ON INTEGRATING HYPERMEDIA INTO
DECISION SUPPORT AND OTHER INFORMATION SYSTEMS

Michael Bieber
Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University
44 West 4™ Street, New York, NY 10012

On Integrating Hypermedia into Decision Support and Other Information Systems

Michael Bieber

Draft Version 1.3

7/28/92

Submitted to Decision Support Systems Special Issue on

the Second Annual Conference of the International Society of DSS

Working Paper Series

STERN IS-92-26

On Integrating Hypermedia into Decision Support and Other Information Systems*

Abstract

The goal of this research is to provide hypermedia functionality to all information systems that
interact with people. Hypermedia is a concept involving access to information, embodying the

notions of context-sensitive navigation, annotation and tailored presentation.

We present the architecture of a system-level hypermedia engine, designed both 10 manage
full hypermedia functionality for an information system and to bind interface-oriented front-end
systems with separate computation-oriented back-end systems. The engine dynamically
superimposes a hypermedia representation over a back-end application’s knowledge components
and processes. The hypermedia engine generates Lhis representation using bridge laws, which
capture the internal structure of client systems. Users uclcess the application through its

hypermedia representation.

We also describe a set of minimal requirements for integrating our hypermedia engine with an
information system. We believe these guidelines apply to all integration efforts, not just our own.
Information systems will require some supplementary routines for the engine lo manage
hypermedia functionality for them. The more sophisticated and cooperative the information

system, the higher the level of hypermedia support the engine will provide.

Keywords: Hypertext, Hypermedia, Information Systems Architecture, Hypermedia Engine, Bridge Laws

* This expands an earlier version: M. Bieber, Providing Information Systems with Full Hypermedia
Functionality, in: Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences
(Koloa, Jan. 1993).

1. A Vision of Hypermedia and Information Systems
We envision a world in which information increasingly empowers people. Decision makers, analysts,
researchers, trainees, students and casual browsers all will have access to information they need or desire, in a

format tailored to their individual tasks and personal preferences.)

The concept of hypermedia embraces the spirit of such access to information and eventually, we believe,
will be incorporated in the interfaces of all decision support sysiems (DSS), and indeed, all information
systems that interact with people. (Various authors, e.g., [35], support this prediction.) Our research goals are
to facilitate this integration and to produce tangible results. Once an information system includes hypermedia
functionality, the specific applications it supports (e.g., worksheects within a spreadsheet package, models
within a linear programming package and experl systems within an expert system shell) automatically become
hypermedia applications. Users communicale in hypermedia’s direct, context-sensitive fashion and

hypermedia functions supplement the system’s original commands.

The goal of this paper is 1o encourage an ongoing discussion about providing the users of all information
systems with dynamic hypermedia functionality. We began this discussion in [7, 8] by proposing a solution—a ,
hypermedia engine that builders can integrate with their systems. From this we derived a starting set of
minimal requirements for hypermedia integration, which we believe apply 1o all integration efforts, not just our
own. This paper extends the architecture we originally introduced in [7, 8). Here we deepen our description of
the hypermedia engine’s internal structure, develop an alternate architecture for information systems not

abandoning their interfaces and expand our set of minimal requirements for hypermedia integration.

In §2 we briefly review the concepts of hypermedia and our enhancement, generalized hypermedia.
Generalized hypermedia is at the hearl of our hypermedia engine’s architecture. We also examine the
potential role of hypermedia in decision support. In §3 we introduce two versions of our cngine's archileclure
and describe its internal structure. We illustrate its operation with a detailed example. In §4 we discuss the
minimal requirements for hypermedia integration—the commitment information system builders have to make

to use our architecture. We conclude in §5 by briefly comparing our work with other current approachcs.

2. Hypermedia and Generalized Hypermedia

Hypertext [3, 14, 40, 44, 45, 54] is the concept of specifying relalionships among pieces of information and
providing computer-mediated navigation among them. For example, we can automatically link a document
with a stage in a decision analysis, a keyword with its definition and a calculation with its explanation.
Hypermedia expands this concept to include media other than text. We refer to the information at either end
of the link as nodes, and to the entire node and link structure as a hypermedia network. We signal the
existence of a link from a node by highlighting a portion of the node’s display contents, which we call a link
marker. V&;hen a user selects a link marker the system traverses this link and displays an appropriate
representation of the destination node. Figure 1 shows a hypermedia-oriented interactive document similar 10
those our Max prototype produces. [10, 31] This document node represents a report generaled by a decision
support system (DSS) and passed on to our hypermedia engine for display. The underlined and boldfaced text
strings are link markers, each associated with one or more links. In Figure 1 the user has selecied the marker
“$60.00” representing the result of a DSS calculation. The hypermedia engine inferred three links associated
with this marker’s underlying calculation: to a node representing an expert system explanation, Lo a node
representing its dynamic recomputation and to a node containing user comments about it. The two remaining
links represent -hypermedia engine commands for annotating elements of the DSS. The user navigates through
the DSS thus, by selecting some item of interest and wraversing a link representing an appropriate DSS (or

hypermedia engine) command.

Hypermedia embodies a methodology of flexible access Lo information incorporating the notions of
navigation, annotation and tailored presentation. Tailoring is inherent in other hypermedia functions, e.g., in
customizing the network the user navigates and its annotations. Together, these features constitule what we
call “full hypermedia functionality,” an ideal level of functionality that few of today’s hypcrrﬁcdia systems
achieve. (Many systems calling themselves “hypermedia systems,” in fact, provide only forward navigation—

i.e., direct manipulation—and perhaps commenting [34].)

Users navigate “forward” by selecting an item of interest (a link marker) about which 10 retrieve
comments, annotations, definitions, explanations or any other inferable information. Link markers act as
embedded menus [32], giving “context-sensitive” access to an underlying application’s knowledge and
operations. We have dubbed this the WYWWYWI (“what you want, when you want it") principle [5). Users
normally traverse from node io node at the detail level, i.e., with each node occupying a window on the screen.
Users also should be able Lo navigate via (graphical) overviews [17, 33, 40, 45, 56) of the hypermedia network.
Overviews help alleviate the network disorientation [14, 45] associated with hypermedia’s nonrestrictive, user-

directed access.

Information retrieval-style queries provide an alternative method of forward navigation [16, 19, 58]. Queries
return a relevant subset of an application’s components, which is mapped 10 a hypermedia representation.

Users then can navigate within this tailored subenvironment.

Users can navigate “backwards” as well, returning 10 prior stages or “screens” in their analysis, i.e., the
previously visited computer screens, but in their current state. Backiracking is another important weapon
against network disorientation. By providing an escape mechanism for rewrning to familiar ierritory,

backtracking gives users the confidence o explore [reely and Lake “detours.”

Annotation comprises features such as user-declared links and comments. Analysts and instructors can use
these, for example, Lo tie specific data, techniques and results together in trails [20, 53] or guided tours [20),
37]. Trails and guided tours both direct and constrain forward navigation. They can document analyscs or
serve as tutorials, and can be tailored (or specific uscrs or tasks. In a DSS, for example, annotations can

provide justification for courses of action [9].

