HYPER MODEL
MANAGEMENT SYSTEMS

by
P. Balasubramanian

Leonard N. Stern School of Business
New York University

Tomds Isakowitz
Leonard N. Stern School of Business
New York University

Hardeep Johar
Leonard N. Stern School of Business
New York University

and

Edward A. Stohr
Leonard N. Stern School of Business
New York University

January 1992

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-92-1

This version replaces working paper IS-91-16 under the same title.

Hyper Model Management Systems

P. Balasubramanian * Tomds Isakowitz ! Hardeep Johar * Edward A. Stohr *
Information Systems Department
Leonard N. Stern School of Business
New York, NY 10003

Abstract

In this paper we siudy the integration of Model
Management and Hypertezrt systems to produce a Hy-
per Model Management System (HMMS). Model Man-
agemeni Systems consiituie a class of software that
is destgned to support the consiruction, storage, re-
trieval, and use of models in the contert of decision
support systems (DSS). Hypertezt systems allow users
to split information into data fragments which the user
can browse to find information by taking non-linear
paths in computer based terts. Il has been suggested
that DSSs should be concetved as environments which
support decision making. We support the view that
such environments can be readily provided for the sub-
task of model management by hyperiert systems. The
differeni kinds of model knowledge can be captlured
within different types of hypertezt nodes and the re-
lationships among these can be maintained by hyper-
ezt links. In this paper we describe some aspects of
model management where hypertert will have a signif-
icant impact. However, plain hypertezt is ineffective
in dealing with the dynamic nature of information in
model management tasks where data is revised, models
ezeculed, and reports are created on the fly. Dynamic
domains require dynamic hypertexts. In this paper we
also study the requirements for dynamic hypertexts.
These can be satisfled within the class of generalized
hypertext systems by using special hypertezt nodes and
links which we describe. We ezplore different archi-
tectures to integrate MAS and Hyperiert systems to
obtain HMMSs. This paper emphasizes the need for a
shift to integrating 3odel Management and hyperiext
technologies.

*Doctoral Student in Information Systems
! Assistant Professor of Information Svstems
{Professor of Information Systems

1 INTRODUCTION

Hypertext systems [36] provide a new form of
computer-based support for reading documents.
Rather than being constrained to the linear order
of conventional documents, users are able to move
through a hypertext document in a non-linear fash-
ion, traversing hypertext “links” in order to explore
concepts in more depth or access chains of related con-
cepts. Model Managément Systems (MMS) [11] con-
stitute a class of software that is designed to support
the construction, storage, retrieval, and use of models
in the context of decision support systems (DSS) (30].

In (12, 14] the idea of a special type of environment
for DSS, the hyperknowledge environment, is proposed.
This calls for a union of the ideas underlying hypertext
and MMS. It is argued that a DSS can be conceptual-
ized as an environment within which various kinds of
knowledge are managed. Among these are “descrip-
tive knowledge (e.g. data, information), procedural
knowledge (i.e. algorithms), reasoning knowledge (e.g.
rules), linguistic knowledge (e.g. problem statement
grammars) and presentation knowledge (e.g. forms,
templates).” It is suggested in [12] that hypertext
would provide an appropriate user-interface for

" such a DSS. Indeed. the different kinds of knowledge

can be captured within different types of hypertext
nodes and the relationships among these can be main-
tained by hypertext links. The need for “controlled
focusing of attention by cognitively navigating among
the universe of available concepts” is recognized as
fundamental for effective utilization of DSS in general.
Other recent work on hypertext and MMS is contained
in Minch [35] who explores a number of potential ap-
plications and (5, 31} who focus on the need to provide
links and nodes to support virtual structures such as
explanations, model execution and report creation.
In this paper, we describe how hypertext technol-
ogy matches the requirements of MMS in two senses:
(1) as a useful style of DSS interface as outlined above,
and (2) as a technology that provides mechanisms on

Center for Digital Economy Research
Stemn School of Business

[8-92-01

Workine Paper

which to build both an MMS and specific models. In
sections 2 and 3 we briefly overview the features of
MMS and hypertext, respectively. In section 4, we
provide several brief examples showing how hypertext
can support and enhance the functionality of an MMS.
In section 5, we argue that an enhanced kind of hy-
pertext, a dynamic hypertezt is required to support
the desired features of an MMS. In section 6, we de-
scribe alternative architectures for combining hyper-
text and MMS technologies to form a “Hyper Model

Management System” (HMMS). The paper concludes.

with some research ideas for developing the exciting
possibilities that arise from the union of these two
technologies.

