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ABSTRACT. 1n many markets, demand adjusts slowly to changes in 
prices, i.e., demand is "viscous." For such a market. the time path of a firm's 
prices acquires added significance, compared with the case of instantaneous 
demand response. In this paper I explore some problems in strategic dynamic 
pricing of a service, in the presence of viscous demand. for simple models of a 
monopoly and a duopoly. 

1. INTRODUCTION 
In rnany markets. demand adjusts slowly to  changes in prices, i.e., demand is "vis- 
cous." For such a market. the time path of a firm's prices acquires added significance. 
compared with the case of instantaneous demand response. In this paper I explore 
some problems in strategic dynamic pricing of a service. in the presence of viscous 
demand, for a monopoly and a duopoly. In particular. the viscosity of demand con- 
fers on each firm a kind of monopoly power. since it can raise its price above that 
of its competitors without immediately losing all of its customers. As we shall see. 
this phenomenon can lead to equilibrium pricing behavior and market outcomes that 
differ significantly from what one would predict in the absence of demand viscosity. 
In particular, it provides a rationale for the importance of market share, and it pro- 
vides an explanation for the "kinked demand curve." It also explains how apparently 
"competitive" pricing behavior can lead to  outcomes that mimic those of collusion. 

There are rnany reasons for the viscosity of demand. In the case of a service (which 
will be the focus of thls paper), such as a subscript~on to  a magazine, newspaper, or 
long-distance telephone carrier, the viscosity of demand is probably best explained 
by an "attention budget." The (potential) consumer cannot be thinking every hour. 
or even every week, about which long-distance carrier to  use. Rather, the consumer 
rethinks such decisions from time to  time, regularly or at  some random intervals. 
perhaps triggered by some events. We may think of the consumer as a "server" for a 
queue of decision problems. which are served according to  some system of priorities. 
The time it takes for a decision problem to  be "served" will depend not only on the 
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duration of the service time. but also on the pattern of arrivals of decision problem 
at  the queue. Decis~ons about a serv~ce that belongs to a higher priority class will 
be s e r ~ e d  more quickly. and so the demand for that service will display less viscosity. 
For example. i t  has been verified empirically that.  on the ayerage. consumers who 
spend more on long-distance telephone Zervlce also exhibit less viscosity of demand. 
(For more details. see Section 2.) 

In the case of a durable good, a person with a piece of equipment that has been 
recently acquired will typically not switch to another model as soon as a supplier 
lowers its price. but will wait until the equipment has suffered some wear and tear. 
or has otherwise depreciated. The analysis of a a market for durable goods requires 
a quite different model. and is beyond the scope of t h s  paper. 

Viscosity of demand is to be distinguished from "stickiness of demand" due to the 
cost of switchng suppliers. In a pure switching-cost model, a consumer will switch 
suppliers as soon as the gross saving from switching exceeds the cost. By contrast. 
in the viscosity model. if two suppliers offer identical serv~ces at different prices. 
eventually all customers will switch to the lower-price supplier. 

In the model explored in this paper. at every instant of time (time is continuous), 
each consumer purchases a service at a rate equal to  0 or 1. If there is more than one 
supplier. then a consumer who buys the e r v ~ c e  must also choose the supplier. I shall 
consider two cases: (1) monopoly, and (2) duopoly; in the latter case I shall assume 
that  the services provided by the two suppliers are identical. With the exception 
of one result, I also assume that all consumers are identical in their two demand 
parameters : (1) the long-run willingness-to-pay (WTP) for the service. and (2) the 
"viscosity coefficient" (see below). Finally. for mathematical convenience, I assume 
that  there is a continuum of consumers. which I normalize to  have total mass one. 

In the case of a monopoly (Section 3), at every time t ,  let X ( t )  denote the mass 
of consumers who are actually purchasing the service at  that time (the "customers"), 
and let P ( t )  denote the price of the service, per unit time. One usually calls X ( t )  
the market penetration at  time t .  Let w denote the  long-run willingness-to-pay for 
the service (the same for all consumers). and suppose that the price of the service is 
exogenously constrained not to  exceed a value rn. The market penetration evolves 
according to the differential equation. 

k[w - P(t ) ] [ l  - X(t) j ,  if 0 < P ( t )  < w; X1(t) = 
-k[P(t) - w ] X  (t).  if w < P ( t )  < rn. 

Here the strictly positive parameter k is the reciprocal of the "viscosity coefficient;" 
smaller values of k correspond t o  a higher viscosity. According t o  the first line of the 
equation, if the price is less than the WTP, then noncustomers become customers, at  
a rate proportional to  the  mass of noncust~omers. On the other hand, according to  the 
second line, if the price exceeds the VI'TP: then customers stop buying the service, 
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a t  a rate proportional to  the mass of customers. If the price remains constant, say p, 
and p is less than w. then the market penetration will approach unity (in the limit), 
whereas if p exceeds w. then the market penetration will approach zero. The market 
penetration will remain unchanged from its initial value if p just equals w. 

Since customers do not disappear immediately when the price is raised above the 
WTP. increasing the market penetration by lowering the price represents a kind of 
investment. 

One interpretation of the upper bound. m. is that X1(t) equals minus infinity (i.e., 
the market penetration falls immediately to zero) if the price P ( t )  ever exceeds m. 
Other plausible laws of motion for the market penetration. which are qualitatively 
similar t o  the one described above, are discussed in Section 2. 

For this simple model, I characterize the dy~~arnic  price policy that maximizes the 
monopolist's total discounted profit. for the special case in which the monopolist's 
cost is proportional to  the market penetration, i.e.. there is a constant marginal cost, 
say c and zero fixed cost. (We may assume that c < w; otherwise the monopolist 
would not be in business.) There are two cases t o  be distinguished. In Case 1, the 
discount rate. say r ,  is not too large relative to the other parameters of the model, 
and the maximum price, m, is suffciently close to  w (these conditions can be made 
precise). In this case. the optimal policy for the monopolist is a target penetration 
policy, namely there is an optimal target market penetration, such that the monopolist 
sets the price equal to zero if the current market penetration is strictly less than the 
target. and sets the price equal to  w. the WTP. if the current penetration is at  least 
as large as the target. The optimal target. s.  is given by the simple formula, 

s = k(w - c)/[r i- k(w - c)]. (1.1) 

Note that in this formula the optimal target, s.  is a decreasing function of the marginal 
cost, c, but that the target penetration is not complete even when the marginal cost 
is zero. Also. s is increasing in k, the inxrerse of the viscosity, and decreasing in r ,  the 
discount rate. 

Note. too. that although the consumers are acting in a "myopic" manner at  those 
times when they consider whether t o  buy the service or not, in fact, given the price 
strategy of the monopolists, their choices are optimal. 

