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Abstract: Most approaches in forecasting merely try to predict the next value of the time se- 
ries. In contrast, this paper presents a framework to predict the full probability distribution. It  
is expressed as a mixture model: the dynamics of the individual states is modeled with so-called 
"experts" (potentially nonlinear neural networks), and tbe dynamics between the states is modeled 
using a hidden Markov approach. The full density predictions are obtained by a weighted superposi- 
tion of the individual densities of each expert. This model class is called "hidden Markov experts". 

Results are presented for daily S&P500 data. While the predictive accuracy of the mean does 
not irrlprove over simpler models, evaluating the prediclion of the full density shows a clear out-of- 
sample improvement both over a simple GARCH(1,l) model (which assumes Gaussian distributed 
returns) and over a "gated experts" model (which expresses the weighting for each state non- 
recursively as a function of external inputs). Several interpretations are given: the blending of 
supervised and unsupervised learning, the discovery of hidden states, the combination of forecasts, 
the specialization of experts, the removal of outliers, and the persistence of volatility. 

Keywords: Forecasting, Density Prediction, Conditional Distribution, Mixture Models, Time 
Series Analysis, Hidden Markov Models, Gated Experts, Hidden Markov Experts, Model Compar- 
ison, Density Evaluation, Computational Finance, Risk Management. 

Data: Daily S&P500 (January 1977 to December 1997). 

Code: h t t p  : //www . s t e r n .  nyu. edu/~aweigend/Research/Software (in MATLAB). 
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1 INTRODUCTION 

The introduction reviews several approaches to density forecasting in time series, informally intro- 
duces the model class of "hidden Markov experts7' (HME), discusses methods for density evaluation, 
and relates HME to previous work. A brief overview of the sections of the paper are given at  the 
end of the introduction. 

1.1 Tasks in Time Series Prediction 

A time series is a sequence of observations yT = {y 1 t = 1, . . . , T). t enumerates the elements 
of the sequence,' and T is the total number of the observations. Our methodology is to split the 
entire set of available data into at least two sets. The first part is used to estimate the parameters 
of the model and is called the training set. The second part of the data is only used a t  the very 
end of the entire modeling process to compute performance measures and referred to as the test 
set.2 The test set thus serves as the out-of-sample set, since waiting for genuinely new observations 
would just take too long for daily data. 

Many forecasting methods (in particular almost all nonlinear forecasting methods) focus on 
predicting the next value or point of the time series. Such point predictions are appropriate 
on problems where the signal is only distorted with a small amount of noise, as typically the 
case in nonlinear dynamiw3 However, in financial time series, the noise is often larger than the 
signal itself, requiring methods that predict not just a point but a density. This paper focuses 
on such density prediction, addresses the problems of a small signal to noise ratio, and includes 
non-Gaussian density forecasts. 

We start by briefly discussing a path through various tasks for prediction. 

(1) The first model uses the mean of the training set as point prediction. However, with sufficiently 
precise experimental resolution, the exact value of the prediction is almost always wrong: 
probability densities are needed. 

(2) Model 1 above can be interpreted as predicting a single Gaussian whose constant variance is 
that of the training set. This density implicit in the point forecast will be used as the baseline 
model in the empirical evaluations. 

The two possible next steps are (a) to allow the mean to vary, or (b) to allow the variance to vary. 

(3a) The predicted mean varies (i.e., it is a function of some inputs, x) but the variance remains 
constant. The input variables can be other time series (exogenous variables), or they can 
be lagged values of the series to be predicted (autoregression). The functional mapping 
from these variables to the output (expected mean) is, in the simplest case, linear. Our 
framework allows for general nonlinear functions, typically be expressed as neural networks. 
The parameters of the model can be estimated by minimizing the squared error between 
the prediction and the observed value. In machine learning, the observed value is called the 
"target", and an input-output pair is called a "pattern". 

lTo fix a specific example in mind, consider the daily closing prices pt of Standard and Poor's S&P500 index. 
This sequence of observations, corresponding to the price of a weighted portfolio of stocks, increases on average over 
time. The first step in time series prediction (as in any machine learning task) is to find a representation such that 
the future looks as similar as possible to the past. This is achieved by taking the differences between the logarithm 
of the prices, yt = logpt - logpt-' E (pt -pt- l )  /pt-l, which is approximately the relative change in price, i.e., 
the price difference between today and yesterday with respect to yesterday's price. For S&P500 closing prices, the 
time between observation is spaced evenly (one observation per working day). However, t can just enumerate the 
elements of an arbitrarily spaced sequence, such as the sequence of trades in transactional data. 

2Additional sets can be set aside from periods earlier than the test set if there are meta-parameters, such as the 
number of experts. 

3This is not a coincidence. Many nonlinear systems can generate so-called chaotic behavior where the time series 
continues in an "interesting" way forever. This is an important difference to linear systems that die out if they are 
not driven by noise. 
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(3b) Rather than varying the mean and keeping the variance constant, Model 3b fixes the mean (to 
the mean of the training set) but allows for conditional variance. Estimating the parameters 
becomes more complicated than minimizing a squared error since, in contrast to Model 3a, 
we here do not have a desired value or target for each pattern. In order to estimate the 
parameters of the model, a more complicated statistical framework is needed. We use a 
maximum likelihood approach: The predicted conditional variance is written as a function 
of the inputs. The coefficients of this function are estimated such that the likelihood of the 
observed data given the model and the inputs is maximized. 

Model (3b)-mean fixed, variance varying-has important applications in finance. While it 
is very difficult to predict the once-differenced time series of prices (i.e., returns) better than 
a constant (Model I ) ,  more accurate predictions of the variance than a constant are often 
possible. This reflects the well-known property of many financial time series called volatility 
clustering or volatility persistence: There are time periods with large (positive and negative) 
returns, which should be predicted with a larger variance, and there are time periods where 
the market is quiet and the predicted variance should be ~ m a l l e r . ~  

(4) The fourth level of complexity predicts Gaussian densities with conditional means and condi- 
tional variances, combining the two degrees of freedom from Models (3a) and (3b). 

So far, the form of the density in all the models has been Gaussian. Now we want to generate 
density predictions that are non-Gaussian. To achieve this goal, there are two philosophies: using 
expansions (e.g., Edgeworth expansion), and using mixture distributions. The expansion approach 

has the advantage of orthogonality. The computation of increasing orders of approximation is 
sequential; the term of order (n+l)  is not effected by terms of order n and below. The corresponding 
weakness is that the term of order (n + 1) can only patch up problems the lower orders have left 
for it, rather than all (n + 1) terms joining together and trying to find a better overall ~ o l u t i o n . ~  

The mixture approach expresses the density P(yt+l) as a sum of M distributions: 

P (yt+ll information set at  time t, model parameters) 
M 

= $+I(.) P (yt+' /xt", . . . , model parameters) 
j=l 

In the context of nonlinear (e.g., neural network) sub-models for the mixture components, the 
sub-models are called "experts". This follows the notation introduced for mixture models t o  the 
neural network community by Jacobs, Jordan, Nowlan and Hinton (1991) who applied it to  a 
classification problem, see also Jordan and Jacobs (1994). 

Several choices need to be made: 

The number of experts cannot be determined directly from the data. Wc typically choose 
between three and ten mixture experts, estimate the model, convince ourselves of its perfor- 
mance, and finally analyze the resulting experts. Their interpretation is part of the creativity 
of the modeling process and is hard to do automatically. 

4 ~ o r  modeling the volatility of financial returns, expressing the predicted variance as a function of a few lags 
of returns or squared returns usually does not give good predictions. The dynamics of the underlying structure in 
the variance of financial returns usually requires estimates of the state at the input-the realizations (e.g., squared 
returns) are very noisy. This is a property of the X: distribution (used to approximate volatilities): its mean and 
standard deviation are of the same size (Timmer and Weigend 1997). To predict volatility well, the model needs t o  
have knowledge about the estimate of the current state. We use a GARCH(1,l) model as a representative in the 
performance comparison on S&P500 returns in Section 5. 

