
REUSE AND PRODUCTIVITY IN
INTEGRATED COMPUTER-AIDED SOFTWARE

ENGINEERING: AN EMPIRICAL STUDY

by

Rajiv D. Banker
Carlson School of Management

University of Minnesota
Minneapolis, MN 55455

and

Robert J. Kauffrnan
Leonard N. Stern School of Business

New York University
New York, NY 10006

April 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-92-15

Published in MIS Quarterly, September 1991, Volume 14, No. 3, 374-401 and replaces Working
Paper IS-91-10.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Reuse and
Productivity in
Integrated Computer-
Aided Software -

Engineering: An
Empirical Study

By: Rajiv D. Banker
Carlson School of Management
University of Minnesota
Minneapolis, Minnesota 55455

Robert J. Kauffrnan
Stern School of Business
New York University
New York, New York 10006

Abstract
Growing competition in the investment banking
industry has given rise to increasing demand for
high functionality software applications that can
be developed in a short period of time. Yet de-
livering such applications creates a bottleneck in
software development activities. This dilemma
can be addressed when firms shift to develop-
ment methods that emphasize software (eusabili-
ty. This article examines the productivity
implications of object and repository-based in-
tegrated computer-aided software engineering
(ICASE) software development in the context of
a major investment bank's information systems
strategy. The strategy emphasizes software
reusability. Our empirical results, based on data
from 20 projects that delivered software for the
bank's New Trades Processing Architecture
(NTPA), indicate an order of magnitude gain in
software development productivity and the impor-
tance of reuse as a driver in realizing this result.
In addition, results are presented on the extent
of the learning that occurred over a two-year

development performance. This work demon-
strates the viability of the firm's IS strategy and
offers new ideas for code reuse and software
development productivity measurement that can
be applied in development environments that em-
phasize reuse.

Keywords: CASE, ICASE, productivity mea-
surement, reuse, software develop-
ment, software economics, software
engineering

ACM Categories: 0.2.8, D.2.9, D.2.m, K.6.0,
K.6.1, K.6.3

Introduction
In 1988, Boehm and Papaccio estimated that by
the early 1990s, firms would be spending in ex-
cess of $125 billion per year on software in their
efforts to remain competitive. To control these
spiralling costs, many firms are turning to com-
puter-aided software engineering (CASE) pro-
ducts in hopes of realizing improvements in
productivity and system quality. Although expen-
ditures on CASE were reported to be rapidly ris-
ing (Software Magazine, 1988), and firms
continue to view CASE as holding out consider-
able promise for delivering gains (Loh and
Nelson, 1989), investment in CASE has tended
to be a leap of faith: the performance gains have
been very difficult to identify and measure (Davis,
1988; Voelckner, 1988), and unsubstantiated
claims of productivity improvements are
widespread. For example, IBM has claimed 20
percent to 30 percent gains for its ADICycle
(Sperling, et al., 1989), and Sony claims to have
achieved 600 percent gains in a limited range of
applications (Gabel, 1989). Popular press esti-
mates top out at around 10,000 percent in gains
(Breidenbach, 1989; Clemons, 1991), but the im-
pact of such high-end claims is offset by others
who report little or no gains at all {McGuff, 1989).
Moreover, in a recent survey of 196 CASE-using
firms conducted by Software Magazine, 74 per-
cent responded that they did not have a produc-
tivity measurement program in place (Knight,
1989). Clearly, many firms have not yet begun
to even measure the impact of CASE.

period after ICASE was introduced, and on the CASE technologies involve significant automa-
influence of the link between application char, tion of the software development life cycle. Cur-
acteristics and the ICASE tool set in achieving rently available tools fall into three categories:

1 MIS Quarterly/September 1991

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

lower CASE, upper CASE, and integrated CASE.
Lower CASE provides support for the later life cy-
cle stages, especially code construction and
testing. Upper CASE offers assistance during the
early life cycle stages of analysis and design. In-
tegrated CASE (ICASE) tools, by contrast, sup-
port both the earlier and later stages of the life
cycle. Depending upon the specific CASE tool
that is considered, developers will have access
to a variety of automated software engineering
facilities. Some of these include specialized
report painting and user screen design tools,
code reuse search facilities, automated
documentation preparation facilities, multiple
code generators, code debugging tools, links to
existing 3GL code libraries, entity-relationship
(EIR) and data flow diagrammers (DFD), and soft-
ware version distribution control facilities.

At the heart of an investment program in CASE
is management's desire to improve development
productivity and software maintainability. In this
article, some empirical evidence is presented
about the viability of implementing an informa-
tion systems (IS) strategy that enables a firm to
produce high functionality software that could not
have been produced in a cost-effective manner
with traditional development methods. The cor-
nerstone of this strategy was the deployment of
an ICASE tool that emphasizes software
reusability. The benefits of constructing reusable
software were recently discussed by Kim and
Stohr (1991) and Nunamaker and Chen (1989a).
Apte, et al. (1990) present a case study of a large
commercial bank's experiences with this soft-
ware reusability-based approach. However, there
is a lack of generally accepted methods for
creating and implementing reusable software
(Lenz, et al., 1987), and little research has been
done to document the gains that a reusability ap-
proach can produce (Biggerstaff and Richter,
1987; Parker and Hendley, 1988). Moreover, little
work has been done to determine the leverage
that object-oriented development methods may
provide in improving development efficiency.

support and integrate activities involved in the
development of multi-platform, cooperative pro-
cessing or client-sewer architecture applications.
Such applications achieve levels of functionality
beyond what can be produced using traditional
development approaches. This architecture is in-
creasingly seen in the industry as a prerequisite
to manage growing hardware costs while optimiz-
ing processing performance for local decision
making, trades processing, and large-scale
database searches and financial optimization at
the mainframe level.'

Twenty-one software development projects were
studied in depth (though one project was later
omitted from the formal analysis as an outlier).
The applications that resulted now form First
Boston Corporation's new trades processing ar-
chitecture (NTPA), a set of core software applica-
tions that provide much of the bank's trades
processing, securities inventory management,
trades commission processing, real-time pricing
of financial instruments, and general ledger ac-
counting capabilities.

The principal contributions of this research are:

1. Description of an IS strategy that relies on
software reusability so that high functionali-
ty, cooperative processing software can be
produced in a cost-effective manner.

2. Documentation of an order of magnitude gain
in software development productivity that ap-
pears to be associated with the deployment
of an EASE tool that supports reusability in
software development.

3. Demonstration of the use of a new reuse
measurement approach for software develop
ment productivity that is generalizable to other
organizations that deploy CASE with the ob-
jective of supporting reusability.

HPS at First Boston: An IS
Strategy Involving CASE

The empirical results presented in this article are and Reusable software
intended to provide some initial evidence about This section discusses the rationale for the IS
the gains from reuse. They are based on an strategy pursued by the First Boston Corporation,
analysis of data collected in a two-year field study
of software development at the First Boston Cor-
poration, a large investment bank in New York ' For addttional background informatton on cooperative pro.
City. The firm deployed an EASE to01 called High cesstng and the client-server archttecture, refer to Desmond
Productivity Systems (HPS) that was meant to (1 989) and Edelstetn (I 989).

MIS Quarterly/Septernber 199 1 2

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

the characteristics of the ICASE tool, and the soft-
ware development environment in which it was
implemented. Also presented are the research
questions that later sections of this article ad-
dress through empirical analysis.

The need for a new IS strategy
The 1980s were characterized by rapid
technological change and increasing competition
for major American investment banks. The First
Boston Corporation's investment banking busi-
ness required more sophisticated software ap-
plications and growing computer hardware power
for high-speed securities and money market
transactions processing, immediate access to
and processing of large mainframe databases for
use with real-time financial analytics, local access
and customized analysis of distributed databases .
for financial market traders, and management
and control of the firm's cash balances and
securities inventory. Similar to those of its com-
petitors, First Boston's systems increasingly were
required to operate seamlessly 24 hours a day
across three platforms-microcomputers, mini-
computers and mainframes-in support of global
investment banking and money market trading
activities.

The trend in the investment banking industry has
been in the direction of applications software that
achieves a higher level of functionality for the
user than in prior generations. Much of this is
aimed at giving traders added capabilities to
realize a profit in highly competitive markets. For
example, at First Boston high functionality soft-
ware was expected to offer the trader the abiiity
to:

1. Consolidate multiple digital feeds of market
information into a single trader workstation;

2. Support real-time, computer-based financial
optimization analytics for trading decisions
with respect to existing (e.g., index arbitrage
and option pricing) and newly created (e.g.,
synthetic options, and multi-instrument hedg-
ing) financial instruments;

3. Provide a user-friendly, windowing interface
that traders could customize for their own
needs; and,

4. Deliver consolidated and unbundled informa-
tion on customer accounts and trader posi-
tions for risk management purposes.

Gene Bedell, the firm's CIO at the time, believed
that First Boston's strategic necessity was to
deliver systems that could attain such high levels
of functionality. Because bringing high func-
tionality systems into production rapidly was not .

possible with traditional development methods,
maintaining the status quo of traditional software
development methods would be a losing strategy
(Clemons, 1991). In the absence of more produc-
tive development methods, the IS operations
would blunt the firm's ability to deliver and sup-
port innovative financing products in a timely
manner.

Characteristics of ,the IS strategy
Bedell recognized that ~ i r s t Boston's IS opera-
tions needed to build software in a way that grow-
ing system complexity and system size would not
lead to increasingly uncontrolled growth in
development and maintenance costs, Bedell also
recognized that increasingly complex interfaces
were needed between cooperative processing
platforms and that this would create major
development bottlenecks. First, the functionali-
ty that had to be built was substantial, and the
larger the system the more cost prohibitive it
would be to deliver (Conte, et al., 1986). Second,
the firm would need to retain three sets of highly
skilled and highly paid developers--one set for
each of the three processing platforms. The only
way to avoid this "software trap" was to consider
automating software development (Feder, 1988).

Bedell's next move was just that: to recommend
that First Boston consider CASE as the major
component of its IS strategy. But after a range
of vendor-supplied lower and upper CASE tools
available on the market were tested, Bedell's
technical staff concluded that none would offer
the right mix of power and flexibility to build the
high functionality, cooperative processing sys-
tems that were needed to take the bank into the
mid-1990s. Piece-meal application of specific
CASE tools to individual phases of the software
development life cycle would make it difficult to
effectively link the phase-by-phase products of
development, and there would likely be little
positive impact on productivity.

