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Abstract 

We use a model of real-time decentralized information processing to understand how 
constraints on human information processing affect the returns t o  scale of organizations. 
We identify three informational (dis)economies of scale: diversification of heterogeneous 
risks (positive), sharing of information and of costs (positive), and crowding out of 
recent information due to information processing delay (negative). Because decision 
rules are endogenous, delay does not inexorably lead to decreasing returns to scale. 
However, returns are more likely to be decreasing when computation constraints, rather 
than sampling costs, limit the information upon which decisions are conditioned. The 
results illustrate how information processing constraints together with the requirement 
of informational integration cause a breakdown of the replication arguments that have 
been used to establish nondecreasing technological returns to scale. 
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1 Introduction 

1 .I Motivation 

The purpose of this paper is to study formally whether and how human information 
processing constraints can limit the scale of centralized decision making in organizations 
with endogenous administrative staffs. This abstract question is relevant, for example, 
to the theory of firms and industrial organization, given that decision making appears to 
be more centralized when an industry is controlled by a single firm than when output is 
produced by independent firms. Hence, any advantages to decentralized decision making 
may limit the scale of firms. 

We address this question by characterizing the average cost curve for a statistical decision 
problem that exhibits centralized decision making, in a model in which decisions are made 
in real time by an endogenous number of boundedly rational agents. A related model was 
introduced in Radner and Van Zandt (1992); here we develop a new axiomatic computation 
model, contrast it with a benchmark sampling problem, and provide more extensive and 
precise results. In the spirit of the theory of teams, we restrict attention to informational 
and computational decentralization, leaving aside issues of incentives and governance. The 
administrative agents in our model are boundedly rational because it takes them time to 
process and use information. This time represents both managerial wages that must be 
paid and also, more critically, decision-theoretic delay that constrains the use of recent 
information. The main theme of this paper is that such delay can lead to decentralization 
of decision making and bounded firm size-confirming, as stated by Hayek (1945, p. 524), 
that "we need decentralization because only thus can we ensure that the knowledge of the 
particular circumstances . . . be promptly used". 

1.2 Real-time decentralized information processing 

We use a real-time computation model-that is, a model where computation constraints 
are embedded into a temporal decision problem in which data arrive and decisions are made 
at  multiple epochs. Such a model, whose properties are explored in Van Zandt (1998c), 
captures in a sophisticated way the fact that human information processing constraints 
limit the use of recent inf0rmation.l 

The decision problem we study is the estimation in each period of the sum of n discrete- 
time stochastic processes. This is one of the control problems faced by a firm or plant that 
sets its production level centrally in order to meet the uncertain total demand of n sales 
offices or  customer^,^ or by a firm or plant that needs to estimate the average productivity of 
n workers (machines or shops) based on past individual productivity indices. This decision 
problem is also part of resource allocation problems-such as allocating capital to n projects 
or assigning output orders to n production shops-in which one of the steps is aggregating 
profit, cost or productivity indices in order to calculate a shadow price. The size or scale of 
the decision problem is n. 

IMarschak (1972) was the first economic model of real-time processing (that we are aware of). He studied 
how different price adjustment processes affect delay, but he did not study decentralization of information 
processing and the effects of problem size. 

2For example, Benetton's must respond quickly to changing market conditions at  its many retail outlets 
in order to  implement just-in-time inventory management practices and thereby reduce inventory costs. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-99-03 



An essential ingredient of our model is the representation of constraints on individual ad- 
ministrators' ability to process information. Although the data in our model are numerical 
because we need to impose tractable statistical assumptions, the decision problem is a proxy 
for (and may actually include) the truly complex tasks performed by human administrators 
in organizations. Such tasks use soft information that must be substantiated in lengthy 
reports, and the process of reading reports, understanding the information, drawing conclu- 
sions, and communicating these conclusions to others is diacult and-most importantly-it 
takes t ime.  

Whereas Radner and Van Zandt (1992) and Van Zandt (1998~) represent such con- 
straints by an explicit model of computation, in this paper we represent them by axioms on 
an abstract set of decision procedures. This axiomatic approach has the advantage of high- 
lighting the robust properties of the computation constraints that drive the main results, 
and it complements the concrete "hands-on" approach in the other two papers. The axioms 
allow for decentralized processing, meaning that multiple agents jointly calculate decision 
rules; therefore, the scale of centralized decision making (or of firms) is not artificially limited 
by a presumption that both large and small decision problems must be solved by a single 
person. Nevertheless, even with decentralized processing, there are bounds on the amount 
of recent information that can be incorporated into each decision. These bounds-which 
arise because information must be aggregated when decision making is centralized-are the 
fundamental constraint we impose on the set of feasible decision procedures. 

1.3 Returns to  scale of centralized decision making and of firms 

The exercise in this paper is to compare the overall costs of a decision problem of size 
n with the overall costs when the processes are partitioned, thereby replacing the single 
decision problem with several smaller ones whose sizes sum to n. We consider that decision 
making is centralized within a single decision problem because a single decision is made each 
period; this is true even though information processing may be decentralized. We view the 
partitioning of a decision problem as decentralization of decision making, because multiple 
decisions are made using different information. Thus, one way to state the exercise in this 
paper is that we characterize when it is optimal to decentralize decision making and when 
there is a bound (uniform over n) on the size of each decision problem in optimal partitions.3 

This exercise is relevant to the scale of firms. It has long been understood that limits to 
the scale of production in a firm cannot be explained by production technology alone, be- 
cause a large firm could replicate the production processes of several small firms and thereby 
achieve nondecreasing returns to  scale. Instead, these limits must be due to  differences in 
the organization properties of one large firm compared to several small firms. One of these 
differences is that the scale of coordination and centralized decision making is greater within 
a single large firm-with its headquarters and tight bureaucratic procedures for coordinating 
the parts and making such common decisions as total output.* Even if such centralization 
is dysfunctional at large scales, a large firm cannot overcome this by replicating the orga- 
nizational features of several smaller firms because such replication would literally turn the 

3A limitation of this exercise is that the class of decision problems permits only a stark view of decentral- 
ization: Problems can only be split into components among which there is no coordination. Geanakoplos 
and Milgrom (1991) study "internally" decentralized decision making in a resource allocation problem, but 
in a static team theory model. In subsequent research by Van Zandt (1998d, 1998e, 1998f), decentralized de- 
cision making is studied in a temporal version of the resource allocation problem with real-time decentralized 
computation. 

4This is documented, for example, in Kaldor (1934), Coase (1937), Robinson (1958), and Chandler (1966). 
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large firm into several smaller firms.5 Thus, diseconomies to centralized decision making 
may also limit firm size. 

We emphasize that by a firm we mean an enterprise-as this term is used in Chandler 
(1966)-rather than merely a legal entity. For example, in the construction of a large 
building, many independent contractors work together. During the project, they continue to 
maintain their independent identities, but they also give up some of their autonomy because 
of the tight coordination that is required by the project. This paper considers whether there 
are organizational limits to the scale of such enterprises. As another e ~ a m p l e , ~  consider two 
farmers each owning a piece of land and a small tractor. Suppose that they decide to 
buy a big tractor and cultivate all the land together (not merely share the tractor). Then 
they have formed an enterprise that did not exist prior to the merger, even if each farmer 
continues to own his or her own land or to maintain a separate business identity for certain 
purposes. The farmers would nearly always form a legal partnership after such a merging 
of operations, but a lack of legal status would not eliminate the economic status of the 
enterprise. The joint operations involve collective decision making about the cultivation of 
the land, and the aggregation of information about soil qualities of the two pieces of land 
and the markets served by the two farmers. Leaving the technological returns aside, such 
collective decision making may have certain benefits, such as the sharing of information, 
and certain disadvantages, such as delays in aggregating information. These are precisely 
the issues we study in this paper. 

To capture in a simple and concrete way that decision making is more centralized within 
a single large firm than among multiple small firms, we identify each decision problem in 
our model with a single firm. This is consistent with the examples of the decision problem 
given in Section 1.2, where the decision variable for each problem is a level of output. There 
is always some centralized control over a firm's total output, but very little coordination of 
output levels of different firms in the same industry. In these examples, our measure n of 
scale is proportional to the level of output, which is the usual measure of scale. 

Our approach sheds new light on how bounded rationality limits firm size, but it has 
limitations which could be addressed in future research. First, our identification of a firm 
with a single centralized decision problem introduces two biases. On the one hand, because 
there is also decentralized decision making within firms, which is not allowed for by our 
model, we may underestimate the scale of firms. On the other hand, because there is 
some coordination among firms-through anonymous market interactions and also through 
contractual relationships-which is also not captured by our model, we may overestimate 
the scale of firms.7 

Second, it would be useful to integrate our complexity-based modeling of organizational 
decision making with the incentives-based property-rights theory of firms (see Hart (1995) 

5For example, the subunits could not communicate, coordinate their activities, or allocate resources 
except as independent firms would do. Even if there continues to exist a common entity that owns the 
subunits, these subunits would be independent firms, just a s  the common ownership of the many publicly 
traded corporations by overlapping sets of stockholders and investments firms does not erase the boundaries 
between these corporations. 