5A parallel can be drawn between the two philosophies for modeling densities (expansions vs. mixtures), and the 
two philosophies for function approximation (polynomials vs. neural networks). Expansions and polynomials are 
computationally cheap, have incremental updates, and are often amenable for an analytical treatment of convergence 
properties. Mixtures and neural networks are computationally expensive, since the entire model needs to  be re- 
estimated when the number of components changes. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-98-23 



l The functional form of the individual densities generated by the experts can be any mem- 
ber of the exponential family. The theoretical derivations are kept as general as possible. 
However, when a specific distribution needs to be chosen (in the computer implementation 
and the comparisons), we assume these individual distributions to be Gaussian. The idea 
of mixture models can be traced back to Pearson (1894) who "mined" a data set consist- 
ing of measurements of the forehead size of crabs with a mixture of two Gaussians, thus 
"discovering" two sub-populations. 

l y:+' is the weight given to Gaussian j for the prediction for time ( t  + l ) ,  with ~g~ yj  = 1. 
The key question is: what should $0) depend on? 

Three possible answers to the last item form the basis for the remaining three model classes 

(5) In the simplest case of an unconditional density, the yj's do not depend on anything: a 
mixture of Gaussians is fitted to the training set and all parameters are constants. The 
parameters (the mixture weights yj, and the means and variances of the individual Gaussians) 
are estimated in a maximum likelihood framework using the EM algorithm (explained in 
Section 2.5). This unconditional mixture will be one model in empirical comparisons. 

(6) The mixture weights y:, depend on a set of external variables. Based on the performance of 
all the experts on each pattern of the training set, a "gate" learns the mapping from its 
inputs, the exogenous variables, to  the 7,'s. This model class is called gated experts (GE) 
(Weigend, Mangeas and Srivastava 1995) and represents a regression model. When used in 
forecasting, the temporal structure of the time series enters only through the construction 
of the patterns (the input-output pairs). Note that once these patterns have been generated 
from the raw data, randomizing the order of the training data has no effect on the resulting 
model. In the real world, there are time series problems where a regression approach is 
appropriate. A successful application of this architecture is energy demand forecasting where 
the inputs into the gate represent cloud coverage, temperature, special tariff days, and other 
exogenous variables (Weigend et al. 1995). However, there are other time series problems 
where the nature of the problem requires time to be taken into account in a more fundamental 
way. One such example is given by the model class of HME. 

(7) This model class is called hidden Markov experts (HME). It  is best described by its 
underlying assumptions: 

l There are several discrete states. Their corresponding functional input-output mapping 
can be expressed as feedforward networks. These sub-models are called experts. 

l At each time step, a single expert is responsible for generating the corresponding obser- 
vation. We do not know which of the experts actually generated the observation-the 
probabilities of the experts for each time step need to be estimated from the data. 

l Modeling the sequence of the hidden states, we assume that the dynamics of the hidden 
states can be described by a first order Markov process, i.e., the next state depends only 
on the current state. This is expressed as a matrix of transition probabilities between 
the hidden states. We do not know these transition probabilities either; they also must 
be estimated from the data. 

Fortunately, the statistically solid framework of hidden Markov models (Baum and Eagon 
1963, Poritz 1988, Rabiner 1989, Rabiner and Juang 1993) provides algorithms to estimate 
the unknown quantities. We combine this framework with connectionist techniques. We 
show how we can learn the potentially nonlinear functions of each expert, the parameters of 
the transition matrix, and the probability vector across the states a t  each time step. 

The distinction made above emphasizes that GE and HME model time in a fundamentally 
different way. We now focus on the common aspects and consequences thereof. Both model classes 
share the goal to generate non-Gaussian density forecasts, and both are based on mixture models. 
The implications that hold for both cases include: 
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Discovering hidden states. Conventional data analysis, data mining, and knowledge dis- 
covery often do not have a clearly defined concept of what it means to "discover" "hidden" 
"knowledge." This paper clearly defines hidden  s tates  as the components of the mixture 
density. The solid statistical basis allows for a principled interpretation in terms of prob- 
abilities, enabling the discovery of interesting relations. In the case of predicting financial 
returns, the hidden states can be related to volatilities. Methodologically, it is important 
t o  clarify that the HME approach does not insert knowledge that volatilities are important 
for characterizing regimes, but it does make statistical assumptions that in turn yield this 
knowledge. 

Blending supervised with unsupervised learning. Approaches to learning from data 
and computational intelligence are traditionally dichotomized into supervised learning (re- 
gression and classification where the desired outcome is known for the training data) and 
unsupervised learning (clustering where no target is available and the goal is to discover the 
underlying structure). Both GE and HME combine the strengths of supervised learning with 
those of unsupervised learning: They build on the advantage of supervised learning that 
allows for performance evaluation, while providing the flexibility of unsupervised learning 
that has the advantage of discovering and interpreting hidden states. 

Combining forecasts. The idea of combining forecasts, going back to  (Bates and Granger 
1969), has become increasingly important in areas ranging from applied forecasting (Clemen, 
Murphy and Winkler 1995) to  computational learning theory (Cesa-Bianchi, Freund, Helm- 
bold, Haussler, Schapire and Warmuth 1997). Both GE and HME softly combine the fore- 
casts of the experts. Also, the relative weights for each expert vary a t  each time step. These 
weights are the estimates of the posterior probabilities. They reflect the training set perfor- 
mance for similar situations. For GE, the similarity is given through the gate, and for HME 
through the previous state and the transition matrix. 

Becoming experts through competition, In most approaches to forecast combination, 
the individual models give equal weight to all their training points. GE and HME use com- 
petitive learning. For each training pattern, all experts compete. If one expert's prediction is 
better than the predictions of the other experts, it receives a larger share of the data point 
t o  update its parameters than the others. It  thus learns to improve its predictions in areas 
where it is already quite good, and learns to ignore areas where some of its competitors are 
better. For both GE and HME, the experts become true experts and the algorithm learns 
about their area of applicability. Since we use unconditional variances for each expert, one 
delineation of the experts is according to the local noise level. Weigend et al. (1995) show that 
the adaptation of each expert to its (overall) local noise level helps to avoid overfitting. The 
standard assumption of constant variance often leads to local underfitting in some regions, 
and to local overfitting in others. When predicting financial returns, the different noise levels 
correspond to different volatility regimes. Given volatility clustering, this pulls the solution 
in the same direction as the Markov assumption of staying in a regime rather than switching 
to  another one. In general, the grouping depends both on similar noise levels and on similar 
functional forms of the experts. 

Modeling outliers. Many practical problems in data mining use some heuristic to remove 
outliers. Given the strong effect outliers have on the model, the specific heuristic can de- 
termine the resulting model. As an alternative to removing outliers, robust statistics uses 
an  influence function that downweighs patterns where the observation and prediction are 
far apart. This practice can be dangerous in risk management, a new area of increasing 
importance for financial firms. Risk management focuses on rare events and on tails of dis- 
tributions. Removing outliers or reducing their influence leads to  an underestimation of risk 
that can be detrimental. In contrast, GE and HME model outliers naturally. In our expe- 
rience, one expert has a relatively large variance compared to the others. Its role is thus 
to become the "garbage-collector", effectively removing the outliers and "explaining" them 
much better than all of the other experts whose likelihoods vanish at  that point. In turn, the 
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remaining experts have cleaner data which often allows the models to be interpreted more 
easily. 