In Case 2 (when the conditions of Case 1 do not hold), the target penetration 
policy described above is dominated by a policy in which the price oscillates rapidly 
between 0 and m. In fact, strictly speakzng there is no optzmal policy; we may say 
that in the "optimal" policy the price oscillates infinitely fast between 0 and rn ! (One 
can provide a precise meaning of this statement.) Such a situation is hardly realistic, 
and provokes a reconsideration of the behavioral assumptions of the model when 
i t  has these parameter values. In particular, if prices are oscillating very quickly, 
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one xvould not expect consumers to react so myopically as they do in the model 
described above. For example. one might expect (boundedly rational) consumers to 
forecast prices in some "adaptive" manner, e.g.. with a rnov~ng average of past prices. 
Although a complete characterization of the monopolist's optimal policy in the face 
of consumers with adaptive expectations is unax,ailable. it IS possible to  show that. 
if it exists. it will typically lead (roughly speaking) to cyclical fluctuations of prices 
and market penetration. Such pricing could be interpreted as a policy of intermittent 
"sales."(The results for Case 2 of the monopolist are a product of joint work with 
Tholnas Richardson: see Radner and Richardson. 1997) 

I next comider (Section 4) a model of a duopoly with a law of motion analogous 
to  that of the monopoly model. In a duopoly there are three classes of consumers: (1) 
customers of firm 1, (2) customers of firm 2, and (3) noncustomers, i.e., consumers 
~ 2 1 0  are not customers of either firm. Again. all comurners have the  same long-run 
willingness to  pay. but each duopolist controls his own price dynamically. The state 
of the sys tem at t ime t describes the number (mass) of consumers in each class at that 
time. Depending on the firms' prices, relative to each other and to  the consumers' 
long-run willingness-to-pay, w. consumers will flow horn one class t o  the other. More 
precisely. if the lowest price is less than w, then consumers will flow to  the firm with 
that price, whereas if the lowest price exceeds w, then customers will flow from both 
firms into the class of noncustomers. When both firms charge the same price. and it 
is less than w, then noncustomers will flow to  both firms in proportion to  the firms' 
current stocks of customers. When the firms both charge a price equal to  w . the 
masses of consumers in the two firms will remain constant. The total number of 
customers of the two firms will be called the market penetratzon, and the ratio of the 
number of customers of a firm to  the market penetration will be called that firms's 
market share. Again. as in the case of a monopoly, if a firm raises its price above 
that of its competitor and above the WTP. it does not immediately lose all of its 
customers. For this reason, lowerzng its price to  zncrease zts market  share represents 
a kznd of znvestment. 

In the context of such a model I shall describe a dj-namic game in which the 
playcrs are the two duopolists. I shall describe. and demonstrate the existence of. a 
family of (Nash) equilibria with (roughly) the following properties: (1) the strategies 
of the two players are statzonary, i.e.. at  each time each firm's price depends only 
on the current state of the system (such an equilibrium is usually called hfarkovzan):  
(2) each equilibrium in the family is characterized by two parameters, which may be 
interpreted as the target market  penetration of the two firms and the  target market 
share o f f i r m  1 ( the target market share of firm 2 is, of course, one minus the target 
market share of firm 1); (3) if a firm's market share is strictly less than its target, then 
it charges a price equal to zero, and the other firm charges a price equal to m (the 
maximum price); (4) if both firms' market shares are equal t o  their targets, then they 
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both charge a price equal to zero if the (total) market penetration is strictly less than 
the target, and a price equal to w if it is greater than or equal to the target. In order 
for a strategy-pair to form an equilibrium, the parameters of the model must satisfy 
certain conditions (similar to those in the monopoly case), and the target penetration 
and market shares must lie in a certain (nonempty) set. To simplify the analysis, I 
assume that the cost parameter, c, is zero, so that a firm's profit equals its revenue. 

To describe the results for a duopoly more fully, I need some additional notation. 
Let S denote the target market share of Firm 1, and let (1 - Z) denote the target 
market penetration (in other words, 2 is the target mass of noncustomers). I call 
the pair of strategies described above a (2, S) target strategy-pair. Let C = 1 - s [cf. 
(1.1) above]. Under assumptions that correspond to Case 1 of the monopoly model, 
I demonstrate that there exists a number 5' < 5 such that, if rn id sufficiently close 
to  w, and if 

then the corresponding (2 ,  S) target strategy-pair is an equilibrium of the game (The- 
orem 2). 

Since the total mass of consumers is unity, we can characterize the system state 
at any time by the vector (x, z), where x is the mass of customers of Firm 1, and 
z is the mass of noncustomers. A comparison with the monopoly case shows that 
the equilibrium path is eficient, in the sense that the total profit of the two firms 
is maximized, if and only if ( I )  the initial state vector is on the line x = S ( l  - z), 
and (2) Z = C. Thus, if these conditions are satisfied, then the industry outcome 
as a whole mimics the monopoly outcome. On the other hand, if Z < C, then the 
asymptotic market penetration will be greater than it would be in the corresponding 
monopoly, and the system spends more time in the regime in which one or both firms 
charge a zero price. In this sense, the equilibrium can be more "competitive" than 
the monopoly outcome. Note that as r / k w  approaches zero, the minimum target 
market penetration, 1 - C, approaches unity. 

An implication of Theorem 2 is that a division of the market into shares S and 
(1 - S) is self-sustaining, so that no "explicit collusion" is required once the target S 
is determined. On the other hand, since thare is a nondegenerate interval of market 
shares that can be so sustained, some kind of "coordination" on a particular value of 
S is required. The same is true of the target market penetration, 2. 

When the target market penetration and market shares have been reached, if one 
firm lowers its price below w ,  the other will do so, too, whereas if a firm raises its 
price above w, the other firm will not respond. The effect of this is that each firm's 
demand curve will not be differentiable at the point a t  which its price equals w. Thus 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-99-04 



Theorem 2 provides a game-theoretic explanation of the so-called "kinked demand 
curve7' in a duopoly. ( I owe this observation t o  T. Groves.) 

I t  is clear that the models analyzed in Sections 3 and 4 are quite special, and even 
for the special duopoly model the results are incomplete. In Section 5, I describe 
various ext,ensions of the analysis, as well as some open problems. First, an obvious 
question is whether there axe other equilibria of the duopoly game of Section 4. 
I cannot characterize the full set of equilibria, nor do I know whether there are 
other Markovian equilibria. However, I can show that a variant of Anderson's (1985) 
concept of quick-response equilibrium yields an equilibrium outcome that is identical 
to  that of the "efficient" (2,s) target strategy-pair, but with somewhat different 
strategies. In this equilibrium, (1) if the initial total market penetration of the two 
firms is less than s , then both firms charge a zero price until the market penetration 
reaches s ,  after which they both charge a price equal t o  w; (2) if the initial total 
market penetration is at  least s ,  then both firms charge w; (3) once the total market 
penetration reaches or exceeds s ,  if either firm charges a price strictly less than s, then 
the other firm will "immediately retaliate" by charging a price equal t o  zero (in fact, 
both firms will switch t o  zero); (4) on the other hand, if in cases (1)-(2) either firm 
raises its price, the other firm will not change its own price. Again, the  equilibrium 
strategies have the eflect that the industry as a whole imitates a monopolist's behavior, 
while t h e  two firms maintain  their  initial relative market  shares. 