6This example is borrowed from comments of an anonymous referee. 

?While recognizing these limitations, we note that most other models of organizational returns to scale 
are also based on an ad hoc identification of a firm as some informationally integrated unit. For example, 
Williamson (1967) defines a firm to be a hierarchy with an exogenous managerial production function. Keren 
and Levhari (1983) define a firm to be a hierarchy with coordination delay that could be derived from a 
model of associative computation. Radner (1993, Section 7) defines a firm to be a network for aggregating 
cohorts of data. Geanakoplos and Milgrom (1991) and Van Zandt (1998f) define a firm to be a group of 
shops to which resource allocations are coordinated by a hierarchy. 
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for an overview). The latter literature explicitly models coordination both within and among 
firms, and emphasizes that the legal ownership of the assets that make up firms is explained 
by the control rights and residual claims conferred by such ownership. On the other hand, it 
does not model the computational burden that such control entails, nor does it explain the 
structure of organizational decision making within large corporations-a structure that, to 
many observers (e.g. Chandler (1966, 1990)), defines the boundaries and internal structure 
of enterprises. Although the two paradigms capture quite different aspects of firms, they 
are not inconsistent. That ownership confers control (decision) rights means that decision 
making is more centralized when all assets and activities are within a single firm, compared 
to when they are dispersed across firms. 

1.4 Summary of results 

We identify three determinants of returns to scale: 

Diversification effect The variance of the total demand increases more slowly with firm 
size-and hence returns to scale tend to be higher-when markets are subjected to 
independent rather than common shocks. 

Arrow effect When information about one stochastic process is useful for estimating other 
processes, information processing costs can be amortized over a larger number of 
processes in large organizations, leading to higher returns to scale. Arrow (1974, 
Chapter 2) highlighted such information sharing as a source of positive returns to 
centralization and mergers. 

Aggregation delay effect Computation delay imposes constraints on the amount of re- 
cent information that can be incorporated into decisions, and it creates a negative 
externality among the stochastic processes in the computation problem: Recent in- 
formation about one process crowds out recent information about other processes, 
leading to lower returns to scale. 

In order to distinguish between the effects of information processing constraints and 
the effects of statistical assumptions, we also characterize the returns to scale of a bench- 
mark model in which information may be costly but computation is unconstrained. This 
benchmark is similar in spirit to Wilson (1975), who studied the Arrow effect in a statis- 
tical decision model of firm. We refer to this benchmark as the sampling problem, and to 
our main model-in which data are freely available but computation is constrained-as the 
computation problem. The key difference between the sampling and computation problems 
is that the aggregation delay effect is not present in the former. 

Under the assumptions of one of our theorems (Theorem 3), only the diversification 
and Arrow effects matter, and returns to scale are increasing in both the computation and 
sampling problems. This result illustrates that, even in the computation problem, delay does 
not increase inexorably with the scale of the decision problem. Instead, because decision 
rules are endogenous and can use data of heterogeneous lags, organizations can use recent 
information even for large problem sizes. The proof of this theorem involves showing that a 
large firm can achieve lower costs than a small firm by imitating (not replicating) the small 
firm's computation or sampling procedure. 

In contrast, in Theorems 2 and 4, the negative informational externality due to delay is 
important. As a result, returns to scale are more likely to be decreasing when computation 
constraints, rather than sampling costs, limit the information upon which decisions are con- 
ditioned. The proofs of these two theorems illustrate how replication arguments, which have 
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been used to show nondecreasing technological returns to scale, also work in the sampling 
problem but break down in the computation problem. Furthermore, the proofs link this 
breakdown to aggregation delay and the informational integration implied by centralized 
decision making. 

Specifically, under the assumptions of Theorem 2, we show that there are constant returns 
to scale in the sampling problem because a firm should replicate the optimal sampling 
procedure of a firm of size 1. Under the assumptions of Theorem 4, we show that there 
are eventually increasing returns to scale in the sampling problem because a firm of size 
mn can achieve average costs lower than those of a firm of size n by dividing itself into 
m divisions of equal size that imitate the sampling procedure of the firm of size n. Such 
replication strategies do not  work in the computation problem because each division would 
compute only i ts  own forecast. The aggregation of these forecasts would introduce delay, 
and so the decision rule would use information that is older than the information used by the 
smaller firm. Consequently, in the computation problem, there are eventually decreasing 
returns to  scale under the assumptions of Theorem 2 and there may be a firm size that 
minimizes average costs under the assumptions of Theorem 4. 

Empirical research in this area beyond case studies is limited. Brynjolfsson et al. (1994) 
measure the impact of information technology (IT) on firm size and find that it  is linked to 
smaller firm size. Heuristically, if we claim that firm size is limited in part by managerial 
delay, then improvements in IT should instead lead to larger firm size (although we do not 
perform such a comparative statics exercise). However, in a general equilibrium model, 
improvements in IT also mean that each firm's competitive environment is changing more 
quickly, and this aggravates the effect of managerial delay. Brynjolfsson and Hitt (1998) find 
positive correlation between demand for IT and decentralization of decision making within 
firms. This is a link between hardware and the structure of h u m a n  decision making that our 
model is not rich enough to capture, but heuristically this might contradict our conclusion 
that information processing constraints limit centralized decision making. Alternatively, 
it may mean that firms that operate in rapidly changing environments respond by both 
decentralizing decision making and improving IT. Further research is needed to resolve 
these theoretical and empirical issues. 

2 The decision problem 

We study the real-time computation of a family of forecasting problems that are param- 
eterized by their size or scale n, a strictly positive integer. Our goal is to compare decision 
problems of different sizes. In the definitions that follow, the exogenous components that 
vary with n are indexed by n, whereas the endogenous components are not. 

Let ;Z denote the set of integers and N the set of strictly positive integers. We fix once 
and for all a countably infinite set of potential discrete-time stochastic processes, indexed by 
i E N, from which the processes that enter into each decision problem are drawn. Process i is 
denoted by {Xit)z-, or simply {Xit). The decision problem of size n involves forecasting 
the sum Xp z ~ ~ = 1  Xit of the first n processes at the beginning of each period t E N, based 
on their past realizations.' 

A forecast At of Xp is a random variable measurable with respect to the history 
{Xl,t-d,. . . , Xn,t-d)zl .  A policy is a sequence {At)z l  of forecasts (also denoted {At)). 

8Even though the forecasting begins in period 1, we assume a double infinity of time periods for the 
processes in order to simplify the statement of certain statistical assumptions. 
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The long-run loss of a policy {At) is defined as follows. There is a loss function +n sat- 
isfying $"(O) = 0 and $Jn(e) > 0 if e # 0. (Additional assumptions on $" are stated in 
Section 4.2.) The period-t loss is $ J ~ ( X ?  - At). Let Lt = E[$Jn(X? - At)] be the expected 
loss for t E N. Then the long-run loss of {At) is denoted I'({Lt)). (The domain and other 
properties of the function r are specified in Section 4.3.) 

Several interpretations of this decision problem were given in Section 1.2. One was that 
the decision problem is of a firm that has n sales offices or markets with demands {Xit>~="=l 
in period t and that controls the level of output centrally. There is a loss when output is not 
equal to the total demand. We shall use terminology from this example for concreteness-in 
particular, keeping in mind the application to returns to scale of firms, we shall identify the 
decision problem with a single firm. See Section 1.3 for an explanation and caveats with 
regard to this last point. 

Unlike most decision problems one sees in economic models of firms (e.g., setting output 
in response to a single demand parameter), our forecasting problem has a property that is 
common to a variety of decision problems a firm m'ay face and that is fundamental to our 
results on returns to scale: It involves aggregating information about many of the firm's 
activities (or markets or parts) whose number varies with the scale of the firm. 

3 Computation and sampling problems 

3.1 Decision procedures and performance 

We axiomatically define decision procedures for two models, reflecting two types of con- 
straints. In the main model, which we call the computation problem, information is costless 
but computation is constrained. As a benchmark that helps us distinguish between the 
effects of computation constraints and the effects of statistical assumptions, we also study 
a conventional model, called the sampling problem, in which information may be costly but 
computation is unconstrained. 

In either model, IIn denotes the set of decision procedures for the decision problem of size 
n ,  and II r UF=, IIn is the set of all potential decision procedures. Each decision procedure 
n E II has an administrative cost C(n) and generates a policy {A?). The total cost of a 
decision procedure n E IIn when used in a decision problem of size n is the sum TCn(n) z 
C(n) + I'({Lt)) of its administrative cost and long-run loss (where Lt r E[$n(Xr - At)] 
f o r t  E w .  