Saving inputs. When learning from data, one can never be sure that one has the "best" set 
of inputs. In many cases there is no shortcut to the creative process of arguing for several sets 
of inputs, building the model, and then evaluating the out-of-sample performance to learn 
which inputs are important. This paper does not address the problem of input selection. 
However, once a set of inputs has been decided on, it is often possible to have different experts 
look at different subsets of the full set of inputs. When linear experts suffice, standard linear 
theory helps determine the significance of the inputs, which often leads to further reduction. 
Individual experts can end up with only a fraction of the union of the inputs. This simpler 
structure also lends clearer interpretations of the individual models. Note that the formalism 
matches the noise level of each expert to the noise level of its corresponding data. This has 
been shown to be an important aspect against overfitting of GE. 

This part of the introduction showed several angles on the proposed architecture that complement 
the rigorous evaluation of out-of-sample performance that any data driven modeling has to follow. 

1.2 Evaluating Predictions 

In the model comparison, GE (Model 6) and HME (Model 7) are chosen to have identical as- 
sumptions whenever possible. They have the same number of experts, the same inputs, the same 
functional form for the experts (e.g., linear or neural network), and, on the output side, the same 
noise model and degrees of freedom (i.e., expert-specific variances, and expert and input-dependent 
means). The only difference is the gate. Since many financial time series exhibit volatility cluster- 
ing, the gate inputs should include some volatility proxy such as exponentially smoothed square 
returns. 

In addition to the comparison between the mixture architectures HME and GE, we also com- 
pare them with several simpler architectures: unconditional Gaussian (Model I ) ,  unconditional 
mixture of Gaussians (Model 5), and a simple GARCH(1,l) model (constant mean but varying 
variance, Model 3b). The main two questions the empirical evaluation tries to answer are: 

HME vs. GE: Are there hidden states in the market that cannot be observed directly? 
The answer is positive if the assumption of an underlying hidden Markov process improves 
predictive accuracy compared to conditioning on exogenous variables. 

HME vs. GARCH: Do HME predicting non-Gaussian densities generate better forecasts than 
a GARCH model predicting Gaussian densities? 

To answer these questions, we compare the out-of-sample performance on a test set, i.e., data 
from a time period after the end of the training period. No single measure suffices: wc usc scvcral 
measures that capture different aspects of the density prediction. 

The first measure focuses on the predicted probability density function (pdf) and computes 
the average log-likelihood of the test data given the model. This measure, evaluated on test 
data, allows us to compare the performance of different architectures. 

The second measure focuses on the predicted cumulative density function (cdf). This integral 
transform method was suggested by Diebold, Gunther and Tay (1998). 

In addition, we also provide the normalized mean squared error. Note that it only evaluates 
the quality of the point forecast, but does not measure the quality of the density forecast, 
thus missing the central goal of this paper. 

While point forecasting is predominant in the forecasting literature, some studies discuss interval 
forecasts (Chatfield 1993, Christoffersen 1997) and probability forecasts (Murphy and Winkler 
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1992, Clemen et al. 1995). As Diebold et al. (1998) point out, the reasons for the relative neglect 
of density forecasting and evaluation include: uncertainty about the specific distribution, difficulty 
in evaluation, and the lack of demands from practice. This has changed in the recent past: risk 
management has become central for financial firms, and trading and pricing models increasingly 
depend on good density estimates. 

1.3 Related Work 

A hidden Markov model is a parametric stochastic probability model with which a time series can 
be generated or analyzed. A hidden Markov model has two interrelated processes: a finite-state 
Markov chain that cannot be observed, and an emission model associated with each state. The 
Markov chain is characterized by the matrix of transition probabilities between states. The output 
probability densities given by the emission model can be characterized along two axes: 

1. The output probability densities can be represented non-parametrically or parametrically. 

2. The output probability densities may depend on an input (conditional) or they may be a 
constant for each expert (unconditional). 

The mathematical representation that describes the observation probabilities is called the emission 
model. Viewed from the perspective of time series generation, the Markov chain generates a 
sequence of discrete states that we call a path. Based on this path, the emission model generates 
the probability density for each time step. The specific realization (the "ob~ervation'~) is then 
generated from this probability density for each time step. 

Viewed from the perspective of time series analysis, the output probabilities impose a "veil" 
between the states and the observer of the time series (Ferguson 1980). The task is to lift that veil. 
The term hidden is used because these states cannot be seen directly from the observed data. It  is 
called Markov since it assumes that the probability of the next state depends only on the current 
state and the transition probabilities between the states. Both the states and the observed process 
can be either discrete or continuous. In state space models, the states and the observations are both 
continuous (Harvey 1989, Timmer and Weigend 1997). HME use discrete states (corresponding to 
the experts) and continuous variables (corresponding to the observed time series). 

Next, we need to address the question of how to estimate the parameters of the model from the 
observed sequence. Baum and Eagon (1963) solved this problem for hidden Markov models with 
discrete observation densities. Baum, Petrie, Soules and Weiss (1970) extend the algorithm to many 
of the classical distributions. Hidden Markov models have been widely used in speech recognition 
(Huang, Ariki and Jack 1990). In the neural network community, Bengio and Bengio (1996) 
proposed the "Input-Output Markov model" which allows for non-constant transition probabilities 
in addition to nonlinear emission models. The concept of the transition among states can also 
be used to model the time dependency ol regirrle switching. Poritz (1982) first combined hidden 
Markov models with linear prediction. Hamilton (1990) introduced switching models to economics 
and econometrics, spawning a large body of research (Engel and Hamilton 1990, Hansen 1992, 
Durland and McCurdy 1994, Hamilton 1994, Lahiri and Wang 1994). 

Most of these applications focus on point predictions but not on densities. Fraser and Dimitri- 
adis (1994), predicting one of the data sets of the Santa Fe Competition (Weigend and Gershenfeld 
1994), used a hidden Markov model and generated non-Gaussian through a Monte Carlo approach 
(generating many continuations and then essentially presenting a histogram for each time step.) 
Hamilton and Susmel (1994) proposed an approach to model the conditional variances within 
Markov switching framework, where they combined the regime switching process with an autore- 
gressive conditional heteroskedasticity (ARCH) model by allowing the parameters of the ARCH 
process to come from different regimes. Gray (1996) proposed a more comprehensive method to 
nest the generalized ARCH (GARCH) model into regime switching model. However, these two 
models are limited to the first and second conditional moment of the distribution. 
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None of these approaches focused on the prediction and evaluation of more general densities. 
We emphasize the fact that the Markov switching models by their nature of being mixture mod- 
els generate densities, and that these densities should be evaluated with appropriate measures. 
F'urthermore, we allow for nonlinear experts. 

This paper is organized as follows: Section 2 explains the notation, describes the likelihood 
function, and illustrates the Expectation Maximization (EM) algorithm used in HME. Section 3 
explains how to generate density predictions using HME and describes methods to evaluate the 
density. Section 4 shows what can be learned from computer generated data for the HME approach 
to density forecasting. Section 5 presents the empirical results on comparing HME with GE, 
GARCH, an unconditional mixture, and an unconditional Gaussian for the daily density forecasts 
of S&P500 returns. Some conclusions are drawn in Section 6. 

2 THE ASSUMPTIONS AND THE ALGORITHM 

2.1 Notation 

1. Observations. yT = {ytlt = 1, ..., T )  refers to the observed time series data. T is the 
number of the observations and t is the time index. Similarly, xT = {xtlt = 1, ..., T )  
represents the input to the emission model. xt itself can be a vector or a scalar. In the 
example of auto-regression, xt is given by the previous d values, xt = {yt-l, yt-2, ..., yt-d), 
where d is the dimension of the input. xt can also consist of exogenous variables. 

2. States. S = {I, 2, .  . . , j ,  . . . , h.1') denotes the state. M is the number of states in the model 
and j refers to a specific state.6 The analysis of the model usually provides interpretations for 
the states in terms of physical significance or economic meaning such as relations to market 
sentiment, growth, recession, interest rates or volatility. 

