
ON INTEGRATING HYPERMEDIA INTO

DECISION SUPPORT AND OTHER INFORMATION SYSTEMS

Michael Bieber

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 10012

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-26

On Integrating Hypermedia into Decision Support and Other lnformatibn Systems

Michael Bieber

Draft Version 1.3

7/28/92

Submitted to Decision Support Systems Special Issue on

the Second Annual Conference of the International Society uf DSS

Workins Paper Series

STERN IS-92-26

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

O n Integrating Hypermedia into Decision Support and Other information Systems'

Abstract

The goal of this research is to provide hypermedia functionality to all information systems that

interact with people. Hypermedia is a concept involving access to information, embodying the

notions of context-sensitive navigation, annotation and tailored presentation.

We present the architecture of a system-level hyperniedia engine, designed both to manage

full hypermedia functionality for an information system and to bind interface-oriented front-end

systems with separate computation-oriented back-end systems. The engine dynamically

superimposes a hypermedia representation over a back-end application's knowledge components

and processes. The hypermedia engine generates this representation using bridge ln jvs, which

capture the internal structure of client systems. Users access the application through its

hypermedia representation.

We also describe a set of minimal requirements for integrating our hypermedia engine with an

information system. We believe these guidelines apply to all integration efforts, not just our own.

Information systems will require some supplementary routines for the engine to manage

hypermedia functionality for them. The more sophisticated and cooperative the information
v

system, the higher the level of hypermedia support the engine will provide.

Keywords: Hypertext, Hypermedia, Information Systems Architecture, Hypermedia Engine, Bridge Laws

* This expands an earIier version: M. Bieber, Providing Information Systems with Full Hypermedia
Functionality, in: Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences
(Koloa, Jan. 1993).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

1. A Vision of Hypermedia and Information Systems

We envision a world in which information increasingly empowers people. Decision makers, analysts,

researchers, trainees, students and casual browsers all will have access to information they need or desire, in a

format tailored to their individual tasks and personal preferences.

The concept of hypermedia embraces the spirit of such access to information and eventually, we believe,

will be incorporated in the interfaces of all decision support systems (DSS), and indeed, all information

systems that interact with people. (Various authors, e.g., [35], support this prediction,) Our research goals are

to facilitate this integration and to produce rangible results. Once an information system includes hypcrmedia

functionality, the specific applications i t supports (e.g., worksheets within a spreadsheet package, rnotiels

within a linear programming package and expert systems within an cxpcrt system shell) automatically become

hypermedia applications. Users communicate in hypermedia's direct, con~cxt-scnsitivc fashion and

hypermedia functions supplement the system's original commands.

The goal of this paper is to encourage an ongoing discussion about providing the users of all information

systems with dynamic hypermedia functionality. We began this discussion in [7, 81 by proposing a solution-a,

hypermedia engine that builders can integrate with their systems. From this we derived a starting set of'

minimal requirements for hypennedia integration, which we believe apply to all integration efforts, not just our

own. This paper extends the architec~ure wc originally introduced in [7, 81. Here we deepen our description 01'

the hypermedia engine's internal structure, develop an alternate architecture for information systems not

abandoning their interfaces and expand our set of minimal requirements for hypermedia integration.

In $2 we briefly review the concepts of hypcrmedia and our enhance men^, gctteralired hypermedia.

Generalized hypermedia is at the heart of our hypermedia engine's architecture. We also examinc the

potential role of hypermedia in decision support. In 33 we introduce two versions of' our cnginc's architecture

and describe its internal structure. We illustrate its operation with a dctailed example. In 63 we discuss the

minimal requirements for hypermedia integration-lhc commitment information system builders have to make

to use our architecture. We conclude in 35 by bricny comparing our work with other current approaches.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-26

2. Hypermedia and GeneraIized Hypermedia

Hypertext [3 , 14,40, 44, 45, 541 is the concept of specifying relationships among pieces of information and

providing computer-mediated navigation among them. For example, we can automatically link a document

with a stage in a decision analysis, a keyword with its definition and a calculation with its explanation.

Hypermedia expands this concept to include media other than text. We refer to the information at either end

of the link as nodes, and to the entire node and link skructure as a hypermedia network. We signal the

existence of a link from a node by highlighting a portion of the node's display contents, which we call a link

marker. When a user selects a link marker the system traverses this link and displays an appropriate

representation of the destination node. Figure 1 shows a hypermedia-oriented inleractivc documenr similar to

those our Max prototype produces. [lo, 311 This document nodc represents a report generated by a decision

support system (DSS) and passed on to our hypermedia engine for display. The underlined and boldfaced text

strings are link markers, each associated with one or more links. In Figure 1 the user has selected the marker

"$60.00" represen ting the result of a DSS calculation. The hypermedia engine inferred three links associated

with this marker's underlying calculation: to a nodc representing an expert system explanation, to a node

representing its dynamic recomputation and to a nodc containing user comtnenu about it. The ~ w o retnaining

links represent hypermedia engine commands for annotating elemenis of the DSS. The user navigates through

the DSS thus, by selecting some item of interest and traversing a link representing an appropriate DSS (or

hypermedia engine) command.

Hypermedia embodies a methodology of flexible access to information incorporating the notions of

navigation, annotation and tailored presentation. Tailoring is inherent in other hypermedia functions, e.g., in

customizing the network the user navigates and its annotations. Together, these features constitute what we

call "full hypermedia functionality," an ideal level of functionality that few of today's hypermedia systems

achieve. (Many systems calling themselves "hypermedia systems," in fact, provide only forward navigaiion-

i.e., direct manipulation-and perhaps commenting [31].)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

Users navigate "forward" by seiecting an itern of interest (a link marker) about which to retrieve

comments, annotations, definitions, explanations or any other inferable information. Link markers act as

embedded menus [32], giving "context-sensitive" access to an underlying application's knowledge and

operations. We have dubbed this the W W l V n V l ("what you want, when you want i t") principle [5]. Users

normally traverse from node to node at the detail level, i.e., with each node occupying a window on the screen.

Users also should be able to navigate via (graphical) overviews [17, 33, 40, 45, 561 of the hypermedia network.

Overviews help alleviate the network disorientation 114, 451 associated with hypermedia's nonrestrictive, user-

directed access.

Information retrieval-style queries provide an alternative method of forward navigation [l G , 19, 581. Queries

return a relevant subset of an application's components, which is lnappcd to a hypcrmedia rcpresenvation.

Users then can navigate within this tailored subenvironment.

Users can navigate "backwards" as well, returning to prior srages or "screens" in their analysis, i.e., the

previously visited computer screens, but in their current state. Bucktracking is another imporrant we.apon

against network disorientation. By providing an escape mechanism for returning to familiar territory,

backtracking gives users the confidence to explore frecly and take "detours."

Annotation comprises fea~ures such as user-declarcd links and comments. Analysts and instructors can use

these, for example, to tie specific data, techniques and results together in rruils 120, 551 or guided totirs [20,

373. Trails and guided tours both direct and constrain forward navigation. They can document analyses or

serve as tutorials, and can be tailored for specific uscrs or tasks. In a DSS, for cxamplc, annotations can

provide justification for courses of action 191.