In the second part of Section 5, I sketch a model of "adaptive expectations" 
and summarize the results of Radner and Richardson (1997) concerning the optimal 
monopoly pricing strategy corresponding to  the model of Section 3. 

In the third part of Section 5, I generalize the monopoly model to  allow for 
the possibility that different consumers have different willingness-to-pay. I give a 
heuristic argument t o  suggest that if there is  a suJg;cient dispersion of WTP, w, in 
the population of consumers, then under  the optimal pricing policy of the  monopolist 
there i s  n o  steady state of the system. 

In the last part of Section 5, I discuss some of the issues that arise in the analysis 
of a general oligopoly and a "competitive" market. 

In Section 6, I provide some bibliographic notes on the few previously published 
papers about somewhat related models of demand, notably by Selten, Phelps and 
Winter, Rosenthal, and Rosenthal and Chen. - 

2 .  A MODEL OF DEMAND VISCOSITY 
As noted in the Introduction, I envisage the viscosity of demand as resulting from 
the fact that consumers typically have an "attention budget." For decisions about 
whether to  start or stop a service (such as a subscription to  a newspaper), switch 
suppliers (such as switching from one long-distance carrier to  another), or switch 
brands of a commodity bought repeatedly (such as breakfast cereal), a consumer 
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will devote only limited attention to the decision problem during any day or week. 
Rather, the  consumer rethinks such decisions from time t o  time, regularly or at  some 
random intervals. We may think of the consumer as a "server" for a queue of decision 
problems, which are considered according to  some system of priorities. The time it 
takes for a decision problem to be "served" will depend not only on the duration of 
the service time, but also on the pattern of arrivals of decision problems at  the queue. 
Decisions about a service that belongs to  a higher priority class will be served more 
quickly, and so the demand for that service will display less viscosity. For example, 
it has been verified empirically that, on the average, consumers who spend more on 
long-distance telephone service also exhibit less viscosity of demand. 

For example, consider a consumer who is a potential or actual subscriber to  home 
delivery of the New York Times. Let P ( t )  denote the subscription rate (price) per unit 
of time (e.g., per week) at date t ,  and let x(t) be 1 or 0 according as the consumer is or 
is not a subscriber at date t; call x(t) her state at date t .  At stochastic decision times, 
T;, T2, ..., the consumer considers whether to be a subscriber or not, i.e. whether or 
not to  change her state. Suppose that she does so by comparing the current price 
with her long-run willingness-to-pay, say w.Assume further that if w is greater than 
the current price, then she remains or becomes a subscriber, whereas if w is less than 
the current price, then she remains or becomes a nonsubscriber. (If w and the price 
are equal, she leaves her state unchanged.) A decision time may be triggered by 
various events: receiving a bill in the mail, seeing a commercial on TV, talking to  
a friend, etc. But even the news of a price change may not be sufficient to  engage 
the consumer's immediate attention; if the change is srnall enough, she may put off 
the decision problem until a less busy day. On the other hand, if she learns that the 
weekly subscription rate is about to  go up t o  $1000 per week, she will no doubt cancel 
her subscription immediately. 

Notice that there are two aspects of bounded rationality embodied in this model. 
First, the consumer is not continuously deciding whether or not to  subscribe, but 
only visits this decision problem from time to time. Second, when the consumer does 
reconsider her decision whether or not to  subscribe, she makes her decision myopically, 
cornparing w with the current price, rather than attempting to  forecast what the 
price will be until her next decision time. The first a p e c t  is inevitable in almost all 
decision making, although some decisions are programmed to  be made automatically 
by a computer. [Examples are (1) programs used by large businesses t o  select the 
"optimal" long-distance carrier for every long-distance call, and (2) "programmed 
trading" by large traders in securities markets.] Nevertheless, the mean rate at which 
decisions are reconsidered will be iduenced by the "importance" of the decision, so 
that more important decisions may be  revied more frequently. The second aspect 
of bounded rationality, the myopia of the decision criterion, is more plausible the 
less frequentIy prices and other relevant variables change in time. As we shall see in 
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Section 3, for some values of the model's parameters. the firms' optimal price strategy 
may require rapidly oscillating prices, in which case myopic decision behavior by the 
consumer may no longer be plausible, which will lead me to consider a so-called 
"adaptive expectations" model of consumer behavior (Section 4). 

If there are very many consumers in the NYTimes market, behavior that was 
described (qualitatively) above will imply that consumers will be observed to "flow" 
in and out of the customer (subscriber) category, at rates that depend on the current 
price and on the joint distribution of the frequency of decision making and w in the 
population of consumers. In this paper, aside from some remarks in Section 5, I 
shall be content to analyze a model in which all consumers have the same long-run 
willingness-to-pay, w. I shall also (1) represent the the population of consumers by 
a continuum, which I can conventionally take to have mass one, and (2) represent 
time as a continuous variable, t. Denoting the mass of customers at  time t by X ( t ) ,  
I shall assume that the motion of the mass of customers is governed by a differential 
equation, 

X'(t) = p[P(t) ,  X(t)l.  (2.1) 
Even so, the formulation in (2.1) is too general for my purposes. We can expect the 
law of motion, p, to be nonlinear, with the following properties: 

(1) When the price exceeds w, consumers will flow out of the customer pool, at  a 
rate that is proportional to the mass of customers. 

(2) When w exceeds the price, consumers will flow out of the noncustorner pool, 
a t  a rate that is proportional to the mass of noncustomers. 

(3) The rates of flow will be monotone in the (absolute value of the) difference 
between w and the price. 

(4) If the price exceeds w by too much, consumers will flow out of the customer 
pool at  a very rapid rate. 

A simple formula for the law of motion that has these properties is: 

k(w - p ) ( l  - x), for p w 
- w)x, for w < p 5 m, 

for p > m. 

where m is a parameter, typically > w. Also, I shall assume that the price must be 
nonnegative. 

Other similar formulas might also be reasonable, depending on the application. 
In particular, the piecewise linearity of (2.2) and the jump down to  -m should be 
thought of as an approximation to  a smoother function. Smoothness would also be 
introduced by "noise" in the flows, caused by movements of consumers that are not 
explained by price and willingness-to-pay alone. Such noise is observed in practice. 
For example, a nonlinear law of motion can be derived from the assumption that 
consumers' choices (when made) are generated by a discrete-choice logit model. 
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In the case of a duopoly, there are three groups of consumers: customers of firm 1, 
customers of firm 2, and noncustomers. If at least one of the firms has a price lower 
than w, then consumers flow to the lowest price firm; whereas if both firms' prices 
exceed w, then their customers flow to the noncustomer group. The precise model 
will be spelled out in Section 4; in particular, specific assumptions need to be made 
for the case of ties. 