2 Hypertext

Hypertext is an emerging technology in the field of
information storage and retrieval. The concepts of hy-
pertext have been around for some time [15], but the
recent widespread spurt in interest in this area is due
to the availability of commercial versions (26, 39. 3].
The term hypertext was coined by Ted Nelson [36] and
it is being increasingly used as a model for informa-
tion presentation and user navigation in information
systems. It gets its name from the fact that users
can browse the data fragments and find information
by taking non-linear paths in computer based texts
(1]. We refer the reader to (17, 37] for introductions
to hypertext.

The basic building blocks in hypertext are nodes,
links and buttons. Each node is associated with a
chunk of information related to a document and nodes
could be of different types (27]. The node type depends
on the class of data stored (e.g. plain text, graphics,
audio or an executable program.) Another node type,
action nodes, can cause the execution of procedural
code (28]. In most systems, nodes can be contained
in different files allowing inter document traversal. A
link defines a relationship between a source node and
a destination node and can be traversed to access the
destination node. This provides the users with the
ability to navigate through the hypertext document,
and discover new relationships. Buttons are areas
within nodes on which links are defined [26, 5, 31]. It is
now common to find hypertext systems with a one-to-
one correspondence between nodes and windows; each
window is associated with an object in the database
and links are provided between these objects [17].

There can be many links associated with each node
- e.z. a piece of text may be linked to a more detailed

document, to bibliographic references, to other asso-
ciated concepts, and so on. The type of information
associated with a link is usually indicated by the icon
used as its button. As discussed in more detail below,
there can be a number of link types - e.g. links that
simply support traversal and others that also support
the transfer of data between nodes. We also distin-
guish between hypertext systems that support only
explicit links that are placed in the document explicitly
by its author ahead of actual use, and hypertext sys-
tems that support implicit links that can be inferred
by the system and dynamically created as required.

Current hypertext systems provide users with so-
phisticated user interface tools that enable them to
inspect node contents and navigate through the net-
work by selecting a path to follow [32]. In addition
to allowing users to traverse links at their own dis-
cretion, systems may provide users with predefined
paths through the network, or the ability to specify
search conditions for the selection of nodes. These
queries may be content-based (searching the content
of nodes) or structural (depending on the topography
of the hypertext network). Because a major problem
with hypertext is the potential for users to get lost
in the detail of the information that can be accessed,
hypertext systems usually provide path tracing and
other navigation aids such as a view, in either text or
graphical form, of the table of contents (or outline) of
the document.

Hypertext, has been successfully used as an inter-
face in several domains including portfolio manage-
ment [4], software engineering systems (19, 22, 16],
auditing [42], idea organization [16, 28, 2. Users have
been shown to prefer hypertext “embedded menus”
to conventional menu systems [38]. While a number
of studies have shown a high level of satisfaction by
hypertext users (18, 34], more study is needed to con-
firm that hvpertext improves the efficiency of search
and understanding of users.

Minch [35] provides an excellent overview of the po-
tential applications of hypertext in decision support
systems. Of interest here is his observation that many
decision making paradigms have graph-based interpre-
tations that can be represented naturally by hypertext
systems. Hypertext systems are appropriate vehicles
for DSS because of the diverse information types that
are permitted in the nodes of a hypertext [17], and
the ability to provide a “context-based” access to the
knowledge base (5, 31]. Also relevant to DSS is the
ability of hypertext to improve the process of finding
relevant information from veluminous written mate-
rials [32] systems and to aid in the organization and

manipulation of irregularly structured information.

3 Model Management Systems

Sprague and Watson [41] proposed that decision
models should be managed by means of an MMS just
as a2 DBMS manages data. This lead to the develop-
ment of software that insulated users from the physical
aspects of the organization and processing of decision
models, just as a DBMS insulates users from the phys-
ical and organizational aspects of stored data. It has
been realized that models are an important resource
that need to be managed and modeling environments
are being developed to help in this task [33]. For ex-
ample, Bhargava et al. (5, 31] envision an MMS as an
operating system that, in addition to handling mod-
els like an operating system handles files, also fills the
role of a human expert in modeling. In this section we
examine two approaches to model management and
attempt to integrate these approaches to identify gen-
eral requirements for an MAIS.