Full hypermedia functionality can augment decision support 1261. Consider Simon's ln~elligetzce (gathering

information) - Design (developing alternate solution scenarios) - Choice (choosing a solution) framework of

decision making [511. An analyst navigates or browses through the documents, models, and data in the

problem domain by making queries or by dircctly selecting itcms of interest ("drilling down" [401). I f the

domain had been explored previously, the hypcrmedia representation may be tailored to this analyst, or his or

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

her task. Prior users also may have specified annotations or recommended paths. Our analyst's own

annotations document the solution scenarios he develops, and connects these to their sources and other

supporting information. DSS commands mapped to hypermedia links enable the analyst to evaluate models

and data directly through context-sensitive hypermedia navigation. As we see in figure 1, this provides a

seamless interface for all DSS and hypermedia functions. The analyst can link his chosen solution scenario to

documents reporting the decision. He also could package his analysis as a trail or guided tour. Hypermedia

thus serves as a documentation and justification tool [35], In fact, an entire class of hypermedia spstems-

argumentation systems, e.g., [15, 361-specializes in capturing the decision rationale and deliberations so

often unrecorded and quickly forgouen. Through the hypermedia representation, others can explore the

analyst's alternatives and conclusions, and can comment upon them. (See [9] for a deeper exploration of

hypermedia and decision support and [25 , 401 for discussions of hypermedia and decision support research

issues.)

In summary, hypermedia is a technique for providing direct, context-sensitive access to application dava,

the commands that manipulate this data, and merainformation about the data and commands. Such access

should improve the quality and users' understanding of applications and their inputs and outputs, and increase

the confidence people have in these. Pcrformance issues aside, we bclievc that most information systcms hat

interface with people would profit from hypermedia functionalily. (The exceptions may be data cntry and

other transaction processing systems, in which users do not query information. Perhaps even here, validation

and other feedback may benefit from a hypermedia representation.)

There are two basic limitations with most of today's "first generation" hypermcdia systems. First, they

implement a static and explicit model of hypermedia; the nodes, links and link markers must be declared

explicitly and be fully enumerated (as opposed to being declared virtually and generated upon demand). Most

applications, however, are dynamic and too large to mark up manually. Imagine a spreadsheet designer

having to calculate all what-if analyses in advance. Second, most of today's hypermedia systcms are

"...insular monolithic packages that demand the user disown his or her present compuiing environment to use

the functions of hypertext and hypermcdia." 1391 Users who want hypcrmcdia functionality often must abantfon

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-26

the software they currently use-an impractical restriction 128, 351. The first limitation motivated us to

develop generalized hypertext or generalized hypermedia 16, 10, 1 I]. The second motivated our hypermedia

engine, which will provide hypermedia functionality to an information system's applications. The engine

incorporates our dynamic model of generalized hypermedia.

In generalized hypermedia we broaden the underlying model of hypermedia components-nodes, links, link

markers, etc.-with three of Halasz' proposed extensions to hypermedia [22]: virtual specifications, dynamic

computation, and filtering or tailoring. We use these to generatc a hypcrmcdia representation "on the fly"

from basic declarations we call bridge laws that describe the intcmal structure of an information system. As

we shall see in 43.2, bridge laws enable generalizcd hypermedia to superimpose a hypermedia network on an

information system's application, generating all node, link and link marker representations dynamically from

the application's original, non-hypermedia dala or knowledge base.

Three aspects combined distinguish generalized hypermedia Srorn othcr hypermedia approaches: (1) all

mapping and cornpulation in generalizcd hyper~ncdia is dynamic; (2) through bridge laws, pcncrali~cd

hypermedia can provide system-level support to any information system with a wcll-dcfincd intcrnal struclurc;

and (3) bridge laws map a hypcrmedia representation without altering an information system's data or

knowledge bases. No other approach supports all three criteria. [9] This does not mean that information

system builders simply can plug in our hypermcdia engine without adjusting their systems. Each builder will

have to declare a s~nall set of bridge laws, add a relatively small nurnbcr of routincs to his systetn and rcgistcr

the system's communication protocols. This will sufficc to provide hypermedia engine support for all speciftc

applications written in his information system. Builders, howevcr, will not have to make their systems or

applications "hypermedia-aware" in any way. This is because (1) as mappcd represenlalions, nodes, links and

link markers do not alter the original, underlying application information and (2) the hypermedia engine

maintains all other hypermedia constructs (e.g., commenls and trails) in its own knowledge bascs separate

from its client information systems. The engine adds no hypermcdia constructs to its client systems or their

applications.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

3. The System-Level Hypermedia Engine

Figure 2 shows a version of our proposed hypermedia engine's architecture that binds independent back-end

and front-end information systems. By back-end systems, we mean information systems that primarily provide

computation functionality, such as DSS, expen systems, intelligent tutoring systems, database management

systems, project management systems, etc. By f ront-end systems we mean those that primarily support

interface-level functionality such as word processors and graphics packages. Instead of being tightly coupled,

the hypermedia engine runs concurrently with-and independent of-the information systems it binds,

communicating through external message passing. The engine embcds link markers in messages the back-end

passes to the front-end for display and handles requesu for back-end functionality or supplementary

hypermedia support when a user selects one of these markers. As a result, the user can access a back-end

through the interface of his or her choicc, which now provides full hyper~nedia functionality. (This assulncs

that the front-end and back-end buildcrs have complicd with the rcquirernents we discuss in $4.)

----- Figure 2 -----

This architecture also allows users to access multiple back-end systems at once and incorporate information

(linked objects) from different back-ends in a single front-end document [47]. Eventually this architecture will

support workgroups of multiple simultaneous users on heterogeneous front-ends.

Many computation-oriented information systems, of coursc, have high-quality interfaces. Among thesc arc

spreadsheets and CAD systems, as well as spccific cases of the aforementioned front-end and back-cnd

systems. A second version of the hypermedia engine, shown in Figure 3, would run concurrently with such

systems and manage hypermedia functionality for them. In this architecture, intcrnai conlmunications betwecn

the interface and computation modules must be routed through the hypermedia engine.

For the rest of this paper we shall usc the terms "front-end" and "back-end" to indicate interface-orientcd

and computation-oriented functionality in both versions of the architecture.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-26

3.2. An Overview of the Paper's Example

We describe the hypermedia engine's architecture through Figure 1's simple text-based example both here

and in 53.5. (Our model also suppons non-text content and link markers.) Figure 1's interactive document

entitled "Ordering Recommendation" started as a message from the DSS back-end. As an illustration, suppose

the second sentence of that message had the following formar:

'... This is the low-cost arrangement, with a <variable(tc), "total cost"' of

<calculation(variable(rc), model(eoq), scenario(eoq(2))), 60, currency(US)> . . . '

Italicized text within angle brackets denotes a back-end objcct. Thc back-end tagged each object with iu

display value, any relevant formatting information and an internal identifier. The hypermedia engine

superimposed a hypermedia structure over the entire message and converted its contents to a docutnenf

component set for display by the front-end. (The document component sct contains the message contents after

the hypermedia engine has filtered them and embedded hypermedia link markers.) As part of the conversion

the hypermedia engine added thc identifier of the owning back-end, "DSSI ," to cach object's lag along with a

unique hypermedia engine identifier for distinguishing among mulliplc instances of a back-end object. Assume

the corresponding portion of document cornponcnt sct had ~ h c following internal format:

'... This is the low-cost arrangement, with a <[6, DSSI, variableltc)], value("~oial cosf") ,

form(text)> of <[7, DSSI, calcularion(varialtle(tc), model(eoq), scenario(eoq(2)))l. value(6O),

form(currency(US))> . . . '

When the user selected the link marker "560.00," the hypermedia engine managed the process of gathering

all possible links to the underlying object, "calculation(variable(tc), modcl(eoq), scenario(eoq(?))),' which is

owned by thc back-end system "DSSI." We sec thc resul~ing link ensemble representing two back-end

commands and three hypermedia engine commands in Figure 1. Now the uscr chooses link # I . In traversing

this link the hypermedia engine invokes DSSl's explanation gcncrator, which returns the explanation as a

message. The engine converts this to thc document component sct displayed as "cxplain(S60.00)" in Figure I .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

----- Figure 4 -----

In the following sections we examine different aspects of the hypermedia engine and then return lo this

example in further detail.

