
FACTORS AFFECTING CODE REUSE:

lMPLICATIONS FOR A MODEL

OF COMPUTER AIDED SOFTWARE

ENGINEERING DEVELOPMENT PERFORMANCE

Rajiv D. Banker

Robert J. Kauffman

Dani Zweig

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 100 12

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-01

FACTORS AFFECTING CODE REUSE:
IMPLICATIONS FOR A MODEL

O F COMPUTER AIDED SOFTWARE
ENGINEERING DEVELOPMENT PERFORMANCE

by

Rajiv D. Banker
Carlson Scllool of Business

Ijniversily of klinnesota
klinneapolis, Minnesota 5.5455

Robert J. Kauffillan
Leollarcl N . Stern School of Business

New l'orli Uiliversitj-
New Yo~li, New Yorli 1000:3

Daiii Zweig
Department of Aclministrative Sciences

Naval Postgraduate School
Monterey, California 93943

Center for Research on Informat ion S~.stelns
Information Systems Department

Leonarcl N. Stern Scl~ool of B U S ~ ~ C S ~
New Yorl; University

Working Paper Series

STERN IS-91-1

Prepared for the Pfforkslzop O I L I?zformation Systems a n d Economics,
Copenhagen, Denmark, December 19.90

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

ABSTRACT

An examination of code reuse at a large financial institution yields insights
into the process of code reuse. The software development environment -- based
on an integrated CASE system -- was designed to support code reuse, but at the
end of its first two years we find that programmers are not taking full advantage
of the reuse opportunities which the CASE environment provides, The organization
has provided technical support for code reuse, but has not made organizational
adjustments, and the technical solution alone does not suffice. We also review
an existing economic model of CASE development performance that incorporates code
reuse, suggesting refinements that are based upon our observations. Finally, we
draw some conclusions about steps that managers can take to promote code reuse.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

1. CODE REUSE IN COMPUTER AIDED SOFTWARE ENGINEERING (CASE)

One of the promises of computer aided software engineering (CASE) technology is
that it can increase development productivity by facilitating the reuse of
existing code (BOUL89, MCNU89, MOAD90, POLL90, SENT90). However, this promise
has not been broadly substantiated in industry, since the technology has only
recently been deployed, nor in software development performance research, which
has only recently begun to examine CASE-based development platforms (KEME89,
NORM89, NUNA89, SCAC87, SENN90) .
In recent field work on CASE technology at a large financial institution, Banker
and Kauffman (BANK91) found support for the incorporation of code reuse within
a model of software development performance, as a factor influencing labor
productivity. However, in followup research we have obtained evidence -- both
anecdotal and statistical -- that suggests that opportunities to reuse existing
code may not be fully exploited, despite the real gains in productivity realized
by the firm. This finding, if it can be substantiated in a broader context,
points to organizational adjustments which must be made before the benefits of
CASE technology with respect to code reuse can be fully realized.

We will examine a number of research questions related to code reuse that stem
from these findings:

* What factors influence the level of code reuse observed in a maturing CASE
development environment?

* What factors determine whether or not programmers will seek out code reuse
opportunities?

* Do levels of reuse depend upon the nature of the application environment?
If so, in what way?

* Beyond purely technical factors, how is code reuse affected by the
managerial and organizational environment in which CASE is deployed?

* Finally, how can our answers be used to refine existing models of CASE
development performance that incorporate measurements for reuse?

The remainder of the paper is organized as follows. Section 2 presents
preliminary findings on code reuse within a CASE development environment.
Section 3 examines organizational factors which might influence the somewhat
disappointing findings reported in section 2. Section 4 concludes the paper by
utilizing our results to propose an extension to a model for CASE development
performance and evaluate some managerial actions that can be taken to promote
code reuse.

 he reader interested in obtaining additional background on code reuse
would benefit from looking at four recent papers which bring the literature up
to date: Karimi (KARIgO), Hall (HALL87), Seppanen (SEPP87) and Banker, Fisher,
Kauffman, Wright and Zweig (BANK90). For an older (circa 1984), but still
useful, examination of the state-of-the-art in software reusability, see the
Special Issue on Software Reusability of the IEEE Transactions on Software
Engineering, September 1984. This issue contains articles with an overview of
the statistics available at that time on reuse (BIGG84, JONE84) and technical
strategies to promote reuse (HOR084, KERN84, LANE84, MATS84, POLS84.)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

2. THE POTENTIAL FOR CODE REUSE IN A MATURING CASE ENVIRONMENT

2.1. An Integrated CASE Environment (ICE)

The research reported here is being carried out at a large financial institution.
Although the application environment is a typical one for an investment bank, the
development environment is not. The software development environment, ICE -- our
acronym for the integrated CASE technology deployed at the financial institution
-- was deliberately designed with code reuse as an objective. The performance
of this CASE environment can give us insights into the process of code reuse.