The decision-oriented approach to MMS empha-
sizes the use of models to support decision making.
The role of an MMS is to provide an efficient means
for the representation, storage, retrieval, and 'use (to
support decisions) of models (21, 12, 5, 31, 14}, and
to handle the communication between the users and
the model base [40, 14]. In'[14], an MMS consists
of three components, a2 knowledge system; a language
system, and a problem processor system. The knowl-
edge system stores models, data, and other types of
knowledge; the language system serves as the inter-
face between the users and the MMS; and the problem
processor system acts as the interface between the lan-
guage system and the knowledge system by interpret-
ing user requests, activating models, collecting data
required by the models, and presenting results to the
users in suitable presentation styles. According to the
decision-oriented approach, the MMS should support
each stage of decision making identified in the DSS lit-
erature (e.g. [25]): (1) intelligence, (2) diagnosis, (3)
formulation, (4) model selection, (3) input of data. (6)
model generation, (7) validation, (8) model execution,
(9) sensicivity analysis, and (10) interpretation of re-
sults. '

The second-approach, the process approach, with
roots in artificial intelligence, emphasizes the need for
purposefully capturing knowledge to be used in mod-
ifving models to match the changing needs and per-
ceptions of the user. Dhar and Jarke [12] for example,
argue that the knowledge that goes into model devel-
opment is as important as the model, and that there-

fore an MMS should also capture knowledge used in
the building of models. Lerch and Prietula [12] sug-
gest that an MMS should support the decision process
and that the user interface should be designed to help
the user’s model construction process. The objectives
of the process approach are therefore twofold, first
the MMS should capture knowledge used to formulate
models, and second, the MMS should assist the users
in the process of refining and changing the model. To
support the process approach, an MMS should pro-
vide: (1) automated model documentation, (2) the
storage of meta-knowledge about models, (3) the com-
position of models from component sub-models, and
(4) the revision of models as dictated by changed cir-
cumstances.

These two approaches take complementary views
of the purpose of an MMS. The decision-oriented ap-
proach emphasizes the efficient storage and retrieval
of models and their effectiveness in supporting spe-
cific decision making activity. The process approach
emphasizes the maintenance of meta-knowledge about
model construction and that models exist indepen-
dently of particular decisions and serve classes of deci-
sions. The combination of these two approaches leads
to a more eclectic vision for model management.

Regardless of the approach. models are complex
and their formulation, manipulation, and interpreta-
tion taxes the limits of our cognitive abilities. Model
builders and users need considerable support to help
them understand both the MMS system itself and
the specific models that are developed and executed
within the framework of the MMS. The interactive,
non-linear quality of hypertext interfaces, should help
reduce the complexity of the modeling process. In the
next section, we examine the natural match between
hypertext systems and model management systems in
supporting several of the above requirements.

4 Hypertext capabilities in support of
MMS requirements

In this section we illustrate how several of the re-
quirements for an MMS that were discussed in the
previous section can be supported through the use of
hypertext. The selected examples are assigned to dif-
ferent quadrants in the 2 by 2 matrix of Figure 1.

The columns in the matrix emphasize the dis-
tinction between modeling facilities that describe the
HMMS itself or are built into the HMMS as perma-
nent capabilities, and facilities that describe classes of
models or model instances within those classes. Fea-

[IMNMS Madel specifie
Explivit Links || Systemn docmmentation Model documentation
Context sensilive help Madel storage and retricval
Liplivit links Maouled selection Context sensikive help for madel i
user
Madel ronstruction ||ll.cr|lrct.‘\Liu|| of Resulls

Figure 1: Categories of Selected Modeling Facilities

tures in the former class are designed and developed
by the original HMMS developers, while the builder
of each model must specify the specific features to be
provided by the HMMS. The rows in the matrix distin-
guish between modeling facilities that can be provided
by explicit (predefined) hypertext links and those that
require implicit (dynamic) links for their implementa-
tion. In general, from the perspective of the HMMS
builder it is easiest to provide the capabilities in the
upper left quadrant and hardest to provide those in the
lower right quadrant. The following illustrations are
designed to reveal the kinds of hvpertext technology
required as described more fully in the next section of
the paper.

4.1 HMMS System Documentation

Here, the HMMS provides online information about
itself - how to use the functions it provides to build
and execute models, etc. Three features of hyper-
text systems are especially useful for documentation
support: Navigation, Browser Maps, and granular-
ity adjustment. Navigation helps the documentation
browser move through the documentation in a non-
linear fashion. Adjusting the granularity of informa-
tion permits individual users to explore documenta-
tion at a level that matches their expertise. Browser
Maps can be used to orient the users while navigat-
ing through the maze of help information available.
Existing hypertext authoring systems can provide the
features necessary to implement stand-alone HMMS
system documentation.

4.2 Context Sensitive System Help

Pressing the help button while using any spe-
cific HMMS feature causes a hypertext window to be
opened into the documentation that explains that fea-
ture. This is similar to the previous svstem documen-
tation facility, except that the MMS and Hypertext
subsystems must be linked tightly.

4.3 Model Documentation Support

To support model documentation, the HMMS must
provide convenient hypertext authoring support for
the model builder. Features of models such as vari-
ables, data coefficients, algebraic equations. and so on
can be represented as hypertext nodes. Links can be
constructed between these features and their model
specific definitions. Other links would represent re-
lationships between the different objects in a model.
In the simplest implementation, the model builder
would have to manually create these links, while in
a more sophisticated implementation of model docu-
mentation support (one that would be classified in the
lower right quadrant), the authoring system would un-
derstand model features and the relationship between
their documentation and be capable of autamatically
generating these links see for example [5. 31]. In the
second case, the HMMS would be helplul in model
construction as described below.