3.2. Bridge Laws and Filters: Techniquesfor Automating Hypermedia

In this section we discuss filters and bridge laws. As part of compiling the document component set, the

hypermedia engine must determine the locations (i.e., infer the existence) of link markers in back-end

messages. Bridge laws enable this inference. Filters tailor it.

The hypermedia engine uses filters to customize the user's in~eraction in many ways. For examplc, filters

can direct:

which report form or template the engine uses to construct a document component set from back-end

messages,

* how detailed to make report conlcnts,

which objects LO represent as link markers for the user's currcnt task, and

which links to prune to avoid overwhelming a novice user.

Through filtering, the hypermedia engine can assume responsibility of managing mode or rusk changes,

altering documents and available commands as the user navigates through the back-end. For example, in a

project management system the hypermedia enginc would use filters to tailor the user's view to his or her

current project subtask. For more details see the discussion of "contexu" in [6].

The hypermedia engine uses logical rules called bridge laws Lo map a hypermedia representation over the

components of a back-end system. We adopted the term "bridge law" [24, 30, 311 because these logical rulcs

serve as a "bridgc" or connection betwcen objects defined in the language of the back-end (e.g., modcls,

variables, calculations) and those in that of the hypermedia enginc (e.g., nodes, links, link markers). Bridge

laws employ logical quantification, i.e., they apply to cvcry instancc that salisfics the set of conditions

specified. Logical quan~ificadon (i.e., specifying "for each" or the logical symbol "V") enables individual

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

laws to map entire classes of back-end objects to hypermedia components; the same bridge law will map

every object in the application knowledge base that satisfies the bridge law's conditions.

In Figure 1's example, the hypermedia engine used a bridge law similar to the following pseudo version to

identify the object "calculation(variable(tc), model(eoq), scenario(eoq(2)))" within the "DSS 1" back-end's

original message and tag i t as a link marker in the document component ser.

F o r each calculation wi th attribute values satisfying the set of conditions Y andfi l ter settings Z:

map a hypermedia link of o p e "explain" from rhe object to the DSSl explain fiinction, and

map a hypermedia link of type "re-evaluate" from rhe object ro the DSSl re-evaluare~funcrion

As we shall discuss later, because it is specific LO a particular back-end, thc back-cnd's buildcr would have

declared this bridge law. The hypermedia engine maintains iu own seL of gencral bridge laws that pcrrain to

all back-ends. For example, the following gcncral bridge law finds objects with cornmenis registered in the

hypermedia engine's knowledge bascs.

F o r each object w i t h a user-specified comment that satisfiesfilter settings Y

and access security specifications Z:

map a hypermedia link of type "comment" belween the object and rts user-declared commenl

The engine uses the following general bridgc laws to infcr kcywords. The f~rsl llnds keywordc thnt a mcssuge's

back-end has declared. The second searches for keywords thnt a user has rcgistcred.

F o r each phrase i n the message matching a keyword regislered by its back-end fhat s t~ l~s f ies f i l te r scrrlngc %

map a hypermedia llnk of type "keyword" from the phrase to the back-end object 11 rcpresenrs

Fo r each phrase in the message matching a keyword registered by a user that satisfiesfilter settings Y

and access security specifications 2:

map a hypermcdia link of type "keyword from the phrase to the object it represents.

Together, generalized hypermedia and iu bridge laws providc a logic-bnscd knowledge represeniation th:it

enable the hypermcdia enginc to rcason about the componcnts (rnodcls, data, commands, ctc.) of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

underlying information systems they map. For example, full hypermedia functionality includes both producing

an overview of an application's components, and searching or querying over these components. As part of our

research, we shall determine whether a complete set of bridge Iaws suffices for the engine to perform both

structure search and content search [21, 221 and generate a network overview. (Producing an overview for a

static hypermedia network is not a trivial task (see, e.g., 1561). No one, as yet, has tackled overviews for

virtual environments involving computation, such as our own.)

In addition to argumentation-based hypermedia models, several other knowledge representation approaches

have appeared in the literature, e.g., Petri nets [52, 531, structured object representation 1291 and schemata [21,

26, 361. Other systems that make use of a knowledge representation include MacWeb 1321, IDE 1771 and

RelType [2]. In future papers we hope to compare implementations using bridgc laws and a generalized

hypermedia engine with systems using other knowlctfge representations.

The browsing semantics of the different systems also will influence this evaluation. The browsing

semantics define the dynamic behavior of a system and arc constrained by its undcrly~ng knowledge

representation [52]. In our model, thc hyperrncdia engine incorporates the browsing semantics and, as we shall

see, attempts to integrate them into the front-end's functionali[y.

The hypermedia engine stores bridge laws and fillcr settings in knowlcdgc bases belonging lo its Internal

Control Subsystem. For an in-depth discussion of bridge laws see [6, 9, 101.

3.3. Internal Conlrof Subsyslem (CSj

The hypermedia engine has two major cornponcnu: the Intcrnal Control Subsysicm (CS) and the lniernai

Display Subsystem (DS). We describe the structure of each next and illustrate their intcraciion in S.3.5.s

example.

The CS performs all configuration-indcpendcnt processing. I t handles the communication link betwcen the

hypermedia engine and the back-end systems. Back-ends pass messages containing reports, queries and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

menus. From each message the CS compiles the configuration-independent contents of a document

component set or query component set, which the CS passes to the Internal Display Subsystem.

In the future we intend to upgrade our hypermedia engine for a networked, multi-user environment. At that

time we shall split the CS into two logical modules, a single global module and multiple local modules. The

global module will keep track of information that users on all systems should be able to access. Security

permitting, everyone should have acccss, for example, to public commenu, informational links, keyword

definitions and documents registered by any user.

The CS maintains the following knowledge bases, each containing facts and rules for a different tiornain of

inferencing.

Hvaermedia Knowled~e Base The "Hypermedia KB" contains all types of hypermedia information

registered by users including keywords and the nodes they represent; comments, links and other

annotations (e.g., bookmarks [46]); and guided tours and othcr trails. Thc hypermedia engine ma~ntains

these independent of any back-cnd elements upon which they are based. Back-end systems need no

record of the user's hypermedia activities.

Back-End Knowledge Base There is onc "Back-End KB" for each back-end system that users can acccss.

The Back-End KB contains nctwork acccss information for each back-end, as well as its bridge laws,

keywords, and any other information necessary to build messages for it and parse its responses. An early

version of our TEFA model management system back-end prototype [3 , 51 provides an examplc of

supplementary parsing information. TEFA prefixed the display text of iu objects with an ampersand.

