
AN EXTENDED ATMS
FOR DECOMPOSABLE PROBLEMS

Hardeep Johar
Leonard N. Stern School of Business

New York University
40 West 4th Street

New York, New York 10003

and

Vasant Dhar
Leonard N. Stern School of Business

New York University
40 West 4th Street

New York, NY 10003

March 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-3

Center for D~gital Economy Research
Stern School of Business
W o r h g Paper IS-91-03

ABSTRACT

When dealing with nearly decomposable problems such as those described by Simon
(1973), the problem components may be worked on by different problem solvers that
are spatially and temporally separated, with each problem solver constrained by
assumptions it makes about the activities and choices of other problem solvers, that is
by partial knowledge of the global problem. There are advantages to maintaining mul-
tiple solutions locally for as long as possible, even though a single final solution is
desired. When it becomes less desirable to retract certain assumptions, these become
constraints for other problem solvers and can be communicated to them via a truth
maintenance system. We describe an extended architecture for an ATMS for these
kinds of decomposable problems.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

1. Introduction.
In his analysis on the structure of ill-structured problems, Simon 1121 describes
various planning and design problems where the entire problem is subdivided
into tasks and separate agents work on the decomposed tasks. Since there is
often only partial information exchange between problem solvers, each problem
solver has to make working assumptions about the activities of the other related
solvers. Further, some constraints might be realized during the problem solving
process instead of being specified a-priori. At some point in time, the outputs of
the different problem solvers must be integrated into an overall solution. Exam-
ples of these kinds of decomposable problems include the creation and execu-
tion of plans, and problems in engineering design.

-

Most often, problem solving requires some sort of search for finding a solution.
Problem solvers that use search as a mechanism for finding solutions make
assumptions and then test the validity of these assumptions in providing a con-
sistent solution to a problem. Truth Maintenance Systems (TMS) attempt to
further reduce this complexity by separating specific problem-solver activities
from belief maintenance activities (see [9] for a surnmary of truth maintenance)
The utility of Truth Maintenance Systems could be greatly enhanced if they
could somehow exploit the reduced complexity coming from decomposition.
In this paper we exarnine the implications of having many problem solvers
working towards a cornmon global objective on the design of TMSs. In particu-
lar we show that these kinds of problems can be handled by an Extended
ATMS architecture. Extensions to the ATMS architecture are necessary because
more semantic information content in nodes is required so that the TMS can
recognize the existence of multiple problem solvers and accordingly enforce a
partitioning in the search space, and the ATMS has to be tailored to provide
single solutions while still maintaining multiple contexts (since problem solver
commitments may be tentative). Such problems can, in principle be modeled
using integer programming techniques, but controling the search process in
such systems is difficult. In comparision, generate-and-test solvers coupled to a
TMS do much better [4].

2. Truth Maintenance Systems.
Two important types of TMS are justification-based TMS (JTMS) and
assumption-based TMS (ATMS). JTMS are designed to maintain a single con-
sistent state [6,10,11], while ATMS [3,7] maintains several possible contexts
simultaneously. An ATMS is suited for finding multiple solutions to a problem,
and a lot of extra effort may be required to find a single solution. Ways to
reduce this effort have been proposed by DeKleer, although the issue has in no
way been resolved completely.
Both types of TMSs are designed to work under a problem solvers that
searches for a solution. For many problems, complexity reduction requires
decomposing the problem into component problems, with different problem
solvers working quasi-independently on each component, For these problems,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