Sections 3.2 and 3.3 impose restrictions, which are different for the two models, on the 
mapping from decision procedures to costs and policies. The following notation is used to 
state these restrictions. For n E N and t E N, let @? be the set of indices of all realizations 
of the stochastic processes in a firm of size n up to but not including period t, that is, 

@: r { ( i , s ) I i ~ { 1 , 2  , . . . ,  n), S E {  . . .  , t - 2 , t - 1 ) )  . 

For n E IIn, @? C @? denotes the indices of the observations of the stochastic processes that 
are used by decision procedure n for the period-t forecast; the random-vector representation 
of this information is HF = {Xig 1 (i, S) E and A: is a measurable function of HT. 

3.2 The computation problem 

In the computation problem, n E II represents a computation procedure-a specification 
of the bureaucratic procedures managers folIow in order to calculate forecasts from available 
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data. C(T) is the long-run costs, including managerial wages, of this information processing. 
@f denotes the indices of the data used to calculate A:. 

We model the computation constraints axiomatically rather than constructively. The 
assumptions allow for decentralized computation, that is, computation performed jointly by 
many managers or clerks whose numbers and activities are determined endogenously. This 
property, which is analogous to parallel or distributed processing by networks of machines, 
cannot be suppressed when studying returns to scale, because managerial resources must 
be allowed to vary with the scale of the firm. The assumptions stated are satisfied by the 
computation model in Radner and Van Zandt (1992) and Van Zandt (1998c), which study 
this same decision problem, and most other distributed processing models, including those 
that have been used in economics, such as Mount and Reiter (1990) and Reiter (1996).9 

The fundamental constraint we want to capture is that information processing-which in- 
cludes the reading and preparation of reports and aggregation of non-numerical information- 
takes time. To motivate this, the numerical data in our decision problem should be viewed 
as a proxy for the complex data used by human administrators in actual organizations, 
or the reader should imagine that the data is not available in a simple numerical format 
and instead is difficult to understand and substantiate and must be communicated through 
lengthy reports. We emphasize that our use of a numerical decision problem as a proxy for 
more realistic human decision problems is standard in economics and derives from the need 
to impose statistical assumptions, rather than from our need to impose computation con- 
straints. Van Zandt (1998~) explains that the information processing constraints we impose 
are qualitatively similar to the ones we would impose for more realistic problems. 

This time constraint has two effects. First, it adds an administrative cost (reflected 
in C(T)) to the calculation of any policy owing to the time managers spend processing 
information. Second, it restricts the set of feasible policies; in particular, it limits the 
amount of recent data that can be incorporated into decisions. This second effect is the 
more important one for this paper, and is captured by the following "iron law of delay". 

Assumption 1 For each lag d E N, there i s  a u n i f o r m  bound o n  the a m o u n t  of data whose 
lag i s  d o r  less o n  which a n y  forecast can depend. Formally, there i s  a funct ion 3: N -+ N 
such  that  # {(i, s )  E cli? I s 2 t - d) 5 B(d) for  d E N, rr .ir IT., and t E N. 

This bound comes from the delay in aggregating information. For example, suppose that 
policies are computed by having agents perform elementary operations that can have at most 
k inputs (which can be any previous results, raw data, or constants) and that produce an 
arbitrary number of outputs. Suppose each operation takes at least S units of time. Either 
At is a constant or the value of a raw datum, or it is the output of an elementary operation 
that was begun by time t -6. Thus, At can depend on at  most 1 datum that is first available 
after t - 6. If At is the result of an elementary operation begun by time t - 6, then each of 
the < k inputs is either a constant or a raw datum, or is itself the output of an operation 
begun by time t - 26. Hence, At can depend on at  most k data first available after t - 26. 
Repeating this argument inductively, At can depend on at  most k2 data first available after 
t - 36, and on at most kV-I data first available after t - v6 for v E N. This implies that, for 
d E N, At can depend on at most kld/61 observations from period t - d or later. The bound 
would also hold if the delay comes from reading and interpreting raw data and messages; 
see Van Zandt (1998~) for a discussion. 

gKenneth Mount and Stanley Reiter have advocated decentralized information processing as a model of 
human organizations since 1982. See Van Zandt (1998a, 1998b) for surveys of the use of such models in the 
economic theory of organizations. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-99-03 



Note how the bound holds even though we allow for decentralization of information 
processing. This is because information must be aggregated to make a forecast. This is 
related to the centralization of decision making, as is illustrated by the following example. 
Suppose there are n firms, each of which must choose the best of two potential projects. 
Suppose there are potential administrators each of whom can perform a pairwise ranking of 
any two projects in one period. Then, however large n is, all of the projects can be selected 
in one period. This is because the n decision problems are independent and each can be 
performed in the same period by a different administrator. Now suppose the n firms merge, 
with the intention of selecting the best n of the 2n projects. This selection problem cannot 
be decomposed into operations that can all be performed concurrently. Instead, it takes 
more than logz n periods to select the n projects by pairwise rankings. 

The next assumption states that policies can be scaled without changing the processing 
costs. 

Assumption 2 For n E N, n E En, and CY > 0, there is .irl E En  such that C(.irl) = C(n) 
and A:' = CYA: for t E N. 

Note that the scaling factor CY is constant over time and independent of the realizations of 
the stochastic processes. The scaling corresponds to a change in the units used to measure 
demand and/or to control production. 

The third assumption about computation procedures is that there are procedures that 
process no information and have no administrative cost. 

Assumption 3 For n E N and a E R, there is n E IIn such that C(n) = 0 and AT = a for 
. t  E N. 

Finally, we assume that a large organization can mimic the decision procedure of a 
smaller organization. 

Assumption 4 For n E N, En c IInC1. 

3.3 The sampling problem 

In the sampling problem, n E II represents a sampling procedure-a specification of the 
information to be gathered each period and to be stored from one period to the next. C(n) 
is the long-run cost of obtaining and storing that information. @: denotes the indices of the 
data that have been sampled up through period t - 1 and are available when making the 
period-t forecast. 

We neither assume nor preclude the existence of perfect recall (iP: C +GI).  The ratio- 
nality (no processing constraints) assumption is that when a sampling procedure n is used 
for a decision problem of size n, the period-t forecast At minimizes E[gn(XP - At)] subject 
to the constraint that At be HT-measurable. This is called statistical optimality, which may 
be formalized as follows. 

Assumption 5 For n 6 N, .ir E En, and t E N, A: E arg minaEw E[+" ( X r  - a) 1 HF] a. e. 

Our only assumption on sampling (and data storage) costs is that they are additive 
and symmetric across stochastic processes. For example, if it costs $1 to observe yester- 
day's realization of one process then it costs $100 to observe yesterday's realization of 100 
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processes. To state this formally, we identify for each T E II and i E N the dates of the 
information about process i provided by n by letting cpg { s  E Z I (2 ,  s )  E $2) for t E N 
and cp? {cpg)~O=l. We refer to cp? as a single-process infomation ~ t r u c t u r e . ~ ~  (If a process 
is not sampled at all, then its information structure is cpnUn r {@):,.) Our assumption 
is then that (a) there is a set $ of single-process information structures with associated 
costs, (b) a sampling procedure specifies a single-process information structure in $ for each 
process, and (c) sampling costs are summed over the processes. 

Assumption 6 There is a set $ of single-process information structures such that, for 
n E N, {cpl, . . . ,cpn) C $ if and only if there is n E IIn such that cpf = cpi for i E {I, .  . . , n). 
Furthermore, there is S :  $ -+ R such that, for n E N and n E IIn, C(n) = C;=l S(cp7). 
Also, pnull  E $ and S(9nu~)  = 0. 

3.4 Comparison of the computation and sampling problems 

The policies in the computation problem do not minimize the expected loss conditional 
on all available information, since they do not even depend on all available information. A 
weaker notion of statistical optimality of a computation procedure n E IIn is that A; mini- 
mizes E[$F'(XT - a)  I HT] almost surely. As discussed in Van Zandt (1998c), a constrained- 
optimal computation procedure (one that minimizes total costs on 11) need not be statisti- 
cally optimal in the computation problem because it may be more costly (or impossible) to 
compute the statistically-optimal decision rule that uses the same information as n. This is 
one potential difference between the sampling problem and the computation problem. 

However, this difference is not relevant to our results. In fact, we never preclude sta- 
tistical optimality in the computation problem. Instead, the important difference is how 
much data of a given lag can be used in a forecast. Suppose that, in the sampling problem, 
the forecast in period t of a firm of size 1 is based on  XI,^-^. Then, for a firm of size n, 
it is possible to sample for all i E (1,. . . , n )  with the same average sampling cost 
faced by the firm of size 1, so that the forecast uses the data surrounded by the solid line 
in Figure 1. This is not possible in the computation problem because of aggregation delay 
(Assumption 1). For example, Figure 1 shows the bound on the data of any given lag for 
the case where B(d) = 2d-1. Thus, in the computation problem, aggregation delay creates 
a negative informational externality among the processes-data of a given lag about one 
process crowds out data of that lag about other processes. 

