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Abstract. There has been much attention given recently to the task
of finding interesting patterns in temporal databases. Since there are so
many different approaches to the problem of discovering temporal pat-
terns, we first present a characterization of different discovery tasks and
then focus on one task of discovering interesting patterns of events in
temporal sequences. Given an (infinite) temporal database or a sequence
of events one can, in general, discover an infinite number of temporal
patterns in this data. Therefore, it is important to specify some measure
of interestingness for discovered patterns and then select only the pat-
terns interesting according to this measure. We present a probabilistic
measure of interestingness based on unezpectedness, whereby a pattern P
is deemed interesting if the ratio of the actual number of occurrences of
P exceeds the ezpected number of occurrences of P by some user defined
threshold. We then make use of a subset of the propositional, linear tem-
poral logic and present an efficient algorithm that discovers unexpected
patterns in temporal data. Finally, we apply this algorithm to synthetic
data, UNIX operating system calls, and Web logfiles and present the
results of these experiments.

1 Introduction

There has been much work done recently on pattern discovery in temporal and
sequential databases. Some examples of this work are {14,27,17,10,25,16,8,18,
9,22]. Since there are many different types of discovery problems that were ad-
dressed in these references, it is important to characterize these problems using
some framework. One such characterization was proposed in {10]. In this chapter
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we review this framework and then focus on one specific problem of discover-
ing unexrpected patterns in temporal sequences. To find unexpected patterns in
a sequence of events, we assume that each event in the sequence occurs with
some probability and assume certain conditional distributions on the neighbor-
ing events. Based on this, we can compute an erpected number of occurrences of
a certain pattern in a sequence. If it turns out that the actual number of occur-
rences of a given pattern significantly differs for the expected number. then this
parttern is certainly unezpected and. therefore, is interesting [23, 24]. We present
an algorithm for finding such parterns and test it on several types of temporal
sequences, including Web logfiles and sequences of OS system calls.
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Fig. 1. An example of the head.and_shoulder pattern.

2 Characterization of Knowledge Discovery Tasks in
Temporal Databases

_C —arscierization of knowledge discovery tasks in temporal databses. proposed in

17 is represented by the 2-by-2 marrix presented in Table 1. The first dimension

In 1zis matrix defines the two types of temporal parterns. The first tvpe of a

wemmoral pattern specifies how data changes over time and is defined in terms
ool preciceies. For example. the pattern

head_and shoulder(IBM.5/1,97.7,12/97)

25 1hat the stock of IBM exhibited head_and shoulder trading pattern {15]
/1,97 untl 7/4/97, as is shown in Figure 1). The second type of temporal
15 is rules. such as “if a stock exhibits a head-and-shoulder pattern and
T cash levels are low, then bearish period is likely to follow.”

- 2 second dimension, the validation/generation dimension. refers to the
& of the discovery task. In ralidation the system focuses on a particular
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pattern and determines whether it holds in the data. For example, we may want
to validate if the head_and_shoulders pattern holds for the IBM stock in a given
data set or that a certain rule “holds” on the data. The second purpose of
discovery can be the generation of new predicates or rules that are previously
unknown to the system. For example, the system may attempt to discover new
types of trading rules in financial applications.

Categorizing patterns in terms of the above two dimensions leads to a two-
by-two classification framework of the knowledge discovery tasks, as presented
in Table 1. We will describe each of the four categories in turn now.

[Validation|Generation|

Predicates 1 I
Rules II v

Table 1. Types of Knowledge Discovery Tasks.

Class I. The discovery tasks of this type involve the validation of previously
defined predicates over the underlying database. For example, assume that we
have the temporal database of daily closing prices of stocks at some stock ex-
change, STOCK(SYMBOL,.PRICE,DATE), where SYMBOL is the symbol of a
security, PRICE is the closing price of that stock on the date DATE. Consider
the following predicate specifying that the price of a certain stock bottomed out
and is on the rise again over some time interval:

bottom_reversal(z.t1,t2) = (Zt)(t1 <t < ta Adecrease(z,t;,t)
A increase(z, t,t2))

where increase(z, t;.t2) and decrease(z, ty,t2) are predicates specifying that the
price of security z respectively “increases” and “decreases” over the time interval
(tle t?) L

Then we may want to rvalidate that the predicate bottom._reversal(z,ty,t2)
holds on the temporal relation STOCK(SYMBOL,PRICE,DATE). This valida-
tion can take several forms. For example, we may want to find for the predicate
bottom_reversal if one of the following holds:

bottom _reversal(IBM,5/7/93,8/25/93),
bottom_reversal(IBM, t1,t2),
bottom_reversal(z,5/7/93,8/25/93)

1 Note that we do not necessarily assume monotonic increases and decreases. Predi-
cates increase and decrease can be defined in more complex ways, and we purposely
leave it unspecified how to do this.
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The first problem validates that the stock of IBM experienced the “bottom
reversal® pattern between 5/7/93 and 8/25/93. The second problem finds all
the time periods when IBM’s stock had “bottom reversal,” and the last problem
finds all the stocks that had “bottom reversals” between 5/7/93 and 8/25/93.

One of the main issues in the problems of Class I (predicate validation prob-
lem) is to find approrimate matching patterns. For example, for the IBM stock
to exhibit the bottom reversal pattern between 5/7/93 and 8/25/93. it is not
necessary for the time series of IBM stock to match predicate bottom.reversal
exactly. Another example of the approximate matching problem of Class I comes
from the speech recognition applications where sounds and words are matched
only approximartely against the speech signal.

There has been extensive work done on Class I problems in signal processing
:20.. speech recognition 6,21}, and data mining communities. In the dara mining
community these types of problems are often referred as similarity searches and
have been studied in '1.3.4.12,13.8].

Class II. Discovery tasks of Class II involve validation of previously asserted
rules. For example. consider the rule: “If a price correction in a stock is seen
before the announcement of big news about the company, then insider trading
is likelv.”

Correction{stock,t;.t3) A Big_news(stock.t3) A Soon_after(ts.t2)
— Insider trading(stock.ty.ta)

where Correction. Big.news. Insider_trading and Soon_after are user-defined pred-
icates (views) defined on relations STOCKS and NEWS.

Evaluation of this rule on the data entails finding instances of variables stock,
*1. ta. t5 and the -statistical strength” of the rule (e.g. measured in terms of its
confiderce and support 2) that make the rule hold on the data (in statistical
terms).

As in the case of Class I problems, one of the main issues in rule validation
is the problem of approximate matching. The need for approximate matching
arises for the following reasons. First of all, rules hold on data only in staristical
terms (e.g. having certain levels of confidence and support). Secondly. some of
the predicates in the rule can martch the data only approximately (as is the case
with Cless I problems from Table 1). Moreover. certain temporal operators are
inherently fuzzy. For example, temporal operator Soon.after(ty, t2) is fuzzy and

to be defined in ~fuzzy™ terms>.

ass IT1. Discovery tasks of Class I involve the discovery of new interesting
* ate-based parterns that occur in the database. In order to discover such

ns. the svstem should know on what it should focus its search because
© are potentially verv many new patterns in the database. In other words,

stem should know what to look for by letting the user specify what is

> that it is not appropriate to define this operator in terms of the temporal
ator Nert because of the inherent ambiguity of the term “soon.” Although this
aror can be defined in many different ways, one natural approach would be
ugh the use of fuzzy logic 28..
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interesting. For example, the pattern bottom.reversal may be interesting because
it provides trading opportunities for the user.