the TMS can be viewed as working under multiple problem solvers.
In decomposable problems, involving different problem solvers, the activities of
each solver may be separated temporally, in the sense that one problem solver
begins only after another has finished, or spatially, in the sense that two or
more problem solvers work simultaneously on different parts of the same prob-
lem. In either case, the activities of the solvers are interrelated. In the case of
the temporally separated problem solvers, commitments made by the first prob-
lem solver impose constraints on later problem solvers. In the case of spatially
separated problem solvers, each problem solver has to make assumptions about
the activities of other problem solvers and to delay its own commitments as
much as possible in order to retain flexibility. Commitments by a problem
solver are treated as constraints by other solvers. These are less desirable to
retract than assumptions. All assumptions and commitments are conveyed to
the TMS and therefore constitute a globally shared repository. In both cases,
the different problem solvers operate on some amount of shared knowledge.
Of the two kinds of TMS, the JTMS has certain inherent limitations for han-
dling multiple problem solvers. Some of the limitations identified by De Kleer
[3] are also relevant in the context of decomposable problems. Since a prob-
lem solver must delay commitment and examine alternate assumptions about
the activities of other problem solvers, it becomes important for the TMS to
maintain the results of alternate paths followed in the search. These may be
useful later. A JTMS, however, can maintain only one consistent context and
switching states is difficult. In addition, the JTMS resolves contradictions by
dependency-directed backtracking. However, when the choices of different
problem solvers are conflicting, the problem solvers should have the ability to
examine the different choices possible (this is analogous to the single-state
problem reported by De Kleer). Finally, the requirement that temporary incon-
sistency be permitted in the TMS while the different problem solvers are work-
ing on the problem, argues against out the use of a JTMS.
An ATMS on the other hand, allows the existence of multiple contexts. This
permits the problem solver to examine different sets of assumptions, and to
postpone commitment. In addition, a Dressler ATMS [7] permits the use of
nonmonotonic justifications. An ATMS architecture would therefore appear to
be suitable for decomposable problems. However, as we see in the next sec-
tion, additional information needs to be given to the ATMS to find single solu-
tions without unnecessary backtracking, and equally important, to provide a rea-
soning system where multiple solvers can negotiate conflicts instead of relying
on search.

3. Requirements for Decomposable Problems.
Decomposable problems share certain characteristics, Chandrasekaran [I]
describes design proposal methods that use decomposition to reduce the size of
the search space. All constraints for subproblems may not be known before
hand, constraint generation and problem solving go on simultaneously, and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

there might be complex processes of commitments and backtracking.
A simple example is the design of a fluid pump (for example a pump used to
push oil through a pipeline). The design of the pump may take several weeks
and may in fact be completed after the production process has started. Two
important design decisions are the choice of the fluid and the choice of the
metal to be used as a casing. Each decision depends on and constrains the
other. It is possible (though not usual) for the choice of the metal to be made,
and production on the casing to have started, before the choice of fluid is made.
In this example, both problem solvers can work independently. Also, it is possi-
ble that some constraints may not be known before hand, for example, a con-
straint of the form fluid x cannot be used with metal p may only be discovered
during the problem solving process; the problem solver that commits first (for
example the choice of the metal) effectively constrains the options of the
second problem solver.
The characteristic that constraint generation and problem solving go on simul-
taneously in the different problem solvers implies that problem solvers have to
make assumptions about the commitments made by other problem solvers.
However, in a practical setting, a problem solver may not be able to wait for
other problem solvers to terminate before it makes a commitment. In the fluid
pump example, if other activities depend on the fluid choice (perhaps pipelines
have to be constructed), then the problem solver whose task is to choose a fluid
may do so before the metal has been chosen. The fluid choice will constrain the
metal choice, but if at some later point when the metal choice is attempted, it is
discovered that no remaining metal choice is consistent with the fluid choice,
the fluid assumption will have to be retracted. At this point the problem solver
should have access to other feasible fluid options it may have considered.
While the ATMS can keep knowledge about other feasible options since it
maintains multiple contexts, extra work is required for finding single solutions.
De Kleer [2] suggests the use of one-of disjunctions to force the ATMS to find
a single solution. This is not, however, desirable since it places the major bur- -

den of determining a consistent labeling on the TMS instead of it being more
of a negotiated process among the solvers (based on domain knowledge). In
order to make this possible, the TMS must be able to distinguish among
different problem solvers data and to abdicate control to them whenever back-
tracking is required. Since there may be a complex process of commitments
and backtracking amongst the various subproblems and it becomes important to
manage this process properly. Problem solvers should not be permitted to easily
retract choices made by other problem solvers. Apart from complexity reduc-
tion, there could also be practical reasons for not allowing one problem solver
to retract commitments made by another. In the fluid pump example, if the fluid
has already been chosen, and production on pipelines to carry it has begun,
then the problem solver that selects the metal should not be permitted to easily
retract the fluid choice. One way of handling this problem is to change the fluid
choice from an assumption to a premise. However, this is overly restrictive
since under some circumstances, it may be necessary, though not desirable, to

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

retract a choice (for example if no metal can be used with the selected fluid). If
the choice has been changed to a premise then the justification for the choice
will no longer be accessible. It therefore becomes necessary for the second
problem solver to have access to the fact that the fluid was chosen by a prob-
lem solver, that it is not a inviolable constraint, and the justification for choos-
ing the metal.
The implication of this requirement is that the search space should somehow be
partitioned for the different problem solvers to prevent them from encroaching
on commitments of other solvers. An ATMS has no way of doing this. This
problem is best clarified by an example.
Assume a simple choice problem like the fluid pump example described earlier.
There are four choices x, y, p and q, where x and y represent fluids, and p and
q represent metals. There are two problem solvers, PSI and PS2 working on
the problem with PSI selecting a fluid and PS2 selecting a metal. The problem
can be encoded as follows:

PSI: Find values for x and y given the following constraints:
x + y = l
x belongs to (0,l)
y belongs to (0,l)

and

PS2: Find values for p and q and x given the following constraints
p + q = l
p belongs to (0,l)
q belongs to (0,l)
x + p = 1

The interpretation of the above formulation is exactly one of x or y, one of p or
q, one of p or x will be selected. Only PS2 knows of the constraint involving
x and p, perhaps because PSI has incomplete knowledge about the problem or
because the constraint was discovered by PS2 while it was working on the
problem. Now assume that the problem solvers are temporally separated, i.e.
first PSI starts and completes its work and later PS2 starts. In an ATMS prob-
lem solving architecture, as a result of the activities of PSI, node (x + y = 1)
would be labeled as follows:
<x+y=l,((x=O,y=1),(x=l,y=O)),((x=O,y=l,O+l=l),(x=l,y=O,l+O=l))>
where the first component is the datum, followed by the label and justifications.
The above provides two consistent environments for the node. Now, if the need
for a single solution was expressed in the form of a one-of disjunction, one of
the two environments would figure in the label, i.e the node would contain
<x+y=l, ((x=l,y=O)) , {x=l,y=O,O+l=l))>
which can be interpreted as Auid x being selected.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

Now PS2 goes to work. Suppose it first tries the assumptions x=O, p=l, and the
constraint x+p=l. Since in the current state of the ATMS x has a value of 1,
the ATMS determines an alternate consistent environment under which x+p=l
holds. The one-of disjunction would be consistent in the alternate environment
{x=O,y=l,p=l,q=O), and this could be the one consistent solution found by the
TMS. This may not be desirable since it would raise the complexity (PS2 has
to redo the work of PSI) of the problem, or it may violate practical constraints.
If work on the pipeline to carry the fluid has already begun, it might be advis-
able to choose x=l, q=l, y=O, p=O rather than the new solution found by PS2.
The only way to prevent PS2 from selecting the x=O solution (i.e. changing the
solution found by PSI) is to change status of x=l from an assumption to a
premise. But making this change would mean loosing the information that alter-
nate consistent environments were found by PSI. This could be fatal if there is
no feasible solution with x=l (for example if q=O or x+q=l are added as con-
straints to PS2). The ATMS would have no knowledge about why x was set to
1, In the best case PS2 would have to redo all the work of PSI, and in the
worst case PS2 would have no knowledge about the fact that x=l was an
assumption and not a premise. In the latter case PS2 may conclude that there is
no feasible solution, when in fact one exists. Figure 1 illustrates the difference
between treating x=l as an assumption and as a premise.
The problem arises arises because the ATMS (and the JTMS) does its label
propagation work (contradiction resolution in the case of the JTMS) syntacti-
cally, not on the semantics of the problem, which are known only to the prob-
lem solver. In the case of decomposable problems, it may be both impractical
and undesirable (for complexity reduction reasons) for every problem solver to
have a complete understanding of the problem. In the next section we intro-
duce some additional semantics in ATMS nodes that effectively serve to parti-
tion the problem space for different problem solvers.

4. An Extended ATMS for Decomposable Problems.

4.1. Extending the ATMS.
We propose using the extended ATMS described by Dressler (see 171 for a

description). The extended ATMS allows the use of non-monotonic
justifications in the form of out-assumptions and also allows the use of default
reasoning. The mechanics of Dressler's ATMS is not important here so we
refer the reader to Dressler's paper for more detail. We suggest an adaptation
to the extended ATMS to improve it's usefulness in finding single solutions,
and so that the ATMS can help partition the search space for multiple problem
solvers. We introduce two special kinds of nodes Objective nodes, and Com-
mit nodes. Objective nodes are necessary to represent the objective of each
problem solver and to maintain alternative consistent environments, while com-
mit nodes record the commitments made by problem solvers, so that these com-
mitments can be communicated to other problem solvers. There is exactly one

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

objective node and one commit node associated with each problem solver.