In Section 5, I shall introduce a monopoly model in which w has a (nondegenerate) 
distribution in the population of consumers, although the available results for that 
case are meager. 

In this section I shall present the analysis of a model of a monopoly for a service, 
as described in Section 2. Recall that the total mass of consumers is taken to be 
unity, the mass of actual customers at time t is denoted by X(t) ,  and the price of 
the service (per unit time) is denoted by P( t ) .  All of the consumers have the same 
long-run \villingness-to-pay (WTP) for the service, denoted by w. (See Section 5 for 
a discussion of generalizations of this assumption.) The law of motion for X( t )  is 
given by (2.1) and (2.2) in Section 2, which I reproduce here for the convenience of 
the reader: 

X'(t) = /1[P(t), X(t) l ,  (3.1) 

k (w-p ) ( l - x ) ,  f o r p < w  
- w)x, for w < p < m, (3.2) 

for p > m. 

I assume that the monopolist's cost per unit time is proportional to  the mass of 
customers, i.e., is equal to  cX(t), where c is a nonnegative constant. [Note: One 
could add a fixed cost, but its magnitude would not affect the optimal pricing policy, 
although it would influence the net profitability of the service.] The monopolist's 
total discounted profit is therefore 

where T > 0 is the exogenously given rate of intered. Given the initial mass of 
customers, X(O), the monopolist wants to choose a price path to  maximize the profit 
V in (3.3). For reasons that  will be explained below, I make the following assumptions: 

0 < r < k ( w - c ) ;  

0 < w s m ;  

0 < P( t )  5 rn. 
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Vrscous DEMAND 10 

In view of the third line of (3.2), the second inequality of (3 .4~)  is not really an 
assumption, but it is included there for completeness. 

By Blackwell's Theorem, one can without loss of generality take the optimal price 
policy to be stationary, in the sense that, for some function @, 

Theorem 1. If (3.4) is satisfied, and m is sufficiently close to w, then the optimal 
(stationary) policy . - is given by: 

where 

The maximum profit is 

ws rx  -+ kw - (1 - s)kwD(x) 
V = -D(x)-c I , for x < S, 

r r(r -/- kw) 

[For the proof of the theorem, see the Appendix.] 
Remark 1. Call X(t)  the market penetration, and s the target penetration. If the 

initial market penetration is strictly less than the target, then, under the policy a, 
the penetration will increase monotonically to the target, reaching it in finite time. 
On the other hand, any penetration greater than or equal to the target is a steady 
state. (These conclusions hold even if the target, s, does not satisfy (3.6b), l.e., ' even 
if it is not optimal.) 

Remark 2. Under the optimal policy, the market penetration never reaches, or 
even approaches, unity (unless it starts there), so that a strictly positive fraction 
of the consumers never become customers. These results are intuitively plausible 
in the light of the first line of the law of motion, (3.2); as the market penetration 
increases, the remaining mass of noncustomers, [I - X(t)], decreases towards zero, so 
that eventually the incremental discounted value of adding to  the current customer 
base (market penetration) is unable to make up for the corresponding incremental 
loss of revenue from the current customer base 
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Vrscous DEMAND 11 

Remark 3. The optimal target penetration, s ,  is decreasing in the marginal cost: 
c, the viscosity, ( l /k) ,  and the discount rate, r, approaching unity as k -+ cc and/or 
r 4 0. However, s < 1 even when the marginal cost is zero. 

Remark 4. The value function V is increasing and differentiable, strictly convex 
for z < s, and linear for x > s. 

Remark 5. We have assumed that our boundedly-rational consumers are "my- 
opic," in the sense that whenever they make a decision they do so on the basis of the 
currently prevailing price, not a projection of future prices. However, one can easily 
verify that, if the monopolist uses the policy <P of the theorem, then the consumers' 
postulated behavior is an optimal response at those instants of time when they make 
a decision. (In fact, this last statement will remain true in the face of any "target 
market penetration" price policy, not necessarily an optimal one.) 

I shall now briefly discuss the nature of the optimal price policy if the assumptions 
of Theorem 1 are not satisfied. The parameters of the model are: w, k,  r, c, and m, 
all of which are assumed to be nonnegative. In fact, the parameter space can be 
partitioned into two parts, say R and R', such that (1) the conclusion of the theorem 
holds in R,  whereas (2) in the set R' there is no exactly optimal policy, but the 
supremum of the profit will be approached as the price oscillates faster and faster 
between 0 and m. The assumptions stated in the hypothesis of Theorem 1 determine 
a strict subset of R, so that the conclusion is actually valid for a somewhat larger set. 
[For a full treatment of both cases, and a precise characterization of the two sets R 
and R', see (Radner and Richardson, 1997).] 

In control theory, the kind of policy that is "optimal" in the set R' is sometimes 
called a measure-valued or generalized control. It should be clear that the behavior of 
even boundedly-rational consumers facing a very rapidly oscillating price is unlikely 
to conform to the kind of model of viscous demand described in Section 2 (and in 
the hypothesis of Theorem 1). When faced with such a price policy, even "myopic" 
consumers are more likely to  react to some (possibly weighted) average of past prices, 
rather than to the current price at the instant of decision. Such a model of consumer 
behavior, and its implications, will be described briefly in Section 5. 

4. DUOPOLY 
In a duopoly there are three cIasses of consumers: ( I )  customers of firm 1, (2) cus- 
tomers of firm 2, and (3) noncustomers, i.e., consumers who are not customers of 
either firm. The state of the system at time t describes the number (mass) of con- 
sumers in each class at that time. Depending on the firms' prices, relative to each 
other and the consumers' long-run willingness-to-pay, w, consumers will flow from one 
class to the other. More precisely, if the lowest price is less than w, then consumers 
will flow to the firm with that price, whereas if the lowest price exceeds w, then 
customers will flow from both firms into the class of noncustomers. When both firms 
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charge the same price, and it is less than w, then noncustomers will flow to both firms 
in proportion to  the firms' current stocks of customers. When the firms both charge 
a price equal to w , the masses of consumers in the two firms will remain constant. 
The total number of customers of the two firms will be called the market penetration, 
and the ratio of the number of customers of a firm to the market penetration will be 
called that firms's market share. 