Although there are many different measures of interestingness for the user,
such as frequency, unexpectedness, volatility, and periodicity [10], the most pop-
ular measure used in the literature is frequency of occurrence of a pattern in the
database 17,16, 18]. In particular, [17, 16] focus on discovering frequent episodes
in sequences, whereas (18] discovers frequent patterns in temporal databases sat-
isfying certain temporal logic expressions.

In this chapter, we use a different measure of interestingness. Instead of
discovering frequent patterns in the data, we attempt to discover unezpected
patterns. While it is sometimes the case that the discovery of frequent patterns
offers useful insight into a problem domain, there are many situations where it
does not. Consider, for example, the problem of intrusion detection on a network
of workstations. Assume we define our events to be operating system calls made
by some process on one of these workstations. We conjecture, then, that patterns
of system calls differ for ordinary users as opposed to intruders. Since intrusion
is a relatively rare occurrence the patterns we would discover using frequency
as our measure of interestingness would simply be usage patterns of ordinary
users offering us no information about intrusions. Instead what we propose is to
assign exogenous probabilities to events and then attempt to discover patterns
whose number of occurrences differs by some proportion what would be expected
given these probabilities. In the example of intrusion detection we would assign
the probabilities of events to reflect the frequency of events in the presence of
no intruders. Then if an intrusion did occur, it would presumably cause some
unexpected pattern of system calls which can be an indication of this event.

As will be demonstrated in Section 3, the new measure of interestingness
requires discovery techniques that significantly differ from the methods used for
the discovery of frequent patterns. The main reason for that is that unexpected
patterns are not monotone. These notions will be made more precise in Section 3.

Class IV. Discovery tasks of Class IV involve discovery of new rules con-
sisting of interesting relationships among predicates. An example of a temporal
pattern of this type is the rule stating that “If a customer buys maternity clothes
now, she will also buy baby clothes within the next few months.”

Discovery tasks of Class IV constitute challenging problems because, in the
most general case, they contain problems of Class III (discovery of new predi-
cates) as subproblems. The general problem of discovering interesting temporal
rules using the concept of an abstract [11] has been studied in [7]. Discovery of
temporal association rules was studied in |5, 25].

In this section, we reviewed a characterization of knowledge discovery tasks,
as presented in {10]. In the rest of this chapter, we will focus on one specific
Class III problem dealing with discovery of unexpected patterns. In the next
section, we will formulate the problem. In Section 4 we will present an algorithm
for finding unexpected patterns, and in Section 5 we will present experiments
evaluating this algorithm on several applications.
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3 Discovering Unexpected Patterns in Sequences: The
Problem Formulation

We start this section with an intuitive presentation of the problem and then
provide its more formal treatment. )

We want to find unexpected patterns, defined in terms of temporal logic
expressions, in sequences of events. We assume that each event i'n tl}e se‘quence
occurs with some probability and assume certain conditional distributions on
the neighboring events. Based on this, we can compute an ezpected number of
occurrences of a certain pattern in a sequence. If it turns out that the actual
number of occurrences of a given pattern significantly differs for the expec?ed
number, then this pattern is certainly unezpected and, therefore, is interesting
23, 24]. ’
| In ]this chapter, we first present a naive algorithm that finds all unexpected
patterns (such that the ratio of the actual number of occurrences to the expected
number of occurrences exceeds a certain threshold). After that, we present an
improved version of the algorithm that finds most of the unexpectc?d patterns
in a more efficient manner. We also experimentally compare the naive and the
more efficient algorithms in terms of their performance.

More formally, let E = {o, 3,7, ...} be a finite alphabet of events. We use a
subset of propositional linear temporal logic to discover temporal patterns over
the events. The basic temporal operators of this system are aByf (« beforgk ,8)
which intuitively means that o occurs followed by an occurrence of @ within
k subsequent events, NS (o next ) a occurs and the next event is f3, 'an.d
aUp (« until B) which means before 8 occurs a sequence of o’s occurs. This is
often called the strong until [26]. While the before operator is actuall.y redundant
as aBf can be expressed as —(-aUp) we have chosen to include 1t.sepa‘rately
for simplicity and efficiency. A pattern of events is defined as a c.onjunctlon of
ground events over these operators. For example, the simplest case is «Nf3. Some
additional examples are (§U((eNB)B~)) and aNSN7y. ‘

In the pattern discovery algorithm presented in Section 4.2 we consider the
following fragment of the Propositional Temporal Logic (PLTL). The syntax of
this subset is as follows. The set of formulae of our subset is the least set of
formulae generated by the following rules:

(1) each atomic proposition P is a formulae;

/™ ** pis a formula and q is a formula containing no temporal operators then
sBkq, pNg, qUp, ¢Bkp, ¢Np are formulae. .
; assume an exogenous probability distribution over the events. While t.hese
may be dependent or independent, depending on the problem domain of

gnore disjunctions because what seems to occur in practice wben disju{xccions fxre
ved is that the disjunction of a very interesting pattern, E, with an uninteresting
ern, F, results in an interesting pattern EVF. This occurs not beca'use EvF truly
s any insight into our problem domain but rather because th‘e mterestu.lgness
} “drags up” the interestingness measure of E V F to the ;.)omt w.here it also
ymes interesting. We choose instead to simply report E as an interesting pattern.
decision to omit conjuctions and negation will be made clear shortly.
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interest we assume independence of the events unless explicitly stated otherwise.
For instance, in the application we consider in Section 5.3, events are described
as hits on Web pages. In this case the probability that a user goes from Web
page P to Web page @ is clearly dependent on the links that exist on page P.
In other cases independence may be more appropriate. In any case, given an a
priori set of event probabilities, we can compute expected values for the number
of occurrences of any temporal pattern in our string. For example, the expected
number of occurrences of E[aBf], assuming the events o and B are independent,
can be computed as follows. Let X, be the number of occurrences of the pattern

aBf up to the n'? element of the input string and o, the number of a’s up to
the nt" element of the input string. Then

E[Xn] = Pr{B][Xn—1 + an—1] + (1 — Pr[B])(Xpn-1)
= PrB][Xn—1 + Prla](n — 1)] + (1 = Pr[B])(Xn-1)
= Prla]Pr[B)(n ~ 1) + X,

Therefore,
E[Xn] — E[Xn-1] = Pria]Pr[s](n - 1)

Also, E[X5] = Pr[a]+Pr[f]. From this recurrence equation, we compute E[aBkg]
for the input string of length N as

Prla]Pr[S]N(N - 1)

E[aBg] = :

The expected number of occurrences of patterns of other forms can be similarly
computed as

E[aN] = PrialPrBJ(N — 1) W)
E[aBi] = PrlalPr[B)(K)(¥ — K) + THAAPIAIUOU — 1)
N-1
EfaUg] = %ﬂ% Z 1 - Prle]’ + Prla]Pr[g]

As was stated earlier, we will search for the unexpected temporal patterns in
the data, where unexpectedness is defined as follows:

Definition 1 Let P denote some temporal pattern in string S. Let A[P] be the
actual number of occurrences and E[P] the expected number of occurrences of
pattern P in S. Given some threshold T, we define a pattern P to be unexpected
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if /é ; > T. The ratio 31 i is called the Interestingness Measure (IM) of the

E{P
pattern P and will be denoted as IM(P). *

This is a probabilistic measure of interestingness whereby a pattem. is unexpected
if its actual count exceeds its expected count by some proportion T'. As the
following theorem indicates, however, this is a difficult problem.