4 Returns to scale: Assumptions and definitions 

4.1 Statistical assumptions 

For t E Z, the vector {Xlt,Xzt,. . . ) is denoted by Xt;  then {Xt)E-, or simply {Xt) 
denotes the vector process. For t E Z,  Ht denotes the history of {Xt) up through period t .  

We assume that the processes have finite variance and are stationary and exchangeable. 

Assumption 7 For all t E N and i E N, 0 < <ar(Xit) < a. 

' O ~ h e  structure cp6 is an element of 2{... 7t-27t-'), and so formally we define a single-process information 
structure to be any element of ngO=, 2{... 8t-21t-1). 

9 Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-99-03 



Processes 

a b c d e f g h i " .  

V 

X X X X  
3 
0 
z t - 4  
k" 

............*......... 
Sampling Computation 

FIGURE 1. Bounds on aggregation speed. The solid outline shows data that could be 
incorporated into the period-t prediction in the sampling problem. The dotted outline 
shows a limit on the data of various lags that could be incorporated into the period-t 
prediction in the computation problem. 

Assumption 8 The vector process {Xt) is stationary. 

Assumption 9 The family {{Xlt), {Xzt), . . . ) of processes is exchangeable (the joint dis- 
tribution of the processes is symmetric). 

Exchangeability ensures that the processes are statistically indistinguishable. In partic- 
ular, if we partition a set of stochastic processes into groups whose sums must be forecast 
independently, then the statistical properties of each group depend only on the number of 
processes and not on their identities. A canonical decision problem is thus the estimation of 
the sum of the first n processes, as in Section 2. This assumption precludes, for example, a 
locational model in which the demand indices of nearby markets are more correlated than 
those of distant markets. 

Remark 1 The processes are exchangeable if they can be written Xit = Yt + Zit, where the 
processes {{x}, {Zit}, {Zzt), . . . } are independent and the processes {{Zlt ), {Z2t), . . . } are 
identically distributed. (If the processes are Gaussian then the converse is also true.) We 
call {X) the common component of the processes and {Zit} the idiosyncratic component 
of process i. 

4.2 Loss functions 

We consider two classes of loss functions. 

Quadratic loss The first is the quadratic loss, whose form is the same for all n: 

$"(X," - At) = (X," - A,)2 . 

Scalable loss The other case is where the average loss is a convex function of the average 
error: 

q n ( X t n  n - At) = !I? (:(Xtn - At)) , 
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where 9 is a convex function not depending on n such that 9(0) = 0, 9(e) > 0 if 
E # 0, and E[9(Xit - E[Xit])] < CQ. We refer to this as a scalable loss function. 

A leading example of the scalable loss is when $ is piecewise linear and does not depend 
on n: 

For example, this is the loss when a firm has to make up for excess demand (resp., supply) 
by buying (resp., selling) output at a price that exceeds (resp., is less than) the firm's unit 
production cost. The scalable loss also includes the case where a quadratic loss is adjusted 
for firm size, $*(XP - At) = i ( X r  - At)2, in which case 9(e) = e2. 

4.3 Long-run loss 

As explained in Section 3.1, the function I' aggregates period-by-period expected losses 
into a measure of long-run loss. We denote the domain of I' by L, which must contain the 
sequence of expected losses for any policy that is generated by a decision procedure (such 
a policy is said to be allowable). Our next assumption restricts the domain G and assumes 
that I? is linear and strictly monotone. 

Assumption 10 If At is an allowable policy for a decision problem of size n and Lt = 
E[$"(X? - At)] for t E N, then {Lt) E L. Furthermore: 

1. L zs the positive cone of a linear subspace of R* containing the constant sequences; 

2. I' is a linear f ~ n c t i o n a l ; ~ ~  

3. i f  {Lt) and {L:) belong to L and Lt < L: for t E N, then I?({Lt)) < I'({L:)). 

As a normalization, we also assume that if {Lt) is constant then r({Lt)) is equal to the 
constant value of {Lt). 

The purpose of the linearity assumption is to make comparisons across problems of 
different size meaningful (e.g., if the expected loss in each period scales linearly with problem 
size, then so does the long-run loss). This assumption holds if C is the set of bounded 
sequences in R* and I?(.) is the discounted present value with respect to a summable sequence 
of discount factors. It is also consistent with the case where I?({Lt)) is the long-run average 
value of {Lt), in which case there is an implicit restriction on the set of decision procedures. 
Specifically, the set L must then contain only sequences whose long-run averages are well- 
defined and G cannot contain two sequences {Lt) and {L:) such that Lt < Li for t € N and 
such that both have the same long-run average (true if C contains only constant or cyclic 
sequences). See Van Zandt and Radner (1998) for further discussion and a sketch of how to 
weaken the monotonicity condition. 

4.4 Definitions of returns to scale 

For both the computation and sampling problems, we assume that there is a cost- 
minimizing decision procedure for all n. 
- 

I1That is, I' can be extended to a linear functional on the subspace spanned by L. 
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Assumption 11 For n E N, there is a n E IIn such that TCn(n) < TCn(n') for n' E IIn 

Such a decision procedure is said to be constrained-optimal or simply optimal. Let TC(n) 
be the minimum cost and let AC(n) TC(n)/n be the average cost for a firm of size n. 

Although we have defined a firm of size n to be the decision problem with the first 
n stochastic processes, it would be trivial to  generalize the model to decision problems 
with any n of the stochastic processes. Given the symmetric distribution of the stochastic 
processes and the symmetry of the sampling costs with respect to the processes, and adding 
additional symmetry assumptions to the computation model, the minimum costs of a firm 
would depend only on its size and not on the identity of its processes. Then, for any partition 
in1, . . . , nk} of n (a  list of strictly positive integers that sum to n), the total cost in a market 
of size n that is served by k firms with sizes n l ,  . . . , nk is equal t o  TC(n1) + - .  . + TC(nk). 
A partition of n is optimal if it has the lowest total costs. Our goal is t o  characterize the 
size of firms in optimal partitions. (The interpretation of this exercise in terms of returns 
to scale of centralized decision making and of firms was given in Section 1.3.) 

An integer is a bound on firm size if the size of any firm in any optimal partition (for 
any n) is no greater than A. 

Definition 1 For A E N, A is a bound on firm size if, for all n E N and optimal partitions 
(121,. . . , nk)  of n, m a i n l , .  . . , nk)  < A. Firms size is bounded and returns to scale are 
eventually decreasing if there is a bound on firm size. 

We say that firm size is unbounded not simply if there is no bound on firm size, but also 
if, heuristically, all large markets contain large firms. 

Definition 2 Firm size is unbounded and returns to scale are eventually increasing if, for 
all A E N, there is an n' E N such that, for all n > n' and all optimal partitions {nl, . . . , nk)  
of n, max{nl, . . . , nk) > A. 

We define monotonic returns to scale in the usuaI way. 

Definition 3 Returns to scale are monotonically (weakly/strictly) increasing, decreasing, 
or constant if AC(n) is (weakly/strictly) decreasing, increasing, or constant. 

If returns to scale are monotonically strictly increasing, then the only optimal partition of 
n is {n} and firm size is unbounded. 

5 Returns to scale: Results 

For each of the two classes of loss functions (quadratic and scalable), we characterize 
the returns to scale of the computation and sampling problems for two sets of additional 
statistical assumptions. This yields four theorems, which are summarized in Table 1. The 
reader may wish to refer back to Section 1.4, which contains a more extensive summary and 
interpretation of the results. All proofs are given in the Appendix. 

5.1 Quadratic loss and mutually correlated processes 

We first dispense of a case that has no interesting contrast between the computation 
and sampling problems-the quadratic loss with an assumption that rules out statistical 
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Stat is t ical  R e t u r n s  t o  Scale 
Assumptions Sampling Problem Computa t ion  Problem 

TABLE 1. Table of results. 

mutually 
dependent 

mutually 
independent 

common process 
noise 

general 

independence of the stochastic processes. The quadratic loss function is not favorable to 
increasing returns because if the average error is constant then the average loss increases 
linearly with n. Theorem 1 shows that this leads to decreasing returns to scale in both the 
computation and sampling problems if (heuristically) there is a common component that 
cannot be perfectly forecasted from past data. 

Theorem 1 Assume the loss is  quadratic and that E[Cov(Xit, Xjt I &-I)] > 0 for i, j E N 
such that i # j.12 I n  both the sampling and the computation problems, lim,,, AC(n) = m 

and firm size is  bounded. 

bounded firm size 
(limn+m AC(n) = CO) 

constant 
(constant per-unit gain) 

monotonically increasing 

unbounded firm size 
(replication works) 

5.2 Quadratic loss and mutually uncorrelated processes 

bounded firm size 
(limn+, AC(n) = CO) 

bounded firm size 
(per-unit gain -t 0) 

monotonically increasing 

example with 
bounded firm size 

When the loss function is quadratic but the processes are mutually independent, a diver- 
sification effect counterbalances the curvature of the loss function. This leads to constant 
returns to scale in the sampling problem. As shown in the proof of Theorem 2, the selection 
of a sampling procedure is separable over the processes and any firm should replicate an 
optimal procedure of a firm of size 1. 