In the context of such a model I shall describe a dynamic game in which the 
players are the two duopolists (see below for a precise mathematical formulation). I 
shall describe, and demonstrate the existence of, a family of equilibria with (roughly) 
the following properties: (1) the strategies of the two players are stationary, i.e., at 
each time each firm's price depends only on the current state of the system (such 
an equilibrium is usually called Markovian); (2) each equilibrium in the family is 
characterized by two parameters, which may be interpreted as  the target market 
penetration of the two firm and the target market share offirm 1 ( the target market 
share of firm 2 is, of course, one minus the target market share of firm 1); (3) if a 
firm's market share is strictly less than its target, then it charges a price equal to 
zero, and the other firm charges a price equal to  m (the maximum price); (4) if both 
firms' market shares are equal to their targets, then they both charge a price equal to 
zero if the (total) market penetration is strictly less than the target, and a price equal 
to w if it is greater than or equal to the target.In order for a strategy-pair to form 
an equilibrium, the paramters of the model must satisfy certain conditions (similar 
to those in the monopoly case), and the the target penetration and market shares 
must lie in a certain (nonempty) set. To simplify the analysis, I assume that the cost 
parameter, c, is zero, so that a firm's profit equals its revenue. (See remarks in the 
next section.) 

I now turn to a precise description of the model and results. Let X(t) and Y(t) 
denote, respectively, the masses of customers of firms 1 and 2. Then, adopting the 
convention that the total mass of consumers is unity, the mass of noncustomers is 
Z(t) = 1 - X(t)  - Y(t) .  Hence we can take the state of the system at  time t to  be 

IX(t> 1 Z(t)l. 
Let P ( t )  and Q(t) denote the prices at  time t of fkm 1 and 2, respectively. 

Suppose that at a given time t ,  

To describe the law of motion of the system, let X1(t) denote the time-derivative of 
X (t) ; then the following table shows the values of X1(t) /k for the various cases of the 
relative magnitudes of p, q, w, and M: 
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VISCOUS DEMAND 

I Case I X1(t)/k 

p = q = w  l o  
I Table1 4.1. Xr(t)/k as a function of (p, q) 
(Recall that k is the inverse of the viscosity coefficient.) The law of motion for 

Y(t) is determined symmetrically and, since the total mass of consumers is unity, 
Xr( t )  -t- Yr(t) + Zr(t) = 0. In particular, if p = q = w, then Xr(t)  = Yr(t) = Zf(t) = 0. 

Note that X(0) > 0 implies that X(t)  > 0 for all t ,  and similarly for Y and Z. 
Unless I explicitly mention otherwise, I shall assume that 

X(O),Y(O),Z(O) are all > 0. (4.1) 

I shall also assume, as in the monopoly model, that each firm's prices are confined to 
the closed interval [0, m], where m 2 w is an exogenously given parameter. 

A history, H(t), of the system at time t describes the time-path of the state of 
the system up to and including time t,  and the time path of prices up to but not 
including time t ,  i.e., 

A strategy for a firm is a mapping that determines, for each time t ,  its price at time t 
as a function of the history H(t). A pair of strategies is called feasible if it determines 
a time path, [X (t), Z(t), P ( t ) ,  Q(t), t 2 01, such that the payoffs of the two firms are 
well defined. The payofSt (total discounted profit) of firm 1 is given by 

where r > 0 is an exogenously given rate of interest. (Recall that costs are zero, so 
that profit equals revenue.) Firm 2's payoff is defined analogously. 

The set of feasible strategy-pairs is not a product space, so it is not possible to  
define a game and its associated equilibria in the normal way. Instead, I shall use 
the concept of a generalized game (REF?). For any strategy $ of Firm 2, let a($) 
denote the set of strategies $ of Firm 1 such that the strategy-pair ($, $) is feasible; 
such a strategy q5 will be called a feasible response to $. (Note that the set of feasible 
responses may be empty.) The set 9($) of feasible responses by Firm 2 t o  a strategy 
$ of Firm 1 is defined analogously. A feasible strategy-pair (4, $) is called a (Nash) 
equilibrium if neither firm can increase its payoff by unilaterally switching to  another 
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feasible response. (Subgame-perfection can be defined analogously.) A firm's strategy 
is called stationary if its current price is a function of the current state of the system 
only (not the full history at the current date). An equilibrium strategy-pair is called 
Markovian if the strategies are stationary. (Markovian equilibria are automatically 

I shall demonstrate the existence (under certain assumptions) of a family of partic- 
ularly simple h4arkovian equilibria, indexed by two parameters, a target total market 
penetration, and a target division of the market between the two firms. Formally, let 
Z and S be numbers between zero and one, where (1 - 2) is interpreted as the target 
market penetration, and S and (1 - S) are interpreted as the target market shares of 
Firms 1 and 2, respectively. The pair (4, $I) of stationary strategies will be called a 
(2,s) target strategy-pair if the prices p = $(x, x) and q = $(x, z) are given by the 
following table. The table divides the (x, z) state space into four regions, and shows 
the corresponding prices and laws of motion in each region. 

Figure 4.1 indicates the motion of the state vector in the triangle 

] Case 
CaselA 

Case 1B 

Case 2 
Case 3 

From any point in A the state vector, [X(t), Z(t)], moves to  the line x = S ( l  - z), 
with Z(t) decreasing. Once on this line, say at (x, z), if z > Z then the state vector 
moves down the line until Z(t) = Z, and stays there; if z < Z then the state vector 
stays at (x, z) . Thus any point (x,.) on the line segment 

x = S(1 - z), 

0 < 252, 

Table 4.2. A (2, S) Target Strategy-Pair 

is a steady state of the system. Figure 4.2 indicates the corresponding motion of the 
state in the (X, Y) plane. 

I Law of Motion I 
X ' ( t )=Z1( t )=O 

X1(t) = [x/(x $- y)]kwz, Z1(t) = -kwz 

X1(t) = kw(1 - x) ,  Z1(t) = -kwz 
X1(t) = -kwx, Z'(t) = -kwz 

I Region 

x = S ( 1 - z ) ,  
z s z  
x = S(l - z), 
z > Z  
x < S(l - z) 
x > S(l - z) 
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I Prices 

p = q = w  

p = q = 0 

p = 0, q = m 
p = m,q = 0 



Vrscous DEMAND 

Define 

h/lake the following assumptions: .- 

Theorem 2. If  the assumptions (4.6) are satisfied, and i f  m is sufficiently close to 
w, then there exists 5' < (; such that, i f  

then the (2, S) target strategy-pair is an equilibrium. 

[See the Appendix to this section for the proof of the theorem.] 

Remark  1. A comparison with Theorem 1 shows that the equilibrium path is 
eficient, in the sense that the total profit of the two firms is maximized, if and only 
if (1) the initial state vector is on the line x = S(l- z )  , and (2) Z = 5. Thus, if these 
conditions are satisfied, then the industry outcome as a whole mimics the monopoly 
outcome. On the other hand, if Z < <, then the asymptotic market penetration will 
be greater than it would be in a corresponding monopoly, and the system spends 
more time in the regime in which one or both firms charge a zero price. In this sense, 
the equilibrium can be more "competitive" than the monopoly outcome. 