Registering this format would enable the CS to strip the ampersand to rnake the tiisplay less confusing

and to reinsert [he ampersand in user rcquests i t passes to TEFA.

We note that [I] presents an alternative system architecture thal insulates bridge laws as much as

possible from changes to the engine or back-end. This architecturc includes a separate bridge law

manager between Lhe hypermedia engine and the back-end.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

Control Svstem Knowled~e Base The "CSKB" contains general parameiers and routines for

communicaring, and for processing messages and responses. I t s contents include:

- default and current settings for the hypermedia engine, including filter settings

- the functionality behind the hypermedia commands (e.g., querying link markers, creating user-specified

links and comments)

- hypermedia engine bridge laws for mapping user-specified hypcrmedia elements such as comments to

back-end objects

- standard document templates-forms dictating the general content and layout of documents 161 that the

engine uses LO create document cornponcnt sets (similar to ahsiruci containers in thc Trcll~s

Hypermedia Reference Model [I 81)

- standard query templates-rorms dictating the general content and layout of qucries that the engine

uses to create query component sets

Active Knowledge Base The hypermedia engine records all back-end and uscr-declared ohjects curren~ly

displayed on the front-end screen i n the "Active KB." The CS uses this for tfyna~nically updating the

front-end's display when elemcnts of the back-end, such as a stock price, cti;~ngc. (In ;I inttlri-uscr

environment, this would be a global knowledge base reprcscnting tllc displays of all activc front-cntl

systems. One function this would facililate is screen sharing alllong uscrs on hcterogencous systcnis.!

3.4. Infernal Display Subsysfetn (DS)

The DS has two major responsibilities. First, it translates the configuration-independent document

component set for the specific fronr-end that will display it. Sccond, it provides \vhatever "behind the scenec;"

support its front-end needs to provide hypermedia functionality. The DS maintains the Sollowing knowledge

bases:

Session Knowledcre Base The DS stores all user actions and hypermedia engine responses in the

"Session KB." From these the DS can tailor a session log for hypcr~nedia-style backtracking anti guided

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

tours. The Session KB serves a role similar to that of the lzislory component in the Dexter Hypertext

Reference Model [23].

Depending on the detail of user interaction the front-end passes to the DS, the Session KB could

support multiple-level undo and redo functionality 1571 for both hypermedia commands and he front-

end's own commands. A highly cooperative front-end would pass user actions down to the exact

keystroke. This also would enable the DS to serve as a monitoring and experimentation tool for

particular front-end and back-end systems and settings. Several researchers have called for such

functionality in hypermedia systems (e.g., [12]).

Dis~lav Knowledge Base The "Display KB"-analogous to the session component in the Dcxtcr rnodel-

records all hypermedia objects ciisplaycd on the front-end. Depending on the level of hypcrlnedia

support the DS must provide, this can include an object's internal identifier, the actual content of the

front-end representation and, as we shall explain later, even the object's location within the front-end's

windows. The DS uses this to determine what the user has selcctcd and whether the user has permission

to alter or delete it. Altering a back-end object's content (e.g., a current stock price or the result ol a

calculation) can desuoy its validity. The DS also uses this knowledge base to map link ensembles to

the commands they represent.

Front-End Knowledge Base The "FEKB" contains the inforr~~ation the DS needs to cornmunicaic with a

specific front-end. In it, the DS maintains protocol formats, current parameter settings and the internal

routines for coordinating hypermedia support with the particular front-end. With this knowledge, the DS

can translate the configuration-independent document and query component sets the CS passes for

display, as well as the user requests the front-end passes.

Having introduced the hypermedia engine's modules and knowledge bases, we now can expand 63.1's

example illustrating a user request.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

35. Example

Figure 5 presents an informal data flow diagram depicting how the hypermedia engine compiled both the

link ensemble in Figure 1 for the link marker "$60.00" that the user selected and the interactive docurnent

"explain(S60.00)" in Figure 4 resulting from traversing thc "explain" link.

The hypermedia engine expects back-ends and front-ends to supporl two slandard commands for all objects:

generating a short description ("What is this?") and generaling a list of possible actions ("What can I do with

this?"). The user also should be able to selcct any command within a menu or represented by a I~nk, and

request assistance ("What happens if I do his?"). The fronl-end should provide some mechrinism for the uscr

to request each, e.g., a special keystroke combination or menu command. The back-end should providc thc

respective descriptions, command lists for its objccls and assistance I'or its commands.

Another common action is an implicit request lo edit. Because front-ends must enrure he Intcgnty of llnk

marker representations belonging to exlcrnal systems, when users try to cdit a marker's display value the CS

must grant permission.

We now expand $3 .1 '~ example, following the llow of information illustra~cd in Figure 5. Note that Figure

5's diagram does not cover editing or requcsu for assistance. This discussion con~plements, but greatly

deepens the illustration in [lo].

1. The Front-End Passes a Message to the DS in Response to a User Action

When the uscr selects a highlighted text string, such as the "S60.00" in Figure 1 , the front-end sentis a

message to the DS. The message from a "hypermedia engine-friendly" front-cnri+ne that maintains exlernal

objects-will contain both the user's rcrlucsted action ("What can I do with this?") and the object's internal

identifier ("[7, DSSI, calculation(variablc(tc), modcl(eoq), scenario(coq(2)))]").

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

The less sophisticated the front-end, the more inferencing the DS must do to manage hypermedm

functionality. For example, if the front-end does not maintain external objects then it may be able to pass only

the selection's location in coordinates relative to the smrt of the document. In this case, the Display K B must

maintain an up-to-date map of the front-end's documents that records the current location of all hypermedia

objects. From this the DS must infer which object the user selected.

2. The CS Processes the User Request

The DS passes the action requested and the identifier of the selected object to the CS. From the identifier

the CS can determine the object's owning system. When a back-end owns the objccr, the CS cornpiles the

appropriate request for the back-end. The CSKB supplies the back-end's protocols and network address. I S the

hypermedia engine owns the object, such as with user-specified keywords, the CS has all necessary

information for the user request in its own knowledge bases. This also applies to hypermedia mc~inforn~ation

about back-end objects. Users may select user-specified comments i~nd links associated with a back-end

object and inquire about their creators, modification dates and even comments about tlicsc links 2nd

comments. The Hypermedia KB contains such melainformation.

We now detail three possible user requests: rcquesu for (a) editing, (b) a short cicscription anti (c) a list ol

relevant commands.

2a. The CS Processes the Uscr Renuest: Edit Link Marker

For requests to edit a link marker's display value, the CS does not have to chcck with the back-enti. The

CSKB contains hypermedia engine-owned bridge laws controlling editing per~nissiot) for each typc o l link

marker. For example, users may delete, but not modify, back-end object markers. Users mag alter a kcyworri,

but the CS will deregister ils marker as a keyword and direct the front-end to dchighlrght it. Users may altcr

the content of user-specified links without deregistering the marker or its link. The CS approves or rejects the

edit in a message i t returns to the DS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

2b. The CS Processes the User Request: Short Descrintion (i.e.. "What is This?")

The back-end responds to this scandard request with a message containing the short description in a format

analogous to that of 53.2. The CS converts this description to a configuration-independent document

component set. First the CS infers the appropriate document template for short descriptions from the CSKB.

Next it instantiates the template form with the mcssage contents. Then i t determines what to represent as link

markers as follows.