4.4 Model Storage and Retrieval

Storage and retrieval of models has been addressed
extensively in the DSS literature and a number of
model representation and retrieval languages have
been suggested [20, 12, 21, 23]. Hypertext provides a
useful and natural interface for these tasks [5, 31. 24].
Storage, retrieval and reuse can be facilitated by the
use of a model dictionary that is analogous Lo a data
dictionary. Each entry in the model dictionary could
have several buttons for links accessing a description
of the associated model, the source code for the model,
the results from the last time it was executed. ete. All
versions of a model could be accessed by following a
chain from its dictionary entry. A hypertext network
could be used to classify all models in the model base
by type and function to aid access and understand-
ing and to simplify reuse. A primitive way to im-
plement this feature is to require each model builder
to use a hypertext authoring system to establish the
node for his/her model in the model dictionary and the
links to all information sources and to the classification

scheme. A more sophisticated HMMS automatically
establishes these links and nodes.

4.5 Model Selection

The HMMS can play an active role in helping users
find the correct model for their task. Rather than hav-
ing an ad hoc model classification scheme built by the
model builders as in the last example, the system can
have a comprehensive and authoritative model classifi-
cation scheme (e.g. for statistical models) as a built-in
feature. If the models are classified by the task they
support, users could search through the hypertext net-
work till they find the node that corresponds to the
task they need performed and then retrieve the associ-
ated model and run it. This can be done using explicit
links. A higher level of support for model selection
can be obtained by utilizing intelligent agents to cre-
ate implicit links to candidate models. For example,
an expert system is proposed in [13] to identify appro-
priate data analysis techniques for statistical analysis.
The proposed techniques depend on the data. Given a
scenario with actual data, the expert system will inter-
act with the users and with the hypertext to provide
a list of candidate analysis techniques. In a HMMS
these candidates would be connected via implicit links
to the scenario.

4.6 Model Construction

An important capability for 2 DSS is to let the users
construct and run decision models on the fly. Hyper-
text with its flexible structure and variable link types
provides a natural interface to deliver such functional-
itv. An intelligent agent could interpret the user’s ac-
tions and assist him in building a model. Two compu-
tations represented by nodes can be composed by link-
ing the corresponding nodes. Furthermore, it could
check whether the usage of the variables is consistent
with their type.

4.7 Context Sensitive Help for Model
Users

Context-sensitive help is the ability of the system
to tailor its response for guidance to the user’s con-
text. The hypertext system can determine the context
hased on the user’s location in a network of nodes.
Thus, the response for a help about a variable might
inform the user about its definition or provide a his-
tory of values depending on the node from which the
request is issued. On a more sophisticated level, by

keeping track of the nodes visited, a response tailored
to the user’s knowledge can be constructed.

4.8 Interpretation of Results

For effective decision support it is necessary to help
the users of a model interpret the results from the
model. The users should be able to understand how
the results relate to the model (e.g. a number is ob-
tained as the solution of a quadratic equation), and
should also be able to perform sensitivity analyses by
changing some of the data. Since the reports are cre-
ated by the HMMS, it can utilize implicit links to es-
tablish the necessary connections. For example, values
in the report will link to the variables in the model.
The use of hypertext to help in sensitivity analysis is
explained in the next section.

5 Dynamic Hypertext

The Hypertext models described in the literature so
far are mostly static. By this we mean that the user
has to physically create the links. Dynamic domains
such as decision support systems require the capability
to generate nodes and links in real time. This requires
an implementation of hypertext that supports virtual
structures and compuiational mechanisms which are
used to generate a hypertext in real time.

The Max system prototype (31, 5] combines a dy-
namic hypertext {ront-end module with a model man-
agement back-end, providing a “proof of concept” that
virtual structures and computation can supply the
needed liaison to integrate the model management and
hypertext systems. The Max svstem is based upon
a Generalized Hypertexi [7], a term coined in [5, 31].
Link traversal in a plain hypertext can be described
as a select-iraverse-display operation: select the link
(e.z. click on a button), traverse the link, display the
node at the link’s destination. In a generalized hy-
pertext however, link traversal is extended so that the
system deduces the link to be traversed and infers its
next action based on this traversal. The node at the
destination of the link might not exist, in which case
it should be created as a result of this traversal. This
corresponds to an infer-iraverse-infer operation.