3. Transition probabilities. aij is the transition probability of switching from state i to j, 

A = {aij, i, j 5 M, aij = p(st+' = jlst = i)} 

where aij 0, Cj aij = 1, and st describes the state at time t. 

4. Emission probabilities. bj is the probability of observing yt given the state and the model. 
In GE and HME this probability depends on the inputs xt into the experts at  time t through 
the conditional mean 

5 .  Initial probabilities of each state. IT = {xi, i = 1 . .  . M ) ,  where the probabilities have to 
'Vf sum to unity, Xi=' ~i = 1. 

For convenience, 6' = {A, B,  II) denotes the entire set of parameters of the model. The 
emission probability can thus be written as P(yt  Ist, xt , 6').  

2 The Likelihood Function 

To define the likelihood function, we impose the constraint that the probability of the current state 
depends only on the previous state: 

p(,tl,t-l, ,t-2 ,I xt-1 t-1 - p , 
> , , Y ) - ( tlst-l) . (1) 

%Vhile theoretical approaches such as the Minimum Message Length principle (Wallace and Boulton 1968) can 
give an optimal number of states under certain assumptions (Baxter 1996), we take a more pragmatic approach of 
building models for different M and evaluating the quantity that the modeler is truly interested in. For example, 
trading models that use the predicted densities as input are often evaluated with a risk-adjusted measure (Choey 
and Weigend 1997). 
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With qT denoting a specific sequence or path of states from t = 1 to T, this first-order Markov 
assumption enables us to write the probability of path qT = (sl, s2, .  . . , sT) as 

Given the current input xt and the previous state st-', earlier values of s and y are irrelevant, 

With Eq. 1 this expression can be transformed in the following way: 

The central problem of hidden Markov models is to find the entire set of parameters of the model. 
Using Eq. 3 and Eq. 4, the likelihood P ( y T  10) is then given as 

~ ( ~ ' 1 0 )  = P(YT, qTlO) 
qT 

T T T-1 
= ( , 1 , yT-l, @)p(yT-l ,  qT-'lO) conditional probability 

qT 

= x p(yT, sT1sT-l , xT, O)p(yT-l, qT-l 10) using Eq. 3 
qT 

= x ~ ( y ~ l s ~ , x ~ , @ ) ~ ( s ~ l s ~ - ~ ) ~ ( y ~ - ~ , ~ ~ - ~ l ~ )  using Eq. 4 
qT 

T 

(5) 

initial 

To obtain the probability P(yTld), two probabilities need to be estimated. First, the emission 
probability given the current state, P(yt  /s t ,  xT, 0); it varies at each time step. Second, the transition 
probability P(s t  Ist-'); it is a parameter of the model. 

The product bia,, is at the heart of the hidden Markov framework. If there was no Markov 
assumption, the second term av was absent, and the observation at time t would be attributed to 
state j with probability bj / C: bt. Model based clustering is (without Markov assumption, no a,,) 
the unconditional case (no input x). The presence of the second term, a,, , however introduces the 
trade-off wit21 the first term towards the entire likelihood. In most applications, the main diagonal 
elements a,,, describing the self-transitions (i.e., the probability of staying in a state) typically have 
values above 0.9, corresponding to an average time of staying in the state of above ten steps. Only 
if the next observation in the sequence can be explained much better by a state different from the 
current state does the model switch to the next state. 

2.3 Modeling the Conditional Emission Probabilities: The Experts 

Independence. Given the input of the emission model, the likelihood of observing yt given 
the current state and given the current input is bj = P(yt Ist = j, xt, 0). They are independent 
for each t .  We call each of the specified emission models an expert ,  and each individual expert 
corresponds to a state. 

Density Function. We can assume different forms for the distribution of the "noise". In 
the specific example of a Gaussian, the emission probability of expert j becomes 
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?j:(xt) is the conditional mean, and a; is the variance of the predicted Gaussian density. 

Architecture. The functional dependence of the conditional mean jj$(xt) on its input (xt) 
can potentially be nonlinear and is expressed through a feedforward neural network with 
nonlinear hidden units and a linear output transfer function. Removing the hidden units 
reduces the functional form of each expert to a linear relation. In the autoregressive case 
with a single lag, ?jt is given by Qt = ko -t- k lx t .  We can use linear autoregressive models as 
well as nonlinear neural networks as experts. The emission probability, B, is determined by 
the set of parameters, Qj, of expert j, according to the architecture of the emission model. 

Different experts can have different sets of inputs. Typically, the number of inputs to each expert 
is a subset of the full set of inputs that would be useful. When different dynamics modeled by 
the different experts "live" on subsets of the full set of inputs, this approach can help reduce the 
"curse of dimensionality." 

2.4 Computing the Likelihood: The Forward-Backward Procedure 

Rather than computing P ( y / $ )  directly using Eq. 5, Baum (1972) proposed an elegant algorithm 
called the forward-backward procedure. Dempster, Laird and Rubin (1977) subsequently intro- 
duced the so-called "Expectation Maximization" or EM algorithm to maximize this probability. 
HME build on these powerful algorithms. 

Let a: be the joint probability of having observed y from time 1 to time t and of being in state 
i a t  time t, 

2 
a: = ~ ( y l ,  , ..., yt, st = ilB) 

where 1 < t < T and B denotes the model parameters. The probability of the entire sequence of 
observations is given by the sum over the states at  the end of the sequence (at time T):  

The breakthrough of this idea is the computational complexity. Rather than being exponential 
in T (as one might expect, given the consideration of paths), it is only linear in time: a? can be 
computed recursively 

t M  1 

At the beginning of the sequence, the a's are initialized with probability a: = nib:. This recursion 
is called the forward procedure. Given initial estimates of ni and b i ,  Eq. 7 prescribes the compu- 
tation of the probability P(ylB), and, for t = T,  the entire likelihood. Similarly, the backward 
variable is defined as the conditional probability of observing y from t + 1 to  T given state i a t  
time t (and, as always, the parameters): 

The recursive induction for P starts at  the end of the sequence with from = 1 Vi, 

With t = T - 1, T - 2, . . . ,2 ,1,  we obtain the p's for all t. Combining a and P, we now obtain 
the important posterior probability of being in state i at  time t given the entire set of observations 
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and parameters 

t = p(s t  = ilY, 0) 'Yi 

- - P(Y,st  = il0) 

P(Y 10) 

y: is a key quantity that will serves as the estimate for P ( s t  = ;lo). 

Finally, the joint probability of the conjunction, [;f+l = P(s t  = i ,s t+l  = j IY, 81, is also 
computed from Q and p: 

The sub-section defined the important variable yl, the probability of being in state I at  time t, 
and showed how it can be computed from a: and p: capturing the likelihoods of the beginning of 
the sequence through t ,  and from t to the end of the sequence, respectively. The variable [ will 
serve as an auxiliary quantity in the computation of the transition probabilities, discussed in the 
next section that discusses how the parameters of the model are estimated. 

2.5 The Baum-Welch Algorithm: EM Algorithm for Hidden Markov 
Models 

The likelihood as given by Eq. 5 cannot be maximized directly since the hidden states are not 
known. The solution of this problem goes back to Baum et al. (1970). For the sets of parameters 
0 and Bold, an auxiliary Q-function is defined: 

It  can be shown that Q(O,BOld) > Q(Oozd,Oold) ==+- P(yTlO) > P(yTIQold) (Baum et al. 1970, 
Liporace 1982, Juang 1984). This re-estimation algorithm is called the Baum-Welch algorithm. 
Its key idea is to go back and forth between two steps, the E-step and the M-step. 

The E-step ("Expectation Step") assumes that the parameters of the model are known, 
and computes for each time step t the likelihoods a: and P:, and in turn, the posterior 
probabilities y: and [jf". 