To each object in the back-end message the CS applies both back-end bridge laws and hypermedia

engine bridge laws for inferring links, onc by one until onc bridge law succccds or all fail. I f any bridge

law succeeds given the current filtcr scttings, then thc CS represcnts that back-end object as a link

marker, similar to that in $3.1. Otherwise thc CS passes formatting pararneters with the object, but not

its identifier. For example, i f filtering prevcnteci the CS from inferring Figure 1 ' s

"<calculation(variable(tc), modcl(eoq), scenario(eocl(2))), 60, currcncy(US)>" as a link marker, the

CS would have passed it as "<valuc(60), form(currcncy(US))>" in thc docurncnt component set.

The CS searches the document's contcnt for keywortis registered by users or by the back-enti that sent tllc

message. The CS marks each keyword found as a link marker, incorporaling the iden~ifier 01' the node

that the keyword represents as part of the markcr's identifier.

2c. The CS Processes the User Requcst: List of Commands (i.c.. "What Can I Do with This?")

The CS often can gcncratc thc list of relcvant back-end commands ciircctiy from the back-end's bridge laws

and therefore does not have to communicate with the back-cnd. For cxamplc, the first bridge law in 43.2 inaps

the two back-end commands we see in Figure 1's link ensemble. Resolving complex bridge laws, however,

may require intcrnal back-end calculations or information stored in the back-cnd's own knowledge bascs. In

this case the CS will have to send a rcciuesl LO thc back-end as part of resolving thc back-end's bridge laws.

The CS also processes the selected object using its own general bridgc laws. One of the bridgc laws in $3.2

identified a user-specified comment about the selccted DSS calculalion (i.e., back-end objcct). The CS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

represents access to this comment with the third link in Figurc 1. Two other CS bridge laws rnappcd links

corresponding to the hypermedia engine commands "start new user link" and "create new comment."

The CS now formals the link ensemble as a configuration-independent query component set. The CS

retrieves the appropriate query template for link ensembles frorn thc CSKB and inscrts the five links along

with a directive to the DS to include the selected marker's display value as the title. The CS represents each

of the five links as a link marker in the query so the user can select any and request assistance (i.e., "What

happens if I do this?") for its underlying DSS or hypermedia engine command.

3. The DS Converts the Document or Ouerv Componcnt Set for the Front End

The DS prcpares the document or query for its front-end. It retrieves the protocol the front-end will recognize

for documents and queries from the FEKB. The front-end may or may not accepl objects embedded i n

messages and may resuict idcntificr Icnglh, I f the front-end docs not proccss dimensional attributes, 1lIe DS

must pre-format object display representations (c.g., scnding "S60.00" instend oi' <valuc(60),

form(currency(US))>). Ideally the front-cnd will accept a srandrud tlocument protocol such as ODA or SCML

[13], or even a HyTime representalion (an SGML-based hypermedia communications standard [13]). Based on

the level of front-end support, the DS has to determine whcthcr to reprcsent the qucry link ensemble (1) as a

dialog such as in Figure 1, into which the user typcs information, (2) as a documcnt in which users must select

a link marker representing one of the commands, or (3) as a menu. Thc DS may havc to sacrifice

functionality. For example, Figure 1's front-end supports query dialogs, but cannot highligh~ cach link as a

link marker. Users, rhcrcforc, cannot request "What happens i f 1 do this?" assistance lor commands directly.

Once converted, the DS passes rhe docurncnt or query component sct to the front-end and updates 11s

knowledge bases as shown in Figure 5. The DS records the user's request and thc cnginc's response in the

Session KB to support backtracking, trail consrruction and untlo/redo, ctc. Thc DS records cach cornponenl set

object in the Display KB for interpreting subsequcnr user rcqucsts and for reformatting displays. (Thc DS

includes physical object locations i f i t must maintain these.) Thc DS also passes this set of displayed objects

to the CS's Active KB to support dynamic updating.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

3.6. Our Prototype: Max

We have implemented a preliminary text-based prototype of the hypermedia engine called Max at the U. S.

Coast Guard. Max is a knowledge-based DSS shell [lo, 311. The engine uses a preliminary version or bridge

laws to map (1) DSS objects and reports LO hypertext nodes, (2) DSS commands to links, and (3) keywords

and objects embedded in DSS messages to link markers. Max's interactive documents and link ensemble

queries resemble those in Figure 1 and Figure 4.

Max, admittedly, is an "insular, monolithic package," providing its own mandatory front-end. The front-end

does not support external objecu, so the engine keeps track of its objects' locations within the front-end's

windows. The current prototype's front-end and hyper~ext engine are not entirely independent, neither are the

DS and CS enrirely separate subsystems. TEFA, thc back-end, however, is completely independent ol' the

engine. It communicates solely through Figure 2's back-end cornmunjca~ions language. Indeed we have

developed two separate cornputation-oriented back-ends fbr Max, a project managernen1 system and a model

management system.

4. Hypermedia Enginelclient Cooperation and Coordination

The hypermedia engine requires the cooperation of its client front-ends and back-ends. The more

sophisticated and coordinated each is, the higher the degree of hypermedia functionality the enpinc can

provide. To provide ubiquitous hypermedia support, however, the engine inusl accomrnodatc front-ends and

back-ends that do not meet the standards we desire. As part of our research we are investigating the ~nini~n;~l

level of cooperation among front-ends, back-ends and the hypermedia engine. ([26, 351 report on un

integration architecture using stale-change messages that presumably will require less coordination among the

hypermedia engine'and its external systems.)

In [7] we introduced a preliminary set of minimal requirements for client/cngine cooperation. Now we

augment this set, addressing the interaction between the engine and interface-oriented fronl-end systeirts in

84.1, and between the engine and computalion-orien~cd back-ends in 33.2. These apply to information systcms

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-26

from either version of our architecture. In $4.3 we discuss how thcse requirements impact existing informalion

systems.

These requirements stem from our own research. We believe, however, that rhey provide a starting set of

general guidelines for all svstem-level approaches to hypermedia inregration, including those not employing an

external hypermedia engine. (Approaches that integrate hypermedia directly into individual annlications do not

require our degree of generality.)

4.1. The Hypermedia Engine and Fronr-End.v

The hypermedia engine provides khe front-end and its users with silnultrtncous access to multiple back-ends.

The engine manages hypermedia constructs (e.g., link markers representing user-defined and back-end objects,

comments, trails, and overviews) and hypermedia control (e.g., filtering, context-sensitive forward navigation

and backtracking). In return the front-end should provide the lollowing functionality.

Identifying Objects in Front-End Workspaces

Front-ends either must track the locaiion and identifiers of extcrnal objccu (i.e., hypermedia link

markers) or make their up-to-dat~ positions available. I n thc lattcr case the DS will havc to intcrprel

positions in every type of media the front-end supports (text, graphics, sound, ctc.), as well as monitor

every editing action that can alier thc location of hypermedia markcrs.

Front-ends must gain editing permission from the hyper~ncdia cngine

Users may alter the display contents of somc types of link ~nnrkcrs but not others. Users may altcr

certain types of markers on the condition that the hypermedia engine dercgisters them. A sophisticated

front-end could manage this on behall of thc hypermedia engine, thus spcctiing interpace opcratinns. For

most front-ends, however, the hypermedia engine will have to manage editing permission (as in our Max

prototype) and the iront-end must request this every timc the user inserts or dclctes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

a back-end declares no bridge laws or keywords, and passes messages without objects, the hypermedia engine

still will provide standard hypermedia functionality (user annotation, backtracking, ctc.) In this case the user

will not be able to access back-end objects or operations in a hypermedia Fashion.