Bedell's alternative strategy to cope with this
"functionality risk" was to build an ICASE tool
in-house (Clemons, 1991). Although the invest-
ment posed a major risk to the firm, First Boston

MIS QuarterIy/September 1 oa 1

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

subsequently committed $65 million for a new
software development methodology and a new
architecture of investment banking software ap-
plications in late 1986, one year before the stock
market ~rashed.~ This investment would lay the
foundation for High Productivity Systems (HPS),
the firm's [CASE tool, and a set of core applica-
tions for First Boston called the New Trades
Processing Architecture. (Figure 1 expands on
the business strategylls strategy link that led to
First Boston's investment in HPS.)

The technical vision behind the IS
strategy
In early 1986, the First Boston Corporation
gathered together a team of senior IS and user
managers to make a set of recommendations
regarding the firm's technology and systems.
They reached an important conclusion: the firm
would implement a reusability approach to
rebuild and upgrade the capabilities of the ex-
isting information systems architecture in a way

Business Strategy Formulation

Key Questions The First Boston Corporation's Answers

* Major U.S. corporatelinstitutional relationships for
investment banking and advisory services.

business serve? Markets characterized by fierce competition and
rapid innovations in existing financial product
base.

Who are the firm's major
competitors?

How is value created by the
firm's business?

* Primary competitors are major U.S. and foreign in-
vestment banks.
Secondary competitors are U.S. banks and
brokerage firms with significant money market
trading operations.

* By offering clients cost minimizing debt and equity
. issuance services.

By delivering advisory services to maximize
valuelrninimize cost in mergers and acquisitions.

* By effectively handling currencylmoney market
trading activities.

* Extension of services to global, 24-hour coverage
for trading services.

tion in the business markets? Recognized leadership in being first to market wl
innovative products.

I ' I * Ability to operate as a lower cost service provider.

To consider the potential role that IT can play in assisting firm to achieve
its business goals, proceed to IS Strategy Formulation Analysis; else end.

I I ' IS Strategy Formulation Analysis (see next page)

Figure 1. An Analysis of the Business StrategyllS Strategy Link
for the First Boston Corporation

The costs would later rise as high as $100 million (Schwartz,
1990).

MIS Quarterly/September 1991
Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

that their basic building blocks-objects and on this technical vision, which also was meant
modules-could be reused repeatedly. Vivek to reduce the bank's reliance on costly lan-
Wadhwa, later to become the firm's top technical guage-specialized programmers' by making it
specialist, was hired to implement and expand possible to develop software that could run on

. - IS Strategy Formulation Analysis

Business StrategyllS Strategy Link

Key Questions The First Boston Corporation's Answers

t
1

What is the technical IS vision
that can make strategy
possible? 6

How can IT provide competitive
edges in firm's business
markets? 5

* lmplement the following:
" control software maintenance costs.
* * rapidly deploy new products.
* * manage hardware uselcontrol costs.
" develop customized user interfaces for trader

workstation applications.
" enable creation of multi-tier cooperative pro-

cessing applications.
" reduce functionality risk in software develop-

ment and react to changing business
environment.

+

' ' Develop HPS CASE so that it emphasizes
reusability and controls software costs.

* Define a very simple language that will enable
rapid prototyping across three hardware platforms.

* Automatically generate code for various platforms
in five languages.

* Deliver a centralized repository for storage of
reusable software.

* Provide diagramming and screen painting tools to
facilitate some of the labor-intensive tasks in
construction.

* lmplement a softwarelhardware metrics program
that includes measurement of:

strategy for the firm be *' extent of software reuse.
validated? " software development productivity.

' software quality.
" average time to prototype.

If measurement *' average cost per executed MIP across multiple
shows that goals tiers.
are not met, adjust * ' marginal value of high functionality applications
IS strategy or fine- in business use.
tune technical
vision

I 1 ' Return to Business Strategy Formulation Analysis

Figure 1. Contlnued

5 MIS Quarterly/September 7991

Center for Digital Economy Research
Stem School of Business
U7orhg Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

any of the three platforms with a single "rules
language." This rules language would be defined
within HPS. Code generators would then process
this HPS code so that run-time COBOL, PU1,
and C and other code would result for each of
the three major development platforms, effective-
ly screening developers from the complexity of
the development environment. Wadhwa believed
that this approach, when combined with special
facilities to provide the platform-to-platform com-
munications links called "middleware," would
lead to the development of NTPA systems at an
affordable cost. (For a description of some
representative NTPA systems, refer to Table 1 .)

UPS: An ICASE tool to support
the IS strategy
HPS supports reusability because it is an object-
based CASE tool. The object types include pro-
grams, rules, output screens, user reports, data
fields, and 3GL components, among other^.^ In
order to make the reusability approach possible,
HPS developrnent was coupled with a centralized
repository for reusable objects. The structure of
the data stored in the repository is based on an
implementation of the entity-relationship attribute
model, originally developed for database design
(Chen, 1976; Chen and Sibley, 1991; Teory, et
al., 1986). Specifications for the objects used to
construct an application are stored in a central
repository where they become available to o!her
developers. The repository includes all the defini-
tions of the data and objects that make up the
organization's business. The motivation for hav-
ing a single repository for all such objects is
similar to that for having a single database for

This term is used to distinguish development environments
like HPS and should not be confused with the object-oriented
approach. The primary differences are that object-based
development does not allow for instances of object classes
to be "classes" themselves, nor would objects in object-based
development have any special "inheritance properties." (See
Booch, 1989, for additional details on the distinctions, and
Meyer, 1988, for a discussion of the object-oriented paradigm
of software construction.) Thus, in HPS development object
types, such as a "screen" or a "rule," parallel abstract data
types or classes in the object-oriented paradigm. Instances
of HPS object types might include a "CLIENT-INPUT-
SCREEN" or a "COMMISSION-CALCULATION-RULE."
These parallel "instances" of object classes in object-oriented
development; however, in HPS an instance of an object is
unable to aP as a ciass and would not include any "in-
heritance" capaSilities.

all data: all objects need only be written once,
no matter how many times they are used. When
they are used and reused in various combina-
tions, repository objects form the functionality that
represents the information systems processing
capability of the

In addition, HPS provides diagramming and
"painting" facilities for enterprise modeling and
analysis and design; it provides code generators
for five development languages; and it also offers
tools for debugging code and managing versions
of the same application. The coverage of the HPS
tool set across the systems development life
cycle is depicted in Appendix 1.

Software development
performance at
First Boston Corporation
Prior to 1987, First Boston did not have a formal
program in place for tracking software develop-
ment productivity. However, First Boston's senior
IS managers informed us that some IS consulting
firms had reported productivity of about eight to
10 function points per person month at large
financial institutions. (Function points is a popular
productivity metric for software developrnent that
is discussed in more detail later in the article. For
example, Capers Jones estimates function point
productivity levels in the range of eight function
points per person month for MIS business ap-
plications (Bouldin, 1989).) In addition, several
project managers that we interviewed had worked
in the IS development areas of other large finan-
cial institutions. They indicated that First Boston's
traditional software development performance
prior to the deployment of HPS was similar to
those other firms. They also believed the IS con-
sulting firms' estimates were applicable to the
pre-HPS deployment environment at First
Boston.

To obtain additional background information on
the extent to which CASE enabled the firm's
reusability approach to deliver productivity
benefits, interviews were conducted with seven
managers who had overseen NTPA development
projects at First Boston. When the development

For additional background on repositories, see the follow~ng:
Banker and Kauffman (1991). Chen and Sibley (1991), Fisher
(1990). and Hauah (1989).

MIS Quarterly/Septernber 199 1 6

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Table 1. Representative Applications From First Boston Corporation's New
Trades Processing Architecture (NTPA)

Application Name Description
Dealer's Clearance Designed to improve operational and treasury management produc-

tivity by automating settlement, providing online, real-time display
of clearances, and projected end-of-day securities and cash
balance positions.

General Ledger Interface A table-driven, self-balancing system that automatically posts
entries from every transaction processing system included in
NTPA. As a result, manual reconciliations are never required.

Firm Inventory/ Maintains information for firm-wide management of foreign
Foreign Securities securities and currencies. Tracks individual trade lots and can
& Currencies determine profit and loss using various trading accounting bases.

Floor Broker Manages fee and discount information for all brokers used by the
firm. The system maintains payment histories linked to exchange,
broker, and trading volume.

Product Master This system supports identification of financial products across
business areas. It enables each business group to classify and pro-
cess securities according to its own business requirements, and it
allows trading areas to establish new product types in the process
of conducting business.

Real-Time Firm Inventory Trading management uses this system to monitor trading positions,
exposures, and intraday profit and loss by product, account, desk,
department, or the entire organization. This system also enables
traders to set up and monitor a strategy by linking several
positions.

of multi-tiered (cooperative processing), high
functionality applications using traditional tools
was compared with using HPS, the intewiewees
estimated that:
1. Full life-cycle traditional development would

take 11 5 percent longer on average (std. dev.
= 73.4%) to completei

2. The construction phase alone would take 121
percent longer on average (std. dev. =
101.9%); and,

3 Maintenance and enhancement also would
take 121 percent longer on average (std. dev.
= 71.6%).

The project managers indicated that reusable
software was essential for such productivity gains
to be possible. Yet the firm had not measured

development productivity in an HPS environment,
so their estimates were not confirmed.

Because high productivity gains from sohare
reusability were believed to be essential to First
Boston's IS strategy, this article addresses three
principal research questions:

1. What was the level of reuse observed in soft-
ware development projects?

2. Did reusability lead to any significant produc-
tivity gains during the first two years of the
deployment of the HPS CASE tool?

3. Did the evolving features of the HPS tool set
and the organization's adaptation to the new
development environment influence reuse
and productivity gains?

7 MIS ~ u a r t e r l y / S e p t ~ - ' - - '^"'
Cellter for Digital Ecol~ol~ly Research
Stem School o f Business
W o r h g Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Systematic evidence documenting product gains
from software reusability is the essential first step
in this research because this source of produc-
tivity gains forms the very foundation of the IS
strategy at the research site. In this first study,
however, we did not test other important aspects
of the firm's IS strategy-for example, the value
of the high functionality user interface offered to
the trader and the importance of real-time con-
nections across multiple processing platforms.
Nor did we attempt to verify claims as to whether
downstream maintenance costs would be lower,
whether higher quality would be created, or
whether using HPS would drive down the skill
level at which a developer becomes productive.