4.1.1. Objective Nodes.
Objective nodes are treated in exactly the same way as other ATMS

derived nodes, i.e. they have justifications, hold in environments, and belong to
contexts. Each objective node is, however, explicitly identified with a problem
solver. In a manner analogous to derived ATMS nodes, the structure of an
objective node is as follows

where datum represents the objective node, label consists of the set of con-
sistent environments for the node, justifications are the justifications (given by
the problem solver) for the node, and tag is additional semantic information
provided to the TMS which associates an objective node with a problem solver.
We illustrate the concept of a objective node through the following (simple)
example. Assume that the purpose of the problem solver is to solve the prob-
lem PSI as defined in the previous section. In this problem the objective node
is the node corresponding to the datum (x+y=l). The problem solver can, for
example, use the following rule to identify an objective node
x=N,y=M,N+M=l -> x+y=l, mark-node-objective(PS1).
where commas represent conjunctions and mark-node-objective tells the TMS
to mark the node corresponding to the datum (x+y=l) as an objective node for
PSI. It is easy to see that, if all environments are computed, in this case the
structure of the objective node in the TMS is
cx+y=l,((x=O,y=l},(x=l,y=O)), { (x=0,y=1,0+1=l),{x=l,y=O,l+O=l)) ,Objective(PSl)>
The tag Objective(PS1) indicates that this node represents the solution set for
problem solver PS 1.
The purpose of the objective node is to allow the TMS to inform the problem
solver of the solution choices available to it. Since the label of an ATMS node
consists of minimal sets of assumptions under which the datum is consistent,
each environment in the label of the objective node corresponds to a possible
solution. In the above example there are two possible solutions, {x=O,y=l) and
{x=l,y=o).

4.1.2. Commit nodes.
Commit Nodes are used to reflect solution choices made by the problem

solver. The primary purpose of commit nodes is to allow knowledge about a
commitment made by one problem solver to be carried over to another problem
solver and hence constrain the possibilities for the second problem solver.
Commit nodes are constructed by the problem solver by providing the TMS
with the selected solution, the environment for the solution, and any
justifications it may want to record as reasons for the choice. The structure of
the commit node is as follows

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

<datum, label, choice, justification, tag>
where the tag identifies the node as being a commit node.
In the above example, suppose the problem solver chooses (x=l,y=.O) as the
desired solution, and does so because there happens to be more of x than y
available. It would inform the TMS accordingly which would create the follow-
ing node:

The tag tells the problem solver that the node represents a commitment made
by problem solver PSI, and tels the TMS that the node is of a special type. - -
At this point it is useful to reiterate that commit nodes reflect problem solver
commitments and are constructed only at the request of the problem solver.
Unlike objective nodes, commit nodes cannot be treated like derived ATMS
nodes. In addition, it is the responibility of the ATMS to ensure that the
environment provided by the problem solver is in fact consistent with the
choice, and is present in the label of the problem solvers objective node.

4.1.3. Dealing with multiple problem solvers.
The ATMS must fulfill two requirements for dealing with more than one

problem solver. It should help the problem solver pick and record one solution
while maintaining knowledge about alternate feasible environments, and it
should control problem solver choices by enforcing a partitioning of the search
space. The first requirement is handled by the objective and commit nodes for
an individual problem solver. The second requirement requires the use of com-
mit nodes as partitioning devices. The use of commit nodes differs slightly
depending upon whether problem solvers are temporally or spatially separated.
Below we outline two examples illustrating how commit nodes are used in the
two cases.

4.1.3.1. Example 1: Temporally Separated Problem Solvers.
Consider a simple resource selection problem of the type described in section 3.
There are four resources x, y, p, q, and the problem first requires the selection
of one resource from x and y and then requires the selection of one resource
from amongst p and q. Assume that the two problem solvers are temporally
separated, i.e. first PSI does some work, and then PS2.
In the case of PSI, the objective node and commit nodes would be formulated
as in the earlier discussion. Assuming that the commit node formed would be
<Resource-
choice(x,y), { {x=l,y=O)), { {x=l,y=O)), { (more(x,y))) ,commit(PSl)>.
this commit node serves as a constraint for PS2 as follows. Suppose PS2 tries
to construct node x+p=l with x=O and p=l as assumptions. The ATMS would
examine all current commitments (commit nodes) to see if x 4 or p=l violates