At the core of ICE is a fourth-generation language of object-oriented design.
(It is not fully object-oriented, lacking inheritance in particular.) Most of
the functionality of the application systems can be written in the Rule Sets of
this language, and then automatically compiled for mainframes, minicomputers or
workstations -- environments which previously required different languages and
separate programming teams. This report will focus upon Rule Sets, but ICE
application systems are built from several other object types as well, including
Screen Definitions, Report Definitions, Files, Data Domains and Database Views.
A Rule Set may also call an existing 3GL Module. A11 interactions among objects
are mediated by Views. An overview of the contents of the Repository is given
in Table 1 below.

INSERT TABLE 1 ABOUT HERE

All the objects of the application environment are stored in a single Repository.
All the calling relationships between objects are also maintained in this
Repository, as is the database. The set of relationships between objects
constitutes the Repository's Metamodel. Code reuse is implemented by adding a
calling relationship between a new object and one which is already in the
Repository. Beyond the obvious role this capability plays in facilitating reuse,
it also makes it practical to monitor reuse, without having to examine individual
programs, by analyzing the relationships in the Repository (BANK90).

For the discussion which follows, we give the NUMBER-OF-UNIQUE-OBJECTS in an
application system its intuitive definition. The NUMBER-OF-OBJECT-CALLS (which
includes a call to the root Rule Set of the application) is the number of objects
there would be, in the absence of code reuse. We define "reuse leverage" to be
the average number of times each unique object is used, and compute it as
(BANK9O) :

NUMBER - OF - OBJECT-CALLS
REUSE-LEVERAGE =

NUMBER - OF - UNIQUE OBJECTS -
For example, in Figure 1 below, there are 4 unique objects: A, B, C, and D. But,
there are 5 object calls: Rule Sets B and C each call D. D would have to be
replace by Dl and D2 in the absence of reuse. Reuse leverage is 5/4=1.25. (Note
that without code reuse, Reuse Leverage is always 1.0, indicating that objects
are used only once.)

INSERT FIGURE 1 ABOUT HERE

This measure of reuse may be adaptedtotraditional data processing environments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

However, in traditional environments, the data required to compute the measure
may be difficult or impossible to obtain.

2.2. Object Growth in the Repository

Our expectation was that code reuse would increase over time. As time passes,
the Repository grows, and so does the pool of objects which are available for
reuse. In addition, not only are the opportunities for reuse growing, but so is
the experience and expertise of the programmers in taking advantage of these
opportunities. Presumably, this growth rate would level off with the flattening
of the learning curve or with the attainment of a critical Repository size.

Figure 2 presents the growth in Rule Set population and reuse during the first
two years of the Repository's existence.

INSERT FIGURE 2 ABOUT HERE

It is immediately clear that the initial expectations were incorrect: The
Repository grew steadily in size over this period. So did the experience of the
programmers, since prior to this time ICE did not exist. Reuse Leverage,
however, achieved a level of 1.4 at the beginning -- a strong showing -- but
never bettered it.

2.3. Repository Reuse Demographics: Preliminary Assessment

An examinat ion of the Repository ' s demographics offers us some insight into these
initially surprising results. At the end of the two year start-up period, the
Repository contained 8892 Rule Sets, which were called a total of 13508 times
(for a Reuse Leverage of 1.5). However, although the Rule Sets were spread out
over 30 major application systems (and 12 less significant systems which
contained 2-19 rules each) 90% of the observed instances of code reuse involved
calls between objects in the same application system. Although these Rule Sets
were written by 250 different programmers, over 60% of all instances of code
reuse involved calls between objects written by the same programmer.

This suggests an explanation: The opportunities for reuse may be increasing over
time, but programmers are not taking advantage of them. Programmers are using
objects with which they are familiar -- objects belonging to the system on which
they are currently working, and especiallythose objects within that systemwhfch
they themselves wrote. They do not appear to be searching the unfamiliar
portions of the repository for reuse opportunities, but onlytaking advantage of
those parts of which they become aware in the normal course of creating their own
code.