The answers to these research questions regar-
ding First Boston's experience with CASE should
be of general interest to practitioners and the IS
research community alike. At present, there is
little descriptive information available about reuse
levels in CASE environments. Nor is there much
evidence to assist our understanding of the
extent of the leverage that reuse creates in mak-
ing software development operations more effi-
cient. And, because every vendor's software
development tools are evolving at a rapid rate,
we believe that it is important for all firms that
deploy CASE tools to gauge how development
performance will shape up in the presence of a
changing and imperfect tool set.

A Descriptive Model for
Reusability and ICASE
Development Productivity
This section presents a model relating develop-
ment productivity to the deployment of an ICASE
methodology that emphasizes reuse. Specifically
discussed are the motivation for this model, the
constructs it involves, and the measures for the
constructs. This model does not attempt to cap-
ture all aspects of the deployment of ICASE: it
focuses on the leverage that reuse creates on
productivity.

Corporation's New Trades Processing Archi-
tecture. The interviews probed how the firm's
ICASE tool affected development productivity
under a variety of development scenarios. Pro-
ject managers reported that:

1. The single most important feature of the
ICASE tool was its ability to store reusable ob-
jects in a centralized repository.

2. Software reuse under HPS required ex-
perienced developers to learn new skills;
however, relatively inexperienced developers
seemed to learn about reuse quite rapidly.
Project managers reported that it took only
two months to become productive as an HPS
developer, and after: about six months the
learning curve flattened out. .

3. The reliable performance of the development
tools offered within HPS and the stability of
the overall development environment over a
longer period of time were believed to be more
important than the skill levels of individual
developers.

4. During the first year after EASE was
deployed, not all of the key pieces were in
place, and this meant that not all kinds of
application projects were equally well support-
ed. For example, batch systems tended to be
heavy in one object type called "compo-
nents." These are 3GL library routines whose
integration was not well handled early in ver-
sion 1 of HPS. In addition, the relatively early
availability of an HPS screen-painting facility
within version 1 tended to enhance develop-
ment productivity for online, real-time applica-
tions. These contained more user screens
than applications with mostly batch process-
ing functions.

Overall, reuse was believed to be the major fac-
tor affecting development productivity. These
observations are supported by a growing litera-
ture on productivity and software reuse (Apte, et
al., 1990; Moad, 1990; Nunamaker and Chen,
1989a; 1989b; Norman and Nunamaker, 1989;
Scacchi, 1989).

The interview findings led us to build into our Background for mode' model characteristics that differ from traditional
A series of semi-structured interviews were initial- software development productivity models in sev-
ly conducted with five senior managers and era1 ways. The extent of observed reuse should
seven project managers who managed the de- be explicitly incorporated to capture the leverage
velopment of various aspects of the First Boston on development labor consumed in boosting out-

MIS Quarter/y/September 199 1 8
Center for Digital Economy Research
Stem School of Business
Workmg Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

put functionality. Because the ICASE tool that
was deployed at the First Boston Corporation is
object-based, reuse occurs as reuse of repository
objects (e.g., rules, screens, and reports, and
3Gt components-which can also be used as
though they were repository objects, though
technically they are not) that were created for
other applications or earlier for the same
application.

The maturity of the CASE tool set also should
be incorporated as a predictor of the extent of
reuse and software development productivity,
especially when major changes in its capabilities
change with the deployment of new versions of
the tool. In addition, the initial deployment of
CASE is as likely to result in reduced produc-
tivity as it is to deliver on the promise of produc-
tivity gains. Initially, it is unlikely that all of the
bugs in the tool will be worked out nor that all
of the ICASE tool's planned capabilities will be
in place. In addition, development staff will need
to be retrained, and project managers will need
to refine elements of their management tactics
to effect project control. Finally, with the deploy-
ment of a new ICASE tool-especially one that
is repository-based-it will be necessary to es-
tablish a base of reusable code in the repository.

Although the firm's software development staff
varied in its levels of traditional software develop
ment experience, most had little exposure to HPS
when the construction of the NTPA applications
was initiated. The maximum amount of ex-
perience that anyone had with HPS was about
one year. All of the projects examined were
managed under a common management struc-
ture; most project personnel worked on multiple
projects to broaden their experience, and the
HPS rules language was constant across pro-
jects. Interviews with project managers and team
members also indicated that experience and
skills did not vary significantly across projects.

The descriptive model
A descriptive model was proposed for evaluating
the impact of reuse in ICASE development that
utilizes five constructs: software development
labor consumed, the application functionality pro-
duced, the extent of reuse, the nature of the
CASE tool set at the time an application was
developed, and the characteristics of the applica-
tion under development. (See Figure 2.)

New Objects Built

The descriptive model employs an object reuse
metric that can be applied to a range of object-
based and object-oriented development environ-
ments and can be readily meas~red.~ Our
metric fits First Boston's CASE environment well
because software development essentially in-
volves constructing and reusing objects, thereby
reducing the amount of new software that must
be written. Both repository objects and 3GL com-
ponents (which are also considered to be objects
in this environment) are reusable within applica-
tions and across their boundaries. The metric we
employed is defined as:

NEW OWECT PCT - , .

NUMBER UNIQUE OWECTS BUILT FOR APPLICATION
TOTAL NUMBER OF OWECTS COMPRISING APPLICATION

NEW-OBJECT-PCT (new object percentage)
provides a measure of the portion of the total
number of objects that comprise an application
that must be built for the first time.= The total
number of objects in an application is based on
the number of different situations in which a pro-
gram uses an object. As a result, multiple execu-
tions of the same object in the same situation are
not counted. The computation of NEW-
OBJECT-PCT is illustrated in Appendix 3.

The ICASE Object Reuse Model

The extent of new code that must be constructed
(NEW-OBJECT-PCT) is likely to be influenced
by the stability and length of time the CASE tools
have been in place (MATURITY) and the features
of the ICASE tool that offer support for building
systems with different characteristics (APPLICA-
TION). Reuse may be limited for applications with
certain characteristics, especially when an object
with highly specialized functionality is required
that is not already stored in the repository. These
relationships are depicted in the CASE Object
Reuse Model in Figure 2.

For a more comprehensive discussion of software reuse
metrics, see Banker, et al. (1990a).

An alternative is to weight each object by counting the number
of function points it represents. However. this approach is not
readily applied in practice because functionality spans multi-
ple objects.

Center for Digital Economy Research
Stem School of Business
u7nrking Paper IS-92-15

Reuse and Productivity in Computer-Aided Software Engineering

THE ICASE Development Productivity Estimation Model

FUNCTION-POINTS = eDo PERSON-DAYS@' NEW-OBJECT-PCT@'

' MATURIN'~ ' APPLICATION'^ ' f

produces
>

of Effort A A

I I
influences
productivity

influences
productivity

FUNCTION-PTS

influences
productivity

Characteristics
ICASE

Tool Set

influence 1
reuse NEW-OBJECT-PCT based on

unique Objects Built/
influences Total Objects Used

reuse

NEW-OBJECT-PCT = a, + a, (LOG) MATURITY

. + a* ' (LOG) APPLICATION + 6
The EASE Object Reuse Estimation Model

Figure 2. Conceptual and Estimation Models

The CASE Development Productivity Model cond year of the tools' deployment (and rnost-

Software development effort, operationalized as ly built with HPS version 2, which expanded

PERSON-DAYS of effort, is the primary driver on the capabilities of the earlier version);'

of the overall amount of functionality that is
delivered in a software development project,
operationalized in terms of FUNCTION-POINTS.
Functionality delivered by the software develop-
ment process is influenced by three project
factors:

1. ICASE tool set MATURITY, a binary variable
indicating whether a project was one of 13
built in the first year (and primarily built with
HPS version 1) or one of seven built in the se-

MIS Ouarterly/September 199 1 10

'The reader should recognize that the operationalization we
selected is in some sense the best surrogate for MATURITY
that was avatiable. While we expect that CASE tools mature
gradually over time, as new capabilities are deployed and
come into increasing use among developers, normally an
upgrade from an old version to a new one involves a signifi-
cant number of changes. When First Boston's software
development managers characterized projacts as "Year 1"
or "Year 2" development efforts. they not onlywere indicating
that a Year 2 project had started at a certain point in time,
they were also indicating that the composition of the tool set
used to build the project had changed from Year 1.

Center for Digital Economy Res
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

2. NEW-OBJECT-PCT, a variable representing
the portion of new -code that had to be
developed in a project;

3. APPLICATION type, a binary variable in-
dicating a batch processing or an online, real-
time application. Although we chose to focus
on only two application types in this research,
this variable more generally is meant to cap-
ture how the characteristics of an application
interact with the available development tools
to result in code reuse and the production of
software functionality.

The variables are defined in more detail in Table
2. The relationships among these variables are
labeled as the ICASE Development Productivity
Model in Figure 2. A more general model, based
on additional experience with other organizations
that have deployed CASE, could employ other
operationalizations of the variables we selected
and may also involve additional variables not con-
sidered here.

Software Development
Productivity Research from
an [CASE Perspective
This section discusses two aspects of the prior
literature on software development performance
evaluation that guided our development of the
descriptive model CASE productivity and reuse:
metrics in software development productivity
research, and measurement of code reuse.

Metrics for software development
performance assessment
Much has been written in recent years regarding
the modeling and measurement of software
development productivity (Banker and Kemerer,
1989; Banker, et al., 1991; Davis, 1988; Gaffney,
1986; Grammas and Klein, 1985; Kang and Levy,
1989; Nunamaker and Chen, 1989b; Scacchi,
1989). Evaluation of development productivity in-
volves measuring inputs consumed in the pro-
cess of planning, designing, documenting,
building, testing, and implementing, as well as
comparing the resulting functionality. The stan-
dard approach is to gauge project development
productivity across the entire liie cycle. This ap-
proach is often represented as a "black box" pro-

duction process, in which consumption of labor
results in developed code delivering the func-
tionality of a software application.

Software development labor is the primary input
that drives functionality delivered in a software
project. Software development productivity is
often measured using the input-output ratio:

PROOUCilV,N - SIZE O F APPLICATION DEVELOPED

L4BOR CONSUMED DURING DEVELOPMENT

Two popular ways of measuring the size of the
output of a software develophent project have
emerged over the years: counting source lines
of code8 (SLOC) (Jones, 1986; 1988) .and per-
forming function point analysis (Albrecht and
Gaffney, 1983; Low and Jeffrey, 1990; Sprouls,
1990; Symons, 1988). SLOC is not an appropriate
metric for this study because HPS generates
code in five different languages, making the
resultant measures incomparable across applica-
tions and with manually written SLOC.