Problem (INTERESTINGNESS): ' .
Given a string of temporal events V = v1,v2,...,v,, does there exist an inter-
esting pattern in V of the form X;ByX3By...BxX for an arbitrary m?

Theorem 1 The INTERESTINGNESS problem is NP-complete.

Proof: See Appendix. 2 '

While we are trying to find interesting patterns that contain a \{ane'ty of
temporal operators in an arbitrary order, this theorem states that finding inter-
esting patterns that only use the BEFORE operator is hard. Furth‘ermore, we
would like to put no restrictions on the “interesting” patterns we c.ixscover. We
would simply like to find all patterns that are interesting. The followmg.theorem,
however, shows that it is necessary to impose some bounds on the size of the
patterns that we uncover, since in the case of unrestricted patterns, the most
unexpected pattern will always be the entire string.

Theorem 2 Consider a string of temporal events V. = wv1,v2,...,UN and a
temporal pattern T. If the length of T (number of temporal operators in it),
length(T) < N - 1, then there ezists another pattern P such that {ength(P) =
length(T + 1) and IM(P) > IM(T), where the length of a pattern is defined as
the number of events in the pattern.

Proof:
Let A[T] = g and é{[g: =q and Z = {21, 22,...,2m} the set of all events.

A[TNz
We want to prove that 3 2; € Z s.t. M > o

Assume this is not true for z;,2a,...,2m—1 and show that it must be true for
Zm. By this assumption and because of (1)
AL B ] o Ve, i=1,2,...,m~— 1

PTPrAl(N = 1) ©
- ore, A[TNz] < aPr[T]Prz}(N ~1).

~ her measure of interestingness is to find patterns P for which A[P]/ E[P] < T.
oroblem can be treated similarly. We have chosen not to search for these patterns
ise they are complimentary to the ones described in Deﬁnit{on 1. If. a p'atter.n

© ; found to be interesting in our formulation then P will bfs mterestlng m‘t¥ns
limentary formulation for some new threshold. Thus in the mt.erest of sxm;?hcxty
oose to solve these complimentary problems separately and ignore negation.
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Then,
m-—1 m-—1
AITNz] < ) aPr[T]Pr[z](N - 1)
i=1 i=1
m—1
= aPr[T](N - 1) Z Pr{z]

= oPr[THN ~ 1)1 - Prlzm])
Since, ) A[TNz] = A[T] = 4,

i=1

A[TNz,] > B — oPr[T)(N — 1)(1 - Prlzn])

AlTNzy] B —aPr[T)(N — 1)(1 — Pr[zm])
E[T'Nz,,] Pr[T}PrlzJ(N — 1)
_ B _aPr[T(N - 1)1 - Pr[z])
"~ PrT]Pr[za](N = 1) Pr[T]Prlzm}(N — 1)
- B _ a(l = Prlzm])
PrTPrlzn (N — 1) Prizm]
(since s = 2

E[T] ~ PV =1 = %
o ol = Prlzn])

T Plzal T Priem]
= oy [m]

Intuitively, this theorem tells us that given an interesting temporal pattern,
there exists a longer pattern that is more interesting. In the limit then, the most
interesting pattern will always be the entire string of events, as it is the most
unlikely.

In order to cope with this, we restrict the patterns that we look for to be of
length less than or equal to some length limit. Of course, still the most inter-
esting pattern we will find will be one whose length is equal to the length limit.
Nevertheless, it is often the case that an interesting pattern that is not the most
interesting provides valuable insight into a given domain as we will see later in
discussing our experiments.

4 Algorithm

4.1 Naive Algorithm

A naive approach to discovering interesting patterns in an input sequence might
proceed as follows. Sequentially scan over the input string discovering new pat-
terns as we go. When a new pattern is discovered a record containing the pattern
itself as well as a count of the number of occurrences of the pattern is appended
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to a list of all discovered patterns. This is repeated until all patterns up 'to a
user-defined maximum length, have been found. More precisely, the algorithm
proceeds as follows

Definition 2 BEFOREK: A user defined constant that determines the mazi-
mum number of events that X can precede Y by, for XBkY to hold.

Input:

— Input String '

— Event Probabilities: the exogenously determined probabilities of each atomic
event.

— BEFOREK

— The threshold T for interestihgness. That is the value that, if exceeded by
the interestingness measure of a pattern, deems it interesting.

— Maximum allowable pattern length (MAXL).

Output:
— All discovered patterns P such that IM(P) > T.
Algorithm:

Scan the input string to determine the interestingness measure
of each event in it, and initialize list L with all these
events
WHILE L is not empty DO
Amongst all the patterns of L, choose the pattern C
with the largest interestingness measure as the next
candidate to be expanded.
Expand C as follows. Scan the input string looking
for occurrences of C. When an instance of C is
discovered, expand it both as a prefix and as a
suffix. By this ve mean, record all occurrences of
(C op X) and (X op C) where op ranges over the temporal
operators, and X ranges over all events. Finally,
compute the interestingness of all these newly
discovered patterns C’.
IF Length(C’) < MAXL THEN add C’ to the list L.
Remove C from L.
ND WHILE
] utput interesting patterms.

ste that the algorithm we just presented is tantamount to an exha\%stlve
L and is therefore not very efficient. We propose a more efficient algorithm,
although is not guaranteed to find all interesting patterns, offers speed up
ninimal loss of accuracy. The idea is to expand on the approach presented
| of beginning with small patterns and expanding only those that offer the
tial of leading to the discovery interesting, larger patterns.
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4.2 Main Algorithm

The difficulty involved in finding interesting patterns is in knowing where to
look. When interestingness is measured simply by some count (i.e. the number
of occurrences exceeds some threshold) as is done in [17] it is obvious that for a
pattern to be frequent so must its component partial patterns be frequent. With
this in mind, the technique that has been used in {17] is to expand all patterns
whose count exceeds this threshold and stop when no more exist. When using our
interestingness measure, however, this is not the case. That is, a pattern can be
unexpected while its component sub-patterns are not. This lack of monotonicity
in our interestingness measure is most easily understood with an example.

Example: Let the set of events be E = {4, B, C}. Assume the probability
of these events is Pr{A] = 0.25,Pr[B] = 0.25,andPr[C] = 0.50. Also assume
that these events are independent. Let the threshold T = 2. In other words,
for a pattern to be interesting the value of the actual number of occurrences of
the pattern divided by the expected number of occurrences of the pattern must
exceed 2.0. Consider the following string of events.