Rernark 2. An implication of the theorem is that a division of the market into 
shares S and (1 - S) is self-sustaining, so that no "explicit collusion" is required 
once the target S is determined. On the other hand, since thare is a nondegenerate 
interval of market shares that can be so sustained, some kind of "coordination" on a 
particular value of S is required. The same is true of the target market penetration, 

Remark 3. As a = (rlkw) approaches zero, the minimum target market pene- 
tration, 1 - 5, approaches unity. 
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5. EXTENSIONS AND PROBLEMS 
In this section I describe three extensions of the previous analysis, and also discuss 
some open problems. (See Sec. 1 for a summary.) 

5.1. Quick-Response Equilibrium. In this subsection I describe a non-Markovian 
equilibrium equilibrium of the duopoly model of Section 4 that formalizes behavior 
in which each firm retaliates against a price cut by the other firm with a price cut of 
its own. Although the strategies are different, the equilibrium outcome is the same 
as that for the particular (2, S )  target equilibrium described in Section 4 in which 
Z = C and S is the initial market share of Firm 1. The equilibrium strategies have 
the following properties: (1) if the initial total market penetration of the two firms is 
less than s - (1 - 0, then both firms charge a zero price until the market penetration 
reaches s, after which they both charge a price equal to w; (2) if the initial total 
market penetration is at least s, then both firms charge w; (3) once the total market 
penetration reaches or exceeds s, if either firm charges a price strictly less than s, 
then the other firm will "immediately retaliate" by charging a price equal to zero (in 
fact, both firms will switch to zero); (4) on the other hand, if either firm raises its 
price above athe equilibrium price, then the other firm will not change its own price. 
(Once again, each firm faces a "kinked demand curve.") Note that on the equilibrium 
path the industry as a whole imitates a monopolist's behavior, while the two firms 
maintain their initial relative market shares. This property of the equilibrium path 
constrasts with the seemingly "competitive" behavior of the firms (a point made by 
Anderson (1985) in a different context). 

Technically, the game-theoretic approach differs somewhat from that of Section 
4. I use a concept of equilibrium derived from the approaches of T.  A. Marschak and 
R. Selten (1978) and R. M. Anderson (1985). Following Anderson, I shall call this 
a "quick-response equilibrium." This concept formalizes the intuitive notion that if 
time is continuous then one firm can respond "immediately" to changes in the other 
firm's price. In order to sidestep some of the difficulties of doing game theory with 
continuous time (see, e.g., Stinchcombe, 1992), this approach deals with a family 
of discrete-time approximations to the continuous-time model. The framework is 
consequently notationally more complicated than that of Section 4. I shall present 
here only the model and the results. (For proofs, see [Radner, 1997.1 - 

The underlying model used here is that described at  the beginning of Section 4, 
and thus has time varying continuously. In particular, the law of motion is the one 
given in Table 4.1. However, in a quick-response equilibrium (QRE) one does not 
define a game directly for the situation of continuous time, but rather approximates 
that situation with a family of discrete-time games. Accordingly, for each number 
h > 0, define a game G(h) as follows: for every nonnegative integer multiple nh of h, 
the two firms simultaneously choose respective prices that will be operative during 
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the half-open interval, [nh, (n i- l )h) ,  and in that interval the masses of customers 
of the two firms, X(t)  and Y(t), evolve according to the law of motion described 
in Table 4.1. Thus a strategy in the garne G(h) is defined in the usual way for a 
discrete-time game, and each strategy determines a time path, [P(t), Q(t), t 2 01 of 
the prices of the two firms. The payoJ3r (total discounted profit) of firm 1 is given by 

where r > 0 is the exogenously given rate of interest. (Recall that costs are zero, 
so that profit equals revenue.) Firm 2's payoff is defined analogously. Note that the 
integral (4.2) is well-defined, since P is a simple function, which we may take to be 
right-continuous. 

Suppose that [t: = {C(h)) is a family of strategy pairs such that C(h) is a strategy- 
pair in the game G(h), and let [V(h), W(h)] denote the corresponding payoffs of the 
two firms, respectively. The family C is a quick-response equilibrium (QRE:) if the 
following two conditions hold: (1) for every initial state (x, y) >> 0 there exists a 
number h(x, y) > 0 such that, for every strictly positive number h h(x, y), the 
strategy pair C(h) is a Nash equilibrium of the garne G(h); (2) the limit payoffs exist, 
namely, 

V = lim V(h), and W = lim W(h). 
h-+O h-+O 

The numbers (V, W) will be called the QRE payofls. 
For each h, let [X(t; h), Y (t; h)] denote the state of the system at time t determined 

by the (QRE) strategy-pair C(h) in game G(h), and let the corresponding prices be 
[P(t; h), Q(t; h)]. If, in addition, the limit trajectory exists, namely 

[ x ( t > ,  Y(t), P( t )  , Q(t)] = h - + o  lim[X(t; h), Y(t; h), P{t; h), Q(t; h)], 

then I shall call the limit trajectory the QRE path. In the QRE of the duopoly model 
that I shall describe, the QRE path will exist, and furthermore the QRE payoff for 
each firm will be its discounted profit along the QRE path. 

Note that the definition of QRE given thus far does not include any notion of 
subgame-perfecton, i.e, it is not required that the "threats" of retaliation against 
price cuts be "credible." It is therefore desirable to  define a stronger version version 
of QRE that responds to--this need. Accordingly, for every 0 > 0, let A(@) denote the 
open triangle, 

x > 0 , y > 0 , x + y < l - 0 .  

I shall say that the QRE is C is quasi-subgame-perfect (QSP) if, for every 0 > 0, 
there is an H(0) > 0 such that, for every positive h < H{9), every time t ,  and every 
history of the game G(h) through time t for which 
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the continuation of the strategy-pair C(h) from time t on is a QFU3 of the continuation 
game. 

Here is a heuristic description of the QRE strategies.Fix h > 0, and let I be 
a positive integer. I t  suffices to describe firm 1's strateg;): firm 2's being defined 
symmetrically. Firm 1 charges a price equal to zero until the first date nh  at which 
Z(nh) < C (i.e., total market penetration reaches or exceeds the target). Thereafter, 
firm 1 charges a price equal to w, with the following exception: if at  some date nh 
firm 2 undercuts fkm 1 by charging a price strictly less than w, then firm 1 will 
retaliate by charging a price equal to zero for the next I periods, and then return to 
the price w at  date (n + I + 1)h; by symmetry, firm 2 will do likewise. The sequence 
of retaliation periods will also be started anew after any failure of either firm to carry 
out the prescribed retaliation. I shall show that by taking I large enough, firm 1 can 
deter firm 2 from any deviation from the QRE path, since whatever value firm 1 can 
gain in period nh will be offset by a sufficiently large loss in the subsequent I periods. 
It will be important t o  show that the number I can be taken to be independent of h, 
although it will depend on the state, [X(nh),Y(nh)], in which the deviation occurs. 
Note that firm 1 does not respond if firm 2 raises its price above firm 1's price (no 
matter what the value of Z(t) at the time). (For a precise description of the QRJ2 
strategies, see Radner, 1997.) 