Builders must write bridge laws

The person who knows the back-end the best-the systems programmer who builds or maintains it-

should develop its bridge laws. Information system builders must be both willing to and capable of

developing a set of bridge laws that accurately captures the structure of their system. Once in place the

bridge laws should map a hypermedia network to any of the system's specific applications. (Application

builders and users need have no knowledge of bridge laws. To them, hypermedia functionality occurs

automatically!)

Currently builders must represent bridge laws in predicatc logic. We hopc to rcmove this resulction

by accepdng olher formats, perhaps through a bridgc law editor.

Each builder must dcvelop his own seL of bridge laws. Wc hopc lo develol-, bridgc law librancs that

map classes of information systems-complete "standard" bridgc law scts that handlc thc moticls,

attributes, data and operations found, e.g., in linear program (LP) packages, rclatronal databases,

spreadsheet packages, or rulc-based expcrt systern shells. The builder of, say, a new LP package would

only have to match the elements in his system to those in thc standard LP sct. The slandard sct would

provide most of the bridge laws for his systcm. This would reducc thc builder's cffor~ both In

determining which kinds of bridge laws would represent his system adequately and in de\~eloplng thcsc

laws.

Back-ends should embed objects in lhcir messages

The CS cannot infer magically which porlions of back-end messages to highlight as link markers.

The back-end must mark objects within the messngcs or providc some conicnt analysis routines for

interpreting their messages. The only content analysis thc CS autolnaticnlly pcrl'orms is kcyword scarch

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

As we demonstrated in $3.1, back-end messages should include dimensional information for objecs

and any other content, for which thc engine or uscr might want to alter the display for ma^. For example,

a user may wish to change a numbcr's precision.

Back-ends should support standard commands

Just as the front-end should allow users to request short descriptions, command lists and context-

sensitive help, back-ends should generate this information on demand.

Multi-level undo and redo

For the hypermedia engine to support fu l l multiplc level undo and rcdo functionality, the back-enti

must provide some mechanism for undoing and redoing its operations (e.g., performing a what-if

analysis). Otherwise the hypcrmcdia engine can only undo back to thc last hack-enti operation. Back-

ends, for example, could rcturn a con~mand with each opcmtion result that would huvc the effcct ol

resioring the previous back-end state.

Additional Guidelines

In [7] we also discussed the following rcquiremenu.

When the back-end message contains a prc\~iously-gcncratetl report, tile hypernicdia enginc somctiincs

has trouble locating the positions of the uscr annotations that were i n the previous verslon. Including tltc

internal structure of each message's contcnt providcs addilional orientation for the engine.

To assist in validating user responses to back-cnd queries, he back-end could provide control inlorniitlion

for validity checking.

4.3. The Hypermedia Engine and Exisring Systems

Builders developing an information system from scratch will find interfacing with the hyper~ncdia engine

easier than builders who must retrofit the coordination that the hypermcdin cnginc demands. Builders ol'

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

existing information systcrns (assuming they can be located [25]) must reenginecr the communications path

between the system's interface components and computational components, allowing the hypermedia engine

to intercept messages and embed objects. The more loosely coupled and modular an information system is,

the simpler hypermedia integration will be.

5. Conclusion

We have yet to see hypermedia availability as a common interface feature. Information system builders

wishing to incorporate full hypermedia functionality today must do i t thernsclves. Few new system builders

would be willing or able to do this. Fewer builders would put forlh the eSfon Lo convert existing sysiems. "A

more modest [and practical] goal is to crcalc rules and tools that could bc uscd to allow slightly inodificd

existing applications to produce dam acccssiblc in hypermedia style." (54 pg. 811 Ccriain operating systems,

for example, provide system-level hypermedia toolkits for adding hypcrinctiia conslrucu-nodes, links,

markers, etc.-to application data (e.g., the Andrew Toolkit 1.501, and a recently proposed "core systcin" 1381).

Apple Computer's new operating system, System 7, provides publisll and subscribe capabilities, but thcse, in

themselves, fall far short of fu l l hyperrncdia functionality. There sue hypermedia scrviccs that run concurrentl).

with distributed applications in networketl environments (e.g., the com~ncrcially-available Sun Link Scrvicc

[48] and PROXHY I281). We find few mcthods, however, that externally superimpose hyperrncdia constructs

over an application wilhout adding to its data or knowledge base (c.g., thc Hypertext Object-oriented Toolkit

[491). When completely developed, our hypermedia enginc will provide l u l l hypermedia functionality to

dynamically changing applications whilc running concurrently with thcm and mapping a hypcrincdia

representation that docs not alter them.

Through our preliminary arcttiteciure we havc idcntificd inany challcngcs for hypcrrncdla sullport ol

dynamic information systcms. We have slarted dcvcloping tcchniques lo adtircss thcse, wh~ch wic hopc LO

implement in an improved prototype soon.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

Hypermedia should be a widely implemented paradigm for information presentation. We invite information

system developers, and challenge both information system and hyperlnedia researchers, to join us and make

this goal a reality.

Acknowledgment

Steve Kimbrough of the University of Pennsylvania has played an integral role i n the development of these

ideas. It is he who originally applied the concept of bridge laws to hypermedia. To~nris Isakowitz of New York

University and Bob Minch of Boise State University both made invaluable suggestions, as did anonymous

reviewers. This work was motivated and supported in part by the U. S. Coast Guard under conuact DTCG39-

86-C-E92204 (formerly DTCG39-86-C-80318), Steven 0, Kimbrough principal investigator.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

References

[I] P. Balasubramanian, T. Isakowitz, H. Johar and E. Stohr, Hyper Model Management Systems, in:

Proceedings of the Twenty-fifth Hawaii International Conference on Systen~ Sciences, Volume 111 (Kauai,

Jan. 1992) 462-472.

[2] D. Barman, RelType: Relaxed Typing for Object-Oriented Hypermedia Representations, in: Object-

Oriented Programming in AI: Workshop Notes from the Ninth Annual National Conference on Anificial

Intelligence (Anaheim, 1991).

[3] E. Berk and J. Devlin, Eds., HypertextIHypermedia Handbook (Intertext Publications/McCraw-Hill

Publishing Co., Inc., New York, 1991).

[4] H.K. Bhargava, A Logic Model for Model Management, Ph.D. disscrlation (University of Pennsyl\.nnia,

Philadelphia, PA 19104, 1990).

[5] H. Bhargava, M. Bieber and S.O. Kirnbrough, Oona, Max, and thc MrYWWYWI Principle: Generalize.d

Hypertext and Model Management in a Sylnbolic Programming Environment, in: Proceedings of rhc Ninth

International Conference on Information Systcms (Minneapolis, 1988) 179-192.

[6] M. Bieber, Generalized Hypcrtexl in a Knowledge-based DSS Shell Environment, Ph.D. dissertation

(University of Pennsylvania, Philadelphia, PA 19101, 1990).

[7] M. Bieber, Issues in Modeling a 'Dynamic' Hypertext Interface for Non-Hypertext Information Systcms, in:

Hypertext '91 Proceedings (San Antonio, Dec. 1991) 203-218.