ABABABABCCCCCCCCCCCC

(the length of this string N = 20)
Given our probabilities, E{A] = 5 and E[B] = 5. Also given the expression
for computing expectations for patterns of the form ANB.

E[ANB] = Pr[A]P[BJ(NV — 1)
= (0.25)(0.25)(19)
=1.1875

Since A[A] = 4 and A[B] = 4, both of the events 4 and B are not interesting
(in fact the actual number occurrences of these events was less than what was
expected), but the pattern ANB which occurred 4 times was interesting with

4
IM(ANB) = 17—

= 3.37 ]

This lack of monotonicity in our interestingness measure results in a significantly
more complex problem especially in terms of space complexity. In the algorithm
for discovering frequent patterns significant pruning of the search space can oc-
cur with each iteration. That is, when a newly discovered pattern is found to
have occurred fewer times than the frequency threshold, it may be discarded as
adding new events to it cannot result in a frequent pattern. With our measure
of interestingness, however, this is not the case. The addition of an event to an
uninteresting pattern can result in the discovery of an interesting one. This in-
ability to prune discovered patterns leads to an explosion in the amount of space
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required to find unexpected patterns. Consequently we are limited to expanding
patterns by only single literals at a time and therefore will not discover patterns
like ((aBx8)Bk(yNJ)), where two patterns of size greater than one are com-
bined via a temporal operator (before, in this example). This is the reason that
we have not used conjunctions as part of our fragment of temporal logic. Since
our events occur sequentially, it is impossible for conjunctions to arise unless we
expanded patterns by multiple literals at a time. This does present a limitation
of our algorithm and extending our fragment further is an area we are pursuing
currently.

A more efficient algorithm than the naive one for finding unexpected patterns
involves sequential scans over the string of events discovering new patterns with
each scan. A list is maintained of those patterns discovered so far, and on each
subsequent iteration of the algorithm the “best” pattern is selected from this list
for expansion to be the seed for the next scan. When a pattern P is expanded,
the input sequence is scanned and occurrences of P located. For each of these
occurrences all patterns of the forms XopP and PopX are added to the list of
discovered patterns, where op is a temporal operator, N.Bx or.U and X is a
variable ranging over all events.

Given a pattern to expand. aBgJ, for example, during the scan we will
discover all patterns, ((aBx3'N~). (7Bk(aBxJ3)). etc. .. for all events ~.

The heart of the algorithm is how “best™ patterns are chosen. We will explain
it formally below (in Definition 1), but would like to give some intuition before-
hand. Clearly. we would like to define “best™ to mean most likely to produce an
interesting pattern during expansion. By Theorem 1. we know that expanding
an already interesting patrern must result in the discovery of additional inter-
esting pattern(s). The question remains, however. amongst interesting patterns
already discovered which is the best candidate for expansion. and if no inter-
esting patterns remain unexpanded. are there any uninteresting parterns worth
expanding?

Initially, the algorithm begins with a scan of the input string counring the
number of occurrences (and therefore, the frequencies) of individual events. Sub-
sequent to this. we continue 1o expand best candidares until there are no more
candidates worthy of expansion. This notion will be made clear shortly.

During each scan of the input string. when a new pattern is discovered,® a
PATTERN RECORD is created for it consisting of the following information:

Pattern P (e.g. ((aN3 Bk~)), etc...

2. Count: How many of these patterns were found
Preremaining.op: Ore instance of this value is kept for each tem-
poral operator. It represents the number of patterns remaining
to be discovered for which P is the prefix and the operator con-
necting P to its suffix is op. How these values are calculated will
be discussed shortly{see Definition 3).

In the case of the initial scan these will simply be the events.

s P AN
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4. Postremaining.op: Identical to Preremaining.op for suffixes rather
than prefixes.

5. Expanded(boolean): Whether or not P has been expanded.

6. INTERESTINGNESS_LIST: consists of all events in decreas-
ing order of interestingness amongst events that can potentially
complete P during expansion. One of these lists is kept for pre-
fixes and one for suffixes as well as for each operator nezt, before,
and until. That is, for a pattern P = aNp, for example, if a pat-
tern yN§ has already been discovered then the occurrence of §
in yYNG cannot possibly complete the pattern (aNS)NX. When
determining the best candidate for expansion we will be inter-
ested in knowing what events can potentially complete all of the
patterns we have already discovered and will ,therefore, make
use of these lists. In fact, this sorted list represents an ordering
of most interesting events that could complete the pattern they
are associated with 6.

Definition 3 The FORM(P) of a pattern P is a logical expression with all
ground terms in P replaced by variables.

For example, if P = ((aN(8Bk~))Bk4d) then FORM(P) = (WN({XBkY)Bk Z)).

Given the length of the input string, we can determine the number of patterns
of each form in the input string. For example, given a string of length M, the
number of patterns of form XNY is M - 1. The number of patterns XBkY is
(M - K)K + ((K){(K - 1)/(2)).

Definition 4 Given a pattern P and an operator op, Actual Remaining(P op
X) is the number of patterns of the form PopX that have yet to be expanded. This
value is maintained for each operator, op and pattern P. That is, we maintain
a value for PNX, PBx X, XBkP, etc... Again, X ranges over all events.

For example, if there are 20 occurrences of P = aBk/ in the input string
and 5 patterns of the form ((aBk3)NX) have been discovered so far, then Ac-
tual Remaining Pre Next (((aBk8)NX)) = 15.

We use the following heuristic to determine which discovered pattern is the
best one to expand. Given an arbitrary literal D, the best pattern P for expansion
is the pattern for whom the the value of

E[ALP op 8}/E[P op 6]] orE[A[s op P]/E[S op PI]

is maximal for some 6.

® For problem domains with a large number of events, in the interest of scalability,

partial lists may be substituted where only a list of the most interesting events is
maintained.
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This heuristic simply states that the pattern P that is most likely to.re~
sult in the discovery of an interesting pattern is the one for whom there exists
a literal & such that the expected value of the interestingness measure of th'e
pattern generated when & is added to P via one of the temporal operators is
maximal over all discovered patterns P and literals 8. It is necessary for us to
use the ezpected value of the interestingness measure because, although we know
the actual number of occurrences of both P and &, we don’t know the number
of occurrences of P op § or § op P. How this expectation is computed follovfzs
directly from our derivations of expectations in Section 3 and is illustrated in
the following example.

Example: If P = aNg and op i next, then

E[A[PNS]/E[PN5]]
= (#P)(FR(8))/Prc]Pr[BIPr[s](K - 2)

where,

K = length of input string

FR(5) = frequency of §’s that could complete the pattern ((aNS)NX)
#P = number of occurrences of pattern P

If op is before,

E[A[PBk6]/E[PBK?]]
= ((#P)(FR(5))(BEFOREK))/Pr[a]Pr[a]Pr[6}(K — 2)(BEFOREK)
= ((#P)(FR(6)))/Prla]Pr[slPr[s](K - 2)

If P = aBgf and op is next

E[A[PNG]/E[PN6]]
= ((#P) » (#5))/Prla] PrIBIPr{B) (K — 2)(BEFOREK)

Similar arguments are used for any combination of the operators before, nezt,and

. consider the literal § which is most likely to result in the discovery of an
ting pattern when used to complete the pattern P during expansion. We
" »w argue that this measure accomplishes our goal of expanding patterns
ikely to result in the discovery of interesting patterns. '
e choice of a best candidate for expansion proceeds in two stages. First,
he purpose of the INTERESTINGNESS LIST for each discovered pattern.