Theorem 3. There exists a choice o f  the function I such that the family C of 
strat egy-pairs is a quasi-su bgame-perfect q uick-response equilibrium o f  the f m ' l y  
o f  games {G(h)). Furthermore, the QRE path exists, and the QR.E payoff for each 
firm is i ts  total discounted profit along the QRE path. Firm 1's QR.E payoff is given 

by 

A corresponding equation holds for Firm 2. 

We see that,  for fixed z, Firm 1's QRE payoff is linear in its initial market pen- 
etration, x. On the other hand, by the Lemma of Section 4, the function f defined 

by 
f (2) G (1 - z)za 

is decreasing if z > C (and, incidentally, increasing if z < 5); use the fact that 

c = a/(l  +a) .  

Hence, for fixed x,  firm 1's QRE payoff is independent of z for z < C, and is increasing 
in z for z > C. 
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5.2. Adaptive Expectations. As noted in Section 3, for some parameter values 
the monopolist's "optimal" price oscillates "infinitely fast" between zero and the 
maximum value. As noted in Section 1, purely myopic choices by consumers would 
implausible under such circumstances. Suppose, therefore, that - when considering 
whether or not to purchase the service - a consumer forecasts the future price to be 
some moving average of past prices, and makes the purchase decision on the basis of 
that forecast. Accordingly, let p(t)denote the price "forecast" at time t ,  and suppose 
that P ( t )  is determined by 

-- 

~ ( t )  = 0 J m e - B s ~ ( t  - s)ds;  (5.2.1) 
0 

where 0 > 0 is a given parameter of the model. Assume that the law of motion (3.1) 
is modified to  read 

X1(t) = P [ F ( ~ ) ,  x ( t ) l -  (5.2.2) 

Following a precedent in the literature on expectations (Arrow and Nerlove, 1958), 
I shall call this the adaptive expectations model, or more precisely, the 0-AR model 
(since the model is parametrized by 0). Note that 

lim P ( t )  = P( t ) ,  
B + c o  

so that the model of Section 3 may be considered a limiting case of the adaptive 
expectations model, which one might denote the m-AR model. In fact, although 
an explicit solution for the monopolist's optimal pricing strategy is not know for the 
0-AR model (with 0 < m ) ,  one can show that (1) an optimal policy exists, and (2) for 
large finite 0 the corresponding optimal policy is approximately optimal for 0 = m. 
In particuar, when the optimal price for the m-AR model oscillates infinitely fast, 
the optimal price for large finite 0 also oscillates, but at  a finite rate (see Radner and 
Richardson, 1997). Such behavior by the monopolist might be interpreted as a policy 
of "intermittent sales." 

5.3. A h4onopolist Facing Consumers wi th  a Distribution of Willingness- 
to-Pay. Up to this point, the entire analysis for both monopoly and duopoly h s  
been carried out under the assumption that all the consumers have the same willngness- 
to-pay (WTP) for the service. Extending the analysis to the case in which which the 
consumers are heterogeneous with respect to WTP would be desirable, but thus far I 
have been unable to  do this in any generality in the context of the present model. In 
this subsection I give a heuristic argument that suggests that oscillatory pricing may 
be common when the WTP is sufficiently dispersed in the population of consumers. 

I shall say that a consumer is of type w if his WTP for the service is w. Although 
the consumers are heterogeneous with respect to  WTP, I assume that the monopolist 
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can charge only a single price at  any given time. In other words, the monopolist is 
unable t o  discriminate among the consumers according to  their type. Of course, if 
the monopolist could do so, then the problem would reduce to that of Section 3, for 
each type of consumer. 

Suppose that the type w lies in the interval [0, W ]  and has an absolutely continu- 
ous distribution in the population of consumers, and let g denote the density function 
of this distribution. The absolute continuity of the distribution expresses the assump 
tion that the TVTP is "dispersed" in the population of consumers. Let X(w, t)  denote 
the "fraction of consumers of type w" who are customers of the monopolist at  time 
t ,  or to  be more precise, the total mass of customers of type not exceeding w at time 
t is given by the integral, 

iw ~ ( u ,  t)g(u)du. 

Let X( t )  denote the function X( . , t ) ;  then X( t )  is the state of the system at time t. 
Thus a state of the system is a function, say x, from [0, W ]  to  [ O , 1 ]  such that the 
integral 

exists for each w. Assume that, for each w, the state variable X(w,  t)  obeys the law 
of motion (3.1)-(3.2). 

A steady state for a particular pricing policy would be a state-price pair, say (J, p), 
such that 

(For example, in the case of a single WTP (Section 3), if s 5 x < 1, then (x, w) is a 
steady state. The law of motion implies that a steady state (J, p) satisfies 

J(w) = 0 or 1 according as w < or > p. (5.3.1) 

(Note that the law of motion implies nothing about [ ( p ) . )  I shall give a heuristic 
argument that suggests that there is no steady state for an optimal policy. 

The heuristic argument uses the so-called "Bellman Optimality Conditions" (see 
the Appendix to  Section 3). Suppose that an optimal pricing policy exists. For 
any state a: , let V(x) denote the monopolist's maximum profit, starting from the 
state x; V is the monopolist's value functional. Note that V is a mapping from the 
infinite-dimensional space of states to  the real numbers. Although the state-space 
is infinite-dimensional, one can still (under suitable conditions) formulate the notion 
of the partial derivative of V with respect to x(w), which I shall denote by V'(w, x). 
[REF?] Correspondingly, the Bellmanian Functional for the monopolist's optimization 
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problem (cf. the appendix to Section 3) is 

If (J, cp) is a steady state for the optimal policy, then by (5.3.1), if p > c p ,  

and hence 

Therefore, if cp < W, then the Bellmanian is strictly increasing in the price p for 
p > cp and sufficiently close to cp. Hence (under suitable regularity conditions) cp < W 
cannot be optimal at  the state J. 

On the other hand, if (J, W) were a steady state for the optimal policy, then by 
(5.3.1), J(w) would be zero for all w < W, and hence V(J) would be zero. However, 
starting from such a state J it is possible for the monopolist to make a strictly positive 
profit, e.g., by setting the price equal to  zero for a positive amount of time, and then 
setting the price equal to any positive value thereafter. Hence cp = W cannot be 
optimal, either. 

To make this heuristic argument rigorous, I would have to do two things. First, I 
would have to postulate conditions on the model such that a theory of the Bellmanian 
Functional for an infinite-dimensional state space is valid. (Alternatively, one could 
formulate a model with a large but finite number of consumer types, whose masses 
are uniformly small.) Second, I would have to provide conditions such that the cor- 
responding "Bellman Conditons" for optimality are necessary rather than sufficient. 
Such an analysis is beyond the scope of this paper. 