In the computation problem, such replication is impossible because the firm would com- 
pute n forecasts, which must then be aggregated, thereby incurring additional delay. In 
fact, the aggregation delay implies that the data about "most" processes is "old" in large 
firms. In Theorem 2, we assume that information becomes useless as it gets older. (Specif- 
ically, we assume {Xt} is regular; see Remark 2 immediately after Theorem 2.) Hence, 
as firm size grows, the average cost converges to the no-information average cost. This 
is defined to be the average cost of the decision procedure that (a) has no administrative - 
cost, (b) makes the same forecast each period, and (c) has an expected loss each period of 
minaGw E[+"(Xp - a)]. Such a procedure corresponds to no computation or no sampling. 

12~eca l l  that EICov(Xit, Xjt I Ht-I)] = E[(X;t - E[Xit I Ht-l])(Xjt - E[Xjt I Ht-I])]. If the decomposi- 
tion in Remark 1 holds and if {Xt) or simply {Yt) is regular (see Remark 2), then E[Cov(X,t, Xjt I Ht-I)] > 
0 if and only if the processes are mutually dependent. We conjecture but have not verified that this holds 
without the decomposition. 
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Its existence is implied by Assumption 3 for the computation problem and Assumption 6 
for the sampling problem; hence its average cost is an upper bound on AC(n). 

Theorem 2 Assume that the loss is quadratic and that the processes { { X l t } ,  { X z t } ,  . . . ) 
are mutually independent. Then returns to scale are constant in the sampling problem. 
However, i f  also { X t )  is regular, then in  the computation problem the average cost converges 
(as n -+ co)  to the no-information average cost; furthermore, if for any firm size n E N 
there is a computation procedure for which the average cost is lower than the no-information 
average cost, then firm size is bounded. 

Remark 2 Regularity is defined as follows: Given an underlying probability space on which 
the process { X t )  is defined, let { F t )  be the filtration generated by { X t } .  Then {Xt} is 
regular if and only if the tail a-field r)T=y 3 t  is trivial, meaning that it contains only events 
with probability 1 and 0. It  follows (from Martingale convergence theorems; see LoBve 
(1978, p. 75)) that EIXi t IHt -d]  + E [ X i t ]  as d -+ co, where the convergence is a.e. and in 
the LP-norm for 1 _< p < co. 

Radner and Van Zandt (1992) characterize returns to scale for a specific computation 
model under assumptions (quadratic loss and i.i.d. AR(1) processes) that are consistent 
with those of Theorem 2. 

5.3 Scalable loss and noisy common processes 

With a quadratic loss function that does not change with firm size, larger firms have the 
same tolerance as smaller firms for errors of fixed magnitude. However, this may not hold 
if, for example, the loss when output exceeds demand comes from holding inventories and 
the inventory capacity is proportionate to firm size. In this case the scalable loss function 
may be more realistic. The scalable loss also includes the piecewise linear loss. 

Our first theorem regarding the scalable loss, Theorem 3, assumes that the processes 
are noisy versions of a common process. The task is to estimate the common process, and 
this forecast is a "public good"; as the size of the firm grows, more data are available and 
the cost of the forecast can be spread among more processes (Arrow effect). In particular, 
when the loss function is also scalable, a larger firm can achieve a strictly lower average loss 
than a smaller firm simply by scaling the smaller firm's decision rule. This scaling does not 
increase the computational burden or the sampling cost, and thus the average computation 
or sampling cost is strictly lower for the larger firm. Hence, in both the computation and 
sampling problems, returns to scale are monotonically increasing. This is one case in which 
the increasing returns to scale due to information sharing, studied by Arrow (1974) and 
Wilson (1975), arise even with computation constraints. In the extreme case in which there 
are no computation or sampling costs to be shared, a diversification effect (assumption (ii) 
or (iii) in the theorem) can make returns strictly rather than simply weakly increasing. 

Theorem 3 Assume that the loss is scalable, that the decomposition Xit = Yt + Zit in  
Remark 1 holds, and that the random variables Zit are 2.i.d. across i E N and t E 25. 
Then returns to scale are monotonically weakly increasing in both the sampling and the 
computation problems. They are monotonically strictly increasing i f  also either: (2) for 
n E N, there is an optimal decision procedure n E Iln such that C(n) > 0; (ii) is strictly 
convex and Var(Zit) > 0; or (iii) the Lebesgue measure is absolutely continuous with respect 
to the distribution of Zit. 
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Interestingly, delay does not lead to decreasing returns in the computation problem 
because the amount of data used in the computation is endogenous and, in particular, does 
not have to increase with the size of the firm. In Section 6.2, we contrast this with the 
eventually decreasing returns that may obtain in a benchmark batch processing model. 

Radner and Van Zandt (1992) characterize the returns to scale for a specific computation 
model under assumptions (piecewise linear loss and processes that are noisy versions of a 
common AR(1) process) that are consistent with those of Theorem 3. 

5.4 Scalable loss and general processes 

The idea behind Theorem 3 is that a larger firm can achieve a lower average loss than a 
small firm by imitating the decision procedure of a single small firm. This is not an analog 
of the principle that leads to nondecreasing technological returns to scale: A large firm can 
imitate the production processes of several small firms whose total size is the size of the large 
firm. However, in the sampling problem with scalable loss, the analog of this principle-a 
large firm imitates the sampling procedures of several small firms-does lead to eventually 
decreasing returns to scale under general statistical assumptions. This is the first part of 
Theorem 4. 

Theorem 4A Assume that the loss function is scalable and Assumption 12 (stated in the 
Appendix) holds. In the sampling problem, firm size is unbounded and AC(kn) < AC(n) for 
n, k E N such that k > 1. 

There is no such analog for the computation problem. If a large firm imitates the 
policies of several small firms, it ends up with several forecasts each period. If it attempts 
to aggregate these forecasts, there is additional delay and so the policy uses information that 
is older than the information used by the small firms. This does imply that returns to scale 
are never increasing in the computation problem, as was shown in Theorem 3. However, 
the second part of Theorem 4 presents a robust example in which firm size is bounded in 
the computation problem. This result shows how aggregation delay in a centralized decision 
problem may subvert the Arrow effect. 

Theorem 4B Assume that the loss function is scalable and Assumption 13 (stated in the 
Appendix) holds. In the computation problem, AC(1) < AC(n) for n 2 2 so 1 is a bound on 
firm size. 

Assumptions 12 and 13 in Theorems 4A and 4B, respectively, are stated in the Appendix 
because they are rather technical. Assumption 12 is a weak statistical assumption that plays 
the following role. We obtain the inequality AC(kn) 5 AC(n) in the sampling problem by 
showing that if the firm of size k n  replicates the sampling procedure of a firm of size n, 
then the average sampling cost of the large firm and the small firm are the same, and the 
average expected loss of the large firm is as low as that of the small firm. To obtain the 
strict inequality AC(kn) < AC(n), we appeal to the diversification effect, but this requires, 
for example, that the processes not be perfectly correlated. Assumption 12 rules out this 
and similar trivial cases. 

For the computation problem, Assumption 13 specifies a detailed but robust example. 
It assumes, for example, that the processes can be decomposed as Xit = l'i + .Zit, and 
that each of the components is a first-order autoregressive processes. When the statistical 
conditions in Assumption 13 are satisfied, so is Assumption 12; hence, the contrast between 
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the sampling and computation problems is real. Assumption 13 also states restrictions on 
the computation technology, which are satisfied, for example, if the computation model is 
the one in Van Zandt (1998~) (an adaptation of the one in Radner (1993)) and if one cycle 
equals one period in that model. 

6 Related literature 

6.1 Historical 

Collectively, our results (summarized in Section 1.4) show that economies in the scale of 
firms and decentralized decision making are more likely to be decreasing when computation 
constraints, rather than sampling costs, limit the information upon which decisions are 
conditioned-because of computational delay in aggregating information. This unites two 
themes that first appeared long ago in the economic literature on organizations. 

The first is that delay and change are fundamental for understanding information pro- 
cessing constraints in organizations. Kaldor (1934, p. 78) observed that coordination tasks 
arise only in changing, dynamic environments, and Robinson (1958, Chapter 111) emphasized 
managerial delay as a limit to firm size. In a criticism of the iterative planning procedures 
of Lange (1936, 1937) and Dickinson (1939)-which assume that the underlying economic 
data are constant-Hayek (1940, pp. 131-132) stated: 

In the real world, where constant change is the rule, . . . the practical problem is 
not whether a particular method would eventually lead to a hypothetical equi- 
librium, but which method will secure the more rapid and complete adjustment 
to the daily changing conditions . . . . 