- sefore and until these definitions are slightly erroneous due to logses of patterns
~ e ends of the input string. These errors are negligible, however, since thfa length
" e input string is much larger than the length of individual patterns of interest

g e
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Each of the INTERESTINGNESS LISTs associated with a pattern P is sorted
in such a way that the event at the head of the list, when added to P is most
likely to result in the discovery of an interesting pattern. An event D will be
ahead of an event € on this list if, A[6]/E[6] > Ale]/E[e]. While the expected
values here are computed in the usual way, in this case, the actual values are
not simply equal to the counts of § and e, respectively, but rather equal to the
number of §’s and ¢’s that could potentially be added to P.

Lemma 1 Given two events & and e where § occurs before € on the
INTERESTINGNESS.LIST then:

E[A[(aNB)opd]] _ E[A[(aNB)ope]]
E[(aNpB)opd] Ef(eNpB)ope]
Proof:We prove this result for the nezt operator.
Assume. EIAI(@NBING]] _ E[AJ(aNB)Ne
* E[(aNB)NS] —  E[(eNB)Ne
Let N be the length of the input string®. Then

E[AlG#PYFRENT] _ E[AIGEP)(FR(e)]]
Prla]Pr[B]Pr[6] —  Prla]Pr[8]Pr[e]

Since #P and FR(J) are constants we can remove them from the expectations
and cancel them on each side of the inequality. So,

(FR(3)) _ (FR(s)
Pris] — Prle]
(FROO)WN) . (FR(e))(N)
Prisj(v) — Prle}(V)
Alg} _ Al

E

——

(o] ~ El

Contradicts assumption that § occurs before ¢ on the INTERESTINGNESS_LIST
The proofs for the temporal operators before and until are done similarly. 0

So, it is now clear, for each discovered pattern P, which literal when added to
P is most likely to produce an interesting pattern and how interesting we expect
that pattern to be. In the second stage of choosing the best candidate we select
the already discovered pattern which is likely to produce the most interesting
pattern. Intuitively, we are saying that the pattern P most worth expanding is
the one for which there exists a literal that is likely, when added to P, to result
in the discovery of the most interesting pattern.

® Here FR(6) and FR(e) represents the frequencies of &’s and ¢'s respectively that
could complete the pattern ((aNS)NX). As discussed earlier this is not equal to the
frequency of all of the é’s and ¢'s in the input string.
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Given these preliminary motivations, we now present the algorithm:

Input:

— Inpurt String

~ Event Probabilities

— BEFORER: as discussed earlier we use a bounded version of the before
operator. BEFOREK is a user defined variable that is equal to the maximum
distance berween two events X and Y for XBkY™ to hold.

— Threshold T for interestingness, that is the value that if exceeded by the
interestingness measure of a pattern deems it interesting

— Value of MIN_TO_EXPAND: the minimum threshold of interestingness that
a patiern must have in order to become the next pattern for expansion. The
algorithm will terminate if no such pattern remains.

— Maximum allowable pattern length

Ourtput:

— List of interesting parterns. their number of occurrences and the value of
thelr Interestingress measures

Algorithm:
Scar t:e izput string to determine the interestingness
measars ¢f each event in it, and initialize list L with
a’l tkss:z events
WZIIZ thare exists a pattern in L whose interestingness
aszstre is greater than MIN_TO_EXPAND DO
Chocse_Y¥ext_Cardidate

ratTern P such that LENGTH(P) < MAXL which
inizes E{A{PopX}/E{PopX}} for all temporal
sperzzors op and all events X

L

=z Tattern P such that LENGTH(P) < MAXL which
marinizes E{A{XopP}/E{XopP}} for all temporal
cperzzers op and all events X

Sce= Zor patterns for which P is the prefix or suffix
Izmsers_Fatterns

224 newly fourd patterns to list of already found

ReTurn izteresting patterns
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The algorithm continues until there are no more patterns for which (actual
remaining/expected remaining) exceeds some minimum threshold MIN_TO_EX-
PAND, a parameter chosen at the outset.

Update_Smaller: Consider the situation when a pattern aNS is chosen as the
next candidate. During the scan, patterns of the form aNAN7y,

aNBBkvy, etc... will be discovered. If, for example, M occurrences of aNSN~y
are found then there are M fewer patterns for which AN is a suffix remaining
to be found. This decreases the chance that SN+ will be chosen as a candidate
and this change needs to be recorded.

Likewise, during the scan for aN3, NaNS may be found to occur L times.

Therefore, the number of remaining patterns of the form §NaNX to be found
has decreased by L. Again this needs to be recorded.
Check_Larger: Consider the situation when o is chosen as the next candidate.
During the scan we will discover some number of aNg, say P. As was discussed
earlier, this implies that there are P patterns of the form aNANX and patterns
of the formXNaNJ(we can make similar statements for the other operators).
Some of these may have already been discovered, however. For example, if v was
already chosen as a candidate, and some SN+ were found, and then SNy was
chosen and M ocurences of «NSN~ were found, then the number of remaining
patterns of the form aNJ3NX yet to be found is not P but rather P — M. This
again needs to be recorded.

5 Experiments

We conducted experiments on three different problem domains. The first was a
simple sequence of independent events. This data was generated synthetically.
The second domain we considered were sequences of UNIX operating system
calls as part of the sendmail program. The third was that of Web logfiles. In
the last case, events were dependent.

5.1 Sequential independent events

We used an input string of length 1000 over 26 different events. In this case,
we assumed that each event was equally likely and that the events were inde-
pendent. We searched for patterns, P, for which Length(P)< 5. Our results are
presented in Table 2. The columns of the above table are as follows:

Algorithm - The algorithm used. The naive algorithm, presented in Section 4.1,
represents essentially an exhaustive search over the input string and is guaran-
teed to find all interesting patterns. It is included as a benchmark by which we
measure the effectiveness of the main algorithm. Percentage is equal to the value
for the main algorithm divided by the value for the naive algorithm times 100
for each column respectively. The first number following each algorithm(2 or4)
is the value of BEFOREK used. The second number(3,4, or 6) is the interest-
ingness threshold.
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{Algorithm [4# of Scans[# of Expanded Patterns|# of Interesting Patterns)
Naive(2.3) 116 2189 290
Main(2.3)] . 161 919 268
Percentage 38.7% 36.9% 92.4%
Naive(4.3) 116 3105 259
Main(4.3) 163 1073 250
Percentage 39.2% 34.6% 96.5%
Naive(2.4) 116 2139 168
Main(2.9) 161 919 164
Percentage 38.1% 36.9% 97.6%
Naive(4.4) 116 3105 171
Main(4.4) 163 ) 1073 166
Percentage 39.7%% ' 34.6% 97.1%

| Naive(2.6)] 416 2489] 133
\Main(2.6) 161 919 130
Percentage|  38.7% 36.9% 97.7%

I Naive(4.6) 416 ) 3105 129

{ Main(4.6) 163 1073 127

iPercentage| 39.2% 34.6%I 98 4%

Table 2. Results for independent sequential data.