Full hypermedia functionality can augment decision support [26]). Consider Simon's /ntelligence (gathering
information) - Design (developing allernate solution scenarios) - Choice (choosing a solution) [ramework of
decision making [51]. An analyst navigates or browses through the documents, models, and dala in the
problem domain by making queries or by directly selecting items of interest (“drilling down™ [40]). If the

domain had been explored previously, the hypermedia representation may be tailored 10 this analyst, or his or

her task. Prior users also may have specified annotations or recommended paths. Our analyst’s own
annotations document the solution scenarios he develops, and connects these to their sources and other
supporting information. DSS commands mapped to hypermedia links enable the analyst to evaluate models
and data directly through context-sensilive hypermedia navigation. As we see in figure 1, this provides a
seamless interface for all DSS and hypermedia functions. The analyst can link his chosen solution scenario to
documents reporting the decision. He also could package his analysis as a trail or guided tour. Hypermedia
thus serves as a documentation and justification tool [35]. In fact, an entire class of hypermedia systems—
argumentation systems, e.g., [15, 36]—specializes in capturing the decision rationale and deliberations so
often unrecorded and quickly forgouten. Through the hypermedia representation, others can explore the
analyst’s alternatives and conclusions, and can comment upon them. (See [9] for a deeper exploration of
hypermedia and decision support and [25, 40] for discussions of hypermedia and decision support research

issues.)

In summary, hypermedia is a technique for providing direct, context-sensitive access to application data,
the commands that manipulate this data, and mef&informau'on about the data and commands. Such access
should improve the quality and users’ understanding of applications and their inputs and outpuls, and increasc
the confidence people have in these. Performance issues aside, we believe that most information systems thal
interface with people would profit from hypermedia functionality. (The exceptions may be dala entry and
other transaction processing systems, in which users do not query information. Perhaps even here, validation

and other feedback may benefit from a hypermedia representation.)

There are two basic limitations with most of today’s “first generation™ hypermedia sysiems. First, they
implement a static and explicit model of hypermedia; the nodes, links and link markers must be declared
explicitly and be fully enumerated (as opposed to being declared virtually and generated upon demand). Most
applications, however, are dynamic and 0o large 1o mark up manually. Imagine a spreadsheet designer
having to calculate all whalt-if analyses in advance. Second, most of today's hypermedia systems are
“...insular monolithic packages that demand the user disown his or her present computing environment L0 use

the functions of hypertext and hypermedia.” [39] Users who want hypermedia funclionality often must abandon

the software they currently use—an impractical restriction [28, 35]. The first limitation motivated us 1o
develop generalized hypertext or generalized hypermedia [6, 10, 11). The second motivated our hypermedia
engine, which will provide hypermedia functionality to an information sysiem’s applications. The engine

incorporates our dynamic model of generalized hypermedia.

In generalized hypermedia we broaden the underlying model of hypermedia components—nodes, links, link
markers, etc.—with three of Halasz’ proposed extensions to hypermedia [22): virtual specifications, dynamic
computation, and filtering or tailoring. We use these to generatc a hypermedia representation “on the fly”
from basic declarations we call bridge la‘.;ls that describe the internal structure of an information system. As
we shall see in §3.2, bridge laws enable generalized hypermedia 10 superimpose a hypermedia network on an
information system’s application, generating all node, link and link marker representations dynamically from

the application’s original, non-hypermedia data or knowledge base.

Three aspects combined distinguish generalized hypermedia (rom other hypermedia approaches: (1) all
mapping and computation in generalized hypermedia is dynamic; (2) through bridge laws, genecralized
hypermedia can provide system-level support Lo any information system with a well-deflined internal structurc;
and (3) bridge laws map a hypermedia representation without altering an information system’s data or
knowledge bases. No other approach supports all three criteria. [9] This does not mean that information
system builders simply can plug in our hypermedia engine without adjusting their systems. Each builder will
have 1o declare a small sel of bridge laws, add a relatively small number of routines 10 his system and register
the system’s communication protocols. This will sulflice 1o provide hypermedia engine support for all specific
applications written in his information system. Builders, however, will not have to make their systems or
applications “hypermedia-aware” in any way. This is because (1) as mapped representations, nodes, links and
link markers do not alter the original, underlying application information and (2) the hypermedia engine
maintains all other hypermedia constructs (e.g., comments and trails) in its own knowledge bases separate
from its client information systems. The engine adds no hypermcdia constructs Lo its client systems or their

applications.

3. The System-Level Hypermedia Engine

Figure 2 shows a version of our proposed hypermedia engine’s architecture that binds independent back-end
and front-end information systems. By back-end systems, we mean information systems that primarily provide
computation functionality, such as DSS, expert systems, intelligent tutoring systems, database management
systems, project management systems, elc. By front-end sysiems we mean those that primarily support
interface-level functionality such as word processors and graphics packages. Instead of being tightly coupled,
the hypermedia engine runs concurrently with—and independent of—the information sysiems it binds,
communicating through external message passing. The engine cmbcds_liﬁk markers in messages the back-end
passes to the front-end for display and handles requests for back-end functionality or supplementary
hypermedia support when a user selects one of these markers. As a result, the user can access a back-end
through the interface of his or her choice, which now provides full hypermedia functionality. (This assumes

that the front-end and back-end builders have complicd with the requirements we discuss in §4.)

This architecture also allows users o access multiple back-end systems at once and incorporate information
(linked objects) from different back-ends in a single [ront-end document [47]. Eventually this architecture will

support workgroups of multiple simultaneous users on heterogeneous front-ends.

Many computation-oriented information systems, of course, have high-quality interfaces. Amaong thesc are
spreadsheets and CAD systems, as well as specific cases of the aforementioned front-end and back-end
systems. A second version of the hypermedia engine, shown in Figure 3, would run concurrently with such
systems and manage hypermedia functionality for them. In this architecture, internal commuhications betwecn

the interface and computation modules must be routed through the hypermedia engine.

For the rest of this paper we shall us¢ the terms “front-end” and “back-end” to indicate interface-oriented

and computation-oriented [unctionality in both versions of the architecture.

3.1. An Overview of the Paper's Example

We describe the hypermedia engine’s architecture through Figure 1's simple text-based example both here
and in §3.5. (Our model also supports non-text content and link markers.) Figure 1's interactive document
entitled “Ordering Recommendation” started as a message from the DSS back-end. As an illustration, suppose

the second sentence of that message had the following format:

‘... This is the low-cost arrangement, with a <variable(ic), “total cost” > of

<calculation(variable(ic), model(eoq), scenario(eoq(2))), 60, currency(US)>...’

Italicized text within angle brackets denotes a back-end object. The back-end tagged each object with is
display value, any relevant formatting information and an internal identifier. The hypermedia engine
superimposed a hypermedia structure over the entire message and converled ils conlenls 10 a document
component set for display by-the front-end. (The document component sct contains the message contents after
the hypermedia engine has filtered them and embedded hypermedia link markers.) As part of the conversion
the hypermedia engine added the identifier of the owning back-end, “DSS1,” to each object’s lag along with a
unique hypermedia engine identifier for distinguishing among multiple instances of a back-end object. Assume

the corresponding portion of document component sct had the following internal format:

‘... This is the low-cost arrangement, with a </6, DSSI, variable(ic)], value(“total cost™),
form(text)> of <[7, DSS1, calculation(variable(ic), model(eoq), scenario(eoq(2)))], value(60),

Jorm(currency(US))>..."