In order to support MMS activities, hypertext
should support interaction between its components.
This requires that information be automatically trans-
mitted between nodes. and that nodes have the ability
to engage in communication. This fits within the gen-
eralized hypertext framework, with a specialized Lype
of traversal: infer-transmit-infer. Valuation links and

valuation nodes are introduced in (9] to this effect. A
valuation link performs a daeta push operation by trans-
mitting a value from origin to destination and pasting
it in the latter, thereby changing its contents. A val-
uaiion node is a node that represents a computation
that can be triggered from within the hypertext. The
result of evaluating a valuation node is a value which
can be transmitted by valuation links originating in
this node. If the link’s destination is again a valua-
tion node, the value transmitted by the valuation link
activates its evaluation. In such a way computations
can take place on a hypertext network. We will clarify
these ideas with two examples.

Execution: The user has provided a scenario (eg:-
data about cities, suppliers and costs in a transporta-
tion model) and with the help of the HMMS a solver
(eg:- an Integer Programming solver) is selected. To
solve the problem, the scenario passes data via valua-
tion links to the solver which then executes and pro-
duces a solution.

Sensitivity Analysis: As the solver produces a re-
port, it embeds valuation links that relate specific val-
ues to the portion of the solver used to compute them.
In order to perform sensitivity analysis, the user might
want to change some of the data in the scenario. Since
this data is linked via valuation links to the solver. a
data push operation will take place which can trig-
ger re-execution of the solver with the new data. The
result of this execution updates the report via the em-
hedded valuation links.

We now describe some of the features required from
a dynamic hypertext for model management.

1. Open Code: in order to address referential
transparency between the HMMS and other sys-
tem we propose the use of open code. The links
and buttons should be kept separate from node
contents so that these contents can be utilized
for other purposes. For example, the links and
buttons embedded within a model should not in-
terfere with the solvers execution (the solver may
be unaware of the existence of hypertext entities).

2. Implicit or automatic links: these are links
that are created by the system as the user inter-
acts with it. They are called implicii as opposed
to ezplicit links, which are created by the user who
fullv determines their origin and destination. For
example, although context specific explicit links
help can be used to support context sensitive on-
line help, their use is neither economical nor sys-
tematic. Implicit links which change their desti-
nation depending on context can be used for the

same purpose and do not suffer from those pit-
falls.

3. Valuation nodes and valuation links: as de-
scribed above, these provide for interaction be-
tween model components to support a variety of
tasks, sensitivity analysis among them. Both ex-
plicit and implicit valuation links are required.

4, Intelligent agents for link creation: some
reasoning is required for more sophisticated oper-
ations such model selection (via an expert system)
or on-the-fly link creation based on a conceprual
representation of the domain (e.g. as in a solu-
tion to a transportation problem). In the next
section we will describe Bridge Laws that could
incorporate some of this intelligence.

Having shown that desirable features for HMMSs
are met by the dvnamic hypertext described here, we
now turn to an analysis of the different architectures
that can be used to construct an HMMS.

6 Architecture

We envision the HMMMS as an integration of an
MMS and a hypertext. There are a number of if-
ferent approaches [or such an integration. Before en-
gaging in a detailed discussion on the architecture of
an HMMS, we would like to highlight the important
features to be supported by such a system:

1. modularily: ‘it should be relatively easy to inde-
pendently change the MMS and hypertext com-
ponents thereby offering the ability to incorporate
updates and experiment with new environments;

2. seamless iniegraiion: the connection between the
model management and the hypertext should be
transparent to the user, i.e. the fact that there
are two systems should be undetectable by the
user;

3. minimal user overhead: there should be no
penalty for using the HMNMIS as opposed to the
MAMIS, in fact the HMMS should be easier to use
than the MMIS;

4, reliability: the integration of the two systems
should be as reliable as its components; this calls
for a conceptually simple and easy to maintain
integration mechanism;

3. efficiency: the integration mechanism should not
slow down system performance; and

Figure 2: The ad-hoc architecture

6. enhanced functionality: the hypertext features
should qualitatively enhance model management
operations by providing intelligent search and
browsing features.

Ve will constder four different architectures to sup-
port the desired integration.

6.1 Ad-hoc

A straightforward approach shown in figure 2 con-
sists in developing a totally new system with a hyper-
text component that has hard-coded MMS features.

This system will probably achieve seamless integra-
tion, low user overhead (none at all), efficiency and
enhanced functionality; it will not be modular since
the systems and their integration are fixed. Nothing
can be said about its reliability since this is a brand
new system. Furthermore, in this case we would not
be considering an integration of MMS and hypertext,
but a brand new product which would suffer from iso-
lation since it will be the lone system using a specific
user-interface. This goes against the fundamental con-
cept of a DSS environment.