5.4. Oligopoly and Competition. In this subsection I sketch some of the prob- 
lems to  be faced in generalizing the analysis to the cases of oligopoly (with more than 
2 firms) and "competition." 

The formulation of a model with more than 2 identical firms is straightforward, if 
one assumes that the consumers always flow to  the firm(s) with the lowest price, or 
flow into the noncustomer category if all firms charge a price greater than the WTP 
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(assuming for the moment that all consumers have the same WTP). One might even 
conjecture that there are PL4arkovian equilibria analogous to that of the duopoly of 
Section 4, in which each firm has a target market share, and sets its price low or high 
according as its current market share is less than or greater than its target. 

The assumption that the firms are identical is of course problematic, even in 
the case of a duopoly. Differentiation of the firms could have two consequences: (1) 
each consumer would have different WTPs for the services of different firms; (2) 
consumers could differ in their WTP profiles, some consumers preferring the services 
of one firms, and other preferring the services of another firm (different firms have 
different "clienteles"). Given the difficulty suggested in Section 5.3 above, I shall not 
even venture a conjecture about the nature of equilibria in such cases. 

If by "competition" (perfect or imperfect) one means a "large" number of "small" 
firms, then one might want to reconsider the law of motion. First, with a law of 
motion similar to that described above, if a small firm's price were the lowest among 
a large number of firms, then that firm would face a relatively enormous rate of 
increase in demand, which it might not be able to meet in the short run. Second, a 
consumer facing a large number of firms might not immediately be able t o  identify 
the most preferred one (e.g., the one with the lowest price), and hence might migrate 
in stages from less preferred firms to more preferred ones. (Models studied by Selten 
and by Phelps and Winter have the flavor of the latter phenomenon; see Section 6.) 

The analysis of models that incorporate all these considerations would appear to 
present daunting difficulties. In fact, my limited exposure t o  practical problems of this 
kind suggests to  me that managers are not (knowingly) following optimal policies in 
the pricing situations that they face. If this impression is correct, then a satisfactory 
theory would have to model the bounded rationality of the managers, as  well as that 
of the consumers. 

The earliest theoretical paper that I am aware of that is related t o  the present one 
in spirit is (Selten, 1965). In Selten's model, finitely many firms repeatedly face a 
market. with an exogenously given total "demand pot,entialn (see below). Each firm 
has a linear cost function (they may be different). Time is discrete. If we specialize 
the Selten model to  the case of a duopoly, with total "demand potential" constant in 
time, then in the notation of Section 4 of the present paper, the demand (quantity 
sold) for firm 1 obeys the law of motion, 

where K is a constant, the same for both firms. (Recall that firm 1's demand in 
period t is X( t ) ,  and the prices of firms 1 and 2, resp., are P ( t )  and Q(t).) The law of 
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motion for firm 2's demand is determined symmetrically. The initial conditions are 

where rn and n are given constants, or equivalently, 

One can verify that, for all periods t ,  

Selten calls 

M(t)  - X(t)  + P( t )  firm 17s "demand potential," and, 

N(t) = Y(t) + Q(t) firm 2's "demand potential." 

We may interpret a single firm's demand potential in a given period as what its 
demand would be if its price were zero in that period. The model implies that the 
total demand potential remains constant, i.e., equal to the initial value, (m + n). 

For a game with a fixed (and known) number of periods, Selten demonstrates the 
existence of a subgame-perfect equilibrium. (An infinite-horizon game is studied in 
Part I1 of the paper.) The model is related to the present one in that customers do 
not instantaneously react fully to changes in prices. However, it is not clear t o  me how 
to reconcile this law of motion with a model of consumer behavior like that sketched 
in Section 2 of the present paper. [Some readers will recognize Selten's paper as the 
one in which he introduced the concept of "subgame perfection."] 

In a series of three papers, Rosenthal and Chen have studied related models of 
duopoly with "customer loyalties." Each of the models is a discrete-time, infinite- 
horizon, symmetric, non-zero-sum stochastic game, in which the players are the two 
firms, and there are finitely many identical customers who act in accordance with a 
fixed "rule of thumb" (different in each paper). In (Rosenthal, 1982), in each period 
"each buyer purchases from the same seller from whom he purchased in the last period 
unless that seller has raised his price, in which case the buyer purchases from the 
current-period low-pricesetter." In this game, Rosenthal demonstrates the existence 
of a Markov equilibrium in mixed strategies, and studies its properties. In (Rosenthal, 
1982), customer loyalties are "weaker." In each period, "after the sellers have set their 
current-priod prices, a random device ... determines whether (with probability a )  
each buyer will remain loyal whenever his previous-period seller has not raised price, 
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or whether (with probability (1 - a ) )  all buyers abandon their loyalties and purchase 
from the current-period low-price seller." In this game, Rosenthal demonstrates the 
existence of an epsilon-equilibrium in stationary mixed strategies. (There is an exact 
equilibrium from an initial state in which one seller has all the customers.) In (Chen 
and Rosenthal, 1996), in each period, if one seller's price is strictlly less than the 
other's, then one customer shifts from high-price seller to  the other one (unless, of 
course, the high-price seller has no customers). Again, there is a Markov equilibrium 
in mixed strategies, and the authors study the effect on this equilibrium of changing 
the parameters of the model. [Note: I have omitted a description of the detailed 
assumptions in each paper.] 

Phelps and Winter (1970) studied a moodel at the other end of the spectrum 
from duopoly, namely, one in which there is a very large number of small sellers. 
Each seller i "subjectively assumes" that the (continuous-time) law of motion for h s  
market share, Xi(t),  is 

X;l(t) = Slpz(t), P,(t)]Xz(t), 

where pi(t) is his current price, Pi(t) is the customer-weighted mean of the other 
firms' prices, and S is a skew-symmetric function with plausible properties. In fact, 
the "true" law of motion in the model is diflerent from, and more complicated than, 
the one "subjectively perceived" by the firms; I omit the details. At time t = 0, each 
firm chooses a price path that maximizes the present value of of its discounted profits, 
under the assumption that the average price P,(t) will remain equal to its initial value, 
Pi(O), for all time, in other words, assuming that the law of motion for its market 
share is 

x; (t ) = 6 lpi (t ) 1 (())]Xi (t ) . 
This represents a further simplification of the firm's subjective perception of the law 
of motion of its demand. (Alternatively, it may represent an approximation that may 
be reasonable for a short enough time interval.) In particular, each firm assumes that,  
if its price remains constant during some interval of time, then its demand will grow 
or decrease exponentially in that interval. This model is sufficiently far from the one 
in the present paper that  I shall not attempt t o  summarize the results of the authors' 
analysis, except to  report that any steady state of the system will depart from the 
standard picture of the equilibrium of a-"neoclassical" model. 

I have already noted the difference between the model of viscous demand presented 
here, and models intended to capture consumers' "switching costs." For a recent 
treatment, and references to  earlier literature, see (Padilla, 1995). 
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