When the user selected the link marker “$60.00,” the hypermedia engine managed the process of gathering
all possible links to the underlying object, “calculation(variable(ic), modcl(eoq), scenario(eoq(2))),” which is
owned by the back-end system “DSS1.” We sec the resulting link ensemble representing two back-end
commands and three hypermedia engine commands in Figure 1. Now the user chooses link #1. In traversing
this link the hypermedia engine invokes DSS1’s explanation generator, which returns the explanation as a

message. The engine converts this to the document component sct displayed as “explain(S60.00)” in Figurc 4.

In the following sections we examine different aspects of the hypermedia engine and then return (o this

example in further detail.

3.2. Bridge Laws and Filters: Techniques for Automating Hypermedia
In this section we discuss filters and bridge laws. As part of compiling the document component set, the
hypermedia engine must determine the locations (i.e., infer the existence) of link markers in back-end

messages. Bridge laws enable this inference. Filters tailor it.

The hypermedia engine uses filters to customize the user's interaction in many ways. For example, [ilters
can direct:
= which report form or template the engine uses 10 construct a document component set from back-end
messages,
» how detailed Lo make report conients,
= which objects to represent as link markers for the user’s current task, and

« which links 10 prune to avoid overwhelming a novice user,

Through filtering, the hypermedia engine can assume responsibility of managing mode or task changes,
altering documents and available commands as the user navigates through the back-end. For example, in a
project management system the hypermedia enginc would use filters Lo tailor the user's view to his or her

current project subtask. For more delails see the discussion of “contexts” in [6].

The hypermedia engine uses logical rules called bridge laws Lo map a hypermedia representation over the
components of a back-end system. We adopted the term “bridge law™ [24, 30, 41] because these logical rules
serve as a “bridge” or connection betwcen objects defined in the language of the back-end (e.g., modcls,
variables, calculations) and those in that of the hypermedia engine (e.g., nodes, links, link markers). Bridge
laws employ logical quantification, i.c., they apply Lo every instance that satisfics the set of conditions

specified. Logical quantification (i.e., specifying “for each™ or the logical symbol “V") enables individual

laws to map entire classes of back-end objects to hypermedia components; the same bridge law will map

every object in the application knowledge base that satisfies the bridge law’s conditions.

In Figure 1’s example, the hypermedia engine used a bridge law similar 1o the following pseudo version to
identify the object “calculation(variable(ic), model(eoq), scenario(eoq(2)))” within the “DSS1” back-end’s

original message and tag il as a link marker in the document component seL.

For each calculation with attribute values satisfying the set of conditions Y and filter settings Z:
map a hypermedia link of rype “explain” from the object to the DSSI explain funciion, and

map a hypermedia link of type “re-evaluate” from the object to the DSSI re-evaluaie function.

As we shall discuss later, because il is si::ccific to a particular back-end, the back-end’s builder would have
declared this bridge law. The hypermedia engine maintains its own set of general bridge laws that pertain 1o
all back-ends. For example, the following gencral bridge law finds objects with comments registered in the
hypermedia engine’s knowledge bascs.

For each object with a user-specified comment that satisfies filter settings ¥

and access security specifications Z:

map a hypermedia link of type “comment” beiween the object and its user-declared comment.

The engine uses the following gencral bridge laws to infer keywords. The [irst finds keywords thal a message’s
back-end has declared. The second searches for keywords that a user has registered.
For each phrase in the message maiching a keyword registered by iis back-end that saisfies filter settings Z:

map a hypermedia link of type “keyword" from the phrase to the back-end object it represents.

For each phrase in the message maiching a keyword registered by a user that satisfies filter settings Y
and access security specifications Z:

map a hypermedia link of type “keyword"” from the phrase to the object it represents.

Together, generalized hypermedia and its bridge laws provide a logic-based knowledge representaiion that

enable the hypermedia enginc to rcason about the components (models, data, commands, cte.) ol the

Center tor]_‘.!__'ll_:l Economy Research

underlying information sysiems they map. For example, full hypermedia functionality includes both producing
an overview of an application’s components, and searching or querying over these components. As part of our
research, we shall determine whether a complete set of bridge laws suffices for the engine to perform both
structure search and content search [21, 22] and generale a network overview. (Producing an overview for a
static hypermedia network is not a rivial task (see, e.g., [56]). No one, as yet, has tackled overviews for

virtual environments involving computation, such as our own.)

In addition to argumentation-based hypermedia models, several other knowledge representation approaches
have appeared in the literature, e.g., Petri nets [52, 53], structured object representation [29] and schemata [21,
26, 36]. Other systems that make use ol a knowledge representation include MacWeb [42], IDE [27] and
RelType [2]. In future papers we hope Lo comparc implementations using bridge laws and a generalized

hypermedia engine with systems using other knowledge representations.

The browsing semantics of the dilferent systems also will inflluence this evaluation. The browsing
semantics define the dynamic behavior ol a system and are constrained by its underlying knowledge
representation [52]. In our model, the hypermedia engine incorporates the browsing semantics and, as we shall

see, attempts 10 integrate them into the front-end’s functionality.

The hypermedia engine stores bridge laws and [ilter settings in knowledge bases belonging to its Internal

Control Subsystem. For an in-depth discussion of bridge laws see [6, 9, 10].

3.3. Internal Control Subsysiem (CS)
The hypermedia engine has two major components: the Internal Control Subsysiem (CS) and the Internal
Display Subsystem (DS). We describe the structure of each next and illustrate their inieraction in §3.3's

example.

The CS performs all configuration-independent processing. It handles the communication link between the

hypermedia engine and the back-end systems. Back-ends pass messages containing reports, queries and

10

sterm School of Business

Working Paper 18-92-26

menus. From each message the CS compiles the configuration-independent contents of a document

component set or query component set, which the CS passes to the Internal Display Subsystem.

In the future we intend to upgrade our hypermedia engine for a networked, multi-user environment. At that
time we shall split the CS into two logical modules, a single global module and multiple local modules. The
global module will keep track of information that users on all sysiems should be able to access. Securily
permitting, everyone should have access, for example, to public comments, informational links, keyword

definitions and documents registered by any user.

The CS maintains the following knowledge bases, each containing facts and rules for a different domain of

inferencing.

« Hypermedia Knowledge Base The “Hypermedia KB” contains all types of hypermedia information

registered by users including keywords and the nodes they represent; comments, links and other
annotations (e.g., bookmarks [46]); and guided tours and other trails. The hypermedia engine maintains
these independent of any back-end elements upon which they are based. Back-end systems need no

record of the user’s hypermedia activities.

« Back-End Knowledge Base There is onc “Back-End KB” for each back-end system that users can access.