The second theme is that simply increasing the managerial staff along with the size of 
the firm does not eliminate organizational diseconomies of scale. As explained by Kaldor 
(1934, p. 68): 

You cannot increase the supply of co-ordinating ability available to an enterprise 
alongside an increase in the supply of other factors, as it is the essence of co- 
ordination that every single decision should be made on a comparison with all 
the other decisions made or likely to be made; it must therefore pass through a 
single brain. 

In our model, as in Keren and Levhari (1983) and Radner (1993), it is not literally that 
the brain through which a decision must pass is overloaded as the firm size increases, but 
rather that the aggregation of information, which is part of coordination as described by 
Kaldor, involves delay that increases with problem size even when there is decentralization 
of information processing. 

6.2 Other information processing models of returns to scale 

Keren and Levhari (1983) and Radner (1993, Section 7) also study when aggregation 
delay limits the scale of firms and of centralized decision making. These papers are based on 
decentralized computation models that are consistent with the constraints in this paper, but 
they study batch rather than real-tame processing. In batch processing, an exogenously given 
function must be computed and delay is measwed by the time between the beginning and 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-99-03 



completion of computation. The authors study returns to scale by positing an exogenously 
given cost function-a function that depends on the scale of the problem, the computational 
costs, and the delay. Reiter (1996) is also a batch processing model that examines limits to 
firm size and centralization, but under the postulate that there are bounds on the size of 
the informational inputs of any organizational unit. 

Real-time control is a different, and in some ways richer, methodology for studying 
the effects of delay on decision making. First, because it is based on a temporal decision 
problem, we can implicitly derive a "cost of delay" from the degradation of the quality 
of decisions that are based on old information. Furthermore, because decision rules are 
endogenous, we do not artificially limit centralization by forcing organizations with large- 
scale decision problems to bog themselves down with computation and only use old data. 
Compare this with a benchmark model obtained by embedding a batch processing model 
into our decision problem. Following Keren and Levhari (1983) and Radner (1993, Section 
7), in which all data are collected for a decision at  the same point in time and the amount 
of data is equal to the scale of the firm, we would consider only computation procedures 
in which the firm calculates the period-t decision from {Xi,t-d)y=l for some delay d. The 
computation constraints require that n 5 B ( d )  and hence d -+ co as n -+ co. Consider the 
assumptions of Theorem 3, with a negligible idiosyncratic component. The problem is then 
to forecast from {Xi,t-d)L1. Assuming that {K) is regular, the average expected loss 
in the benchmark model is approximately equal in the limit (as n -+ co and d -+ co) to 
the average expected loss when there is no information processing. One can thus construct 
specific examples (see Van Zandt and Radner (1998)) in which firm size is bounded in 
the benchmark model, whereas Theorem 3 shows that returns to scale are monotonically 
increasing in our model. 

The model by Geanakoplos and Milgrom (1991) is a team-theory model of resource 
allocation in which an endogenous administrative apparatus hierarchically disaggregates re- 
source allocations. Their model has the advantage of allowing for internal decentralization 
of decision making, with coordination among the decision-making nodes. Theirs is a static 
approach that does not explicitly model the hierarchical aggregation of information; rather, 
there are constraints on information acquisition for individual agents that represent infor- 
mation processing constraints. Hence, their results on returns to scale depend on assump- 
tions about what aggregate information is available exogenously. The assumption under 
which they conclude that returns to scale are decreasing-that no aggregate information is 
available-is extreme. However, the notion that aggregate information is less available or 
of poorer quality than disaggregate information is supported by our model; computational 
delay means that aggregate information cannot be as recent as disaggregate information. 
Van Zandt (1998e, 1998f) studies a temporal version of their decision problem, but with 
real-time information processing. 

The work of Orbay (1996) and Meagher (1996) is also related, but with interesting differ- 
ences. They consider a problem of forecasting a fixed stochastic process without variations 
in the scale of the decision problem or operations of the firm. However, the amount of 
data sampled about the process for calculating each decision is endogenous. Because of 
computational delay, the trade-off is between basing each forecast on a large amount of old 
information or on a small amount of recent information. The size of the administrative 
apparatus is roughly proportional to the amount of data incorporated into each decision, 
so this exercise considers the optimal size of the administrative apparatus for a firm whose 
scale of production is fixed. They find, for example, that the administrative apparatus tends 
to be smaller the more quickly the environment is changing. 
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6.3 Other models of decentralized decision making 

Decentralized decision making has been studied formally in the communication mecha- 
nism (planning and message space) literatures and in statistical team theory (see Van Zandt 
(1998a, 1998d) for references, which for team theory include Marschak and Radner (1972)). 
With the exception of Geanakoplos and Milgrom (1991), these formal literatures have fo- 
cused attention on communication costs as a motive for decentralized decision making. The 
idea is simple. If a set of exogenously given agents are endowed with private information and 
it is costly to pool this information, then decisions may be delegated to various agents.13 
Van Zandt (1998d) also mentions a few recent papers that attempt to explain decentralized 
decision making with incentives, by relaxing the assumptions of the revelation principle. 
Again, decisions are decentralized to agents who are endowed with private information. 

In contrast, the main constraint in the current paper (and its predecessor, Radner and 
Van Zandt (1992)) is human delay in processing information. We show that this can limit 
the scale of centralized decision making, even in the absence of information transmission 
costs and incentive problems, and without relying on the existence of agents who a prior% 
have private information. Our explanation of decentralized decision making is meant to 
complement the others.14 

Appendix: Proofs 

We refer to a typical firm of size n as "firm n". We use symbols such as tt to denote the 
average loss in period-t (Ct = Lt/n). Because J? is linear, if a firm's average loss in each period 
t is tt then its average long-run loss is I'({Ct)). For any n E IIn, let ACn(n) r TCn(n)/n. 

PROOF OF THEOREM 1: A lower bound on AC(n) is the average expected loss of firm n 
when the forecast in each period t E N minimizes the expected loss given information HtT1. 
This forecast is E[XF 1 Ht-l] = xy=l E[Xit 1 Ht-l] and the expected loss each period is 
E[(C~+~~~)~], where €it = Xit - E[Xit I Ht-l]. The stationarity and exchangeability of the 
underlying stochastic processes imply that the processes { { ~ l t )  , { E Z ~ )  , . . . ) are stationary 
and exchangeable. Hence, Var(fit) and Cov(eit, ejt) are the same for all t E N and all i ,  j E W 
with i # j ;  denote these values by kl and k2, respectively. Thus, 

-E : [ ( c f i t  ) '1 = ( i i l ( f i1  
i=1 

The theorem assumes k2 > 0; hence, this lower bound on AC(n) increases linearly in n. 

PROOF OF THEOREM 2: For i E N and t 6 N, let Hit be the history of process i up through 
period t and, for n E 11, let Hi;: r {Xi, I (i, s) E @F) be the information about i in HT. 

Consider first the sampling problem. Fix a firm size n E N and a decision procedure 
n E IIn. Because the loss is quadratic, AF = E[X;IH?] = xy=l E[Xit I HT]. Because 

13Nevertheless, Marschak (1996) is a message-space model in which centralization (mergers) can decrease 
certain communication costs. 

14~owever, Radner (1992) argues that pure transmission costs are much less important today than human 
processing costs. 
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processes {Xit) and {Xjt} are mutually independent for i f. j ,  it follows that E[Xit 1 H;] = 
E[Xit I Hg]. Furthermore, 

For i E (1, .  . . , n),  firm 1 could use a sampling procedure n' E 111 such that cp;' = cpq 
(Assumption 6), and would then have the sequence {E[(Xit - E[Xit I H$])2])gl  of expected 
losses. Hence, this sequence belongs to L. Given also the linearity of I' (Assumption 10) 
and the additive separability of sampling costs (Assumption 6), the total cost is 

The sampling problem is thus additively separable over the stochastic processes. That 
is, the problem is to find a single-process information structure cp* E + that minimizes 

and then to use a sampling procedure n E IIn such that cpq = cp* for i = 1, .  . . , n .  The 
average cost for any firm is the minimized value of equation (2) and returns to scale are 
constant. 

For the computation problem, we show that the average gain from information processing 
converges to 0 as n -+ m .  For d E 4 let Ad = E [(xit - E[Xit I H ~ , ~ - ~ ] ) ~ ] ,  which does not 

depend on i or t because the stochastic processes are exchangeable and stationary. Let 
n E N and n E IIn. The right-hand side of equation (1) is a lower bound on the period-t 
expected loss for the policy {AT). (This lower bound may not actually be attained, because 
the decision procedure is not necessarily statistically optimal.) Furthermore, a lower bound 
on E [(xit - E[Xit 1 H;])~] is given by where dz = t - max {s I (i, s) E @?) is the 
minimum lag of the data in Hz (or d; = co and E[Xit I Hi,t-d;t] = E[Xit] if H; is null). 
Hence, the period-t expected loss for {AT) is at  least xy=, Ad?*. 