The M-step ("Maximization Step") takes the variables computed in the E-step and updates 
M the parameters of the model such that Eq. 11 is maximized under the constraints ni = 1 

and xEl aij = 1. 

The new transition probabilities are given by: 

expected number of transitions from state i to  state j - x c ~ ' ~ + ~  
- t z j  a . .  - " ' expected number of transitions from state i (to anywhere) xt y: 

The new initial probabilities of state i are ni = y,! 
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While the original work by Baum et al. (1970) estimated only the unconditional density for 
each state, one of the important points of this paper is that it allows for conditional densities. The 
formulae for the re-estimation of the emission parameters depend both on the specific noise model 
and the specific functional form for the parameters of the noise model (e.g., linear dependence, 
neural network) of the experts. For each expert, Eq. 11 is maximized when the following G-function 
is maximized (cf., Fraser and Dimitriadis, 1994): 

G = 7: log plyt ixt, st = j, Oj) . 

Oj represents the parameters of the emission model of state j .  Equation 12 can be interpreted 
as the negative of a cost function for the emission model. The estimation of the parameter Oj 
depends on the specific form of the emission model. To be able to write down specific formulae for 
updating the parameters, the errors are assumed to be Gaussian. We first discuss the update for 
the variance of expert j ,  a$ Assuming that a; depends only depends only on the expert and not 
on any inputs, the llikelihood is maximized when 

takes the value of zero, yielding 

This is the ?$-weighted squared error between observation yt and prediction ?$. It describes the 
"local" noise level for expert j.7 

The mean of expert j ,  Q$(xj) is a function of the inputs into the expert, x;. This (linear or 
nonlinear) dependence is parameterized with Oj. To maximize Eq. 12, its partial derivative with 
respect to the parameters Oj has to vanish: 

where the mean of the Gaussian of the j th expert is given by 3 = c$(x$,Oj)- In the special 
case where this functional form is linear, the parameters for expert j can be estimated directly by 
regressing fi y. y E . onto yt xt.. In the general nonlinear case, each pattern still has the importance 

y$, but the parameters are to be estimated iteratively, as an additional inner loop within each M- 
step.* Interpreting it as a cost function for a neural network, each expert minimizes the weighted 
squared error 

T 

7 ~ h e  corresponding formulae for the case of vector-valued predictions are the $-weighted covariances for dimen- 
sion m and n: - 

In many applications it is reasonable to consider only a diagonal covariance matrix. This implies that the noise is 
drawn independently for the different outputs, and can often be interpreted more easily than the general case that 
allows for a rotation. 

8 ~ h e  nonlinear case is sometimes called the generalized EM (or GEM) algorithm. 
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The parameters Bj can be estimated through weighted error backpropagation (local linearization 
around 6j and taking a small step towards a better solution). This justifies viewing yj  as an 
eSfective learning rate. 

3 PREDICTING AND EVALUATING DENSITIES 

The previous section emphasized the underlying assumptions and algorithms for estimating the 
model. This section discusses how density predictions are generated and evaluated. 

3.1 Generating the Density Forecasts 

To generate a predictive density from a given HME model, one might be tempted to  use the state 
as estimated by Eq. 9. This, however, is cheating: yj is estimated using the entire sequence of 
observations, including future information. However, given the sequence of observations through 
time t, we can estimate the predictive probability of a state in terms of the transition probabilities 
aij and the joint a: probability of state s = j at  time t + 1 and the observations through time t, as 

Using the same notation for HME as for GE (Weigend et al. 1995), we use gifl as an abbreviation 
for P(st+l = j l y t ,  0). Note that g is a causal version of the y-it is based only on past information 
(through a )  but does not use any future information (that enters y through P). 

The density for ytfl  is the linear gj-weighted superposition of the densities of the individual 
experts: 

X t  summarizes the set of exogenous variables that are available at  time t. For the specific case 
of Gaussian distributions for the individual noise models, the individual densities are described by 
their conditional means Gfl and the variances a;. This completes the discussion of the ingredients 
needed to generate the full distribution for ytf l .  

Should one be interested in the overall mean of the predicted density at  time t + 1, due to its 
linearity, it is the gj-weighted superposition of each individual mean: 

However, recall that the key goal is t o  generate a forecast of the density, and not just its mean. 
The emphasis on densities requires special care in evaluating the forecasts. The next subsection 
presents different evaluation methods. 

3.2 Evaluating the Density Forecasts 

We use two different methods to evaluate density forecasts that complement each other well. While 
the first method is based on the probability density function itself (pdf), the second method is based 
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on the integral of the pdf, i.e., the cumulative distribution function (cdf). 

For each time step in the test set, the pdf-based evaluation records log P(yt+l I Xt , yt ,8),  
the value of the logarithm of the predicted density at  the corresponding observation yt+l. 
The average of these log P over the test set is used as measure for eva l~a t ion .~  This average 
(or "per-pattern") likelihood of out-of-sample data given the density predictions of the model 
allows direct comparison between different model classes. Since the value on a specific test 
set is only an estimate for the true value, it is important to use identical training and test 
sets in the  comparison^.^^ 

The cdf-based evaluation computes for each time step the cumulative probability distri- 
bution from the predicted density and records the value of the cdf at  the observed data point 
for each day. This probability integral transform was proposed by Diebold et al. (1998). Zt+l  
denotes the value that the predicted cdf takes at the observation yt+l: 

q is the integration variable. The key idea is that these values of Z should be uniformly 
distributed. Diebold et al. (1998) point out that standard procedures (e.g., Kolmogorov- 
Smirnov) test jointly for uniformity and independence. If the test is rejected, it is not clear 
what conclusions should be drawn. We follow their suggestion and first evaluate unconditional 
uniformity using a simple histogram. Second, to evaluate whether Z is iid, we show the 
correlogram of the centered (Z  - Z), where Z is the mean of Z. To explore dependencies 
beyond linearity, we also show the correlogram of the powers of (2 - Z). 

For completeness, we also give the normalized mean squared error defined as 

where t usually enumerates the points in the withheld test set. ENMs compares the model's point 
predictions to simply predicting the mean of the training set. Note, however, that the normalized 
mean squared error only evaluates the point prediction and thus requires that we collapse the 
density prediction for each time step onto its mean. When predicting financial returns, many 
people do not expect a significant improvement over predicting the mean of past data. When the 
mean of the time series shifts, ENMs can actually be larger than unity. This is also the case when 
the daily S&P500 forecasts are reduced to the mean and evaluated with ENMS. However, the first 
two methods, using the pdf and the cdf, both evaluating the density, exhibit strong differences 
between the model classes. 

4 EXAMPLE 1: COMPUTER GENERATED DATA 

For complicated model classes, it is important to understand the behavior of the model and to 
build up some intuitions about what happens when the model assumptions deviate from those 

9To avoid possible confusion, it might be worth pointing out that there are two very different likelihood functions 
in estimation and in evaluation. The likelihood function maximized in the model estimation or search, Eq. 6 ,  
considers the likelihood of the sequence-this includes the trade-off between staying in a regime and allowing for 
somewhat worse predictions vs. changing regimes and obtaining better predictions. Note that this likelihood includes 
the transition matrix (Eq. 7). In contrast, the likelihood function used for evaluation does not take transitions into 
account but only measures for each time step how well the observation was predicted by the pdf. It  is important 
that this likelihood does not contain aspects of the sequence or the transition probabilities, but only the predicted 
densities. This allows for clean comparisons between approaches to density prediction. 

l0We thank Art Owen for pointing out that average log-likelihood can be very sensitive to a few extreme values. 
We computed trimmed means, but it turns out that outliers in log-likelihood are not a problem in the experiments 
reported here. 
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of the generating process. Since mixture models contain an unsupervised part in learning, this 
section investigates whether the states found by the model actually correspond to the true hidden 
states.ll We generate data from a hidden Markov model with two states, and analyze these data 
with HME, GE and, as a naive sanity check, an unconditional Gaussian. 