The Back-End KB contains network access information for each back-end, as well as its bridge laws,
keywords, and any other information necessary 10 build messages for it and parse its responses. An carly
version of our TEFA model management system back-end prototype [4, 5] provides an example of
supplementary parsing information. TEFA prefixed the display text of its objects with an ampersand.
Registering this format would enable the CS to strip the ampersand 0 make the display less confusing

and to reinsert the ampersand in user requests it passes 1o TEFA,

We note that [1] presents an alternative system architecture that insulates bridge laws as much as
possible from changes to the engine or back-end. This architecture includes a separate bridge law

manager between the hypermedia engine and the back-end.

Center for Dy zital Economy

Stern School of Bu

» Control System Knowledge Base The “CSKB" contains general paramelers and routines for

communicating, and for processing messages and responses. Iis contents include:

- default and current settings for the hypermedia engine, including filter settings

- the functionality behind the hypermedia commands (e.g., querying link markers, creating user-specified
links and comments)

- hypermedia engine bridge laws for mapping user-specified hypermedia elements such as comments to
back-end objects

- standard document templates—forms diclating the general content and layout of documents [6] that the
engine uses lo creale document componcnl sets (similar 10 abstract containers in the Trellis

Hypermedia Reference Model [18])

standard query lemplates—[orms diclating the general content and layout of queries that the engine

uses o creale query component sets

» Active Knowledge Base The hypermedia engine records all back-end and uscr-declared objects currently

displayed on the front-end screcn in the “Active KB.” The CS uses this [or dynamically updating the
front-end’s display when elements of the back-end, such as a stock price, change. (In a multi-user
environment, this would be a global knowledge basc representing the displays of all active [ront-end

systems. One function this would facilitate is screen sharing among uscrs on helerogencous systems.)

3.4. Internal Display Subsystem (DS)

The DS has two major responsibilities. First, it translates the configuration-independent document
component set for the specific front-end that will display it. Second, it provides whatever “behind the scenes”
support its front-end needs to provide hypermedia functionality. The DS maintains the following knowledge

bases:

» Session Knowledge Base The DS stores all user actions and hypcermedia cngine responses in the

“Session KB.” From these the DS can wilor a session log for hypermedia-style backtracking and guided

12

Center for Dy zital Economy

S School of Bus

tours. The Session KB serves a role similar to that of the history component in the Dexter Hypertext

Reference Model [23].

Depending on the detail of user interaction the front-end passes to the DS, the Session KB could
support multiple-level undo and redo functionality [57] for both hypermedia commands and the front-
end’s own commands. A highly cooperative front-end would ﬁa'ss user actions down 10 the exact
keystroke. This also would enable the DS 1o serve as a moniloring and experimentation Lool for
particular front-end and back-end systems and settings. Several rescarchers have called for such

functionality in hypermedia systems (e.g., [12]).

« Display Knowledge Base The “Display KB”—analogous o the session component in the Dexier model—

records all hypermedia objects displayed on the front-end. Depending on the level of hypermedia
support the DS must provide, this can include an object’s internal identifier, the actual content ol the
front-end representation and, as we shall explain later, even the object’s location within the front-cnd’s
windows. The DS uses this to determine what the user has selected and whether the user has permission
to alter or delete it. Altering a back-end object’s content (e.g., a current stock price or the result of a
calculation) can destroy its validity. The DS also uses this knowledge base to map link ensembles to

the commands they represent.

« Front-End Knowledge Base The “FEKB” contains the information the DS needs 10 communicate with a

specific front-end. In it, the DS maintains protocol formats, current parameter setlings and the internal
routines for coordinating hypermedia support with the particular front-end. With this knowledge, the DS
can translate the configuration-independent document and query component sets the CS passes for

display, as well as the user requests the [ront-end passes.

Having introduced the hypermedia engine’s modules and knowledge bases, we now can expand §3.1°s

~example illustrating a user request.

13

3.5. Example
Figure 5 presents an informal data flow diagram depicting how the hypermedia engine compiled both the
link ensemble in Figure 1 for the link marker “S60.00” that the user selected and the interactive document

“explain($60.00)” in Figure 4 resulting from traversing the “explain” link.
----- Figure 5 -----

The hypermedia engine expects back-ends and front-ends to support two standard commands for all objects:
generating a short description (“What is this?”) and generating a list of possible actions (“What can | do with
this?™). The user also should be able lo”selccl any command within a menu or represented by a link, and
request assistance (“What happens if 1 do this?”). The front-end should provide some mechanism for the user
to request each, e.g., a special keystroke combination or menu command. The back-end should provide the

respective descriptions, command lists for its objects and assistance for its commands.

Another common action is an implicil request 1o edit. Because front-ends must ensure the integrity of link
marker representations belonging to external systems, when users try 1o edit a marker’s display value the CS

must grant permission.

We now expand §3.1's cxample, following the [low of information illustrated in Figure 5. Note that Figure
5's diagram does not cover editing or requests for assistance. This discussion complements, but greatly

deepens the illustration in [10].

1. The Front-End Passes a Message to the DS in Response 1o a User Aclion

When the user selccts a highlighted text string, such as the “S60.00" in Figure 1, the front-end sends a
message to the DS. The message {rom a “hypermedia engine-fricndly” front-end—onc that maintains external
objects—will contain both the user’s requested action (“What can 1 do with this?”) and the object’s internal

identifier (“[7, DSS1, calculation(variable(ic), model(eoq), scenario(coq(2)))]”).

Center for Dy zital Economy

Stern School of Business

Working Paper I5-92-26

The less sophisticated the front-end, the more inferencing the DS must do to manage hypermedia
functionality. For example, if the front-end does not maintain external objects then it may be able 16 pass only
the selection's location in coordinates relative to the start of the document. In this case, the Display KB must
maintain an up-to-date map of the front-end’s documents that records the current location of all hypermedia

objects. From this the DS must infer which object the user selected.

2. The CS Processes the User Request

The DS passes the action requested and the identifier of the selected object to the CS. From the identifier
the CS can determine the object’s owning system. When a back-end owns the object, the CS compiles the
appropriate request for the back-end. The CSKB supplies the back-end’s prolocols and network address. Il the
hypermedia engine owns the object, such as with user-specificd keywords, the CS has all necessary
information for the user request in its own knowledge bases. This also applies 1o hypermedia mctainformation
about back-end objects. Users may select user-specified comments and links associated with a back-end
object and inquire about their creators, modilication dates and cven comments about these links and

comments. The Hypermedia KB contains such metainformation.

We now detail three possible user requests: requests [or (a) editing, (b) a short description and (¢) a list of

relevant commands.

2a. The CS Processes the User Request: Edit Link Marker

For requests 1o edit a link marker’s display value, the CS does not have to check with the back-end. The
CSKB contains hypermedia engine-owned bridge laws controlling editing permission for each type ol link
marker. For example, users may delete, but not modify, back-end object markers. Users may alier a keyword,
but the CS will deregister its marker as a keyword and direct the front-end 1o dehighlight it. Users may alter
the content of user-specified links without deregistering the marker or its link. The CS approves or rejects .lhc

edit in a message it returns o the DS.

15

2bh. The CS Processes the User Request: Short Description (i.e.. *What is This?™)

The back-end responds 1o this standard request with a message containing the short description in a format
analogous to that of §3.2. The CS converls this description to a configuration-independent document
component set. First the CS infers the appropriatc document template for short descriptions from the CSKB.
Next it instantiates the template form with the message contents. Then it determines what to represent as link

markers as follows.