The function point analysis methodology gauges
the size of an application in terms of its func-
tionality. The metric that results-function
points-incorporates two intermediate measures:
function counts (FC) and a complexity multiplier
(CM). Function counts aggregate the number and
relative complexity of data input types, output
types, file types, external interface types, and ex-
ternal inquiry types. Function counts are then ad-
justed using a complexity multiplier representing
the impact of 14 dimensions (FACTORS) of the
application's implementation environment. This
yields function points. (Additional introductory
details on function point analysis are provided in
Appendix 2.)

The function points method offers an attractive
metric because it abstracts from the program-
ming languages used in different development
projects. Firms that use function points for pro-
ductivity comparisons are also supported by the
existence of national and international user
groups that define the standards for implemen-
ting the methodology to ensure that software
development productivity results are comparable

' SLOC can be thought of in terms of the code that forms the
procedure division of a Cobol program because this is what
creates the functionality of an application developed using this
language.

Center for Digital Ecotlomy Research
Stem School of Business

MIS ~uafler/y/September Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

across organizations. As a result, function points
currently enjoy support among Fortune 500 firms
(Bouldin, 1989; Dreger, 1989; IFPUG, 1988;
Sprouls, 1990) and receive continued attention
by the academic research community (Kemerer,
1990; Symons, 1988). There is currently no other
common metric that emphasizes functionality as
much as function points or supports better soft-
ware development comparisons, and so we have
chosen to adopt it in this research.

On the input side, labor is clearly the primary in-
gredient; all other capital inputs, such as the
CASE tool or the hardware used, are invariant
across projects. The measures most often em-
ployed for labor are days or months of effort.

Measurement of software reusability
Prior research has investigated numerous pro-
ject factors that influence software development

Table 2. Definitions of Variables in the Estimation Models

Variable Name Definition

I Object Reuse Estimation Model

NEW-OBJECT-PCT Number of unique ojects built for the application divided
by the total number of objects comprising the application
(UNIQUE OBJECTSJOBJECTS USED).

MATURITY

APPLICATION

A binary variable that takes the value e if a project is a
"Year ZHPS Version 2 Project" and 1 if a project is a
"Year l lHPS Version 1 Project."

A binary variable that takes the value e if a project results
in an online, real-time application, and 1 if it is a batch
application.

a,, a, , a2 Model parameters to be estimated.

E A normally distributed error term.

CASE Development Productivity Estimation Model

FUNCTION-POINTS An output metric for the size of the software product that
is delivered.

PERSON-DAYS An input metric for development effort in person days.

OBJECT-REUSE Number of unique objects built for the application divided
by the total number of objects comprising the application
(UNIQUE OBJECTSJOBJECT USED).

MATURITY A binary variable that takes the value e if a project is a
"Year ZHPS Version 2 Project" and 1 if a project is a
"Year 11HPS Version 1 Project."

P, , P , , Pa , P3 Model parameters to be estimated.

f A log-normally distributed error term.

Note: Taking logs of the MATURITY and APPLICATION variables results in the values 1 and 0, respec-
tively, when these variables have the observed values of e and 1. The usual interpretation of
a binary variable is maintained.

MIS Quarterly/September 199 1 12

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

productivity (Banker, et al., 1991). The relevant
ones include project management practices, ap-
plication type, development staff experience, the
programming language used, and the stability of
the development platform and user requirements
(e.g., in terms of project size or function points).
In software projects developed using HPS, the
level of reuse (conceivably a project management
practice) was believed to be the major factor
deserving attention (Gaffney and Durek, 1989;
Jones, 1984). If extensive reuse can increase pro-
ductivity by an order of magnitude or more, as
has been reported in the popular press, it would
yield significant cost reductions in software
development operations.

Reused code is also present to some degree in
traditionally developed projects. For example, it
is common for a developer to identify a piece of
code that has similar functionality and then adapt
or "template" it to meet a specific need. Suc-
cessful reuse programs have been stymied in
many organizations, however, because of weak-
nesses in the methodologies used (Horowitz and
Munson, 1984; Mathis, 1986), problems with
training and top management support (Bigger-
staff and Richter, 1987; Tracz, 1987), and motiva-
tional reasons when developers and proje;t
managers feel that a methodology change en-
dangers jobs (Kemerer, 1989; Nezlek and
Leitheiser, 1991 ; Wong, 1987). Assessing the
level of reuse in a 3GL programming environment
is also difficult. Although certain types of explicit
reuse (for example, modules from code libraries)
are easy to identify, most of the code that might
be reused is hidden within programs where it can-
not be readily identified.

Unfortunately, prior research on reuse provides
little guidance as to how to construct a relevant
metric for reuse. The bulk of the work has fo-
cused on how to exploit the available technology
to increase the level of reuse in 3GL and 4GL en-
vironments. (Some representative references in-
clude Horowitz and Munson, 1984; Jones, 1984;
Kernighan, 1984; Lanergan and Grasso, 1984;
and Matsumoto, 1984.) We identified just two
studies that made concrete suggestions regard-
ing the measurement of reuse. Standish (1984)
proposed that reuse should be measured at the
line of code level. Neighbors (1984) argued that
reuse should be abstracted from the level of
source code into some meta-language that re-

lates to the problem. This idea fits better with the
ICASE tool development environment examined
in this field study because the repository objects
can be thought of as the elements of the meta-
language. In fact, in the HPS environment sys-
tems developers reuse entire objects rather than
specific lines of code, and such reuse is more
appropriately referred to as object reuse.

An Estimation Model for
Object Reuse and ICASE
Development Productivity

Data collection ;
Data were obtained on person months from First
Boston's software development labor charge-out
records for 21 projects. Labor was charged out
by PERSON-DAYS to the various phases of a
software development project, and a normal per-
son month was conservatively viewed as having
18 PERSON-DAYS. Interviews were conducted
with project managers wherever possible to
review project charge-out data and examine their
project worksheets. When a project manager had
left the bank, the labor data were unavailable or
too sketchy to give a picture of the overail level
of effort, or the documentation was not in order,
the project was eliminated from further considera-
tion. Also investigated, in addition to the 21 pro-
jects, was the feasiblity of obtaining data on other
NTPA projects. However, one project for which
other information was available could not be
evaluated because of a lack of records about the
amorlnt of labor consumed; six more were not
documented in a manner that would enable us
to measure functionality.

Nearly all the information needed to analyze
FUNCTION-POINTS for an appiication was
obtained from the functional and technical spe-
cification documentation stored in the central
repository. HPS also provided a facility for prin-
ting out a hierarchically decomposed diagram of
application modules. This greatly assisted func-
tion point and object reuse analysis because the
documentation we examined was effectively
standardized.

Manual collection and crosschecking of function
points data is very costly. The collection of func-
tion points was coordinated by a single person
who was on site at First Boston for three months.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

He initially trained and provided feedback on
function point analyses conducted by two other
members of the research team, who were also
involved in performing object reuse analysis and
conducting project manager interviews. Function
point complexity measures were obtained directly
from the project managers who had built and im-
plemented the project^.^ Function point
estimates for the projects were checked by per-
forming a recount. Any discrepancies were later
resolved in discussion between project members.
Our findings were consistent with the recent
results of Kemerer (1990), who found that func-
tion point estimation tends to vary little more than
plus or minus 10 percent when different people
do the countinq.

Our final sample of 20 projects excluded one pro-
ject among the initial 21 that was believed to be
an outlier. This project exhibited a very low level
of productivity that was attributed to changing
functional specifications and interruption of the
development schedule. The data set examined
in this research compare favorably in size with
other studies that used data sets employing func-
tion points as the output metric (for example,
Albrecht and Gaffney, 1983 (24 obs.); Behrens,
'1983 (22 obs.); and Kemerer, 1987 (17 obs.)).
Detailed data and summary statistics for object
reuse and productivity for the 20 projects are
shown in Table 3.

Projects ranged in size from a minimum of about
98 to a maximum of 5,876 FUNCTION-POINTS.
The PERSON-DAYS of labor expended on these
projects also varied, with a low of 85 and a high
of 2,193 days, respectively. The value of NEW,

The median value of the sum of the raw application complex-
ity scores (FACTORS) was 36, implying that on average
FUNCTION-COUNTS would be adjusted by a mmplexrty
multiplier (CM) of:

CM .65 + (.OI ' FACTORS) ;. .65 + (.01 ' 36) = 1.01

to arrive at FUNCTION-POINTS. (See Appendix 2 for details.)
In addition:

The upper quartile value of FACTORS = 55 (a CM of
1.20); the lower quaftile value of FACTORS = 29 (CM of
0.94).

'The median value of CM for online applications - 1.15;
the median value of CM for batch processing a g
plications = 0.91.

The results are robust with respect to this relatively subjec-
tive measure. When the model was estimated substituting
FUNCTION-COUNTS for FUNCTION-POINTS. the results
did not change much.

OBJECT-PCT ranged from 100 percent (in-
dicating there was no reuse because each new-
ly built object was used just once) to 16.1 percent
(indicating the project involved 83.9 percent
reuse).

An econometric model for
object reuse and CASE
productivity estimation
The estimation model we employed to represent
the descriptive model is shown below.

EQUATION 1. NEW-OBJECT-PCT =
a, + a, * LOG (MATURITY) +
CY, * LOG (APPLICATION) + E

EQUATION 2. LOG (FUNCTION-POINTS) =
Po + P, * LOG (PERSON-DAYS) + 8, *

LOG (NEW-OBJECT-PC73 + P, * LOG
(MATURITY) + P, * LOG (APPLICATION)
+ LOG (5'-1

In EQUATION 1, NEW-OBJECT-PCT is estimat-
ed as a function of the logarithms of the MA-
TURITY of the CASE tool in the development
environment and the type of APPLICATION be-
ing developed. EQUATION 2, presented in its
loglinear estimation form, extends prior
multiplicative models of software development
productivity (e.g., Albrecht and Gaffney, 1983;
Bailey and Basili, 1981; Banker and Kemerer,
1989; Behrens, 1983; Belady and Lehman, 1979;
Boehm, 1981; DeMarco, 1981; Kemerer, 1987;
Walston and Felix, 1977; Wingfield, 1982) to in-
corporate software reusability. It captures the in-
tuition expressed in the descriptive model.