[8] M. Bieber, On Merging Hypertext into Dynamic, Non-Hypertex~ Systems, Boston College Technical Report

BCCS-91-14 (Nov. 1991).

[9] M. Bieber, Automating Hypermedia for Decision Support, Hypcrrnedia (forthcoming).

1101 M. Bieber and S.O. Kimbrough, On Generalizing thc Concept of Hypcrtext, Managcnient Inforination

Systems Quarterly 16, No. 1 (1992) 77-93.

[I l l M. Bieber and S.O. Kimbrough, On the Logic of Gencralizcd Hypcrtcxt, Dccision Support Systems

(forthcoming).

[12] P. Brown, Assessing the Quality of Hypertext Documents, in: A. Rizk, N. Streitz and J . Andre, Etls.,

Hypertext: Concepts, Systems and Applications, Proceedings of Europcan Confcrcnce on Hypertext '90

(Cambridge University Press, Vcrsaillcs, Nov. 1990) 1 - 12.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

[13] F.Cole and H. Brown, Standards: What Can Hypertext Learn From Paper Documenu?, in: Proceedings of

the Hypertext Standardization Workshop, SP.500-178 (NIST, Gaithersburg, Jan. 1990) 59-70.

[14] EJ. Conklin, Hypenex~: a Survey and Inuoduction, IEEE Computer 20, No. 9 (1987) 17-41.

[IS] E.J. Conklin, and M.L. Begeman, gIBlS: A Tool for All Reasons, Journal of the American Society for

Information Science 40, No. 3 (1989) 200-213.

[I61 E.A. Fox, Q.F. Chen and R.K. France, Integrating Search and Retrieval with Hypertext, in: E. Berk and J.

Devlin, Eds., Hypertext/Hypermedia Handbook (Intertext Publications/McGraw-Hill Publishing Co., Inc.,

New York, 1991) 329-355.

[I71 M.E. Frisse, S.B. Cousins and S. Hassan, WALT: A Research Environment for Medical Hypertext, in:

Hypertext '91 Proceedings (San Antonio, Dec. 1991) 389-391.

[18] R. Furuta and P.D. Stotts, The Trellis Hypertext Rcference Modcl, in: Procecdings of the Hypertext

Standardization Workshop, SP.500-178 (NIST, Gaithcrsburg, Jan. 1990) 83-91.

[19] L. Gallagher, R. Futura and P.D. Stot~s, Increasing the Power of Hypertext Search with Relational Qucries,

Hypermedia 2, No. 1 (1990) 1-14.

[20] F. Garzotto, L. Maincui and P. Paolini, Exploration vs. Qucrics in Multimedia Data Basc Modclins, in:

Proceedings of the Twenty-sixth Hawaii Intcrnational Confcrencc on Spstcm Scicnces (Koloa, Jan. 1993).

[21] F. Garzotto, P. Paolini and D. Schwabc, HDM + A Model for the Dcsign of Hypcrtcxt Applications, in:

Hypertext '91 Procecdings (San Antonio, Dec. 1991) 313-328.

[22] F.G. Halasz, Reflecrions on Notecards: Seven Issues for the Next Generation of Hypermedia Sys~cms,

Communicalions of the ACM 31, No. 7 (1988) 836-855.

[23] F. Halasz and M. Schwarn, The Dexter Hypertext Reference Modci, in: Proceedings of the Hypcrtcsl

Standardization Workshop, SP500- 178 (NIST, Gaithcrsburg, Jan. 1990) 95- 133.

[24] J. Haugeland, The Nature and Plausibility of Cognitivism, in: John Haugeland, Ed., Mind Design:

Philosophy, Psychology, Artificial Intelligence (MIT Press, Cambridge, 1981).

[25] T. Isakowitz, Hypermedia, Information Systems and Organizations: A Research Agenda, in: Procecdings

of the Twenty-sixth Hawaii International Conference on System Sciences (Koloa, Jan. 1993). ,

[26] T. Isakowitz and E.A. Stohr, Hypertext-based Relalionship Managcmcnt for DSS, N Y U Stern M1orkin_c

Paper IS-92-22 (Jul. 1992).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

[27] D.S. Jordan, D.M. Russell, A.S. Jensen and R.A. Rogers, Facilitating the Development of Representations

in Hypertext with IDE, in: Hypertext '89 Proceedings (Pittsburgh, Nov. 1991) 93-104.

[28] C. Kacmar and J. Leggett, PROXHY: A Process-Oriented Extensible Hypertext Architecture, ACM

Transactions on Information Systems 9, No. 4 (1991) 399-419.

[29] H. Kaindl and M. Snaprud, Hypertext and Structured Object Reprcsenlation: A Unilying View, in:

Hypertext '91 Proceedings (San Antonio, Dec. 1991) 313-328.

[30] S.O. Kimbrough, On the Reduction of Genetics to Molecular Biology, in: Philosophy of Science 46 No. 3

(1979) 389-406.

1311 S.O. Kimbrough, C. Pritchett, M. Bieber and H. Bhargava, The Coast Guard's KSS Project, Interfaces 20,

NO. 6 (1990) 5-16.

[32] L. Koved and B. Shneiderman, Embedded Menus: Selecting Items in Contcxt, Con~munications of the

ACM 29, NO. 4 (1986) 31 2-31 8.

[33] G.P. Landow, Popular Fallacies About Hypertext, in: D.H. Jonassen and H. Mancil, Eds., Designing

Hypermedia for Learning (Springer-Verlag, 1990) 39-59.

[34] A. Littleford, Artificial Intelligence and Hypermedia, in: E. Berk and J. Dcvlin, Eds.,

HypertextlHypermedia Handbook (Intertext Publications/McGraw-Hill Publishing Co., Inc., New Yor-k,

1991) 357-378.

[35] K.C. Malcolm, S.E. Poltrock and D. Schuler, Industrial Strength Hypenncdia: Requirements for a Large

Engineering Enterprise, in: Hypertcxt '91 Proceedings (San Antonio, Dcc. 1991) 13-33.

[36] C.C. Marshall, F.G. Halasz, R.A. Rogers and W.C. Jansscn Jr., Aquanec A Hypertext Tool to Hold Your

Knowledge in Place, in: Hypertext '91 Proceedings (San Antonio, Dcc. 1991) 261-275.

[37] C.C. Marshall and P.M. Irish, Guided Tours and On-Line Presentalions: How Authors Make Existing

Hypertext Intelligible for Readers, in: Hypertext '89 Proceedings (Pittsburgh, Nov. 1991) 15-42.

[381 H. Maurer and I. Totnek, Broadening the Scope or Hypermedia Principles, Hypermedia 2, No. 3 (1990)

201 -220.

[39] N. Meyrowirz, The Missing Link: Why We're All Doing Hypertext Wrong, in: E. Barrett, Ed., The Society

of Text: Hypertext, Hypermedia, and the Social Construction of Information (MIT Press, Cambridge, 1989)

107-1 14.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

[40] R. Minch, Application and Research Areas for Hypertext in Decision Support Systems, Journal of

Management Information Systems 6, No. 3 (1990) 119-138.

[41] E. Nagel, The Structure of Science: Problems in the Logic of Scientific Explanation (Harcourt, Brace 8:

World, Inc., New York, 1961).

[42] J. Nanard and M. Nanard, Using Structured Types to Incorporate Knowledge into Hypertext, in: Hypenext

'91 Proceedings (San Antonio, Dec. 1991) 329-343.