» To each object in the back-end message the CS applies both back-end bridge laws and hypermedia
engine bridge laws for inferring links, onc by one until one bridge law succeeds or all fail. 1l any bridge
law succeeds given the current filter settings, then the CS represents that back-end object as a link
marker, similar 10 that in §3.1. Otherwise the CS passes formatting parameters with the object, but not
its identilier. For example, if filtering prevented the CS from inferring Figurc 1's
“<calculation(variable(ic), model(coq), scenario(eoq(2))), 60, currency(US)>" as a link marker, the

CS would have passed it as “<value(60), form(currency(US))>" in the document component set.

« The CS searches the document’s content for keywords registered by users or by the back-end that sent the
message. The CS marks each keyword found as a link marker, incorporating the identifier of the node

that the keyword represents as part of the marker’s identifier.

2¢. The CS Processes the User Request: List of Commands (i.e.. “What Can I Do with This?™)

The CS often can generate the list of relevant back-end commands dircetly from the back-end’s bridge laws
and therefore does not have to communicate with the back-end. For cxample, the first bridge law in §3.2 maps
the two back-end commands we see in Figure 1's link ensemble. Resolving complex bridge laws, however,
may require internal back-end calculations or information stored in the back-end’s own knowledge bases. In
this case the CS will have 10 send a request 10 the back-end as part of resolving the back-end’s bridge laws.
The CS also processes the selected object using its own general bridge laws. One of the bridge laws in §3.2

identified a user-specified comment about the selected DSS calculation (i.e., back-end object). The CS

16

represents access to this comment with the third link in Figure 1. Two other CS bridge laws mapped links

corresponding 1o the hypermedia engine commands “start new user link” and “create new comment.”

The CS now formats the link ensemble as a configuration-independent query component set. The CS
retrieves the appropriate query template for link ensembles from the CSKB and inserts the five links along
with a directive to the DS to include the selected marker’s display value as the title. The CS represents each
of the five links as a link marker in the query so the user can select any and request assistance (i.e., “What

happens if I do this?”) for its underlying DSS or hypermedia engine command.

3. The DS Converts the Document or Query Component Set for the Front End

The DS prepares the document or query for its front-end. It retrieves the protocol the front-end will recognize
for documents and queries from the FEKB. The [ront-end may or may nol accept objects embedded in
messages and may restrict identificr length. If the [ront-end does not process dimensional attributes, the DS
must pre-format object display representations (e.g., sending “S60.00” instead of <value(60),
form(currency(US))>). Ideally the (ront-end will accept a standard document protocol such as ODA or SGML
[13], or even a HyTime representation (an SGML-based hypermedia communications standard [43]). Bascd on
the level of front-end support, the DS has to determine whether 1o represent the query link ensemble (1) as a
dialog such as in Figure 1, into which the user types information, (2) as a document in which users must select
a link marker representing one of the commands, or (3) as a menu. The DS may have to sacrifice
functionality. For example, Figure 1's f[ront-end supports query dialogs, but cannot highlight each link as a

link marker. Users, therefore, cannot request “What happens if 1 do this?” assistance for commands directly.

Once converted, the DS passes the document or query component set Lo the (ront-end and updates its
knowledge bases as shown in Figure 5. The DS records the user's request and the engine’s response in the
Session KB to support backtracking, trail construction and undo/redo, etc. The DS records each component set
object in the Display KB for interpreting subsequent user requests and for reformatting displays. (The DS
includes physical object locations il it must maintain these.) The DS also passes this sct of displayed objccts

to the CS’s Aclive KB to support dynamic updating.

17

3.6. Our Prototype: Max

We have implemented a preliminary lext-based prototype of the hypermedia engine called Max at the U. S.
Coast Guard. Max is a knowledge-based DSS shell [10, 31]. The engine uses a preliminary version of bridge
laws to map (1) DSS objects and reports to hyperiext nodes, (2) DSS commands 1o links, and (3) keywords
and objects embedded in DSS messages lo link markers. Max’s inleraclive documents and link ensemble

queries resemble those in Figure 1 and Figure 4,

Max, admitiedly, is an “insular, monolithic package,” providing its own mandatory (ront-end. The {ront-end
does not support external objects, so the enginc keeps track of its objects’ locations within the [ront-end’s
windows. The current prototype's front-cnd and hypertext engine are not entirely independent, neither are the
DS and CS entirely separate subsystems. TEFA, the back-end, however, is completcly independent of the
engine. It communicates solely through Figure 2’s bac-loend communications language. Indeed we have
developed two separate computation-orienied back-ends for Max, a project management system and o model

management system,

4. Hypermedia Engine/Client Cooperation and Coordination

The hypermedia engine requires the cooperation of its client [ront-ends and back-ends. The more
sophisticated and coordinated each is, the higher the degree of hypermedia functionality the engine can
provide. To provide ubiquitous hypermedia support, however, the engine must accommodalc [roni-ends and
back-ends that do not meet the standards we desire. As part of our research we are investigating the minimal
level of cooperation among front-cnds, back-cnds and the hypermedia engine. ({26, 23] report on an
integration architecture using state-change messages that presumably will require less coordination among the

hypermedia engine and ils external systems.)

In [7] we introduced a preliminary set of minimal requirements for client/engine cooperation. Now we
augment Lthis set, addressing the interaction between the engine and interfacc-oriented front-end systems in

§4.1, and between the engine and computation-oriented back-ends in §4.2. Thesc apply 1o information systems

1 School of Business

king Paper IS-92-26

er for Dieital Economyv R

from either version of our architecture. In §4.3 we discuss how these requirements impact existing information

systems.

These requirements stem from our own research. We believe, however, that they provide a starting set of
general guidelines for all system-level approaches to hypermedia integration, including those not employing an
external hypermedia engine. (Approaches that integratc hypermedia directly into individual applications do not

require our degree of generality.)

4.1. The Hypermedia Engine and Front-Endy

The hypermedia engine provides the front-end and its users with simultancous access 1o multiple back-ends.
The engine manages hypermedia constructs (e.g., link markers representing user-defined and back-end objects,
comments, trails, and overviews) and hypermedia control (e.g., filiering, conlext-sensitive forward navigation

and backtracking). In return the front-end should provide the following functionality.

» Identifying Objects in Fronl-End Workspaces

Front-ends either must track the location and identifiers of external objects (i.e., hypermedia link
markers) or make their up-to-date positions available. In the latter case the DS will have to interprel
positions in every type of media the front-end supports (text, graphics, sound, etc.), as well as monitor

every editing action that can alter the location of hypermedia markers.

» Front-ends must gain editing permission from the hypermedia engine

Users may alter the display contents of some types of link markers but not others. Users may alier
certain types of markers on the condition that the hypermedia engine deregisters them. A sophisticated
front-end could manage this on behalfl of the hypermedia engine, thus speeding interface operations. For
most front-ends, however, the hypermedia engine will have 1o manage editing permission (as in our Max

prototype) and the front-end must request this every time the user inserts or deletes.