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

some current commitment. Since, in this case, x 4 violates the commitment
made by PSI, the ATMS informs PS2 that x+p=l is nogood because of
Commit(PS1). Conversely, if PS2 attempts to construct the node x+p=l with
assumptions x=l and p a , the ATMS determines that x=l is currently a com-
mitment made by PS 1 and places Commit(PS 1) in the label of x=l. The node
x=l is therefore represented as:
-=I,{ {Commit(PSl))),nil>
where nil implies that there are no justifications for the node. Node x+p=l is
represented as
cx+p=l,{ {Commit(PSl),p=O)),{ {p=O,x=l,l+O=l))>
Next PS2 provides the TMS with the assumption q=l to create the node p+q=l
along with the information that this is the objective of PS2. The ATMS com-
putes the label for p+q=l and the node is represented as
cp+q=l,{ { p=O,q=l,Commit(PSl) 3), { {x+p=l,q=l)) ,O bjective(PS2).
and the commit node is
<re-choice(p,q),{ { p=O,q=l,Commit(PSl))), { {p=O,q=l)) ,nil,Commit(PS2)>.
By ensuring that Commit(PS1) is present in the label of both Objective(PS2)
and Commit(PS2), the ATMS records the dependency of PS2's activity on
commitments made by PSI. PS2 is prevented from changing the commitment
made by PSI, but, if the need to change the commitment arises, the possibility
is open to PS2 since it can examine the assumptions, premises and justifications
used by PSI. Figure 2 illustrates the environment lattice for this example.

4.1.3.2. Example 2: Spatially separated problem solvers.
Assume the same example as in the previous section with one difference.
Instead of the two decisions being temporally separated, they are spatially
separated, i.e. they work simultaneously on their problems. The implication is
that the PS2 (or PSI) does not have full information on the choices made by
PS 1 (or PS2) while it is attempting to arrive at a solution.
One way in which this problem can be resolved is for each problem solver to
ignore the existence of the other, and to negotiate a solution after both have
arrived at tentative solutions. This, however, may not be desirable because
expensive recomputation may be required when choices made by other problem
solvers are known. As an example suppose that the value of p was also set by
PSI. The dependence of the value of p on PSI would not be reflected in the
objective node of PS2, and if the dependence is complex, i.e. it affects nodes in
PS2 not directly related with the objective node, then expensive recomputation
would be necessary.

The real problem here is the non-monotonicity of the deKleer ATMS. The
solution is to bring non-monotonicity into the ATMS by using Dressler's [7]
extended ATMS. Non-monotonic assumptions are coded as out assumptions. In
our example the only assumption not in the PS2's control is the value of x. The

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-03

addition of two new assumptions, out(x=l) and out(x=U) reflect problem solver
PS2's uncertainity about the outcome of PSI. This would lead to the creation
of two new assumptions, out(x=O) and out(x=l) which would be present in the
labels of p 4 and p=l respectively. The objective node for PS2 becomes
<p+q=l,{ {out(x=l),q=O),{out(x=O),q=l)),{ {p=l,q=O),{p=O,q=l}),Objective(PSZ)>.
This can be used to arrive at a temporary commitment for PS2. When, after
negotiation, x=l is confirmed, and Commit(PS1) is added, the first option in the
objective node becomes a nogood because out(x=l) becomes a nogood, and the
new objective node is the same as in the end of example 1.

4.2. Computational Requirements.
The extended form of the ATMS described above can be implemented

with minimal extensions to the available ATMS algorithms. Objective nodes
are exactly the same as derived nodes in a deKleer or Dressler ATMS and no
extra work has to be done to compute labels for these nodes. All the ATMS
algorithm needs to know is that the node in question is a objective node. It can
use this information to tag the node accordingly, inform the problem solver if
the label for such a node changes, and it has to ensure that there is only one
objective node for each problem solver. This can be done with a minimal
extension of the ATMS label update algorithm.

Commit nodes are computed a Little differently and cannot be treated as
ordinary derived nodes. However, for these nodes too, a simple extension of the
label update algorithm suffices. This is because commit nodes are intrinsically
linked to objective nodes and need only be modified when the corresponding
objective node is modified, or when the problem solver explicitly modifies it. In
the latter case the ATMS would work in two steps. In the first step it would
make the necessary modification in the commit node, and in the second step,
this modification would be propagated to other objective nodes created by other
problem solvers. In the former case, i.e. when the objective node changes, the
ATMS has to evaluate the effect on the commit node (has the current choice
become a nogood?) and inform the problem solver accordingly. If the problem
solver decides to make a change (necessary if the current choice has become a
nogood), then the label update algorithm can proceed in the same manner as in
the first case. In addition to the regular work of an ATMS, the extended ATMS
has to examine current commitments and deterinine if any of these are violated.
That this method works can be seen by the following example. If, in the case
of temporally separated problem solvers, PSI revises its choice of x=l because
of some new constraint, its co&t node changes to
<Res-choice(x,y),{ {x=O,y=l}),{ {x=O,y=l)),{),commit(PSl)>
The ATMS notes the change in a commit node and recomputes labels for nodes
which have Commit(PS1) as a justification, in this case for p=O. The old label
for Objective(PS2) will become a nogood since Commit(PS1) now expands to
(x=O,y=l) and PS2 will be forced to look for a new solution.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