[43] S. Newcomb, N. Kipp and V. Newcomb, The 'HyTime' HypermediaiTime-based Document Structuring

Language, Communications of the ACM 34, No. 11 (1991) 67-83.

[44] J. Nieisen, Hypertext Bibliography, Hypermedia 1, No. 1 (1989) 74-91.

[45] J. Nielsen, Hypertext and Hypermedia (Academic Press, 1990).

[46] H.V.D. Parunak, Hypermedia Topologies and User Navigation, in: Hypertext '89 Proceedings (Pituburgh,

NOV. 1991) 43-50.

[47] H.V.D. Parunak, Toward Industrial Strength Hypermedia, in: E. Berk and 1. Devlin, Eds.,

HypertextlHypermedia Handbook (Intertext ~ublications/~c~raw- ill Publishing Co., lnc., Netv York,

1991) 381-395.

[48] A. Pearl, Sun' s Link Service: A Protocol for Open Linking, in: Hypertext '89 Proceedings (Pittsburgh,

NOV. 1991) 137-146.

[49] J.J. Puttress and N.M. Guimaraes, The Toolkit Approach to Hypermedia, in: A. Rizk, N. Streirr: and J

Andrt, Eds., Hypertext: Concepts, Systems and Applications, Proceedings of European Conference on

Hypertext '90 (Cambridge University Press, Versailles, Nov. 1990) 25-37

1501 M. Sherman, W. Hansen, M. McInerny and T. Neuendorfer, Building Hypertext on a Multimedia Toolkil:

An Overview. of the Andrew Toolkit Hypermedia Facilities, in: A. Rizk, N. Streitz and J. Andre, Eds.,

Hypertext: Concepts, Systems and Applications, Proceedings of European Conference on Hypertext '90

(Cambridge University Press, Versailles, Nov. 1990) 13-24.

1511 H. Simon, The New Science of Management Decision (Harper and Row, Ncw York 1977).

[52] P.D. Stotts and R. Furuta, Petri-riel-based Hypertext: Document Structure with Browsing Semantics, AChl

Transactions on Information Systems 7, No. 1 (1989) 3-29.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-26

[53] P.D. Stotis and R. Furuu, Hierarchy, Composition, Scripting Languages, and Translators for Structured

Hypertext, in: A. Rizk, N. Strei~z and J. Andre, Eds., Hypertext: Concepts, Systems and Applications,

Proceedings of European Conference on Hypertext '90,(Cambridge University Press, Versailles, Nov. 1990)

180-193.

[54] I. Tomek, S. Khan, T. Miildner, M. Nassir, G. Novak and P. Proszynski, Hypermedia-Introduction and

Survey, Journal of Microcomputer Applications 14, No. 2 (1991) 63-103.

[55J R.H. Trigg and M. Weiser, Textnet: A Network-Based Approach to Text Handling, ACM Transactions on

Office Information Systems 4, No. 1 (1986) 1-23.

1561 K. Utting, and N. Yankelovich, Context and Orientation in Hypermedia Networks, ACM Transactions on

Information Systems 7, No. 1 (1989) 58-83.

[57] A. Van Dam, Hypertext '87: Keynote Address, Communications of the ACM 31, No. 7 (1988) 887-895.

[58] E. Wilson, Links and Structures in Hypcrtcxt Dalabases for Law, in: A. Rizk, N. Streiu and J . Andrd, Etis.,

Hypertext: Concepts, Systems and Applications, Proceedings of Europcnn Conference on Hypertext '90

(Cambridge University Press, Versailles, Nov. 1990) 194-21 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

Ordering Recommendat ion
I

To: Samuel Adams, Purchas ing Department

From: Samantha Stevens, Analyst

S u b j e c t : P roduc t Reorder Timing and Cost

Date: 6 /5 /92

O u r ca lcu la t ions indicate tha t we should o r d e r 60 units of * m e v e r y 6

months . Th is i s t h e lowest-cost a r r a n g e m e n t , w i t h a total cost of $60.00.

Information Available:

(1) explain
(2) re-evaluate
(3) show comments
(4) s t a r t new user l i n k
(5) c rea te n e w comment

[x) select - - > r l
[Cancel] Option

Figure 1
Accessing Application a n d Hypermedia Functionality in a Hypernledia-Style Interface

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

Specific Back-End Application
BACK-END

Specific Back-End Application
(c o m p u t a t i o n - o r i e n t e d)

Back-End Communications
Specific Back-End Application

Language

rl HYPERMEDIA ENGINE

FRONT-END

S u b s y s t e m (CS) (i n t e r f a c e - o r i e n t e d)

\ Hypermedia Engine \ Front-End
Communications Language Comrnun~cations Language

Figure 2
Hypermedia Engine Arcl~itecture (Version 1):
Binding Independent Back-End and Front-End Infornlation Systems _ _____m_____p,.,-----,..-.nrxrr-...... "̂ .. ---.-. .m. *r r

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

I/ ,
HYPERMEDIA ENGINE

Computational Interface
Functionality External Systems Functionality

Communications
Language

INFORMATION
SYSTEM --,...-

Figure 3
Hypermedia Engine Architecture (Version 2):
Serving a n Information System with Adequate Computation and Interface Functionality

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

I Orderinq Recommendation 1
To: S a m u e l Adams, P u r c h a s i n g D e p a r t m e n t

F r o m : S a m a n t h a S t e v e n s , A n a l y s t

S u b j e c t : P r o d u c t a R e o r d e r T i m i ng. and Cost

Date: 6 / 5 / 9 2

O u r c a l c u l a t i o n s i n d i c a t e t h a t w e s h o u l d o r d e r 60 u n i t s o f * B e v e r y 6 I
mon ths . T h i s i s t h e l o w e s t - c a s t a r r a n g e m e n t , w i t h a to ta l c o s t o f $60.00.

~ h i : e O explain($60.00)

$60.00 is t h e r e s u l t o f e v a l u a t i n g t h e v a r i a b l e & under data s c e n a r i o =q.(2)-. 1-
It i s c o m p u t e d u s i n g t h e model ~ q , w h i c h con ta ins t h e f o l l o w i n g equa t i ons ($)

& = : a w d / g + hwg-/ 2

H e r e i s t h e data used:

= f 15.00 (s e t u p cos t)
d = 1 20 u n i t s (demand p e r i o d) -
g = 60.0 u n i t s (r e o r d e r q u a n t i t y)
h = $ 1 / u n i t (h o l d i n g c o s t) -

Figure 4: The Document " explain($60.00)"
This hypermedia-style interactive document represents the back-end's explanation when
the user selects the "explain($60.00)" link in Figure 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

Back-End
Knowledge Base

Back-End Protocols; User-Specified Links. 1 Document and Query Templates;
Back-End Bridge Laws Comments and Keywords; Filter Settings;

Hypermedia Engine and Keywords Hypermedia Engine Bridge Laws I--- Appropriate Hypermedia Commands

Hypermedia
Knowledge Base

Settings Information;
Front-End Protocols

Control System
Knowledge Base

(CSKB)

I p a y 1 ' 1 Session
Knowledge Base Knowledge Base Knowledge Base

Active
Knowledge Base

Back-
End

R Figure 5: Informal Data Flow Diagram of the I-Iypermedia Engine
4 ~f Processing a Standard Request for Information about an Application Object when the User Selects the Link Marker Represe~~ting It

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-26