19

Working Paper 15-92-2

a back-end declares no bridge laws or keywords, and passes messages without objects, the hypermedia engine
still will provide standard hypermedia functionality (user annotation, backtracking, eic.) In this case the user

will not be able to access back-end objects or operations in a hypermedia fashion.
« Builders must write bridge laws

The person who knows the bacl::-cnd the best—the systems programmer who builds or maintains it—
should develop its bridge laws. Information system builders must be both willing 10 and capable of
developing a set of bridge laws that accurately captures the structure of their system. Once in place the
bridge laws should map a hypermedia network to any of the system’s specific applications. (Application
builders and users need have no knowlecdge of bridge laws. To them, hypermedia functionality occurs

automatically!)

Currently builders must represent bridge laws in predicate logic. We hope 1o remove this restriction

by accepling other formats, perhaps through a bridge law editor.

Each builder must develop his own set of bridge laws. We hope 1o develop bridge law librarics that
map classes of information systems—complete “standard” bridge law sects that handle the models,
attributes, data and operations found, e.g., in lincar program (LP) packages, rclational databases,
spreadsheet packages, or rule-based expert system shells. The builder of, say, a new LP package would
only have to maich the elements in his system to those in the standard LP sct. The standard sct would
provide most of the bridge laws for his system. This would reduce the builder’s effort both in
determining which kinds of bridge laws would represent his system adequately and in developing these

laws.
» Back-ends should embed objects in their messages

The CS cannot infer magically which portions of back-end messages 1o highlight as link markers.
The back-end must mark objects within the messages or provide some content analysis routines for

interpreting their messages. The only content analysis the CS automatically performs is keyword search.

21

As we demonstrated in §3.1, back-cnd messages should include dimensional information for objects
and any other content, for which the engine or user might want to alter the display format. For example,

a user may wish to change a number’s precision.
« Back-ends should support standard commands

Just as the front-end should allow users Lo request short descriptions, command lists and context-

sensitive help, back-ends should generaie this information on demand.

= Multi-level undo and redo

For the hypermedia engine to support [ull muliiple level undo and redo functionality, the back-end
must provide some mechanism for undoing and redoing its operations (e.g., performing a what-if
analysis). Otherwise the hypermedia engine can only undo back 1o the last back-end operation. Back-
ends, for example, could return a command with each operation result that would have the effect of

restoring the previous back-end state.

Additional Guidelines

In [7] we also discussed the following requirements.

* When the back-end message contains a previously-generated report, the hypermedia engine sometimes
has trouble locating the positions ol the user annotations that were in the previous version. Including the

internal structure of each message’s content provides additional oricntation for the engine.
= To assist in validating user responses Lo back-cnd queries, the back-end could provide control information

for validity checking.

4.3. The Hypermedia Engine and Existing Systems
Builders developing an information system from scratch will find interfacing with the hypermedia engine

easier than builders who must retrofit the coordination that the hypermedia engine demands. Builders of

22

existing information systems (assuming they can be located [25]) must reengineer the communications path
between the system’s interface components and computational components, allowing the hypermedia engine
to intercept messages and embed objects. The more loosely coupled and modular an information sysiem is,

the simpler hypermedia integration will be.

5. Conclusion

We have yet to see hypermedia availability as a common interface feature. Information system builders
wishing to incorporau;, full hypermedia functionality today must do it themselves. Few new system builders
would be willing or able 1o do this. Fewer builders would put forth the effort to convert existing systems. “A
more modest [and practical] goal is to create rules and tools that could be used to allow slightly modificd
existing applications Lo produce data accessible in hypermedia style.” [54 pg. 81] Certain operating systems,
for example, provide system-level hypermedia toolkits for adding hypermedia constructs—nodes, links,
markers, etc.—1o application data (e.g., the Andrew Toolkit [50], and a recently proposed “‘core system” [38]).
Apple Computer’s new operating system, System 7, provides publish and subscribe capabilities, but these, in
themselves, fall far short of full hypermedia functionality. There arc hypermedia scrvices that run concurrently
with distributed applications in networked environments (e.g., the commercially-available Sun Link Secrvice
[45] and PROXHY [28]). We find few methods, however, that externally superimposc hypermedia constructs
over an application without adding to its data or knowledge base (c.g., the Hyperiext Object-oriented Toolkit
[49]). When completely developed, our hypermedia engine will provide full hypermedia (unctionality to
dynamically changing applications while running concurrently with them and mapping a hypermedia

representation that does not alter them.

Through our preliminary architecture we have identificd many challenges for hypermedia support of
dynamic information sysiems, We have staried developing techniques o address these, which we hope o

implement in an improved prototype soon.

23

Stern School of Busine

Working Paper 18-92-26

Center for Digital Economy Research

Hypermedia should be a widely implemented paradigm for information presentation. We invite information

system developers, and challenge both information system and hypermedia researchers, 1o join us and make

this goal a reality.

Acknowledgment

~ Steve Kimbrough of the University of Pennsylvania has played an integral role in the development of these
ideas. It is he who originally applied the concepl of bridge laws 1o hypermedia. Tomds Isakowitz of New York
University and Bob Minch of Boise State University both made invaluable suggestions, as did anonymous
reviewers. This work was motivated and supported in part by the U. S. Coast Guard under contract DTCG39-

86-C-E92204 (formerly DTCG39-86-C-80348), Steven O. Kimbrough principal investigator.

24

Center tor]_‘.!__'ll_:l Economy Research

References
(1] P. Balasubramanian, T. Isakowilz, H. Johar and E. Stohr, Hyper Model Management Systems, in:

Proceedings of the Twenty-fifth Hawaii International Conference on System Sciences, Volume III (Kauali,

Jan. 1992) 462-472.

[2] D. Barman, RelType: Relaxed Typing f[or Object-Oriented Hypermedia Representations, in: Object-
Oriented Programming in Al: Workshop Notes from the Ninth Annual National Conference on Artificial

Intelligence (Anaheim, 1991).

[3] E. Berk and J. Devlin, Eds., Hypertext/Hypermedia Handbook (Intertext Publications/McGraw-Hill
Publishing Co., Inc., New York, 1991).

[4] H.K. Bhargava, A Logic Model for Model Management, Ph.D. dissertation (University of Pennsylvania,
Philadelphia, PA 19104, 1990).

[5] H. Bhargava, M. Bieber and S.0. Kimbrough, Oona, Max, and thec WYWWYWI Principle: Generalized
Hypertext and Model Management in a Symbolic Programming Environment, in: Proceedings of the Ninth

International Conference on Information Systems (Minneapolis, 1988) 179-192,

[6] M. Bieber, Generalized Hypertext in a Knowledge-based DSS Shell Environment, Ph.D. dissertation
(University of Pennsylvania, Philadelphia, PA 19104, 1990).

[7] M. Bieber, Issues in Modeling a ‘Dynamic’ Hypertext Interface for Non-Hyperiext Information Systems, in:
Hypertext ‘91 Proceedings (San Antonio, Dec. 1991) 203-218.

[8) M. Bieber, On Merging Hypertext into Dynamic, Non-Hypertext Systems, Boston College Technical Report
BCCS-91-14 (Nov. 1991),

(9] M. Bieber, Automating Hypermedia {or Decision Supporl, Hypermedia (forthcoming).