6.2 Message Passing

This type of architecture has received particular at-
tention in the literature [12]. As shown in figure 3,
hoth systems, the MMS and the hypertext, run con-
currently in compatible environments and the two sys-
tems inter-communicate via messages. Whenever the

HMMS

b |

: :.
1]
1} 1
[} n
1 :
: hyperex MM '
' i
' e 1
| e s || |
! s costrucdon '
' 1}
i !
L

m '!E 1

messaze =4 S&d—fn:z !
consTriction| i :

L}

1}

L}

L}

Figure 3: The message passing architecture

user wants to engage'in a model management activ-
ity, he/she interacts with the hypertext via surface
messages which elucidate the MMS operation required
to satisfy the user's request: the hypertext system
then constructs a deep message which is passed to the
MAIS. The MMS processes the message and if infor-
mation needs to be presented to the user, sends a pre-
senialion message to the hypertext which appropri-
ately presents the information to the user. The cycle
repeats itself forming the basis of the interaction.

This type of architecture has to provide an efficient
messaging mechanism to support the integration. The
MMIS has to understand the language of the hyper-
text in order to provide useful presentation messages;
and vice versa, the hypertext has to understand the
MMS language in order to issue deep messages. As a
consequence, the integration is not completely mod-
ular, since a change in either of the two systems will
require changes in the other one. For example, if a
new hypertext interface is installed, all presentation
message building activities that take place within the
MAIS have to be adapted to the new hypertext’s lan-
suage. The level of seamless integration, the reliability
and the efficiency of the HMMS will depend upon the
quality of the message passing mechanism - for exam-
ple. errors due to incomprehensible messages by either
of the systems might surface to the user. There will
be minimal user overhead since the hypertext will be
intuitive. The level of enhanced functionality will de-
pend upon the message constructing capabilities em-
bedded within both systems and might thus be com-

HMMS

k
- :‘aneX[" o .\ﬂi

i C3) Bep—eata B- o I

Figure 4: The Bridge Laws architecture

promised.

The main difficulty with this approach is the com-
promise in modularity. Each system has to issue mes-
sages using the other system’s language and this is an
obstacle for modularity. The next approach provides
a partial solution to this problem.

6.3 Bridge Laws

Instead of burdening each of the systems with
knowledge about the other one, it is proposed in (10, 8]
to use a separate translation schema external to the
svstems involved. An additional system: the transia-
tor is in charge of establishing proper communication
between the systems. In figure 4 we see the interac-
tion of both systems through the translator. Another
difference between this approach and the message-
passing one is the use of general bridge laws to achieve
translations of whole classes of concepts from one sys-
tem to the other one. This acts as a concept transla-
for relating concepts in one environment to concepts
in the other one. In the message passing approach
each message is translated independently, here we use
schemas that provide contextual information to trans-
late whole classes of messages. As an example, con-
sider a specific link that is to achieve mode! ezecution.
The relevant bridge law might specify that

“al{l execution links will inveke a specific
MDMS:model-execution function upon traver-
sal”

Thus there is no need to construct a message each
time.

What is achieved with this architecture is a sepa-
ration of the translation mechanism from the appli-

cation. The hypertext is no longer required to build
messages in the MMS language, nor is the MMS re-
quired to know about nodes, links and buttons: the
translator will take care of this. However, this might
result in a performance slowdown since the translator
will be an intermediary that will take time to perform
its translation task. We are advocating the separa-
tion of bridge law translation module from the two
subsystems. In [6] bridge laws are performed by the
hypertext system.

In terms of the criteria set forth above, we can
see that all criteria except for efficiency and reliabil-
ity are met. We explained above the issues related
to efficiency. Reliability of the integration will de-
pend upon the reliability of the translation mecha-
nism. The power of this approach lies in its gener-
ality. The heaviest burden of the integration falls
within the translation schema. In [8] son:e technical
details about this mechanism are provided.

6.4 Qmniscience

At the core of this unexplored approach lies an om-
niscient monitorthat observes the activities of the sys-
tems and relates one to the other without their par-
ticipation. This monitor is an all powerful entity that
is able to inspect the inner states of each system and
has access to all of its public functions. For exam-
ple, when the hypertext system traverses a link la-
beled ezecution, the monitor will understand this as a
model-execution operation and will instruct the MMS
to execute the corresponding model. When the MMS
completes execution it generates areport. As the mon-
itor watches the MMS report creation it instructs the
hypertext to impoct the report into a window. Both
systems will interact with the user and with the mon-
itor and neither will know of the other’s existence.
Moreover, the MMS could be interfacing with a differ-
ent user through some other mechanisms without com-
promising the HMMSs performance. Figure 5 gives a
high level view of this approach. The details of this
mechanism and its feasibility need to be determined.
The basic idea is that each system will be analyzed in
terms of its infernal state and its transitions between
states. The monitor will map internal states from one
system to the other. and artificially cause state tran-
sitions in one system to reflect changes in the other.
This archicecture is at the opposite end of the spec-
trum from the ad-hoc approach. Its basic philosophy
is one of no intervention. It will not require any spe-
cial mechanism from the hypertext and MMS systems
involved. This architecture will score high in modular-
itv and seamless integration, reliability will depend on