= of Scans - The number of scans over the input sequence necessary to discover
all interesting patterns found.

= of Expanded Patterns - The number of patterns discovered. interesting or
otherwise.

= of Interesting Patterns - The number of interesting patterns found.

Based on the results presented in Table 2, the main algorithm did not find
all interesting partterns, although it discovered most while doing less work than
tke naive algorithm. Also note that the main algorithm was more accurate as
our threshold for interestingness increased. In other words, when our algorithm
did miss interesting parterns they tended not to be the most interesting.

Sequences of OS System Calls

- 2cond domain we investigated was a sequence of operating system calls
by a sendmail program. The events consisted of the 31 different system
hat the program made and our string consisted of 31769 sequential calls.
: time of these experiments we had no knowledge of the actual probabil-
f these events. Therefore, we made an assumption that system calls are
:ndent from each other and estimated probabilities of individual events by

, - scanning the string and counting the number of actual occurrences of each
For each event ¢; we let Pre;] = ( number of occurrences of e;}/ (the total
lengthj. Because of this. the interestingness of each of atomic event was by
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definition exactly 1. This forced us to assign a value to MIN.TO_EXPAND that
exceeds 1 or else the algorithm would not even begin. This resulted in more scans
of the input string than were actually necessary to discover interesting patterns
but nonetheless the improvement we achieved over the naive algorithm was con-
sistent with our experiments in other domains (approximately three times). The
following represent a selection of interesting patterns discovered. These were se-
lected because of a combination of their interestingness as well as our confidence
that these actually represent significant events due to the number of occurrences
of them. These results were generated on a run where we allowed strings of up
to length 5.

EVENT :((sigblock NEXT setpgrp) NEXT vtrace)
COUNT :2032
ACT/EXP :43.1628

EVENT :(((sigblock NEXT setpgrp) NEXT vtrace) NEXT vtrace)
COUNT :455
ACT/EXP :83.1628

EVENT :(((sigblock NEXT setpgrp) NEXT vtrace) BEFORE sigvec)
COUNT :355
ACT/EXP :52.1150

EVENT :(sigblock NEXT(setpgrp BEFOREK vtrace))
COUNT :2032
ACT/EXP :21.5814

EVENT :((sigblock BEFOREK setpgrp) NEXT vtrace)
COUNT :2032
ACT/EXP :21.5814

EVENT :((sigpause NEXT vtrace) NEXT lseek)
COUNT :1016
ACT/EXP :106.672

EVENT :(sigpause BEFOREK (vtrace NEXT lseek))
COUNT :1016
ACT/EXP :53.336

EVENT :(sigvec BEFOREK(sigpause NEXT(vtrace
NEXT(lseek NEXT lseek))))

COUNT: 29

ACT/EXP :212.349

EVENT :(sigpause BEFOREK (vtrace BEFOREK lseek))
COUNT :2032
ACT/EXP :53.336
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EVENT :((vtrace NEXT lseek) NEXT lseek)
COUNT :1017
ACT/EXP :35.5112

In these results COUNT represents the number occurrences of the pattern
EVENT and ACT/EXP represents the interestingness of this pattern. Notice a
couple of things. First, most of the interesting patterns that occurred a reason-
able number of times (the ones shown above) were mostly of length 3. There
were, of course, more interesting patterns of longer length but the number of oc-
currences of these patterns was significantly fewer. Also notice that no interesting
UNTIL patterns were discovered. This is because we never saw AAAAAAB, i.e.
all the occurrences of until weré of the form AB or AAB which were captured
by NEXT or BEFORE and since fewer instances of NEXT and BEFORE were
expected these proved more interesting.

These system calls are from the UNIX operating system. In the future what
we propose is to assign probabilities of atomic events based on their frequencies
in a period when we are confident no intrusions to the network occurred and
then see if we can discover interesting patterns that correspond to intrusions.

5.3 Web logfiles

Each time a user accesses a Web site, the server on the Web site automatically
adds entries to files called logfiles. These therefore summarize the activity on
the Web site and contain useful information about every Web page accessed at
the site. While the exact nature of the information captured depends on the
Web server that the site uses, the only information we made use of was the user
identity and the sequence of requests for pages made by each user. The Web
site we considered was that of one of the schools at a major university. The
users we considered were the two most frequent individual users. It is important
to recognize that the Web logfiles simply tell us the hostname from which a
request originated. Typically, there are a large number of users who may access
a Web site from the same host, and the hostname, therefore, cannot be used
to definitively identify individual users. We attempted to identify, with some
confidence, frequent hostnames that did indeed represent individual users. We
==~ two Web logfiles for our experiments. First, we considered a synthetic Web
> This included a Web site with 26 different pages and 236 total links. We

. an input string of length 1000 representing 1000 hits on pages of the site.
\is case events were hits on Web pages. Probabilities were, of course, not
>endent. The probability of a user reaching a given Web page is dependent

1e page he is currently at. In order to compute a priori probabilities of each

we declared several pages to be equally likely “entrance points”, to the Web

If there were N “entrance points” then each has a 4 chance of occurring.

is one of these “entrance points”, P has K links on it and one of these links
page G then the probability of G occurring is (+)(#). By conducting an
ustive breadth-first search we were able to calculate the probabilities of each

B
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event occurring (i.e. each page being “hit”). When calculating expectations for
various patterns, we used conditional probabilities. So, for example, the E{AN B]
is no longer Pr{AJPr[B}(K — 1), where K is the length of the input string. It
is now Pr[A]Pr[B|A}(K — 1) = Pr[A](1/+#¢of links in page A)(K — 1) if there
is a link from A to B and 0 otherwise. Our results for this data are presented

[ Algorithm [# of Scans[# of Expanded Patterns|# of Interesting Patterns|

Naive2 634 1356 464
Main2 239 528 437
Percentage 37.7% 38.9% 94.2%
Naived 654 1564 462
Maind 245 568 437
Percentage 37.5% 36.3% 94.6%

Table 3. Results for synthetic Web logfile data.

in Table 3. The interestingness threshold for these experiments was 3.0. Once
again our algorithm was able to find most interesting patterns while examining
much less of the search space than the naive algorithm did.