[10] M. Bieber and S.0. Kimbrough, On Generalizing the Concept of Hypertext, Management Information
Systems Quarterly 16, No. 1 (1992) 77-93.

[11] M. Bieber and S.O. Kimbrough, On the Logic of Gencralized Hypertext, Decision Support Systems
(forthcoming).

[12] P. Brown, Assessing the Quality of Hypertext Documents, in: A. Rizk, N. Streitz and J. André, Eds.,
Hypertext: Concepts, Systems and Applications, Proceedings of European Conference on Hypertext 90

(Cambridge Universily Press, Versailles, Nov. 1990) 1-12,

25

Working Paper 18-92-26

(13] F.Cole and H. Brown, Standards: What Can Hypertext Learn From Paper Documents?, in: Proceedings of

the Hypertext Standardization Workshop, SP500-178 (NIST, Gaithersburg, Jan. 1990) 59-70.
[14] EJ. Conklin, Hypertext: a Survey and Introduction, IEEE Computer 20, No. 9 (1987) 17-41.

[15) E.J. Conklin, and M.L. Begeman, gIBIS: A Tool for All Reasons, Journal of the American Society for
Information Science 40, No. 3 (1989) 200-213,

{16] E.A. Fox, Q.F. Chen and R.K. France, Integrating Search and Retrieval with Hypertext, in: E. Berk and J.
Devlin, Eds., Hypertext/Hypermedia Handbook (Intertext Publications/McGraw-Hill Publishing Co., Inc.,
New York, 1991) 329-355.

(17] M.E. Frisse, S.B. Cousins and S. Hassan, WALT: A Research Environment for Medical Hypertext, in:
Hypertext ‘91 Proceedings (San Antonio, Dec. 1991) 389-394.

[18] R. Furuta and P.D. Stotts, The Trellis Hypertext Reference Model, in: Procecdings of the Hypertext
Standardization Workshop, SP500-178 (NIST, Gaithersburg, Jan. 1990) 83-94.

[19] L. Gallagher, R. Futura and P.D. Stous, Increasing the Power of Hypertext Search with Relational Queries,
Hypermedia 2, No. 1 (1990) 1-14.

[20] F. Garzouo, L. Maincui and P. Paolini, Exploration vs. Querics in Multimedia Data Base Modcling, in:

Proceedings of the Twenty-sixth Hawaii Iniernational Conference on Sysiem Sciences (Koloa, Jan. 1993).

[21] F. Garzotto, P. Paolini and D. Schwabe, HDM - A Model for the Design of Hyperiext Applications, in:
Hypertext ‘91 Proceedings (San Antonio, Dec. 1991) 313-328.

(22] F.G. Halasz, Reflections on NoteCards: Seven Issues for the Next Generation of Hypermedia Sysiems,
Communications of the ACM 31, No. 7 (1988) 836-855.

[23] F. Halasz and M. Schwartz, The Dexter Hyperiext Relerence Model, in: Proceedings of the Hypertext
Standardization Workshop, SP500-178 (NIST, Gaithersburg, Jan. 1990) 95-134.

[24] J. Haugeland, The Nature and Plausibility of Cognitivism, in: John Haugeland, Ed., Mind Design:
Philosophy, Psychology, Artificial Intelligence (MIT Press, Cambridge, 1981).

[25] T. Isakowilz, Hypermedia, Information Systems and Organizations: A Research Agenda, in: Procecdings

of the Twenty-sixth Hawaii International Conlerence on System Sciences (Koloa, Jan. 1993).

[26] T. Isakowilz and E.A. Stohr, Hypertext-based Relationship Management for DSS, NYU Stern Working
Paper 1S-92-22 (Jul. 1992).

26

[27] D.S. Jordan, D.M. Russell, A.S. Jensen and R.A. Rogers, Facilitating the Development of Representations
in Hypertext with IDE, in: Hypertext ‘89 Proceedings (Pittsburgh, Nov. 1991) 93-104.

[28] C. Kacmar and J. Leggett, PROXHY: A Process-Oriented Extensible Hypertext Architecture, ACM
Transactions on Information Systems 9, No. 4 (1991) 399-419. '

[29] H. Kaindl and M. Snaprud, Hypertext and Structured Object Representation: A Unilying View, in:
Hypertext ‘91 Proceedings (San Antonio, Dec. 1991) 313-328.

[30] S.0. Kimbrough, On the Reduction of Genetics Lo Molecular Biology, in: Philosophy of Science 46 No. 3
(1979) 389-406.

[31] S.0. Kimbrough, C. Pritchett, M. Bicber and H. Bhargava, The Coast Guard’s KSS Project, Interfaces 20,
No. 6 (1990) 5-16.

[32] L. Koved and B. Shneciderman, Embedded Menus: Selecting Items in Context, Communications of the

ACM 29, No. 4 (1986) 312-318.

[33] G.P. Landow, Popular Fallacies About Hypertext, in: D.H. Jonassen and H. Mandl, Eds., Designing
Hypermedia for Learning (Springer-Verlag, 1990) 39-59.

[34] A. Liwleford, Artilicial Intelligence and Hypermedia, in: E. Berk and J. Devlin, Eds.,
Hypertext/Hypermedia Handbook (Intertext Publications/McGraw-Hill Publishing Co., Inc., New York,
1991) 357-378.

[35] K.C. Malcolm, S.E. Poltrock and D. Schuler, Industrial Strength Hypermedia: Requirements for a Large

Engineering Enterprisc, in: Hypertext ‘91 Proceedings (San Antonio, Dec. 1991) 13-24.

[36] C.C. Marshall, F.G. Halasz, R.A. Rogers and W.C. Janssen Jr., Aquanet: A Hypertext Tool to Hold Your

Knowledge in Place, in: Hypertext ‘91 Proceedings (San Antonio, Dec. 1991) 261-275.

[37] C.C. Marshall and P.M., Irish, Guided 'Tburs and On-Line Presentations: How Authors Make Existing
Hypertext Intelligible for Readers, in: Hypertext ‘89 Proceedings (Pittsburgh, Nov. 1991) 15-42.

[38] H. Maurer and I. Tomek, Broadening the Scope ol Hypermedia Principles, Hypermedia 2, No. 3 (1990)
201-220.

[39] N. Meyrowitz, The Missing Link: Wh'y We're All Doing Hypertext Wrong, in: E. Barreu, Ed., The Society
of Text: Hypertext, Hypermedia, and the Social Construction of Information (MIT Press, Cambridge, 1989)
107-114.

27

Center tor]_‘-!__'ll_:l Economy Research

Stern School Busimess

[40] R. Minch, Application and Research Areas for Hypertext in Decision Support Systems, Journal of

Management Information Systems 6, No. 3 (1990) 119-138.

[41] E. Nagel, The Structure of Sciencc:‘Problcms in the Logic of Scientific Explanation (Harcourt, Brace &

World, Inc., New York, 1961).

[42]]. Nanard and M. Nanard, Using Structured Types to Incorporate Knowledge into Hypertext, in: Hypertext
‘01 Proceedings (San Antonio, Dec. 1991) 329-343.