The error terms of the two models are likely to
be correlated (i.e., COV(~,log(f)) # 0), as they
relate to the same projects. For this reason, we
employed seemingly unrelated regression (SUR)
to estimate the joint model. Estimation of the two
equations together as a SUR model, using an
iterative method devised by Zellner (1962), results
in statistical efficiency gains.1°

'O SUR would not result in statistical efficiency gains if the set
of dependent variables in EQUATION 2 was identical to, or
a linear transformation of, the set of dependent variables in
EQUATION 1. Note, however, that PERSON-DAYS appears
only in the right hand side of EQUATION 2. It is also worth-
while to point out that the presence of NEW-OBJECT-PCT
as a dependent variable in EQUATION 1 and as an indepen-
dent variable in EQUATION 2 does not eliminate the
statistical efficiency gains of the joint estimation or render
the use of SUR inappropriate. For additional details, see
Judge, et al. (1985)' pp. 46-71.

MIS Quarteriy/September 1991 14 Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Table 3. An Overview of the Data Set

Person Function Online or Year 1
Days Function Points/ Batch New or Year 2

Project Labor Points Person Application Object Project?
(A) (B) Month (BIA)' Type Pct (Maturity)

1 1068 2250.08 37.93 ONLINE 23.2% YEAR 1
2 737 170.56 4.17 BATCH 100.0% YEAR 1
3 492 300.14 10.98 BATCH 54.3% YEAR 1
4 21 93 632.96 5.20 BATCH 71.9% YEAR 1
5 520 264.60 9.1 6 ONLINE 35.1 010 YEAR 1
6 1294 1273.70 17.71 BATCH 61 .O% YEAR 1
7 295 352.50 21.51 BATCH 49.3% YEAR 1
8 471 494.08 18.88 ONLINE 48.1 010 YEAR 1
9 136 97.92 12.96 BATCH 93.1 010 YEAR 1

10 426 148.41 6.27 BATCH 96.2% : YEAR 1
11 862 385.14 8.04 BATCH 69.0% YEAR 1
12 147 1092.00 133.71 ONLINE 44.8% YEAR 1
13 230 241.82 18.93 ONLINE 45.7% YEAR 1
14 686 3812.40 100.03 ONLINE 26.6% YEAR 2
15 376 1772.40 84.85 ONLINE 34.7% YEAR 2
16 469 3475.20 133.38 ONLINE 29.2% YEAR 2
17 85 135.00 28.59 ONLINE 78.1% YEAR 2
18 648 5876.25 163.23 ONLINE 23.1% YEAR 2
19 233 3712.80 286.83 ONLINE 16.1% YEAR 2
20 41 6 886.58 38.38 BATCH 32.8% YEAR 2

Descriptive Statistics
MEAN 589.2 1368.7 57.0" - 51.6°/o" -
STDDEV 489.3 1630.0 73.4 - 25.7% -
MAXIMUM 5876.0 21 93.0 286.8 - 100.0% -
MINIMUM 97.9 85.0 4.2 - 16.1 010 -
COUNT - - - BATCH: 9 - YEAR 1:13

ONLINE: 11 - YEAR 2:7

Correlation Matrix
NEW

PERSON FUNCTION APPLICATION OBJECT
DAYS POINTS TYPE PCT MATURITY

PERSON DAYS 1 .OOO
FUNCTION POINTS .043 1 .OOO
APPLICATION TYPE - .326 ,511 1.000
NEW OBJECT PCT .096 - .683 - .653 1 .OOO
MATURITY - .336 576 . 533 - .515 1 .OOO -

* We used a conservative estimate of 18 PERSON-DAYS in a PERSON-MONTH of software develop-
ment to determine function point productivity; i.e.:
FUNCTION-POINTS I PERSON-MONTH = FUNCTION-POINTS I PERSON-DAY 18.

" The means for FUNCTION,POINTSIPERSON-MONTH and NEW-OBJECT-PCT reported in this
table are simple averages. We report more meaningful project size-weighted average values for the
means of FUNCTION-POINTS/PERSON-MONTH and NEW-OBJECT-PCT in Figures 3 and 4.

15 MIS Quarterly/September 199 1

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Discussion of Empirical
Results
Results and interpretation of the

. . estimation model
The results of the estimation of the ICASE ob-
ject reuse and development productivity models
for 20 projects are shown below.

EQUATION 1. NEW-OBJECT-PCT =

ag + a, MATURITY + a;
0.71 -0.12 - 0.27
.001 .ll .003

* APPLICATION

EQUATION 2. LOG (FUNCTION-POINTS) =

p, + p, LOG(PERS0N-DAYS)

1.45 0.55

.10 .001

c p, * LOG (NEW-OWECT-PCT) + P,
- 1.92 0.40

.001 .I1
* LOG (MATURIW + P4 LOG (APPUCATION)

- 0.04

.46
Note: The one-tailed significance level is shown

below the coefficient estimate, which is
shown in bold. The correlation between
the estimates for E and LOG(f) was 62.4
percent, supporting the need for our SUR
estimation approach.

EQUATION 1. The negative estimated coeffi-
cient of the variable APPLICATION
(a2 = -0.27, .003 level) indicates that batch
processing applications development required
more new code to be developed, and thus less
reuse, on average than online, real-time projects.
In addition, the coefficient for MATURITY
(a, = - 0.12, .I 1 level) was also negative, sug-
gesting that the development of new application
functionality required increasingly less new code
in Year 2. The estimated value of the intercept
is also noteworthy (ao = 0.71, .001 level). The
intercept is significantly less than 1.00, providing
evidence that HPS has a beneficial effect overall
in reducing the proportion of new objects that
must be built in application development.

EQUATION 2. The results of the estimation of
EQUATION 2 show that PERSON-DAYS of ef-

fort (p, = 0.55, .001 level) are substantially
leveraged by object reuse (p, = - 1.92, .001
level) and the MATURITY of the CASE environ-
ment (p, = 0.40, .11 level) in the production of
FUNCTION-POINTS. Again, a substantial
amount of learning was occurring between Year
1 and Year 2 in the use of HPS. The variable for
APPLICATION type (P, = - 0.04, .46 level) was
not significant at conventional levels, suggesting
that if there is an effect on productivity, it occurs
largely through reuse." The coefficient for
NEW-OBJECT-PCT (p, = - 1.92, .001 level)
has a very straightfoward interpretation in the
original multiplicative model: it can be interpreted
as a 1.92 percent productivity gain associated
with a 1 percent decrease in the value of NEW-
OBJECT-PCT (or a 1 percent increase in reuse)
in the range of project sizes that we observed.
The 0, parameter (P, = 0.40, .11 level) estimate
can be interpreted in a similar way. The impact
of an additional year of organizational experience
with the CASE tool is to amplify the productivity
of development labor by a factor of = 1.49
times, because the value of the binary MATURI-
TY variable is e to indicate Year 2.

The presence of diseconomies of scale for
development labor (p, = 0.55, .001 level) sug-
gests that higher productivity can be achieved
with smaller-size projects. (Note: In our multi-
plicative model, a coefficient estimate of greater
than 1 indicates the presence of scale econo-
mies, an estimate of 1.0 indicates constant re-
turns to scale, and an estimate of less than 1
indicates diseconomies of scale.) This is probably
due to the considerable complexity of managing
large software projects in a new development
environment.

Was the IS strategy delivering
software development performance
gains ?
The average productivity and object reuse by ap-
plication type and year are presented in Figures
3 and 4. Their implications for the performance

" When we estimated this model without the APPLICATION
type variable in EQUATION 2, we found that the estimated
coefficient of NEW-OSJECT-PCT rose to about - 1.57, yet
the estimated coefficients of the other variables were large
ly unaffected. This suggests that APPUCATION type affected
productivity through reuse.

MIS Quarterly/September 199 1 16
Center for Digital Economy Research
Stem School o f Business
Working Paper IS-92- 15

Reuse and Productivity i J Computer-Aided Software Engineering

PRODUCTIVITY: YEAR I VS. YEAR 2

-
YEAR l /HPS VERSION 1 YEAR 2/HPS VERSION 2

YEAR OF DEVELOPMENT

5 Batch Systems Only Online Systems Only Both

Function-points/person-month values
are project size-weighted averages.

i I

Figure 3. Year 1 and Year 2 Productivity Comparisons

of the firm's IS strategy are discussed in the re- ment productivity, by contrast, ranged between
mainder of this section.'* 4.2 and 38.4 function points per person month.

As can be seen in Table 3, it appears there is
greater productivity in the development of online,
real-time systems, with a range of between 9.1
and 287.8 function points per person month. The
proportion of new objects built (NEW-OBJECT-
PCT) ranged from 16.1 percent to 48.1 percent,
equivalent to reuse levels of 83.1 percent and .
51.9 percent respectively. Batch system develop-

'' A potential approach to the analysis of these data would have
been to conduct simple t-tests to gauge whether significant
differences exist between the means for the productivity
results by application type in Years 1 and 2, and for the
NEW-OBJECT-PCT numben as well. However, such a test
would not fairly represent the characteristics of our shudural
model, especially because of the existence of scale
diseconomies and correlated error terms.

One application, Project #2, exhibited no reuse
at all. And the smallest proportion of new objects
built for a batch application was observed for Pro-
ject #20. In this instance, NEW-OBJECT-PCT
was 32.8 percent, consistent with a 67.2 percent
level of reuse.

Differences between Year 1 and Year 2 project
productivity performance are also evident from
the weighted averages (see Figure 3, which
presents averages weighted for project size).
Online application project development produc-
tivity grew from 32.1 to 135.4 function points per
person month, and batch development produc-
tivity also grew from 9.4 to 38.4 function points
per person month. The combined averages for
online and batch projects evidenced an order of
magnitude of growth, from 15.6 to 121.6 function

17 MIS Ouarterly/September 199 1

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

NEW OBJECT PCT: YEAR 1 VS. YEAR 2
N E W - O B J E C T - P C T 1 8 0 ,
1 70.9 1

YEAR l / H P S V E R S I O N 1 Y E A R 2 / H P S VERSION 2

YEAR OF DEVELOPMENT

7 m B a t c h S y s t e m s O n i y G$$$ O n l i n e S y s t e m s O n i y B o t h

A l l NEW-OBJECT-PCT values are
project size weighted averages.