Let B :  N + N be the bound in Assumption 1, and let {di)zl  be the sequence such that 
di = 1 for the first B ( l )  terms, di = 2 for the next B(2) terms, and so on. This sequence is 
such that,  for n E N, n E IIn, t E N, and d E N, 

Hence, because Ad is decreasing in d, x:=l Ad2t > xy=l Ad;. Therefore, AC(n) > x:=, Ad;. 
Since each stochastic process {Xit} is regular, liminfd,, Ad = Var(Xit) (Remark 2). Since 
also limi-+, di = m ,  we have limi,, Adi = Var(Xit) and limn,, C?=l Adi = Var(Xit). 
Consequently, liminf,,, AC(n) 2 Var(Xit). Because Var(Xit) is the no-information aver- 
age cost and is an upper bound on AC(n), limn+, AC(n) = Var(Xit). 

Suppose also that there is n E N such that there is a computation procedure whose 
average costs are lower than the no-information average cost. Then AC(n) < Var(Xit) and 
there exists an ii E N such that, for m > ti, 

Lm/nJnAC(n) + (m mod n) Var(Xit) < AC(m) . 

The left-hand side of this inequality are the total costs when m processes are partitioned 
into Lm/n] firms of size n and m mod n firms of size 1. Hence, ii is a bound on firm size. 0 
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The following lemma is used in the proofs of Theorems 3 and 4. It  combines minor 
extensions of this well-known fact: If {XI, xz, . . . ) are i.i.d. random variables and iff  : R -+ R 
is convex, then Elf ( i  C,nZl xi)] > Elf (& z,nJ; xi)] for n E N (because i ELl xi is a 

mean-preserving spread of & c;',; xi). We want to replace "i.i.d." by "exchangeable" 
and add conditions so that the weak inequality is strict. Here and further below B denotes 
the Bore1 a-field of R 

Lemma 1 Let {el, €2,. . . } be an exchangeable sequence of random variables and let 9 : R -+ 
R be convex. For n E N, let en i x;=l ei. Then E[9(en)] > E[9(en+')] for n E N. 
Assume also that one of the following two pairs of assumptions hold. 

1. (a) 9 is strictly convex. (b) For i , j  E N such that i # j ,  Prob[ei # ej] > 0. 

2. (a) 9 is not afine. (b) Let n E N and let P :  R x B --+ [0,1] be a regular conditional 
probability of en given en+l. Then there is a B E B such that Prob[en+l E B] > 0 and 
such that, for e E B and for each open U C R, P(E, U) > 0. 

Then E[9(en)] > E [9(en+l)] for n E N. 

PROOF: See Van Zandt and Radner (1998). 

Remark 3 Suppose the random variables {el, €2,. . . ) can be written ei = y + zi for i E N, 
where {y , zl , 22, . . . } are independent and {zl, 22, . . . } are identically distributed. Then 
{el, €2,  . . . ) are exchangeable. Furthermore, assumption l(b)  in Lemma 1 holds if Var(zi) > 
0 and assumption 2(b) holds if the Lebesgue measure is absolutely continuous with respect 
to the distribution of zi (i.e., Prob[zi E U] > 0 for any open U C R). 

PROOF OF THEOREM 3: We show that, for n E N and nn E IIn, there is an "imitation" 
nnfl E IIn+l of nn  such that ACn(nn) > Acn+'(nn+') (with strict inequality under as- 
sumption (i), (ii), or (iii)). By letting nn be the optimal decision procedure for firm n,  we 
obtain AC(n) = ACn(nn) > (nn+') > AC(n + l ) ,  with the first inequality being 
strict under assumption (i), (ii), or (iii). 

We begin with a preliminary result that is common to the sampling and computation 
problem. Namely, we show that the average expected loss in period t E N when firms use 
the same period-t forecast, but scaled by firm size, is a decreasing function of the firm size. 
Note that "scaled by firm size" means that the forecast is multiplied by a constant that 
changes with the firm size, not that the data (or relative coefficients of the data) change 
with firm size. For the purpose of this result, a forecast is simply a random variable At such 
that At and are independent (because At must be a function of Ht-1 and because 
each process {Zit) is serially independent). We normalize so that the scaled version for firm 
n is nAt. Let en 3 (XF - nAt)/n be the average error and let ln r E[9(en)] be the average 
expected loss in period t when firm n uses the decision rule nAt. We want to show that 
{el, e2, . . . ) is weakly or strictly decreasing. 

For i E N, let ei E Xit-At so that en = i E , .  We can then write ei = (6-At)+&. 
Because Yt - At and {Zit),,, are independent and {Zit)i,, are identically distributed, the 
sequence {el, e2, . . . ) is exchangeable. According to  Lemma 1, since 9 is convex, ln > Cn+l 

for n E N. Furthermore, it follows from Remark 3 that assumption (ii) or (iii) of Theorem 3 
implies assumptions 1 or 2 (respectively) of Lemma 1, and hence that ln > lntl for n E N. 

To rest of the proof is different for the computation and sampling problems. 
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Computation Problem Assumptions 2 and 4 imply that there is nn+l E IIn+l such that 
A?"+' = ((n + l ) / n ) ~ ; "  for t E N and such that C(nn+') = C(nn) r C*. For t E N, let 

e: E[$Jn(X? - Arn)] /n  and lyt' E[$J"+'(x;+' - ~ ; ~ + l ) ] / ( n  + I) ,  so that 

We showed above that e; > for t E N, and hence that r({l;)) > I'({er+l}) and 
ACn(nn) > A C ~ + ' ( ~ ~ + ' ) .  We also showed that if either assumption (ii) or (iii) held then 
e? > L:+' for t E N, and hence, by Assumption 10 (part 3)' r({f!:}) > r ( { l ~ + ~ } ) .  If 
instead assumption (i) holds, then C* > 0 and hence C*/n > C*/(n + 1). In either case, 
ACn(nn) > A C ~ + '  (nn+'). 

Sampling Problem We let nn+' E IInS1 be a sampling procedure such that cpqn+' = cpq 
n + l  - 

for i E (1,. . . , n} and cpz+l - cp,,ll. According to Assumption 6, such a procedure nn+ ' 
exists and C(nn+') = C(nn) E C*. For t E N, let A: r ((n + l ) /n)Ar .  We showed above 
that E [$Jn(x? - A;")] /n  is (weakly or strictly) greater than E [$Jn+l (x;+' - A:)] / (n+ 1); 
the latter is, in turn, an upper bound on E[+~+'(X;+' - A~"")]  / (n + l ) ,  since A: is a 
function of H,""". The rest of the proof is like the one for the computation problem. 

The following assumption ensures that, in Theorem 4A, the diversification effect is 
present. 

Assumption 1 2  In the sampling problem, one of the following two conditions holds. 

I .  (a) 9 is strictly convex. (6) For i, j N such that i # j and for t E N, there are no 
functions fi and f j  of Ht-1 such that Xit - fi(Ht-1) = xjt - fj(Ht-1) a.e. 

2. For i ,  t 6 N, if P is a regular conditional probability of Xit given Ht \ {Xit}, then 
with strictly positive probability Ht \ {Xit} is such that the conditional probability 
P ( H t  \ {Xit} , .) : 8 + R does not have a support that is bounded above or below. 

PROOF OF THEOREM 4A: Overview of main step: The main idea of this proof is that 
firm kn can achieve lower average costs than firm n by replicating the sampling procedure 
and policy of firm n. Specifically, let n E N and n E IIn. For t E N, let Ct be the average 
period-t expected loss of firm n given n. For k > 1, we define a sampling procedure nk for 
firm kn, which replicates n, such that C(nk) = kC(n). For t E N, let Ci be the average 
period-t expected loss for firm kn given nk .  We define an upper bound on such that 
et > t i .  

Why this proves the theorem: I t  follows that et > lf for t E N and hence r({et}) > 
I'({li}). That is, firm n's average long-run loss given n is greater than firm kn's given nk .  
Both firms' average sampling costs are (l/n)C(n). Hence, ACn(n) > A C ~ ~ ( ~ ~ ) ) .  By letting 
n be an optimal sampling procedure for firm n ,  so that ACn(n) = AC(n), we have shown 
that AC(n) > AC"(T~) > AC(kn). 