Finally, we considered data from an actual Website from one of the schools
of a major university. There were 4459 different pages on this site with 37954
different links between pages. We used Web log data collected over a period of
nine months and selected out the two most frequent individual users of the site,
both of whom accounted for more that 1400 hits and used these sequences of
hits as our input string. Our experiments using this data were less enlightening
than when we used synthetic data. The main algorithm found only a handful
of interesting patterns of length greater than two. In fact, when we applied the
naive algorithm we found that there were few more interesting patterns to be
found at all. More specifically, the main algorithm found 2 and 3 interesting
patterns of length greater than two in our two input strings, respectively. The
naive algorithm found 3 and 3. The primary reason for the lack of interesting
patterns of greater length was that the size of the Web site dominated the size
of the input string. The fact that there were 4459 pages and our input strings
were only of length 1400 made the expected number of occurrences of each event
very small. So small, in fact, that even a single occurrence of many events proved
interesting.
Additional factors that compounded the problem are:

1. Changing Web Structure. The Web architecture from which
we built the graph that the algorithm was run on was from a
single moment in time( we captured the structure of the Web
site, including the links, on a single day, and extrapolated it to
9 months of Web log data). Over this period there were some
changes to the Web site. This creates some difficulties in that
the Web logfiles showed that users linked from pages to other
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pages where links did not exist in the Web we were considering.
In fact, there were visits to pages in the Web log data that did
not exist in the site we were using. This had the effect of forcing
the expected number of occurrences of any patterns that in-
cluded these pages or links to be zero and thus never considered
interesting either as patterns or candidates.

2. Multiple Sessions. While each input string we used had a
length greater than 1400 events, these Web hits spanned many
sessions. In fact, the average session length was approximately
10 hits. The last hit from one session immediately preceded the
first hit of the NEXT session in our input string. Normally, how-
ever, a link did not exist from the last page of the first session to
the first page of the NEXT session. Therefore, once again this
had the effect of forcing the expected number of occurrences
of any patterns that included this sequence of pages to be zero
and thus never considered interesting either as patterns or can-
didates.

3. Caching. Consider what sequence of hits appears in Web log
data if a user goes to pages A4, B,C,D in the following order
A —- B - C — B — D. Normally, what occurs is that a
request is made(and therefore logged) for page A then page B
then page C then, however, when the user goes back to page
B no request is made of the server because this page has been
cached on the users’ local machine. Finally, a request for page
D will be made and logged. Therefore, this sequence of hits will
appear in the Web log data as follows: A = B — C — D. If no
link exists from page C to page D then once again the expected
number of occurrences of any pattern including this sequence
of events will be zero. Given the wide use by Web users of the
BACK button, the effect of caching is substantial.

4. Local Files. Finally, many pages that appeared in the Web
log data did not appear in the Web site we were using because
they were files kept on individuals local machines in their own
directories, rather than on the Web server. These pages had the
same effect as the changes made in the Web over the nine month
period.

sons Learned. The primary cause of our lack of success in finding interest-
patterns in the use of our university Web site was the fact that the size of the
was very large in comparison to the size of the input strings we considered.
are planning to obtain Web logfiles spanning a longer period of time, for
1aller and more stable Web site. We are also considering various models to
with the loss of patterns that we experienced due to the multitude of user
ions.
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6 Conclusions and Future Work

In this chapter, we reviewed the characterization of different knowledge discovery
tasks in temporal databases (as summarized in Table 1) and focused on a Class
11 problem of generating unexpected predicates. In particular, we presented
an algorithm for finding unexpected patterns, expressed in temporal logic, in
sequential databases. We used multiple scans through the database and the step-
by-step expansion of the most “promising” patterns in the discovery process.
To evaluate the performance of the algorithm, we compare it with the “naive”
algorithm that exhaustively discovers all the patterns and show by how much our
algorithm outperforms it. We also use our algorithm for discovering interesting
patterns in sequences of operating system calls and in Web logfiles.

In its current implementation, our algorithm discovers temporal patterns
only of a certain type (described in Section 3). As a future work, we plan to
extend our algorithm to include more complex temporal logic expressions. We
also plan to extend our methods to discovering unexpected patterns in temporal
databases, where the patterns will be expressed in first-order temporal logic.
Finally, we plan to apply our algorithm to the problem of intrusion detection, as
well as to a more suitable Web site having fewer HTML files and more traffic.
We expect to find more interesting patterns for such a site.

We are also interested in pursuing some of the complexity issues that arose
in the NP-hardness proof. Specifically, The problem CLIQUE that we reduced
from is actually SNP-complete {19] which is a class of languages that has some
interesting properties we are investigating. In addition, we are considering ap-
plication of Ramsey’s Theorem to our problem domain.
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A Appendix: Proof of Theorem 1

Problem: Given a string of temporal events V = v, v2,. .., v, does there exist
an interesting pattern in V of the form X; By X2By ... By X, for an arbitrary m?
The following proof shows that this problem is NP-complete.

Proof of Theorem 1: We show that our problem is NP-hard by proving that
CLIQUE <, INTERESTINGNESS. The reduction algorithm begins with an in-
stance of CLIQUE. Let G = (V, E) be an arbitrary graph with |V] vertices and
| E| edges. We shall construct a string of events S such that an interesting pattern
of the form e;Byes ... Bxen, exists if and only if G has a clique of size m. The
string is constructed as follows. Each vertex vy, vs,..., vy, in the graph G will
become an event in our string S, i.e. our events are ey, €2, ...,y Additionally
we will make use of (|V|+ |E|)m “dummy” events called dy, dz, ..., d(v|+|E)ym>
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1

2 \ 3

Fig. 2. The graph G(V, E) with vertices vy,v2,...,vs and a clique C of size 4. C =
{va,vs, v4,v5}

where m is the value from the CLIQUE problem. Based on each vertex v; € G
a substring will be created. The associated event e; will be called the “genera-
tor” of this substring and the substring will be “generated” by the event. The
concatenation of these substrings will be the string S. Initially, the vertices in
G are arbitrarily ordered 1,2,...]V]. Then for each associated event e;, in order,
we create the substring based on e; by listing, again in sorted order, the list
of vertices(actually their associated events) e;, for which there exists an edge
(vi,v;) € E plus the event e;|V| times. For example, the substring generated by
ey for the graph in Figure 1 would be

€1 £2€9...9€3€4€5
N i
Vi
since there are edges in G from vy to each of es, es, and es. Following each
substring generated in this fashion we concatenate a substring of all the dummy
events in sorted order. As will be seen shortly these dummy events are used

to separate the substrings of events e; and therefore no dummies are needed
following the substring generated by e|y. Thus, for the above graph the string

S =eie;...eqe0ese6dy ... d(QVH-{E[)mel ez...ez€e3eq4esdy ...
Vi vl
d(W\'HEDmeZ €3...€3 846565d1 o d(‘\/‘ﬂg‘)megeg €4 ...L4 85d1 < e
vl Vi
dvi+iEpme1e2eses s . .. e5dy ... d(V|+|E)m€1€3 €6 - - - €6
vl Vi

;otal length of S will be 2|E|+|V|2+(|V|~1)((|V|+|E|}m). This can be seen
* lows. The substring generated by e; will have |V| occurrences of e; plus one
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occurrence of each event e; such that (vi,v;) € B (deg(v;)). Summing over all
vertices i the total length of these substrings will equal 2|E| + [V|?. In addition
there will be a total of |V| — 1 occurrences of the substring dids . ..d(g1+)v)ym
with a total length of (V| — 1)({(|V| + |E|)m). The string S can clearly be
constructed in polynomial time as it is polynomial in the size of the graph.