If this is the case, we would expect to find that levels of code reuse grow with
application size, since larger applications provide a larger pool of salient
reuse opportunities. And, indeed, we do find corroborative evidence for this:
There is a strong correlation (r=,48) between application size and code reuse.

*~ule Sets form the 'backbone' of ICE application systems. They are also
the most time-consuming objects to write. (3GL modules could be more so, except
that they are typically used in cases where special-purpose routines have already
been written.) For these reasons, we have used Rule Sets for our initial
analysis of reuse. Discussions with programmers indicate that our findings are
typical of other object types.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

The potential for reuse, then, is largely being ignored. Either opportunities
for reuse are not being sought or, once found, they are not being used.

3. FACTORS AFFECTING CODE REUSE

We interviewed programmers to learn about the practice of code reuse within the
organization. These discussions revealed some technical barriers to the
realization of code reuse opportunities. Far more serious, however, are the
organizational barriers and disincentives.

3.1 Search

ICE makes the invocation of a previously written object trivial. All objects
reside in the same repository, and are available for reuse. The main formal
mechanism for identifying such an object, however, is a keyword search mechanism,
the use of which often turns out to require more effort than programmers are
willing to expend. (We have found no indications that developers are not
entering keywords into the index. It appears only to be the case that such
keywords do not provide a sufficiently efficient search mechanism. Given the
relative ease of writing any single object, programmers are often reluctant to
bother with an extended search.)

3.2. Implementation

The more serious problem we identified, however, revolves around incentives.
The incentive for programmers to reuse code is moderately weak. There is little
managerial monitoring of reuse levels, and programmers are valued -- as is
usually the case -- for their ability to meet deadlines, rather than for their
ability to meet technical benchmarks. On the other hand, there are strong,
informal incentives for a programmer to prevent others from reusing his or her
code.

The creator of an object is its 'owner, ' and every reuse of that object is a
potential call upon that owner to maintain the object in case of trouble -- most
likely trouble arising from its use within an environment or application for
which it was not originally tuned and tested. Every reuse is also a constraint
on the owner ' s subsequent ability to modify that object, since any modification
must meet the requirements of all users of the object. (Note that incentives do
not appear to be in place to motivate programmers to make their objects as
general as possible in the first place.)

In practice, programmers who wish to use an object from another application are
strongly encouraged (by the other programmers, not by management) to copy the
object in question, to rename it, and to use it as though it were a new object.
We refer to this practice as "hidden reuse," a form of reuse which is not
captured by the monitoring mechanism. (It is also the dominant form of reuse in
traditional applications programming environments.) It should be noted that
hidden reuse achieves only some of the goals of code reuse: Coding effort and
unit testing are reduced, but subsequent life cycle savings, particularly in
maintenance, are not realized.

3.3. Preliminary Conclusions about Factors Affecting Code Reuse

Our initial expectations concerning code reuse rested on the assumption that the
primary determinant of code reuse was reuse potential. We found, however, that
for this potential to be realized, two other stages had to be passed. The
potential had to be recognized, and the potential had to be used. We identified
a technical barrier to the search for reuse opportunities, and a behavioral
barrier to the implementation of reuse.

We note, however, that despite these barriers, the level of explicit code reuse

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

is much higher than has typically been seen to date in software development
operations. The technical support provided by ICE is allowing at least some of
the programmers to do something right. We observe further, that reuse is highly
concentrated: 5% of the programmers accounted for 20% of the code and over 50%
of the code reuse. Reuse leverage varies among applications from a low of 1.0
(no reuse) to a high of about 4.0. It remains to be explained what makes an
application reuse-prone; what makes a programmer a re-user of code; and what
practices can promote code reuse within an organization as a whole.

4. OPENING THE BUCK BOX OF CODE REUSE

Our initial expectations were based upon a previously developed model of software
development productivity within a CASE environment (BANK91). In this model
(shown in Figure 3) labor costs depended upon project size, programmer
experience, and the level of code reuse. The level of code reuse, in turn, was
taken to depend upon the opportunities offered by the particular application, and
the experience level of the programmers trying to exploit these opportunities.
The findings outlined in this paper, however, suggest the need for a richer model
of code reuse.

INSERT FIGURE 3 ABOUT HERE

4.1. Reuse Potential, Search and Implementation

There are three points of attack for an organization wishing to promote code
reuse:

* Potential:

* Search:

Systems must be designed to maximize the opportunities
for code reuse, if they respond to encouragement to seek
them out.