4.1 Generation and Recognition Models 

The data generation consists of two distinct and different processes: the Markov chain of the 
hidden states, and the dynamics of the individual experts. 

Dynamics of the Markov model. The transition probabilities are given by the matrix 

This allows us to generate a realization for the time series of the hidden states. 

Dynamics of the individual experts. With financial processes in mind, we pick the first 
process as trending, and the second process as mean reverting: 

yt+l = 0.5 yt + 0.8 E~+' if in state 1 
-0.3 yt + 0.5 Ct+' if in state 2 . 

E and < are N(0 , l )  iid. 

We first generated a sequence of length 15,000 of the (eventually hidden) states. This sequence 
determined which of the two processes was used for each time step to  generate an "observation". 
From the generated data, we use the first 10,000 points as the training set, and the remaining 
5,000 points as the test set. 

The recognition models are HME, GE and the unconditional Gaussian, defined by the mean 
and variance of the training set. In the case of HME, it is possible to choose the recognition process 
to perfectly match the data generating process by using two experts that are linear autoregressive 
models with one lag, AR(1). 

The GE model used for the comparison also has two linear AR(1) experts, chosen to  be as 
similar to the HME model as possible. The difference is that the probability of being in state j 
a t  time t in the GE model is learned as a feed-forward function of some variables, as opposed to 
recursively from the series itself using the hidden Markov assumption. One of the two gate inputs 
is the input that is also used in the experts, i.e., the current value of the time series, yt. The other 
gate-input is an exponential moving average of the squared values of the observations (yt12 

where the decay constant X = 0.95. The gate is implemented as a nonlinear neural network with 
three hidden units (tanh transfer function) and two outputs. The outputs are constrained to  be 
positive and to sum to unity, using the "softmax" architecture as discussed in Weigend et al. 
(1995). 

''In the real world, such as when modeling S&P500 densities (Section 5), we do not know the true model. This 
problem is particularly serious in finance for two reasons. First, while in the sciences experiments are usually carried 
out under carefully controlled conditions, finance does not allow for carefully controlled experiments. Second, the 
high amount of noise tends to  mask subtle differences between competing models. This is again quite different to, 
say, physics, where some predictions are made with incredible accuracy and the data can distinguish between two 
models that make almost the same predictions. 
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Time Series Generated from HMEs 
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Figure 1: Time series of the computer generated data modeled with HME. From top to bottom, the 
panels display 1,000 true values of the out-of-sample data, the point forecasts, and the probability 
of one expert, g4. It sums with the other expert (not shown) to unity for each time step. The true 
regime used in the generation of the test data is indicated in the bottom panel as dash-dotted line. 

4.2 Results and Interpretation 

We present selected results on the computer generated data for several purposes: 

Illustrate to what degree HME recover the hidden regimes on these fairly noisy time series. 
Note that true regimes are known in the computer generated example, but not in real world 
examples. 

Show how the partitioning of the gate-input space performed by the GE differs from the 
segmentation of the HME. For real applications, it is important to recognize signatures that 
indicate the wrong model class. 

Build up some intuitions for interpreting results of the analysis based on the probability 
integral evaluation proposed by Diebold et al. (1998). 

Figures 1 and 2 show in the time domain the same 1,000 points of the test set for HME and 
for GE, respectively. In both figures, the top panel shows the true data. The bottom panel shows 
the probability that the model predicts for one of the two experts. The probability of the other 
expert is not shown but corresponds to the difference between unity and the probability shown. 
The dash-dotted line indicates the true regimes used in the generation of the test data. Despite 
the high noise level in both training and test data, HME discover the regimes adequately. 

The corresponding results for GE are shown in Fig. 2. The training and test data are identical 
to those used for the HME. The GE architecture is chosen to be as similar to the HME architecture 
as possible, as discussed in Section 4.1. The main difference is in the segmentation. Comparing 
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Figure 2: Time series of the computer generated data modeled with GE. The top panel shows 
1,000 points of the test set, the middle panel the one-step-ahead point predictions of the GE for 
the same period, and the bottom panel the probability gf. These probabilities are not as clean as 
those found by HME since GE ignore the difference between adjacent and distant patterns in time. 

the bottom panels of Figs. 1 and 2, note that the regime assignments are cleaner for HME than for 
GE. This can be explained by the different likelihood functions: while GE represent a feedforward 
architecture that necessarily produces solutions that are invariant under re-shuffling of the input- 
output patterns, HME "know" about the sequence of the patterns through the assumption of the 
hidden Markov structure. HME can be said to trade-off the switching with the likelihood of the 
observation. 

Although this paper focuses on density prediction, we included the mean of each one-step-ahead 
prediction as the middle panels. For these point predictions, the normalized mean squared errors 
(defined in Eq. 18) on a 5,000 point test set are for the two model classes E;ivMs(HME)= 0.826 and 
&MS(GE)= 0.886 with the ratio (squared error(HME))/(squared error(GE)) = 0.93 . 

We now turn to the evaluation of the densities, first using the predicted probability densities 
directly. On the same test set as above, the log-likelihood ratios are: 

log-likelihood(HME) log-likelihood(HME) 
= 0.96 and = 0.57 . 

log-likelihood(GE) log-likelihood(Gaussian) 

While there is a clear improvement of the conditional mixtures over the unconditional Gaussian, 
the difference between the mixtures is not significant. 

This second approach uses the cdf-based integral transform (Diebold et al. 1998). This analysis 
focuses on Zt,  the area of the pdf to the left of the observation, i.e., the probability that a value 
below the observation was predicted. The qualitative aspects of the density forecasts are exposed 
in Figs. 3, 4, and 5 for HME, GE and the naive unconditional Gaussian, respectively. In these 
figures, the top panels give the histogram of Z on the test set. As discussed in Section 3.2, Z 
should be uniformly distributed between 0 and 1. The remaining four panels in each figure show 
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the correlograms of powers of the mean-subtracted 2-series, i.e., the empirical autocorrelations of 
( 2  - Z),  (Z  - 8 ) 2 ,  (Z  - 2)3 ,  and (Z  - q4. 

Analyzing the density predictions obtained with HME, Fig. 3 indicates that the histogram 
of the Z series is consistent with a uniform distribution. Furthermore, there are no significant 
autocorrelations in the powers of the mean-subtraced Z-series. These good density forecasts are 
reassuring-but not surprising since the structure of the HME recognition model was chosen to  be 
identical to  that of the generating process. 

H~stogram of Z using Hidden Markov Experts for time series generated from HMEs 
1.5 8 I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Autocorrelation of (Z-mean(Z)) Autocorrelation of (z- mean(^))' 

-0.1 L I I 
0 

-0.1 1 
50 100 150 200 0 50 100 150 200 

Autocorrelation of (z- mean(^))^ Autocorrelation of a mean(^))^ 

O 2  1 

Figure 3: Evaluation using the integral transform, Z,  of the probability density predictions gen- 
erated by HME. The histogram of Z indicates that the distribution of Z is uniformly distributed 
between 0 and 1, indicating good density predictions. The absence of autocorrelations indicates 
that there is no residual time structure in the mean corrected 2 and its powers. The horizontal 
lines indicate two standard deviations. 

Figure 4 shows the effect of a misspecified model. While the structure of the emission models 
(the experts) is still identical to the data generating process, GE cannot model correctly the 
underlying Markov structure of the sequence. In comparison to HME (Fig. 3), the histogram 
for GE is less uniform, and there are some short but significant autocorrelations in ( Z  - 2 )  and 
( 2  - 213. 