[43] S. Newcomb, N. Kipp and V. Newcomb, The ‘HyTime' Hypermedia/Time-based Document Structuring
Language, Communications of the ACM 34, No. 11 (1991) 67-83.

[44] J. Nielsen, Hypertext Bibliography, Hypermedia 1, No. 1 (1989) 74-91.
[45] J. Nielsen, Hypertext and Hypermedia (Academic Press, 1990).

(46] H.V.D. Parunak, Hypermedia Topologies and User Navigation, in: Hypertext ‘89 Proceedings (Piusburgh,
Nov. 1991) 43-50.

[47] H.V.D. Parunak, Toward Industrial Strength Hypermedia, in: E. Berk and J. Devlin, Eds.,
Hypertext/Hypermedia Handbook (Intertext Publications/McGraw-Hill Publishing Co., Inc., New York,
1991) 381-395.

[48] A. Pearl, Sun’ s Link Service: A Protocol for Open Linking, in: Hypertext ‘89 Proceedings (Pittsburgh,
Nov. 1991) 137-146.

[49] 1.J. Puttress and N.M. Guimaraes, The Toolkit Approach to Hypermedia, in: A. Rizk, N. Streitz and J.
André, Eds., Hypertext: Concepts, Systems and Applications, Proceedings of European Conference on
Hypertext '90 (Cambridge Universily Press, Versailles, Nov. 1990) 25-37.

[50] M. Sherman, W. Hansen, M. McInerny and T. Neuendorler, Building Hypertext on a Multimedia Toolkit:
An Overview of the Andrew Toolkit Hypermedia Facilities, in: A. Rizk, N. Streitz and J. André, Eds.,
Hypertext: Concepts, Systems and Applications, Proceedings of European Conference on Hyperiext "90
(Cambridge University Press, Versailles, Nov. 1990) 13-24.

[51] H. Simon, The New Science of Management Decision (Harper and Row, New York 1977).

[52] P.D. Stous and R. Furuta, Petri-nel-based Hypertext: Document Structure with Browsing Semantics, ACM

Transactions on Information Systems 7, Na. 1 (1989) 3-29.

28

[53] P.D. Stotts and R. Furuta, Hierarchy, Composition, Scripting Languages, and Translators for Structured
Hypertext, in: A. Rizk, N. Srreilz and J. André, Eds,, Hypertext: Concepts, Sysiems and Applications,
Proceedings of European Conference on Hypertext '90,(Cambridge University Press, Versailles, Nov. 1990)
180-193.

[54] 1. Tomek, S. Khan, T. Miildner, M. Nassar, G. Novak and P. Proszynski, Hypermedia—Introduction and
Survey, Journal of Microcomputer Applications 14, No. 2 (1991) 63-103.

[55] R.H. Trigg and M. Weiser, Texinel: A Network-Based Approach 10 Text Handling, ACM Transactions on
Office Information Systems 4, No. 1 (1986) 1-23.

[56] K. Utting, and N. Yankelovich, Context and Orientation in Hypermedia Networks, ACM Transaclions on
Information Systems 7, No. 1 (1989) 58-84.

[57] A. Van Dam, Hypertext '87: Keynote Address, Communications of the ACM 31, No. 7 (1988) 887-895.

[58] E. Wilson, Links and Structures in Hypertext Dalabases for Law, in: A, Rizk, N. Streitiz and J. André, Eds.,
Hypertext: Concepts, Systems and Applications, Proceedings of European Conference on Hypertext "90

(Cambridge Universily Press, Versailles, Nov. 1990) 194-211,

29

Ordering Recommendation

To: Samuel Adams, Purchasing Department
From: Samantha Stevens, Analyst

Subject: Product Sb Reorder Timing and Cost
Date: 6/5/92

Our calculations indicate that we should order 60 units of *5b every 6
months. Thisis the lowest-cost arrangement, with a total cost of $60.00.

This would change our method of operations, requ 50 00

Information Available:

(1) explain

(2) re-evaluate

(3) show comments

(4) start new user link
(5) create new comment

Select

- 1_

A

Figure 1

Accessing Application and Hypermedia Functionality in a Hypermedia-Style Interface

ific Back-End Applicati
BACK-END Specific Back-En pplication

Specific Back-End Application

(computation-oriented)

Specific Back-End Application

Back-End Communications
Language

HYPERMEDIA ENGINE

Internal Control Internal Display FRONT-END.

Subsystem (CS) /Q Subsystem (DS)

(interface-oriented)

\ Hypermedia Engine Front-End

Communications Language Communications Language

Figure 2
Hypermedia Engine Architecture (Version 1):
Binding Independent Back-End and Front-End Information Systems

LSpecific Application

L]
L3

Specific Application

HYPERMEDIA ENGINE
Computational J:Intetr_face_
i i nction
Functlonamy External Systems HREHRRRkYy

Communications -
Language

INFORMATION

SYSTEM FAN

Figure 3

Hypermedia Engine Architecture (Version 2):
Serving an Information System with Adequate Computation and Interface Functionality

Ordering Recommendation

To: Samuel Adams, Purchasing Department

From: Samantha Stevens, Analyst

Subject: Product Sb Reorder Timing and Cost
Date: 6/5/92

Our calculations indicate that we should order 60 units of ¥*5b every 6

months. This is the lowest-cost arrangement, with s total cost of $60.00.

ThiE(J=————————= explain($60.00) ==i—F——"

$60.00 is the result of evaluating the variable tc under data scenario eoq(2).

1

| o

[t is computed using the model eoq, which contains the following equations(s):
te=ma*d/q+h*q/2

Here is the data used:
a=%15.00 (setup cost)
d =120 units (demand period)

q = 60.0 units (reorder quentity)
h=3%1 7/ unit (holding cost)

Al

Figure 4: The Document "explain($60.00)"
This hypermedia-style interactive document represents the back-end's explanation when
the user selects the "explain($60.00)" link in Figure 1.

Stem School

Front
End

(Location of)
Selected Object;
Desired Action,

-

New

Display

Back-End
Knowledge Base

Hypermedia
Knowledge Base

Control System
Knowledge Base
(CSKB)

Back-End Protocols;
Back-End Bridge Laws

Interpret Request:
Determine Which Object
the User Selected and
Type of Request

Location and

Identifier Information about
Currently Displayed Objects

Convert Query or
Document Component
Set for the Front-End

: Formatting and
Blsglaatg Settings Information; Back-End Response
Front-End Protocols
i Front-End .
' S n
Knoﬁésdp o Knowledge Base b
ge Base (FEKB) Knowledge Base

Figure 5: Informal Data Flow Diagram of the Hypermedia Engine
Processing a Standard Request for Information about an Application Object when the User Selects the Link Marker Representing It

User-Specified Links, I
Comments and Keywords;
Hypermedia Engine Bridge Laws

Internal Control
Subsystem (CS)

Document and Query Templates;
Filter Settings;
Appropriate Hypermedia Commands

Process Request;
Compile Response

Seoad00 §

—

Information Request

i

=

Record Current Display

Display Update

Active
Knowledge Base

Response

Back-
End

Center for Digital Economy Research
Stern School of Business
Working Paper [8-92-26