Figure 4. Year .l and Year 2 Reuse Compsirisons

points per person month between Years 1 a n d
2. If t h e estimated figure of 8 function points per
person month is used for traditional development
prior to t h e deployment of HPS, there appear to
have been efficiency gains that were m a d e dur-
ing t h e first year of development.

T h e overall weighted average for proportion of
new objects built (NEW-OBJECT-PCT) for t h e
2 0 projects w a s 39.8 percent. The weighted
average NEW-OBJECT-PCT among Year 1 pro-
jects w a s 54.9 percent, which fell to 25.3 percent
for Year 2 projects. The construction of new code
was minimized among online projects a t 24.3 per-
cent of the total application objects in Year 2. The
big potential for additional gains appears to have
been in the creation of batch processing projects,
however. Although our data set only includes o n e
observation from Year 2 batch development,
NEW-OBJECT-PCT fell from 70.9 percent to

32.8 percent. This suggests that potential effi-
ciency gains a r e available from the HPS version
2 tool s e t for batch development.

Conclusion
This section reviews the major results of our
research and discusses their generaiizability, as
well as the generalizabiiity of the model employed
to obtain them.

Major findings at the First Boston
Corporation
This article reports on the productivity gains that
c a n result from the implementation of a n IS
strategy that was consciously adopted to promote
t h e development and delivery of customizable

MIS Quarterly/September 1991 18 Center for Digital Economy Research

Stern School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

and rapidly deployable, high functionality
cooperative processing software applications,
while controlling software development costs.
The First Boston Corporation's investment in
HPS was the solution to this problem, and the
technical vision behind it involved three impor-
tant related elements:

1. Emphasis on software reusability and
automated code generation;

2. Storage of reusable software in a centralized
object repository;

3. Integration of the CASE tool set across the
development life cycle.

The evidence we presented suggests that the
deployment of HPS was an essential first step
in achieving the goals that senior management
had set, and that effective software reuse was
a precondition for this success. The levels of pro-
ductivity reported represent an order of mag-
nitude gain over the eight to 10 function points
per person month productivity estimates for prior
develooment at First Boston and for Caoers
~ones"nationa1 sample of MIS business app'lica-
tions (Bouldin, 1989). Further, the results of our
economic model of CASE reuse and productivi-
ty are of special interest: they offer evidence to
confirm the importance of software reusability in
the achievement of improved productivity, de-
spite the increasing functionality and complexi-
ty of the software applications that were built.

The productivity gains that we observed were in-
deed substantial-high enough, in fact, to pro-
vide First Boston's senior software development
managers with confirmation that the technical
vision they implemented to support the firm's IS
strategy was working well. First Boston's software
development performance also exceeded Capers
Jones' estimates for development productivity of
15 function points per person month prior to the
maturation of a newly deployed CASE tool
(Bouldin, 1989). In fact, the firm is likely to be
achieving an even higher level of software
development productivity than initially estimated
by software development project managers. This
kind of feedback reinforces the importance of im-
plementing a software metrics program to track
reusability and productivity, the final step we
recommend in our analysis of the link between
IS strategy and business strategy (see Figure 1).

First Boston's investment in HPS was undertaken
with the intent of obtaining competitive advantage
in operations with high functionality software,
while at the same time controlling software
development costs. Interestingly, First Boston
Corporation sold its NTPA software in 1988 to
Kidder Peabody (Arend, 1988)' a large invest-
ment banking competitor, thus creating an op-
portunity for senior management to generate
additional cash flows to defray the costs of im-
plementing its IS strategy.

On the generalizability of the
model and results
One of the most important questions for practi-
tioners who read this article is: How generalizable
is the modeling approach employed by this re-
search? In addition, to what extent is First
Boston's experience with a software reusability
strategy, improved productivity, and CASE tools
likely to be transferrable to other organizations?
And, overall is CASE necessary to obtain the kind
of productivity gains reported in this article?

Although prior literature on software development
productivity was utilized for deciding on how to
model what we saw and how to derive results
from the descriptive model that emerged, we em-
phasize one of the limitations of this study: it in-
vestigates a model of software development
productivity that is specific to what was learned
about CASE and reuse at First Boston. Thus, as
a next step it would be valuable to examine ad-
ditional data from other sites that have deployed
HPS to determine whether reuse, application
type, and the maturity ofthe CASE tool set have
similar productivity effects. But even this effort
would only yield information about a single tool.
Some preliminary insights are presented below.

The Case of Carter Hawley Hale, Inc. Carter
Hawley Hale (CHH), a large Los Angeles-based
retailing firm, is one such site from which addi-
tional conclusions might be drawn about our
modeling approach and the efficacy of a reusa-
bility strategy involving HPS. The firm purchased
HPS to support a sotware reusability strategy in
its corporate systems development activities.
Although we are unable to offer any quantitative
information on development productiv~ty or reuse
levels, this model would be testable in the CHH
environment, because the HPS tool set continues

19 MIS Quarterly/September 199 1

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

to be upgraded over time, and learning effects
are still observed as developers' use of the tool
set matures. In addition, reuse at CHH is primarily
object-based; CHH bought only the tool, not the
NTPA systems as in Kidder Peabody's case
(below). There also is preliminary evidence that
the reusability strategy is working well. CHH,
recently struggling with financial difficulties, filed
for protection from creditors under Chapter 11
early in 1991. Although HPS had only recently
been implemented at the firm, management de-
cided to use it to enable deployment of a crucial,
high functionality creditor claims management
system in a short period of time, while under great
pressure to cut software development costs.

The Case of Kidder Peabody. Additional conclu-
sions can be drawn about the generalizability of
our model from Kidder Peabody's experience
with HPS. Kidder Peabody is a firm that has taken
the reusability strategy even farther. Its purchase
of NTPA was made with the idea that NTPA
would be customized from First Boston's reus-
able object building blocks and repository models
of core investment banking industry systems for
use in a different organizational environment with
different business requirements. In this case, not
only would reuse be object-based, it would also
be model-based,13 leading to additional gains in
productivity that were not possible in First
Boston's primary development activities, and
which would not be adequately addressed by the
model we proposed. Because this kind of devel-
opment is similar to system enhancement in tradi-
tional software engineering, it points out the need
for a model that can meaningfully measure per-
formance when reuse extends to the design
phase (Lanergan and Grasso, 1984) or the
maintenancelenhancement phase of develop-
ment (Basili, 1990; Rombach, 1991).

Application Type and ICASE Tool Set Feature
Evaluation. Because some shortcomings of HPS'
handling of batch development were eliminated
with the release of version 2, examining batch
versus online systems development now would
only be of interest to determine how well the
capabilities of the CASE tool set have developed.
Management, however, also may want to exam-
ine other aspects of the applications that they
build to determine how well the CASE tools sup-

" Personal communication with Vivek Wadhwa, Seer
Technologies, July 10. 1991.

port development. We expect that no CASE tool
will support all tasks equally well, and inclusion
of a relevant operationalization of the application
type variable could help to confirm other
strengths or weaknesses. Thus, with a more gen-
eral treatment, the application-type variable
should continue to be of interest to those who do
single toollsingle site, single toollmulti-site,
or multi-tool/single site research on CASE
productivity.

The Reuse Model. One of the most generalizable
aspects of the model that we present is the in-
clusion of reuse as a driver for productivity.
Equally important, however, is the realization that
high levels of reuse are not automatic when re-
pository and object-based ICASE tools are de-
ployed. One researcher recently pointed out that
"[rjeuse is enabled by some development pro-
cess and both reusable components and the re-
use process employed need to be tailored to and
integrated into that development process model"
(Rombach, 1991, p. 89). Thus, a useful model for
CASE productivity evaluation is likely to require
a model for software reuse evaluation embedd-
ed within it.

Although we identified application type and
CASE maturity as drivers for reuse in the First
Boston model, a larger set of factors must be con-
sidered in a more general model to evaluate
reuse (Banker, et al., 1990). The factors would
include:

1. Technical qualities of the tool (e.g., ease of
reusable object identification and retrieval,
and functionality of reusable objects);

2. Development team characteristics (e.g., size
of the team, expert-novice composition, and
relative knowledge of. the repository);

3. Organizational factors (e.g., an incentive
system to promote reuse by developers, and
project reuse level targets); and,

4. Architectural factors (e.g., the extent to which
reusability is leveraged in systems planning,
and whether the development environment in-
tegrates reusability across life cycle phases).

Note that each of these classes of variables of-
fers management an opportunity to redesign the
systems development environment to promote re-
use in a cost-effective manner (Barnes and Bol-
linger, 1991; Bollinger and Pfleeger, 1990).
Considering such variables will become increas-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

indy important in the future as firms move
forward from merely implementing ICASE to
maximizing its effectiveness.

The Reuse Metric. The reuse metric that we have
presented, NEW-OBJECT-PCT, is readily
generalized. It can represent the percentage of
new code developed in a variety of software
engineering environments. For example, this
metric could be operationalized as "new lines of
CASE code," "new objects built" in other entity
relationship attribute object-based tools (such as
IEF), or "new objects classes" built in object-
development (Rubin, 1990). We should also point
out that a more immediate metric for reuse is
given by 7 - NEW-CODE-PCT, and that this
metric can also be employed where manage-
ment's focus is on the level of reuse, rather than
the level of new code built.

Clearly, this research is only a first step in
developing an understanding of reuse and pro-
ductivity in CASE environments. Additional work
at other sites is needed to probe the impacts of
other tools that are based on entity relationship
attribute data modeling, as well as those that are
based on object-oriented data modeling (Chen
and Sibley, 1991). We make no claim that the
model presented in this article is a general model,
though we argued that it can be generalized
along a number of dimensions. Nor have we
shown that ICASE is a prerequisite for reuse,
since high levels of reuse could be obtained from
CASE tools that do not integrate the entire life
cycle. (In fact, a repository may be more impor-
tant.) However, the capabilities that CASE pro-
vides to integrate phase-specific outputs for use
across the life cycle may well be necessary to
translate the potential that a reusability strategy
offers into meaningful software development pro-
ductivity gains.