To put the qualitative aspects of the HME and GE predictions into perspective, Fig. 5 presents 
the histogram and the correlograms of Z when the model is a single unconditional Gaussian. In this 
model, more observations occur than were predicted in the central region of the histogram of about 
one standard deviation, and fewer observations in the areas around the 10 and 90 percentiles.12 
Furthermore, there are long autocorrelation dependencies in the Z-series. The non-uniformity 
of the histogram and the 2-autocorrelations are consistent with the poor performance on the 
quantitative measures of squared errors and of the log-likelihood. 

Knowing the true model in this first example of computer generated data allows us to compare 
the estimated parameters with the true parameters: the diagonal elements of transition probability 
matrix A, the autoregressive coefficients ki, and the noise level ai. Table 1 gives the true values 

12The histogram focuses on the central part of the distribution since each bin has roughly the same number of 
points. The histogram can be viewed as expanding the center and compressing the tails. To focus on the tails of the 
distribution, a quantile-quantile plot (qq-plot) is more appropriate. It shows that there are too many observations 
in the extreme tails. 
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Histogram of Z uslng Gated Experts for time series generated from HMEs 
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Figure 4: Evaluation of density predictions using GE on the computer generated data. Note the 
appearance of significant autocorrelations for the odd powers of (2 -Z)  compared to the correctly 
specified HME. 

Histogram of Z using unconditional Gaussian for time series generated from HMEs 
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Figure 5: Evaluation of density predictions using an unconditional Gaussian on the computer 
generated data. The model mismatch is indicated by both the non-uniformity of the histogram 
and the significant autocorrelations in the correlograms. 

of the parameter and the estimates of the models. The correctly specified HME found the correct 
parameters. In contrast, the estimation of the corresponding GE experts is significantly worse 
than that of HME. In this specific run, the second expert does not even learn the mean-reverting 
dynamics but predicts an essentially unconditional Gaussian. 
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Table 1: Estimated parameters for HME and GE along with the true values used in the data 
generating process. aii denotes the self-transition probabilities of staying in regime i; the off- 
diagonal terms are the complements to unity. ki denotes the autoregressive coefficients of the 
individual experts, and ai the noise levels of the individual experts. 

I all a22 I k1 k2 I a1 ~2 I 
I true value 1 0.980 0.970 1 0.500 -0.300 1 0.800 0.500 1 

5 EXAMPLE 2: S&P500 RETURNS 

HME 
GE 

This section applies HME to the real-world problem of forecasting the density of daily S&P500 
returns. To provide a perspective and a deeper understanding of HME, comparisons are carried out 
to several other model classes: an unconditional Gaussian, an unconditional mixture of Gaussians, 
a generalized autoregressive conditional heteroskedastic GARCH(1,l) model, and the GE model 
that is as similar as possible to the HME model. 

We first describe the data and models and analyze the estimated HME model. We then present 
the segmentation obtained by HME and by GE and explain the difference. Among the performance 
comparisons, the most important metric is the direct evaluation of the out-of-sample likelihood 
of the test data given each of the models. We also include the graphs of the probability integral 
transform evaluation of the density forecasts. 

5.1 Data and Model Classes 

0.976 0.969 
N/A N/A 

For the data, we start with 21 years of daily S&P500 prices, pt, and compute the series we try to 
predict, yt, by taking the difference between the logarithms of the prices at  adjacent days 

The Taylor expansion used in the last step, log(1 i- E )  z E ,  gives the interpretation of yt as the 
relative price change, i.e., as the difference between today's and yesterday's price with respect to 
yesterday's price. In finance, this series is referred to as continuously compounded returns. 

0.507 -0.269 
0.466 0.003 

We use the first ten years (from 3 Jan 1977 to 31 Dec 1986) of the data as the training set, 
and the last ten years (from 2 Mar 1988 to 31 Dec 1997) as the test set. To avoid possible artifacts 
of the Oct 1987 crash, we do not use the data from 3 Jan 1987 to 1 Mar 1988 in this study. 
(When using HME for risk management, rare events and crashes are not excluded.) No further 
trarisforrriatiori or preprocessing is performed. 

Both HME and GE have four experts. They are liner autoregressive models that predict the 
mean based on the values of the previous seven lagged returns. 

0.808 0.492 
0.867 0.528 

For GE, we need to also specify the structure of the gate: we use a nonlinear neural network 
with five tanh hidden units and four "softmax" outputs. The inputs into the gate include the 
seven lagged values of the returns given to the experts, in addition to seven lagged values of the 
exponential moving average of the squared returns (Eq. 19). 

5.2 Results 

After discussing the data and the models, we now turn to the results. We first inspect the seg- 
mentation obtained with HME and GE, then discuss the estimated parameters and their meaning, 
and finally turn to the evaluation of the densities, using the pdf and the cdf methods. 
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Returns of SP500 (from 01/02/77 to 12/31/97) 

training set crash test set 

C h A  h., 
v., V., 3 

Segmentation of HMEs on SP500 

Figure 6: Time series of S&P500 returns modeled with HME. The returns (top panel) have been 
normalized to zero mean and unit variance. The four plots at the bottom show the probabilities 
of the experts for each time step. The experts are arranged by decreasing noise level: the expert 
with the lowest noise level is at the bottom of the figure. (For completeness, the mean of each 
day's density is shown in the remaining panel, labeled "Predictions" .) 
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Returns of SP500 (from 01/02/77 to 12/31/97) 

training set crash test set 

C 3 

Segmentation of GEs on SP500 

Figure 7: Time series of S&P500 returns modeled with GE. The description of the panels is the 
same as in the preceding figure. Note the poorer and more noisy segmentation in comparison with 
the previous figure. 
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5.2.1 Segmentation of the S&P500 Series 

Figures 6 and 7 respectively show HME and GE models for daily S&P500 returns . Training and 
test periods are indicated by the arrows in the center of the figure. The lower half characterizes 
the importance of the individual experts for each day. The top panel shows the time series y t ,  the 
daily S&P500 returns for the period from 1977 through 1997. The bottom four panels give the 
probability gg for each expert i(i = 1 . . .4).  The experts are ordered in terms of decreasing ai.  The 
expert with the lowest noise level corresponds to the lowest panel. 

Figure 7 indicates that GE cannot generate clear regimes. Note, for example, that the proba- 
bility of the expert with the second smallest variance (the second plot from the bottom) hardly ever 
leaves the range between 0.1 and 0.4. One reason for this poor segmentation is that the smoothed 
squared returns (Eq. 19) as gate-inputs do not characterize volatility as well as the recursively 
computed HME variances, P!. Another interpretation for the very noisy nature of the regimes is 
the absence of regime information from the neighboring pattern for GE, in contrast to HME. 

5.2.2 Estimated Parameters and Interpretation 

The dynamics of the hidden Markov process is characterized by the matrix of transition prob- 
abilities between the states. For the four states assumed in our model of the S&P returns, we 
obtain 

The elements of this matrix are averages over 200 initializations. For each run, the states are sorted 
by decreasing noise levels, oil  in order to make the averaging meaningful. Note that the expert 
with the largest noise level has the smallest self-transition probability, all = 0.904: on average, 
the system stays in this state for only ten days. Looking back to  Fig. 6, we can see that this expert 
takes responsibility for some of the large returns in the training set, as well as for the region of 
high volatility in late 1982. 

Table 2 lists the noise levels of the experts for both HME and GE. For each run, the experts 
were ordered in terms of decreasing noise levels, and means and standard deviations of the square 
roots of the variances of the Gaussians are shown. 

Table 2: The average noise levels oi of the individual experts for HME and GE for the S&P500 
density predictions. In each run, i.e., for each set of initial conditions, the expert with the largest 
variance is assigned the label "Expert l", etc. The table gives the means of the square roots of 
the variances of the Gaussians. The standard deviations are indicated in parentheses. High-noise 
experts have more relative variation in the noise levels than the low-noise experts than in those of 
high-noise experts. Furthermore, GEs are more sensitive to initial conditions than HMEs. 