Programmers must be able to find these opportunities.
They must also be encouraged to do so.

* Implementation: A reuse opportunity, once found, must be realized.

At our research site, we have observed essentially unmanaged reuse. The
technical facilities to maximize reuse potential are present, as are some
technical aids to search and implementation. However, technical solutions alone
do not suffice. We have seen that organizational factors must also be
considered. Finally, it has been observed that ad-hoc exploitation of reuse
opportunities captures only some of the potential benefits of code reuse
(KARI90). To realize the full life cycle savings potential requires an
architectural solution as well -- corporate level systems planning for reuse.3
This leads us to propose the revised development productivity modifiers box shown
in Figure 4.

INSERT FIGURE 4 AND TABLE 2 ABOUT HERE

3~arimi (1990) uses the term ' strategic, ' rather than 'architectural. '

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

Table 2 below organizes and reports our findings in terms of our classification
of the technical, architectural and organizational approaches to promoting code
reuse. Factors are classified as supported by our initial study, rejected by our
initial study, or speculative (indicated by " ? ? ") . We intend to examine the
impact of the speculative factors further in future research.

Karimi (KARI90) recently assertedthat code reuse is a prerequisite for order-of-
magnitude gains in the productivity of CASE development operations. In this
paper, we have found evidence suggesting that to achieve high levels of code
reuse, and thus, highly productive software development, management should not
be satisfied with entirely technical solutions. Instead, we believe that there
is only so much power a high quality CASE toolset can deliver in the absence of
architectural and organizational design decisionsthat are conducive tothe reuse
of code. We hope that this research will provide management with a new way to
think about the problem of code reuse.

We acknowledge Mark Baric, Gene Bedell, Tom Lewis and Vivek Wadhwa for the access
they provided us to data on software development projects and managers' time
throughout our field study of CASE development at the First Boston Corporation
and Seer Technologies. We also thank Michael Oara for his assistance with some
of the data used for this paper. In addition, we benefitted from the helpful
comments of the participants of the Information Systems Research Seminar held at
the Naval Postgraduate School, Monterey, California (November 1990). All errors
in this paper are the responsibility of the authors.

REFERENCES

BANK9 0 Banker, R. D,, Fisher, E., Kauffman, R. J., Wright, C., and Zweig,
D. Automating Software Development Performance Metrics. Working
Paper, Stern School of Business, New York University, September
1990.

BANK9 1 Banker, R. D., and Kauffman, R. J. An Empirical Study of Computer
Aided Software Engineering (CASE) Technology: Productivity, Reuse
and Functionality. Forthcoming in MIS Quarterly, 1991.

BIGG84 Biggerstaff, T., and Perlis, A, Foreword: Special Issue on Software
Reusability. IEEE Transactions on Software Engineering, SE-10(5),
September 1984, pp. 474-476.

BOUL89 Bouldin, Barbara M. CASE: Measuring Productivity -- What Are You
Measuring? Why Are You Measuring It? Software Magazine, 9(10),
August 1989, pp. 30-39.

HALL87 Hall, P. A. V. Software Components and Reuse -- Getting More Out of
Your Code. Information and Software Technology, 29(1),
January-February 1987, pp. 38-43.

HOR084 Horowitz, E., and Munson, J. B. An Expansive View of Reusable
Software. IEEE Transactions on Software Engineering, SE-10(5),
September 1984, pp. 477-487.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

MCNU89

MOAD 9 0

NORM89

Jones, T. C. Reusability in Programming: A Survey of the State of
the Art. IEEE Transactions on Software Engineering, SE-10(5),
September 1984, pp. 484-494.

Karimi, J. An Asset-Based Systems Development Approach to Software
Reusability. MIS Quarterly, June 1990, pp. 179-198.

Kemerer, C. F. An Agenda For Research in the Managerial Evaluation
of Computer-Aided Software Engineering (CASE) Tool Impacts. In
Proceedings of the 22nd Hawaii International Conference on Systems
Sciences, Hawaii, January 1989, pp. 219-227.

Kernighan, B. W. The UNIX System and Software Reusability. IEEE
Transactions on Software Engineering, SE-10(5), September 1984, pp.
513-518.

Lanergan, R. G., and Grasso, C. A. Software Engineering with
Reusable Designs and Code. IEEE Transactions on Software
Engineering, SE-10(5), September 1984, pp. 498-501.