Acknowledgements
We wish to thank Mark Baric, Gene Bedell, Tom
Lewis, and Vivek Wadhwa of Seer Technologies
for providing us access to data on software de-
velopment projects and offering their own and
their managers' time. We also thank Charles
Wright, Eric Fisher, and Vannevar Yu for as-
sistance with the collection of the software pro-
ject data. We acknowledge four anonymous
reviewers, Macedonio Alanis, Cynthia Beath, Eric

Clemons, Rosann Collins, Gordon Davis, Gordon
Everest, Jean Kauffman, Chris Kemerer, Rachna
Kumar, Dani Zweig, and the participants of
research seminars at the University of Minnesota,
New York University, the University of Penn-
sylvania, the University of Rochester, and the
University of California, lrvine for their help-
ful comments and suggestions. Finally, we thank
the National Science Foundation (grant #SES-
8709044) for partial funding of data collection.

References
Albrecht, A.J. and Gaffney, J.E. "Software Func-

tion, Source Lines of Code, and Development
Effort Prediction: A Software Science Valida-
tion," IEEE Transactions on Software
Engineering (9:6), November 1983, pp.
639-647.

Apte, U., Sankar, C. S., Thakur, M., and Turner,
J. "Reusability Strategy for Development of
lnformation Systems: Implementation Ex-
perience of a Bank," MIS Quarterly (14:4),
December 1990, pp. 421 -431.

Arend, M. "Kidder, First Boston Get on Each
Other's CASE," WaN Street Computer
Review, September 1988, pp. 86-90.

Bailey, J. W. and Basili, V. R. "A Meta-model for
Software Development Resource Expen-
ditures," Proceedings of the 5th international
Conference on Software Engineering, 1981,
pp. 107-1 16.

Banker, R. D. and Kauffman, R. J. "Automated
Software Metrics, Repository Evaluation and
the Software Asset Management Perspec-
tive," working paper, Center for lnformation
Systems, Stern School of Business, New York
University, New York, NY, 1991.

Banker, R. D. and Kemerer, C. F. "Scale
Economies in New Software Development,"
IEEE Transactions on Software Engineering
(15:10), October 1989, pp. 1199-1205.

Banker, R. D., Fisher, E., Kauffman, R. J., Wright,
C., and Zweig, D. "Automating Software
Development Productivity Metrics," working
paper, Center for Research on lnformation
Systems, Stern School of Business, New York
University, New York, NY, 1990a.

Banker, R. D., Kauffman, R. J., and Morey, R.
C. "Measuring Gains in Operational Produc-
tivity from lnformation Technology: A Study of
the Positran Deployment at Hardee's lnc.,"

2 1 Quarterl~/Se~tember lgS Cellter for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Journal of Management lnformation Systems,
Fall 1990b.

Banker, R. D., Datar, S., and Kemerer, C. "A
Model to Evaluate Variables Impacting the
Productivity of Software Maintenance,"
Management Science (37:1), January 1991,
pp. 1-28.

Barnes, H. 9. and Boilinger, T. "Making Software
Reuse Cost Effective," IEEE Software (8:1),
January 1991.

Basili, V. "Viewing Maintenance as Reuse-
Oriented Software Development," IEEE Soft-
ware (7:1), January 1990, pp. 19-25.

Behrens, C. A. "Measuring the Productivity of
Computer Systems Development Activities
with Function Points," IEEE Transactions on
Software Engineering (9:6), November 1 983,
pp. 648-651.

Belady, L. A. and Lehman, M. M. "The
Characteristics of Large Systems," in
Research Directions in Soffware Technology,
P. Wegner (ed.), MIT Press, Cambridge, MA,
1979, pp. 106-138.

Biggerstaff, T. and Richter, C. "Reusability
Framework, Assessment and Directions,"
IEEE Software (4:2), March 1987, pp. 41-49.

Boehm, 9. Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

Boehm, 0. and Papaccio, P. N. "Understanding
and Controlling Software Costs," IEEE Trans-
actions on Software Engineering (1 4:1 O), Oc-
tober 1988, pp. 1462-1477.

Bollinger, T. B. and Pfleeger, S. L. "Economics
of Reuse: Issues and Alternatives," Informa-
tion and Software Technology (32: 1 O),
December 1990.

Booch, G. "What Is and What Isn't Object-
Oriented Design," Ed Yourdon's Software
Journal (2:7-8), Summer 1989, pp. 14-21.

Bouldin, 9. M. "CASE: Measuring Productivity-
What Are You Measuring? Why Are You
Measuring It?" Software Magazine (9:l O),
August 1989, pp. 30-39.

Breidenbach, S. "Developers Dump Hosts for PC
LANs," Network World, March 20, 1989.

Chen, M. and Sibley, E. H. "Using a CASE-
Based Repository for Systems Integration,"
Proceedings of the 199 1 Hawaii lnternational
Conference on Systems Sciences, IEEE,
January 1991, pp. 578-587.

Chen, P. P. "The ER Model Toward a Unified
View of Data," ACM Transaction on Database
Systems (1 :1), 1976, pp. 9-36.

Clemons, E. "Evaluating Investments in Strategic
lnformation Technologies," Communications
of the ACM, January 7991.

Conte, S. D., Dunsmore, H. D., and Shen, S. Y.
Software Engineering Metrics and Models,
Benjamin Cummings, Reading, MA, 1986.

Davis, G. 9. "Commentary on lnformation
Systems: Productivity Gains from Computer-
Aided Software Engineering," Accounting
Horizons (2:2), June 1988, pp. 90-93.

DeMarco, T. "Yourdon Project Survey: Final
Report," Yourdon Inc., Technical Report,
1981.

Desmond, J. "Tools Are Needed for Race to the
Desktop," Software Magazine (9:9), July
1989.

Dreger, J. B. Function Point Analysis, Prentice-
Hall, Englewood Cliffs, NJ, 1989.

Edelstein, H. "Cooperative Processing Applica-
tions Expanding in Number," Software
Magazine (1 1 :2), December 1989, pp. 39-45.

Feder, 9. "The Software Trap: Automate-Or
Else," Business Week, May 9, 1988.

Fisher, J. T. "IBM's Repository: Can Big Blue
Establish 0512 EE as the Professional Pro-
grammer's Front End?" DBMS, January
1990, pp. 4249.

Gabel. "A Yen for Just-in-time Decisions Aids
Sony's Drive for Coprocessing," Computer-
world, April 10, 1989.

Gaffney, J. E., Jr. "Estimation of Software Code
Size Based on Quantitative Aspects of Func-
tion (with Application of Expert Systems
Technology)," working paper, IBM Federal
Systems Division, Advanced Technology
Department, Gaithersburg, MD, 1986.

Gaffney, J. E., Jr. and Durek, T. A. "Software
Reuse-Key to Enhanced Productivity: Some
Quantitative Models," lnformation and Soft-
ware Technology (31:5), June 1989, pp.
258-267.

Grammas, G. W. and Klein, J. R. "Software Pro-
ductivity as a Strategic Variable," Interfaces
(15:3), May-June 1985, pp. 116-126.

Hazzah, A. "Making Ends Meet: Repository
Manager," Software Magazine, December
1989, pp. 59-72.

Horowitz, E. and Munson, J. "An Expansive View
of Reusable Software," IEEE Transactions on
Soffware Engineering (SE-10:3), September
1984, pp. 477-487.

IFPUG. Proceedings of the lnternational Func-
tion Points Users Group, lnternational Func-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided SoMvare Engineering

tion Point Users' Group, 1988.
Jones, T. C. "Reusability in Programming: A

Survey of the State of the Art," IEEE Transac-
tions on Software Engineering (SE-10:5),
September 1984, pp. 484494.

Jones, T. C. Programming Productivity, McGraw-
Hill, New York, NY, 1986.

Jones, T. C. "A New Look At Languages," Com-
puterworld, November 7, 1988.

Judge, G. G., Griffiths, W. E., Hill, R. C.,
Lutkepohl, H., and Lee, T.4. The Theoryand
Practice of Econometrics, Second Edition,
John Wiley and Sons, New York, NY, 1985.

Kang, K. C. and Levy, L. S. "Software Methodol-
ogy in the Harsh Light of Economics," lnfor-
mation and Soffware Technoiogy (31 :5), June
1989, pp. 239-249.

Kemerer, C. F. "An Empirical Valuation of Soft-
ware Cost Estimation Models," Communica-
tions of the ACM, May 1987.

Kemerer, C. F. "An Agenda For Research in the
Managerial Evaluation of Computer-Aided
Software Engineering (CASE) Tool Impacts,"
Proceedings of the 22nd Hawaii lnternational
Conference on Systems Sciences, Kailuo-
Kona, HI, January 1989.

Kemerer, C. F. "Reliability of Function Points
Measurement: A Field Experiment," working
paper, Sloan School of Management, MIT,
Boston, MA, December 1990.

Kernighan, B. W. "The UNIX System and Soft-
ware Reusability," IEEE Transactions on Soft-
ware Engineering (SE-10:5), September 1984,
pp. 513-518.

Kim, Y. and Stohr, E. A. "Software Reuse: Issues
and Research Directions," working paper,
Center for Research on Information Systems,
Stern School of Business, New York Univer-
sity, New York, NY, June 1991.

Knight, J. "CASE Up On MIS Agenda," Software
Magazine, August 1989, pp. 32-36.

Lanergan, R. G. and Grasso, C. A. "Software
Engineering with Reusable Designs and
Code," IEEE Transactions on Software
Engineering (SE-10:5), September 1984, pp.
498-501.

Lenz, M., Schmid, H. A., and Wolfe, P. F. "Soft-
ware Reuse Through Building Blocks," IEEE
Software (4:4), July 1987, pp. 34-42.

Loh, M. and Nelson, R. R. "Reap~ng CASE
Harvests," Datamation, July 1, 1989, pp.
31-33.

Low, G. C. and Jeffrey, D. R. "Function Points

in the Estimation and Evaluation of the Soft-
ware Process," IEEE Transactions on Soft-
ware Engineering (1 6: I), January 1, 1 990, pp.
64-71.

Mathis, R. F. "The Last 10 Percent," IEEE Tran-
sactions on Software Engineering (SE-12:6),
June 1986, pp. 705-712.

Matsumoto, Y. "Some Experiences in Promoting
Reusable Software: Presentation in Higher -
Abstract Levels," IEEE Transactions on Soft-
ware Engineering (SE-10:5), September 1984,
pp. 502-512.

McGuff, F. P. "Cost Cutting Revisited, Computer-
world, July 17, 1989.

Meyer, B. Object-Oriented. Software Construc-
tion, Prentice-Hall, New York, NY, 1988.

Moad, J. "Cultural Barriers Slow Reusability,"
Datamation, November 15, 1989, pp. 87-92.