5.2.3 Evaluation of the S&P500 Density Predictions 

The function optimized in training is significantly different for HME and GE-we have emphasized 
that HMEs include the transitions between states, whereas GEs do not. For prediction, we are 

cri 
HME 

GE 
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Expert 2 

0.92 
(0.12) 
0.98 

Expert 1 

1.37 
(0.05) 
2.18 

Expert 3 
0.74 

(0.04) 
0.52 

Expert 4 
0.61 

(0.01) 
0.33 



ultimately interested in how well the next day's density is predicted. This function can be different 
from the one optimized in the estimation of the model. All architectures are compared on an equal 
footing: how likely are the observations of the test set given the predicted densities? We do not 
take any uncertainty for the observed value into account, i.e., we assume a delta distribution whose 
integral is unity on infinitesimally small support. We compute the log-likelihood for each pattern, 
take the average over the test set, and plot the results in Fig. 8. For GE and HME, we show the 
cumulative probability distribution of 200 runs that differ in their initializations. The main source 
of variation for HME are the initial emission probabilities, and for GE the initial weights of the 
gating network. 

Fbr comparison, Fig. 8 also shows the log-likelihoods (i) of a single Gaussian, (ii) of an un- 
conditional mixture of four Gaussians, and (iii) of a GARCH(1,l) model, all estimated on the 
same training set as HME and GE, and averaged over the same test set as HME and GE. The 
log-likelihood of the GARCH(1,l) model is slightly better than the unconditional mixture. The 
log-likelihood of HME tends to be better than the unconditional mixture and the GARCH(1,l) 
model, indicating that the combination of the conditional variance and the mixture aspect is needed 
for the improvement of the quality of the density predictions. 

Out-of-sample log-likelihood of daily S&P 500 density forecasts 

-1.22 -1 .2 -1.18 -1.16 -1.14 -1.12 
log-likelihood (average over test set) 

Figure 8: S&P500 density forecasts evaluated for several models based on the predicted pdf. The 
horizontal axis gives the log-likelihood averaged over the test set. For HME and GE the empirical 
cumulative distribution of 200 runs each is plotted. For comparison, we also indicate the log- 
likelihood averaged over the same test set for a single Gaussian, and unconditional mixture of 
four Gaussians, and a GARCH(1,l) model. The GE solutions are not an appropriate model class 
for this hard learning problem since the resulting models show a large variance in performance. 
In contrast, the distribution of quality of the HME is relatively sharp. Considering only the 
uncertainty stemming from the initialization, about 98 percent of the HME have a better out- 
of-sample likelihood than the GARCH model and than the unconditional mixture model. This 
indicates that all of HME7s aspects (conditional model and mixture model and hidden Markov 
model) are needed for the improvement. 
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To rule out the possibility that the results are due to a few outliers, we analyzed the trimmed 
means of the log-likelihood. The ranking of the different methods remains the same when the 
means are trimmed; we removed up to two percent on each side. This establishes that HME give 
better predictions than the alternatives we considered when comparing the out-of-sample likelihood 
of new data. 

0 0.1 0.2 0.3 0.4 
Autocorrelation of (Z-rnean(Z)) 

-v . ,  
0 50 100 150 200 

Autocorrelation of (z-rnean(ZH3 

0.5 0.6 0.7 0.8 0.9 1 
Autocorrelation of (2-rnean(~))' 

0.2 

0.1 

0 

-0.1 
0 

Autocorrelation of (2-rnean(2)) 
0.2 

0.1 

0 

-0.1 
0 50 100 150 200 

Figure 9: Evaluating the probability density predictions of HME for S&P500 returns. The top panel 
plots the histogram of the probability integral transform on S&P 500: the Z series is reasonably 
close to uniform. The four bottom panels show the correlograms: there are not many significant 
auto-correlations in the Z series and its powers. The dashed lines correspond to two standard 
deviations. 

H~stograrn of Z using Gated Experts for SP500 returns 
15, I 

Autocorrelation of (Z-mean(Z)) Autocorrelation of (2-rnean(~))' 

-0. I I -0.1 I I 
0 50 100 150 200 0 50 100 150 200 

Autocorrelation of (z-rnean(~))~ Autocorrelation of (z-rnean(~))~ 

Figure 10: Evaluating the probability density predictions of GE for S&P500 returns. The Z series 
is less uniformly distributed as in the previous figure (HME), and auto-correlations remain in the 
Z series. 
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We now turn from the analysis based on the predicted probability distributions to  an analysis 
based on the predicted cumulative distributions. Figures 9, 10 and 11 show the results for HME, 
GE, and unconditional Gaussian, respectively. In all cases, the top panel shows the histogram of 
the probability integral transform Z,  and the four bottom panels the correlograms of the Z series 
and its powers. The results are acceptable for HME, slightly worse for GE and, as expected, a lot 
worse for the unconditional Gaussian. 

Histogram of Z uslng unconditional Gaussian for SP500 returns 
2 I I , 

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Autocorrelation of (Z-mean(Z)) Autocorrelation of a mean(^))^ 

0.2, I 0.2, I 

-0.1 1 I -0.1 1 I 
0 50 100 150 200 0 50 100 150 200 

Autocorrelation of (~-rnean(z))~ Autocorrelation of ( ~ - r n e a n ( ~ ) ) ~  

Figure 11: Evaluating the probability density predictions of an unconditional Gaussian for S&P500 
returns. The Z series is far from uniformly distributed, and the auto-correlations are large. 

For completeness, we close by reporting the normalized mean squared errors that can be com- 
puted by collapsing the daily density predictions to their means: ENMs(HME)=: 1.014 (standard 
deviation for 200 runs with different initial emission probabilities is 0.002); E N M ~ ( G E ) =  1.043 
(standard deviation for 200 runs with different initial weights is 0.083). Values larger than unity 
indicate a drift in the mean. 

6 CONCLUSIONS 

This paper started out by discussing different tasks for prediction, and proceeded by presenting 
hidden Markov experts (HME) in detail. The main focus is the prediction of the full conditional 
density distribution. This is in contrast to the literature on Markov switching models that focuses 
on point predictions and segmentation, and on the literature on stochastic volatility and GARCH 
models that focuses on conditional variances. The density predictions we obtained as mixture 
models were evaluated in comparison to these standard approaches using several methods, including 
Diebold et al. (1998). 

The approach was illustrated with two time series. Section 4 showed the results of a computer 
generated example where the true regimes are known. This helped us obtain intuitions for model 
misspecification, e.g., by revealing the signature of misapplying GE to data generated by HME. 
When the right model class is used (HME), the parameters are estimated correctly and the density 
is predicted well. 

Section 5 applies the approach to the density of daily S&P500. On the test set, about 98 percent 
of the HMEs estimated (they differed by their initial conditions) outperformed a GARCH(1,l) 
model. While HME found a solution rather reliably, GE showed a large dispersion for two reasons: 
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(i) in any task with very high noise levels it is very difficult for the gate to learn a mapping from 
some exogenous variables to the expected probabilities of the experts, and (ii) in the specific case 
of financial returns, volatility is often estimated better recursively (as in GARCH and stochastic 
volatility models) than with a feedforward architecture without memory, such as GE, see Timmer 
and Weigend (1997). 

This paper focused on introducing hidden Markov experts. The examples were chosen to 
communicate some intuitions and illustrate several methods to evaluate the performance of density 
predictions. An identical set of inputs, consisting of lags of the time series, was used to facilitate the 
comparisons between the methods. When using this architecture in trading, we find that carefully 
selected exogenous inputs lead to better predictions than autoregressive models. In addition to 
trading applications, we have also used HME in risk management in combination with Independent 
Component Analysis (Back and Weigend 1997) to capture non-Gaussian tails and compute Value- 
at-Risk, as discussed in Chin and Weigend (1998). 
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