Matsumoto, Y. Some Experiences in Promoting Reusable Software:
Presentation in Higher Abstract Levels. IEEE Transactions on
Software Engineering, SE-10(5), September 1984, pp. 502-512.

McNurlin, B. Building More Flexible Systems. I/S Analyzer,
October 1989.

Moad, J. The Software Revolution. Datamation, February 15, 1990,
pp. 22-30.

Norman, R. J., and Nunamaker, J. F. Jr. CASE Productivity
Perceptions of Software Engineering Professionals. Communications
of the ACiY, 32(9), September 1989, pp. 1102-1108.

Nunamaker, J. F. Jr., and Chen, M. Software Productivity: A
Framework of Study and an Approach to Reusable Components. In
Proceedings of the 22nd Hawaii International Conference System
Sciences, Hawaii, January 1989, pp. 959-968.

Pollack, A. The Move to Modular Software. New York Times, Monday,
April 23, 1990, pp. Dl-2.

Polster, F. J. Reuse of Software Through Generation of Partial
Systems. IEEE Transactions on Software Engineering, SE-10(5),
September 1984, pp. 402-416.

Scacchi, W., and Kintala, C. M. K. Understanding Software
Productivity. Technical Report CRI-87-67, Computer Science
Department, University of Southern California, Los Angeles, CA,
1987.

Senn, J. A., and Wynekoop, J. L. Computer Aided Software
Engineering (CASE) in Perspective. Working Paper, Information
Technology Management Center, College of Business Administration,
Georgia State University, 1990.

Sentry Market Research. CASE Research Report, Westborough, MA,
1990.

Seppanen, V. Reusability in Software Engineering. In P. Freeman
(ed.), Tutorial: Software Reusability. Computer Society of the IEEE,
1987, pp. 286-297.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

Figure 1. An Illustration of Reuse Leverage

W i t h o u t C o d e R e u s e , R e u s e L e v e r a g e = 5/5 = 1.0

uses uses ----------------- > RULE B ------------ > RULE Dl
I

-> RULE A - -
I

----------------- > RULE C ------------ > RULE D2
uses uses

(Note: Objects Dl and D2 represent identical code, that
must be stored twice.)

With C o d e R e u s e , R e u s e L e v e r a g e = 5/4 = 1.25

II uses uses ----------------- > RULE B ----------
I I

-> RULE A - --> RULE D - -->
I I

----------------- > RULE C ----------
uses uses

(Note: Object D is called twice, but developed and
stored in the Repository just once.)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

Figure 2. Code Reuse in a Maturing Repository

R u l e S e t s (0 0 0) R e u s e L e v e r a g e

..................................

..

.. ...

0 I I I I I I I I I 0
2 4 6 8 1 0 1 2 2 4 6 8 1 0
1 8 8 1 8 9 I

* Cumulative Objects
II Reuse Leverage

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

Figure 3. An Economic Model of CASE Development Productivity

PROJECT

I
I Measured by Measured by I
v v

Determines
PERSON

h

I
h

I
I
I

I
I

I

EXPERIENCE I

Modifies I
t

APPLICATION
Modifies

REUSE I I

I
I

I
I

Development Productivity Modifiers Box

Figure 4. Revised CASE Development Productivity Modifiers

I
I
I

I
I FACTORS Modify CODE

REUSE

I

FACTORS Modify

..
Revised Development Productivity Modifiers Box

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

Table 1. An Overview of the ICE Repository

Rule Sets
Screen Definitions
Domain Definitions
File Definitions
3GL Modules
Data Fields
Database Views

OBJECT TYPE

Table 2. Factors Affecting Code Reuse: Evidence and Future Research

OCCURRENCES

REUSE FACTOR EXAMPLES OF SPECIFIC SUPPORTED BY
CATEGORY REUSE DRIVERS OUR RESEARCH?

Technical * Object-oriented CASE tool Yes
* A more mature Repository No
* Larger applications promote reuse Yes
* Application type matters Yes
* Keyword search facilities No

Organizational * Incentives to reuse code ? ?
* Training in code reuse ? ?
* Star developers may also be experts Yes
at reuse

* Team size managed to promote reuse ? ?
* "Ownership" of Repository objects Yes
* Object librarian or administrator ? ?
* Monitoring of reuse levels ? ?
* Maintenance responsibilities Yes

Architectural * Application size Yes
* Programming guidelines to promote reuse ? ?
* CASE development process designed to ? ?
Promote code reuse in the analysis
and design phases of the life cycle

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-01

