr*rrnscrctions On Database

Sgstenas, 12(2):247-298, 19s;.

h4. Stonebarker. The I l~ '(; l~12S' I'crpc I:<: ..l , r c~ to /~y of a Rclcrtioi~crl Database System.

Addisoil C44Tesle-y Publishing (' o l~~pany, Inc.. lOs(i.

A. Tuzhilin and P. B a l a s u l) l t r ~ ~ ~ a ~ r i a ~ ~ . (Zu(1i.j. I)r.i\.cn Sirnulation: Issues and Solutions.

1993. (in preperation).

A. Tuzhilin and J . Clifford. .\ tc~lrltor.;rl icliltio~\al ;rlgeltsa as a basis for temporal

relational conlpltteness. 111 C ' o 1 1 f i 1.1 I / (c o/t l i I.!/ 1,crrgc Dc/trrbrr.scs, pages 13-23, 1990.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

[Tuz92] A. Tuzhilin. SinlTL: A Siltit~latioll I.ai~guagc Ijased on Teinporal Logic. TRANSAC-

TIOiYs of Tlte Society for (bu,l)utt 1. ,S'ir~tul~/tio~~. 9(2):086-099, 1992.

[Tuz93] A. Tuzhilin. Applications of ten~potal tlatal,a>es to linowledge-based simulations. In

A. Tansel, J. Clifford, S. (iaclia, S. Jajodia . A. Segev, and R. Snodgrass, editors,

Tenz11orul Dntcrb~ses. Relijnlt~iit C'u~lruii~~gs, 109:J.

8 5] N. Wirt 11. P~ograi7z1~2ii2g il? .llo(lu1(1-2. Sl)ri~lger-\'erlag, 3rd edition, 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-42