5. Related and further research.
Decomposing problems to reduce complexity has long been examined in A1
and Operations Research 1121. A recent issue of A1 Magazine (Winter 1990) is
entirely devoted to design problems, where decomposition is an important issue.
Chandrasekeran [I] examines the issue of design proposal by constraint satis-
faction and concludes that unless problems are decomposed, this method is
computationally expensive. Our paper is an attempt to extend TMSs to expli-
citly take advantage of the computational gains from decomposition. In the
fluid pump example described in this paper, if the problem is treated as a single
problem there are 16 combinations that can be examined, Since the problem
lends itself to easy decomposition, the maximum number of combinations that
may need to be examined reduces to 8, a significant gain in complexity reduc-
tion.
Further research needs to be done on identifying ways to decompose problems.
Real problems are often worked on by decomposing them using ad-hoc tech-
niques. Mathematical programming problems are often decomposed by exarnin-
ing the set of constraints [8]. Perhaps an analysis of the relationships between
assumptions can help in problem decomposition. One possible approach is to
look for minimally connected subsets of the graph formed by assumptions as
nodes and relationships as arcs. This approach, however, raises new issues
about complexity and needs to be examined in greater detail.
Much of the motivation for this research comes from the viewpoint of organiza-
tional decision making where problem solving tends to be an ongoing process.
Research in this area views knowledge used for decision making as being avail-
able in knowledge bases which are somewhat akin to databases (see for exam-
ple [5]). Since problem solving is an ongoing process, and the knowledge base
is in a constant state of flux, any such knowledge base has to be nonmonotonic,
and a TMS for belief maintenance seems to be appropriate.

References

1. B. Chandrasekaran, "Design Problem Solving: A Task Analysis," A1
Magazine, vol. 11, pp. 59-7 1, Winter 1990.

2. Johann DeKleer, "Problem-Solving with the ATMS, " Artificial Intelli-
gence, vol. 28, no. 2, pp. 163-196, 1986.

3. Johan deKleer, "An Assumption-based TMS," Arn3cial Intelligence, vol.
28, no. 2, pp. 127-162, 1986.

4. Vasant Dhar and Nicky Ranganathan, "Integer Programming vs. Expert
Systems: An Experimental Comparision," Corn . of the ACM, vol. 33, no.
3, pp. 323-336, March 1990.

5. Daniel R. Do& and Benn R. Konsynski, "Knowledge Representation for
Model Management Systems," IEEE Transactions on Software Engineer-
ing, vol. SE-10, no. 6, pp. 619-628, November 1984.

Center for Digital Economy Research
Stem School of Business
Worlung Paper IS-91-03

6. Jon Doyle, "A Truth Maintenance System," Artificial Intelligence, vol.
12, pp. 231-272, 1979.

7. Oskar Dressler, "An Extended Basic ATMS," Proceedings of the 2nd
Intl. Workxhop on Non-Monotonic Reasoning, Springer-Verlag, 1988.

8, C. Lemarechal, "Nondifferentiable Optimization, " in Handbook in Opera-
tions Research and Management Science: Volume 1 Optimization, ed.
Nemhauser et. al., pp. 529-572, Elsevier, Amsterdam, 1989.

9. Joao P. Martins, "The Truth, the Whole Truth, and Nothing But the
Truth," Al Magazine, vol. 1 1, pp. 7-26, January 1991.

10. D. McAllester, "Reasoning Utility Package," MIT AI Memo 667, Cam-
bridge, Ma., 1982.

11. C. Petrie, D. Russinoff, and D. Steiner, Proteus 2: System Description.
MCC Technical Report Al-136-87, May 1987.

12. H. A. Simon, "The Structure of Ill-structured Problems," Artificial Intelli-
gence, vol. 4, no. 1, pp. 181-202, 1973.

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-03

Flgura la . x=l as en rssurnotron.
i lgura la. x r l as a oramtsa

FIgura 2 Envirnnment lattica f a r examole I

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-03