hypertext MM
/
/
Other
User-Interface
», -, Svystem

Figure 5: The Omniscient architecture

the mapping between state translations which could
be quite complicated. However its efficiency will be
compromised by the monitor’s actions. It is question-
able whether the integration of the systems will pro-
vide more functionality than its components because
the user interacts with each svstem independently.

7 Conclusion

Hypertext provides a natural and flexible interface
to a model management system and enables the MMS
to become an active participant in the model man-
agement process rather than being a passive storage
facility. Here we described how different features of
hypertext can be used to meet the dynamic require-
ments of an MMS. The integration of Model Man-
agement and Hypertext systems naturally leads us to
propose Hyper Model Management systems for DSS.
We have explored some of the salient features of these
svstems and we have pointed out avenues for further
research in the realm of dynamic hypertext and in the
domain of intelligent assistants to model management.
We are working on a prototype implementation of an
HMMS on the Maluar [29] system on which we will
report separately.

References

(1] R. Acksyn and D. McCracken. ZOG and the USS
Carl Vinson: Lessons in Systems Development. In

(2l

[6]

(]

(10]

(11]

Proceedings of the Firsi [FIP Conference on fu-
man Computer Inieraction.. Amsterdam, Nether-
lands, 1984.

Robert .M. Akseyn, D. L. McCracken, and E.A.
Yoder. KMS: A Distributed Hypermedia System
for Managing Knowledge in Organizations. Com-
munications of the ACM, 31(7):820-835, 1988.
Apple Computer, Inc., Cupertino, CA. Macin-
tosh HyperCard User’s Guide, 1987.

P. R. Balasubramanian, Toma&s Isakowitz, Rob
Kauffman, and Raghav K. Madhavan. Exploit-
ing Hypertext Valuation Links for Business De-
cision Making: A Portfolio Management Illustra-
tion. Technical report, NYU, 1991,

Hemant Bhargava, Michael Bieber, and Steven O.
Kimbrough. Oona, Max and the WYWWYWI
Principle: Generalyzed Hypertext and Model
Management in a Symbolic Programming Envi-
ronment. In Janice [. DeGross and Margarethe H.
Olson, editors. Proceedings of the Ninth ICIS,
pages 179-192, 1988.

Michael Bieber. Issues in Modeling a Dynamic
Hypertext Interface for Non-Hypertext Systems.
In Proceedings of Hypertext '91, San Antonio. De-
cemnber 1991.

Michael P. Bieber. Generalized Hyperiext in a
Knowledge-based DSS Shell Environment. PhD
thesis, Decision Sciences Department, University
of Pennsylvania, Philadelphia, PA 19104, Decem-
ber 1990.

Michael P, Bieber and Tomds Isakowitz. General
Hypertext Interfaces via Bridge Laws, a Logic
Modeling Approach. Technical reporr, NYU,
1991.

Michael P. Bieber and Tomds Isakowitz. Val-
uation Links: Formally Extending the Compu-
tational Power of Hypertext. Technical report,
CRIS, New York University. 1991.

Michael P. Bieber and Steven O. Kimbrough. On
Generalizing the Logic of Hypertext. In Proceed-
ings of the 23" Hawaii Iniernational Conference
on System Sctences, Januacy 1990.

R Blanning. AModel Management an Overview. In
Proceedings [SDP-89, 1989.

[33]

[36]

(37]

(38]

(39]

R.P. Minch. Applications and Research Areas for
Hypertext in Decision Support Systems. Journal
of Management Information Systems, 6(3):119-
138, Winter 1989-90.

T. H. Nelson. Replacing the Printed Word: A
Complete Literary System. In IFIP Proceedings,
pages 1013-1023, 1980.

Jakob Nielsen. HyperTezt & HyperMedia. Aca-
demic Press, 1990. A very readable introduction
to the field.

Ben Shneiderman. Designing the User Inierface:
Sirategies for Effective Human-Computer Inier-
action. Addison-Wesley, Reading, Massachusetts,
1987.

Ben Shneiderman. User Interface design for the
Hyperties electronic encyclopedia. In Proceed-
ings ACM Hypertezt’87 Conference, pages 189—
194, 1987.

Ralph Sprague and Eric Carlson. A Framework
For Decision Support Systems. Database, 4:1-13,
1980.