We can then conclude that firm size is unbounded. Let A E N, let n' zi 1 + C;=, n, and 
let n > n'. Any partition of n either has a firm whose size is greater than f i  or has two firms 
of the same size. In the latter case, these two firms can be combined to reduce average costs 
and so the partition is not optimal. Hence, the maximum firm size of any optimal partition 
of n is greater than A. 
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Construction of replication strategies: Let k E N Heuristically, firm kn divides the 
stochastic processes into k divisions, labeled j E {I , .  . . , k), such that division j contains 
the processes {j(n - 1) + 1, .  . . , jn)  and mimics the sampling procedure n. This means 
that, for j E {I,. . . , k) and i E {l,. . . ,n}, 9$n:;,_l)+i = 9;. According to Assumption 6, 
there is such a sampling procedure nk in IIkn and C(nk) = kC(n). 

Let j E N. For any k > j (i.e., k such that firm kn has a division j ) ,  the period-t 
information for division j ,  as a random object, is 

Then fit1 = HT and, for j 2 2, is like H; except that the indices for the stochastic 
processes are increased by n ( j  - 1). 

Construction of the upper bound: For t E N, let f t  be the function such that A," = 
ft(HF) and, for k E N, let A: I c:=, ft(l?/). The interpretation of the decision rule A: is 
that firm kn replicates the decision rule of firm n, so that each division calculates a forecast 
of the sum of its own processes in the same way as firm n does, and then these k independent 
forecasts are summed. This decision rule is not necessarily statistically optimal because it 
does not pool the information, but it provides an upper bound on the expected loss. That 
is, since A: is a function of ~ f ,  @ ~[ ! l? ( (X,k~  - A:)/kn)] is an upper bound on $. 

The sequence of upper bounds is strictly decreasing: For j E N, let 

For k E N, the average error for the decision rule 2: when used by firm kn is ( l /k)  c:=~ el, 
and so = E [!l? ( ( l lk )  x:=, fZ)] . 

The sequence {et , e:, . . . ) of random variables is exchangeable according to the following 
fact: If {xl, 2 2 ,  . . . ) is an exchangeable sequence of random objects with sample space (XI B )  
and if the function f :  Xn + R is measurable, then the sequence 

is exchangeable. Therefore, ($1 is weakly decreasing according to Lemma 1. One can show 
that part 1 (resp., part 2) of Assumption 12 implies assumption 1 (resp., 2) in Lemma 1, 
and hence {@) is a strictly decreasing. Since = l t ,  we have $ < Lt for k > 1. 

Assumption 13 In the computation problem: 

i. Assumption 1 holds for some B :  N + N such that B(1) = 1 and B(2) = 2; 

ii. for n E 11, {A,") is a linear policy; 

iii. there is w close to zero,15 such that, for a E $ there exists n E 111 such that A," = 
a + Xl,t-l for t E N and C ( K )  < w. 

iv. the processes have the decomposition Xit = + Zit described in Remark 1; 

lSThis informal terminology parameter p is close to 17 has the usual meaning in Theorem 4B: Given the 
remaining assumptions, we can find neighborhoods of the values such that, when the parameters are in their 
respective neighborhoods, there is an optimal firm size. 
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v. {Yt) and {Zit) are AR(1) processes with autoregressive parameters close to 1 and with 
innovation terms whose variances are close to 2 and 1, respectively; and 

vi. either !I?(€) = c2 or the stochastic processes {{Xlt} , {X2t}, . . . } are Gaussian. 

PROOF OF THEOREM 4B: Notation: By assumptions (iv) and (v), we can write Xit = 
1-1 + Yt -I- Zit, where {K} and {Zit} are mean-zero AR(1) processes. We write these as 
K = yK-1 + & and Zit = PZi,t-l + Wit, where {&} and {Wit} are noise processes. 

Parameter values: Assume that y = /3 = 1, that Var(&) = 2 and Var(Wit) = 1, and 
that w = 0. We will claim that our calculations vary continuously with these parameters, so 
that the results hold when the values are close to the ones given. In particular, the fact that 
the processes are not stationary when y = /3 = 1 does not invalidate the calculations and 
results. Assume first that g ( ~ )  = e2. We will later explain how to adapt the calculations to 
the Gaussian case. 

Intuition: Firm 1 can make a good forecast of X l  simply by observing Xl,t-l. Firm 1 
cannot differentiate Yt and Zit with this data, but it does not need to. For large n ,  firm n 
cannot make as good a forecast of each Xit because it cannot use recent data about most 
of the processes. However, what is mainly needs is to forecast Yt (a law-of-large-numbers 
effect diminishes the average loss from errors in forecasting the idiosyncratic terms). For 
each s E N and i E N, Xi,t-, is a noisy observation of Yt-,. Unlike in the sampling problem, 
the number of these noisy observations used in a forecast is bounded for each s, and so the 
forecast of K may have a greater expected loss than firm 1's forecast of X:. 

Loss for firm 1: By assumption (iii), firm 1 can compute At = Xl,tdl. Since X$ = Xlt = 
X1,t-1 + & + Wlt, the expected error is 

Loss for firm n: Let n 2 2 and T € En. Assumption (i) implies that the data from dates 
t - 1 and t - 2 that may be included in H? is at  most one of the following: 

Case 1 Xi,tdl and Xi,t-2 for some i ;  
Case 2 Xi,t-l and Xj,t-2 for some i and some j # i; 
Case 3 Xi,t-2 and Xj,t-2 for some i and some j # i. 

In addition, HT may include data from periods t - 3 and earlier. 

Consider Case 2. For example, HT includes Xl,t-l, Xz,t-z, and data from periods 
t - 3 and earlier. To construct a lower bound on the expected loss, we can assume that 
includes Xl,t-3 and X2,t-3. Since AT is a linear decision rule, there are constants al, a 2  E R 
such that A: = rial B1 + nazB2 + B3, where 

and B3 is a measurable function of Ht-3. Let 

xl" - X L 3  
B E 

1 * = + 6-1 + &-2 + - C ( ~ i t  + Wi,t-I + Wi,t-2) n i=l 
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Then the average error is e r B + XE3/n  - a lBl  - a2B2 - Bs/n. Because B3 and X E 3  
are independent from B,  B1, and B2, we have 

~ [ e ~ ]  2 Var(B - a1 B1 - a2B2) = E [(B - a1 Bi - a 2 ~ 2 ) ~ ]  . 

This, in turn, is equal to 

1 1 1 + ( l /n  - az)W2,t-z + - C Wit + - C Wi,t-I + - C Wi,t-2 
i=l i=2 i=3 

The minimum value g(n) of equation (3) is thus a lower bound on the average expected loss. 
Solving the first-order conditions for minimization yields a1 = 4/7+ 2/7n and a 2  = $ + 3n. 
We can then show that g(2) = 3&, that g(n) > g(2) for n > 3, and that limn+, g(n) = 33. 
With similar calculations we can derive even higher lower bounds (3$ and 43, resp.) on the 
expected loss for cases 1 and 3; see Van Zandt and Radner (1998) for details. 

Perturbing t h e  parameters: Hence, the average expected loss for firm n > 1 is at 
least 6' r 3&, whereas firm 1 can attain an average expected loss of 6 3. Note that these 
bounds depend continuously on y and ,f3 and also on Var(l4) and Var(Wit). Hence, by setting 
y and ,6 close enough to 1, Var(Vt) and Var(Wit) close enough to 2 and 1 (respectively), and 
the administrative cost close enough to 0, we can still find 6' > 6 > 0 such that AC(1) 5 6 
and AC(n) 2 6' for n > 1. 

T h e  Gaussian case: Rather than assuming 9(e) = e2, suppose that the stochastic pro- 
cesses are Gaussian. We impose the initial assumptions on the parameter values stated 
previously and show that there are 6' > 6 > 0 and a computation procedure for firm 1 
whose expected loss is no greater than 6, whereas the average expected loss of any computa- 
tion procedure for any firm n > 1 is at least 6'. The perturbations to the parameter values 
are handled in the same way as before. 

Choose a E R in order to minimize EIP(Xlt - ( a  + Xl,t-I))]. According to assumption 
(iii), there is a n E 111 such that A; = CY +Xl,t-l. Let el -. Xlt - ( Q + X ~ , ~ - ~ )  be the error 
for firm 1 when it uses the procedure n. We have already calculated that Var(el) = 3. 

Let E* be a Gaussian random variable with mean E [el] and variance 3 k .  Choose a* E R 
in order to minimize E[9(a* + e*)]. Because (a) a* + e* and a* + e1 are Gaussian and have 
the same mean, (b) Var(a* + e*) > Var(a* + el), and (c) 9 is strictly convex and not a6ne 
it follows that, E[9(a* +€*)I > E[9(a* +el)]. Since a was chosen to minimize the expected 
loss, E [$(a* + el)] 2 E [9(e1)]. Therefore, 6' E E[9(a* + E*)] > E[9(e1)] E 6. 

Now let en be the error for some computation procedure for firm n. As we have shown, 
Var(en) > 3 k .  Using the same argument as in the previous paragraph, we can show that 
E[9(en)] 2 E[S(a* + e*)]. Thus AC(n) 2 6' for n > 2, whereas AC(1) < 6. 
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