Given that our problem allows for an exogenous assignment of probabilities
we will assume that all of the events are equiprobable. That is

1
P = T E

for X =e;ordj, i el...[V],7€1l...(lel+|V])m. Since each dummy event
occurs exactly |V] — 1 times and each event e; occurs |V} times in the sub-
string it generates plus an additional deg(|{V']) times elsewhere, these exogenous
probabilities are not consistent with the actual probabilities of the events in S
as the events corresponding to vertices occur more frequently than the dummy
events. It is possible to define the probabilities so that the assigned probabilities
of the dummy events is consistent with their actual frequencies but this requires
a somewhat more complicated construction and proof and offers little insight
into the problem so we have chosen to proceed as described above.

Let BEFOREK = |V| + |E|.

The expected number of occurrences of a pattern

X BuX2By...By XL = (n~ K(L - 1))KE~1Pr[ X} PX,... Pr]X ]
K(L-1)-1

Py <(Lf'_1))Pr{[Xlu...Pr{[XLg, ifK > 1

i=L1

= (n— K(L - 1)KL 1Pr[X,]PX; ... Pr[X], else

where K = BEFOREK and n = |S|. This can be derived in a manner analogous
to how expectations were derived in section 3. It can be seen that in the special
case of I = 2 this formula reduces to the one derived previously for E[By].

For the case where K = |V| +|E|,n = 2|E| +|V]® + (VI = D((JV] + |E])m),
and L = m we will call the value of this expectation e. Let the interestingness
threshold
_2Vim =1
- 2¢
The relevance of this value is that if a pattern of the form X;ByXs... B Xy, is
instantiated only with events e;(no dummies) and it occurs at least |V|m times
it will be deemed interesting. If it occurs {V}m — 1 times it will not. This will be
discussed in further detail shortly.

‘We must now show that this transformation from CLIQUE to INTEREST-
INGNESS is a reduction. First, suppose a CLIQUE vy, vs,...,um exists in G
and therefore corresponding events ey, ez,. .., e, exist in S. Note that here the
indexes of the vertices and events are not intended to suggest that the clique

T
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must consist of the first m vertices in the original ordering but rather are used
for ease of exposition. Of course these vy, ...,vm(and ey, . .., ey) could represent
any collection of m vertices(events) although we will continue to assume that

they are in sorted order. By construction, the substring generated by e; will
include

€1€1...€1 €E2€3...6m
Nt i
Vi

For an arbitrary i the substring generated by e; will include ?
€1€2...€€;...€;€i41...6n
N, s’
! i

Each substring will contain |V'| occurrences of the pattern e; BeeyBresBy . . . Bee,n
and there are m such substrings so the total number of occurrences of this pat-
tern is |V|m. Thus

Ale1By...Byey] _ Vim 5
E[{e; Bkez y e Bkem]j €
Conversely, suppose that an interesting pattern of the form X;By X . .. By Xm

exists. We must show that a corresponding CLIQUE of at least size m exists in
G. The following lemma is the basis for our showing this.

T

Lemrpa 1. If an interesting pattern exists then it consists only of events e,
containing no dummy events.

Proof: We have already seen that if a CLIQUE of size m exists in G then an

interesting pattern exists in §. Thus interesting patterns are possible. What is
left to show is that if

— a pattern consists only of dummy events then it can’t be interesting, and

— if a pattern consists of both dummy events and events e; it can’t be inter-
esting

Assume we instantiate the pattern P = X;By...ByX,, with j dummy events
and m — j events e; where j = 1...m. Note that given our definition of BE-
FOREK for any pattern of this form its total length, i.e. the distance in the
- S from X7 to Xy can be at most (|E| + [V]|)m. Therefore, if a pattern

ins any dummy events these occurrences must occur only at the beginning
Lof the pattern since any dummy event is part of a substring of (|E|+|V|)m
1y events. That is there cannot exist a dummy event d; in the pattern such

- .t event e; occurs before d; in the pattern and an event e occurs after it.

- Ul assume, without loss of generality, that the 7 dummy events all occur at

d of the pattern. We will next count the maximum number of occurrences
terns of this form.

re may, of course be vertices that are not part of the clique that are connected
jome edge to e;. These vertices would also be included.
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Fach of the m — j events e; generates a substring in S. In that substring
the event e; occurs |V| times and all other events occur once. In addition, in
the substring of dummy events immediately following this substring each event
occurs once. Thus, there can be at most |V| occurrences of the pattern P that
include events from the substring generated for each e;. There are a total of m—k
events e; in the pattern and therefore a maximum of (m - j)|V| occurrences of
P that include these substrings. In addition, there exist |V'|~ (m — j) substrings
generated by events not in P. In each of these substrings P can occur at most
once since each event in P occurs at most once in a substring that it did not
generate. This can result in a maximum of |V| — (m — j) additional instances
of P for a total of (m — j + 1)|V| — (m — J) occurrences of P. This expression
is maximized if 7 = 1 in which case the maximum number of occurrences of
P =m|V}—m+1. Since

miVi—m+1 T
€
where € is again the expected number of occurrences of this pattern,this pattern
cannot be interesting. O

We now know that any interesting pattern can consist only of events e;.
We also know that each occurrence of an interesting pattern can include only
events generated by a single e; (since BEFOREK < (|E| + |V|)m, the length
of the dummy substrings separating event substrings generated by each event).
Furthermore, we can use an argument identical to the one used in the proof of the
above lemma to show that for at least m|V| occurrences of a pattern to exist at
least m|V| of them must include the generating event from which all the events
in this instance came. In other words, if an interesting pattern 1By ...Bgenm
exists then there must be at least m|V/| instances which include the e; that
generated the substring from which all the other events came. To see this note
that each time an instance of a pattern that includes a generating event occurs,
|V} instances will actually occur, one for each copy of the generating event in
the substring it generated. Let us assume that only (m — 1)|V| instances of a
pattern exist that include the generating event from which all other events in
this instance came.® In all the other substrings generated by events not in the
pattern there can be at most one instance of the pattern since each event occurs
at most once in a substring it did not generate. There are |V| — (m — 1) such
events so the total number of instances would only be m{V| —m + 1. Therefore,
for a pattern to occur at least m|V| times and thus to be interesting there must
be m|V| instances that include the generator of the other events in that instance.
Since each generator results in |V| instances there are m generators that are part
of instances. The m vertices that correspond to these m events form a clique in
G. This is clearly true since for any of the e; amongst these m generators there
is an edge from itself to each of the other generators.

Finally, note that this problem is also in NP and therefore NP-complete
since given a certificate(i.e. an instantiation of our pattern in this case) we can

10 There cannot be any more than this unless there are m|V] since they come in mul-
tiples of |V].
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check if it is interesting by simply scanning over S. This clearly can be done in
polynomial time. O

Notice that we have phrased our NP-hardness problem as “Does any inter-

esting pattern exist?” We could have just as easily posed the question “Do p
interesting patterns exist”? Our proof can be trivially extended to accomplish
this by enforcing that the dummy events always contain p—1 interesting patterns
and that the pth interesting pattern only occur if a clique of size m exists in G.
Our decision to enforce that the dummy events contain no interesting patterns
and to thus pose our question as we did was rather arbitrary.
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