Neighbors, J. M. "The DRACO Approach to Con-
structing Software from Reusable Com-
ponents," IEEE Transactions on Software
Engineering (SE-10:5), September 1984, pp.
564-574.

Nezlek, G. S. and Leitheiser, R. L. "Towards
Developing a Coherent Research Framework
to Measure CASE Effectiveness," Pro-
ceedings of the 24th Hawaii International Con-
ference on Systems Sciences, January 1991,
pp. 438445.

Norman, R. J. and Nunamaker, J. F., Jr. "CASE
Productivity Perceptions of Software En-
gineering Professionals," Communications of
the ACM (32:9), September 1989, pp.
11 02-1 108.

Nunamaker, J. F., Jr. and Chen, M. "Software
Productivity: A Framework of Study and an
Approach to Reusable Components," Pro-
ceedings of the 22nd Hawaii international
Conference on Systems Sciences, Kailua-
Kona, HI, January 1989a, pp. 959-968.

Nunamaker, J. F., Jr. and Chen, M. "Software
Productivity: Gaining Competitive Edges in an
Information Society," Proceedings of the 22nd
Hawaii lnternational Conference on Systems
Sciences, Kailua-Kona, HI, January 1989b,
pp. 957-958.

Parker, J. and Hendley, B. "The Re-usage of Low
Level Programming Knowledge in the
UNIVERSE Programming Environment," in
Software Engineering Environments, p.
Brereton (ed.), Halstead Press, New York, NY,
1988.

Rombach, H. D. "software Reuse: A Key to the

3 Quarter l~/~e~tember Cellter for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Maintenance Problem," Information and Soft-
ware Technology (33:1), JanuaryIFebruary
1991.

Rubin, K. "Reuse in Software Engineering: An
Object-Oriented Perspective," Proceedings of
COMPCON, 1990, pp. 340-346.

Scacchi, W. "Understanding Software Produc-
tivity: A Comparative Empirical Review," Pro-
ceedings of the 22nd Hawaii lnternational
Conference on System Sciences, Kailua-
Kona, HI, January 1989, pp. 969-977.

Schwartz, E. "IBM Sets Sights on Financial Ser-
vices, " Computer Systems News, March 1 9,
1990.

Software Magazine. "CASE Growth Will
Skyrocket," March 1988, p. 16.

Sperling, E., Schwartz, E., and Gerber, C. "IBM
Makes CASE for Coding," Computer Systems
News, September 25, 1989.

S prouls, J. (ed.). IFPUG Function Point Counting
Practices Manual, Release 3.0, International
Function Point Users Group, Westville, OH,
1990.

Standish, T. A. "An Essay on Software Reuse,"
IEEE Transactions on Software Engineering
(SE-10:5), September 1984, pp. 494-497.

Symons, C. R. "Function Point Analysis: Dif-
ficulties and Improvements," IEEE Transac-
tions on Software Engineering (1 4: I), January
1988, pp. 2-10.

Teory, T. Y., Yang, D., and Fry, J. P. "A Logical
Design Methodology for Relational Database
Using the Extended Entity-Relationship
Model," ACM Computing Surveys (18:2), June
1986, pp. 197-222.

Tracz, W. "Software Reuse: Motivations and In-
hibitors," Proceedings of COMPCON 87, San
Francisco, CA, February 1987, pp. 358-363.

Voelckner, J. "Automating Software: Proceed
with Caution," IEEE Spectrum, July 1988.

Walston, C. E. and Felix, C. P. "A Method of Pro-
gramming Measurement and Estimation,"
IBM Systems Journal (1 6: I), 1977, pp. 54-73.

Wingfield, C. G. "USACSC Experience with

SLIM," US Army Institute for Research in
Management lnformation and Computer

- - Science, Technical Report 360-5, 1982.
Wong, W. "Management Overview of Software

Reuse," Technical Report PB87-109856, Na-
tional Bureau of Standards, Gaithersburg,
MD, 1987.

Zellner, A. "An Efficient Method for Estimating
Seemingly Unrelated Regressions and Tests
for Aggregation Bias," Journal of the
American Statistical Association (53, 1 962,
pp. 348-368.

About the Authors
Rajiv D. Banker is the first Arthur Andersen &
Co./Duane R. Kullberg Chair in Accounting and
lnformation Systems at the Carlson School of
Management, University of Minnesota. He has
published numerous articles on information
systems, management accounting, operations
management and productivity analysis. His cur-
rent research interests include information
systems development and maintenance produc-
tivity, computer-aided software engineering per-
formance metrics and evaluation of business
value of information technology.

Robert J. Kauffrnan is an assistant professor at
the Stern School of Business at New York Univer-
sity, where he has taught since 1988. He com-
pleted a masters degree at Cornell University,
and was later employed as an international lend-
ing and strategic planning officer at a large
money center bank in New York City. He received
a doctorate in information systems from the
Graduate School of Industrial Administration,
Carnegie Mellon University in 1988. His current
program of research involves developing new
methodologies for measuring the business value
of a broad spectrum of information technologies,
using techniques from management science and
economics.

MIS Quarterly/September 199 1

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-15

Reuse and Productivity in Computer-Aided Software Engineering

Appendix 1
The High Productivity Systems (HPS)

CASE Development Tool Set

HPS, the object and repository-based CASE tool studied in this research, provides support across
the systems development life cycle through a series of integrated tools, as shown below:

Enterprise
Modeling

Diagrammers for:
Hierarchies -

Matrix

I Analysts / Implementation1
Requirements Desrgn Construction 1 Test

I Languages I

Product~onl
Maintenance

COBOL

Analysis and
Design

Diagrammers
for:

EIR
Hierarchies
Dependencies
Matrix

I Painters for: I
' Windows

Reports

Generators for:
C for Windows,
and 0512 Pres. Mgr.
COBOL ClCSlMVS
batch
IBM S188 COBOL,
online and batch
MVS batch reports
IBM 3270 screens
Windows, OS12
Pres. Mgr. menus
Windows. OS12
Pres. Mgr. HELP
082 generators

Test and Maintain

' Debugging tools
for generated
code
' Automated version

and migration
control across
repositories
' Multiplatform

runtime security
' System rebuild

facility
' Production version

mgmt system
' Software distri-

bution system

The HPS application development platform consists of the following features:

A central DB2-based repository, with PSM-based local development repositories;

A technical documentation generator and manager;

Reuse enabling facilities and management tools;

Project level security and control;

Source code library management facilities.

HPS promotes reuse. Developers can search the centralized repository by object type, object name,
or keywords that contain an object's description. Once identified, objects can be reused to create func-
tionality in new applications.

Quarter'y'Septembe Center for Digital Economy Research
Stem School of Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Appendix 2
An Overview of the Function Point Analysis Methodology

The function point analysis methodology for the measurement of the size of a software project is based
on the identification of functions performed by the software. The methodology was originally developed
by Allan Albrecht at IBM. Since then, the methodology has developed, with the help of a national users
group, into an operationally welldefined methodology (Dreger, 1989). It continues to gain in popularity,
despite the extent of the effort required to analyze a system of moderate size, because of its robustness
across different programming environments and its usability as an early life cycle labor estimation tool.
(For a description of the International Function Point Users Group Standard, Release 3.0, the interested
reader is referred to Sprouls, 1990.)

Function point analysis has two primary components: function counts and complexity measures. Func-
tion counts (FC) represent a basic measure of the user functionality of a system, independent of the
technical features of implementation. The complexity modifier (CM) expression provides the final ad-
justment to the function count obtained to reflect the degree of technical difficulty involved in implement-
ing a system.

5 3 z z WEIGHT, FUNCTIONij = FC
i - 1 j - 1

FUNCTION
EXTERNAL OUTPUTS FC ' CM = FP

I 1 I for I

INTERNAL FILES - multiply
>

for

COMPLEXITY
MODIFIER (CM)

INQUIRIES a

14

.65 + (.01 ' FACTORS,) = CM
k - 1

Function counts are broken down into five FUNCTION types (i = 1 to 5): external inputs, external out-
puts, internal files, external interfaces, and inquiries. An application's function count is the sum of the
scores an application achieves on each of the external function types. Function counts are determined
by applying WEIGHTS Q = 1 to 3; LOWIMEDIUMIHIGH) from a set of tabulated values that represent
the number of file types referenced and data elements associated with each occurrence of a FUNC-
TION type.

The function points method also includes 14 technical FACTORS (k) for implementation that are rated
on a scale of "0" to "5." A complexity measure of "0" represents the absence of a factor and thus
no adjustment to the original function count, while a "1" means that the technical complexity factor
was expected to play an important role in influencing labor consumption. Examples of the factors in-
clude batchlonline systems, complexity of mathematical logic, required level of reliability, and stability
of the development environment. From the above formula, we see that function points are mainly based
on function counts. When a system exhibits an average level of development environment complexity,
the complexity modifier (CM) will take on the value 1. Less than average complexity reduces functionali-
ty, while greater than average complexity increases it.

MIS Quarterly/Septernber .I991 26 Center for Digital Economy Research
Stem School o f Business
Working Paper IS-92- 15

Reuse and Productivity in Computer-Aided Software Engineering

Appendix 3
An illustration of the New Object Percentage Metric

Appendix 3 illustrates a software reuse metric called NEW-OBJECT-PCT that measures the extent of
the new code that must be developed for an ACCOUNT UPDATE PROCEDURE. In this example, no
objects from prior applications are used for development; however, the UPDATE CASE BALANCE RULE
090-built for the first time here-is reused twice. This results in a NEW-CODE-PCT of 71.4 percent.
If the CASH BALANCE UPDATE RULE 090 had been available in the repository from a prior software
development effort, this would result in a reduction of NEW-OBJECT-PCT to 57.1 percent. Note that
we exclude multiple calls to the same object (e.g., a control structure in traditional programming that
involves a loop or recursion) in our calculation of reuse.

The Account
Update Procedure:

uses , uses

MIS Quarter'y'September '' center for Digital Economy Research
Stern School of Business
Working Paper IS-92- 15

ACCOUNT
UPDATE:

PROCEDURE
39

1

> POSTING: BALANCE:
RULE 089 RULE 090

uses
BALANCE:

RULE 730 RULE 090

uses
> POSTING: BALANCE:

RULE 926 RULE 090

Unique object built for procedure: 5
Totai number of objects in procedure: 7
NEW-OBJECT-PCT: 5ff or 71.4%