Ralph. H. Sprague and Hugh J. Watson. Model
Management in MIS. In Proceedings of the 7"
National AIDS Meeting, pages 213-215, 1975.

L. De Young. Hypertext Challenges in the Audit-
ing Domain. In HyperTezt-89 Proceedings, pages
169-180, November 1989.

(12]

[15]

(16]

(19]

20]

21]

(22]

Robert Blanning, Andrew Whinston, Vasant
Dhar, Clyde Holsapple, Mathias Jarke, Steven
Kimbrough, Javier Lerch, and Michael Prietula.
Precis of Model Management and the Language
of Thought Hypothesis. In Proceedings ISDP-89,
1991.

1. Bockenholt, M. Both, and W. Gaul. A Knowl-
dge Based System for Supporting Data Analysis
Problems. DSS, 5:345-354, 1989.

R. H. Bonczek, C. H. Holsapple, and A. B. Whin-
ston. Future Direction for Developing Decision
Support Systems. Decision Sciences, 11(4):616~
631, October 1980.

Vannevar Bush. As We May Think. Atlantic
Monthly, (176):101-108, July 1945.

J. Conklin and M.L. Begeman. gIBIS: A hy-
pertext tool for exploratory policy discussion.
In Computier Supported Cooperative Work, pages
140-152. ACM Transaction on Office Information
Systems, September 26 - 28 1988.

Jeff Conklin. Hypertext: An Introduction and
Survey. [EEE Computer, 20(9):17-41, September
1987.

Eagan D.E., Remae J.R., Landauer T.K,,
Lochbaum C.C, and Bellcore L.M. Behavioral
evaluation and analysis of a hypertext browser.
Working paper, Bell Communications Research,

1989.

N. Delisle. Neptune: A Hypertext System for
CAD Applications. In Proceedings of ACM SIG-
MOD International Conference on Management
of Data, Washington, D.C., pages 132-143 (Also
available as SIGMOD Record Vol 15, No. 2. June
1986), 1986.

D. Dolk and B. Konsynski. Knowledge Repre-
sentation for Model Management Systems. [EEE
Transactions on Software Engineering, SE-10(6),
November 1984.

Amitave Dutta and Amit Bose. An Aritificial
Intelligence approach to Model Management in
Decision Support Systems. Computer, pages 89—
97, 1984.

Pankaj K. Garg and Walt Scacchi. On Design-
ing Intelligent Hypertext Systems for Informa-
tion Management in Software Engineering. In
HyperTezt-87 Proceedings, pages 409-432, 1987.

[23]

(26)

(29]

(30]

(31)

(32)

(33]

(34]

A. M. Geoffrion.
tured Modeling.
588, April 1987.

An Introduction to Strue-
Management Science. 33:547-

A. M. Geoffrion. Hypertext and Structured Mod-
eling. Informal Note, January 1939.

T. P. Gerrity. Design of Man-Machine Decision
Systems: An Application to Portfolio Manage-
ment. Sloan Managemeni Review, 12(2):59-73,
1971.

GUIDE. Guide User’s Manual. Owl International
Inc., 1428 NE 21 St., Bellevue, WA 98007, (206)
T47-3203, 1987.

Frank G. Halasz. Reflections on Notecards: Seven
Issues for the next generation of Hypermedia Sys-
tems. Communications of the ACM, 31(7):836~
852, 1988.

Frank G. Halas#, T.P. Moran, and Randy H.
Trigz. Notecards in a Nutshell. In Proceedings of
the ACM Conference on Human Factors in Com-
puting Systems. 1987.

Tomas Isakowitz. MALUAR - A Computational
Hypertext Environment. Technical report. NY'U,
1991.

Peter G.W. Keen and Michael S. Scott Mor-
ton. DECISION SUPPORT SYSTEMS: AN OR-
GANIZATIONAL PERSTPECTIVE. Addison-
Wesley, Reading, Massachusetts, 1978.

Steven Kimbrough, Clark Prichett, Micahel
Bieber, and Hemant Bhacrgava. The Coast
Guard’s KSS Project. [Inierfaces, 20(6):5-16,
November/December 1990.

Dario Lucarella. A Model {or Hypertext-hased In-
formation Retrieval. In A. Rizk, N. Streitz, and
J. André, editors, Proceedings of the European
Conference on Hyperiezt, pages 81-94, France,
November 1990. INRIA, Cambridge University
Press.

P. Ma, F.H. Murphy, and E.A. Stohr. A Graphics
Interface for Linear Programming. Communica-
tions of the ACM, 32(8):996-1012. May 1939.

G. Marchionini and Ben Shneiderman. Finding
Facts Vs. browsing knowledge in hyvpertext sys-
tems. [EEE Computer. pages 70-80, January

1988.

Sterm Sche

Working Paper 18-92-01

