
CAN WE TRANSFORM LOGIC PROGRAMS
INTO ATTRIBUTE GRAMMARS?

Tomas Isakowitz
Information Systems Department

Leonard N, Stern School of Business
New York University
40 West 4th Street

New York, New York 10003

March 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-6

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tornas Isakowitz

Contents

1 Introduction 2
. 1.1 Previewoftheresults 3

. 1.2 Related Work 5

2 Preliminaries 6
. 2.1 Well Formed Terms 6

. 2.2 Logic Languages 7
. 2.3 Definite Clause Programs 7

. 2.3.1 Syntax 7
2.3.2 Proof Theory . 8

2.4 Attribute Grammars . 8
2.5 Conditional Attribute Grammars . 11

. 2.6 Relational Attribute Grammars 12

3 Abstract Attribute Grammars 13

4 Transforming a Logic Program into an Abstract Attribute Grammar 15
4.1 Overview of the method . 15
4.2 The path function symbols . 17
4.3 Thetermalinterpretation . 18

. 4.4 The construction 20
4.5 Comparison with previous published results 26

5 Transforming Abstract Attribute Grammars into Conditional Attribute
Grammars 27

6 Transforming a Logic Program into a Conditional Attribute Grammar 32

7 Conclusion 36

8 Further Research 36

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tornas Isakowitz

Abstract

In this paper we study the relationship between Attribute Grammars and Logic Pro-
grams, concentrating on transforming logic programs into attribute grammars. This
has potential applications in compilation techniques for logic programs. It does not
seem possible to transform arbitrary Logic Programs into Attribute Grammars, basi-
cally because the same logic variables can sometimes be used as input and sometimes as
output. We introduce the notion of an Abstract Attribute Grammar, which is similar to
that of an Attribute Grammar with the exception that attributes are not classified into
inherited and synthesized, and that the semantic equations are replaced by restriction
sets. These sets represent a restriction on the values of attribute occurrences namely,
all elements within each set have to be equal. We give an effective translation schema
which produces an equivalent Abstract Attribute Grammar for a given Logic Program.
We provide a formal proof of this equivalence. We then proceed to classify a class
of Abstract Attribute Grammars that can be transformed into Attribute Grammars,
and show how to achieve this transformation. By composing both transformations one
can transform certain logic programs into attribute grammars. Complete proofs ar5e
given.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Can we transform Logic Programs into Attribute Grammars?

Introduction

This paper studies the possibility of translating Logic Programs (LPs) into Attribute Gram-
mars (AGs). Deransart and Maluszynski [9] show how to perform this translation for a
restricted class of LPs. Our method is more general in the sense that it applies to arbitrary
LPs. However the formalism into which the translation is performed (AAG) is in some sense
weaker than AG. The work presented here originated in [13] and was developed indepen-
dently by the author. In this paper we have adopted terminology similar to the one used
in [9]. As an example of the applications that a translation of the type investigated here
has, we point out to work by Attali and Franchi-Zanettacci [2]. They show how one can
use attribute evaluation techniques to run TYPOL programs. TYPOL can be regarded as a
subset of the class of LPs with which we deal here.

Logic programs are expressively powerful but might be computationally inefficient. How
can the computational aspect be improved? One could apply techniques used for other pro-
gramming languages, mainly those related to compilation. In general, LPs are interpreted.
What is the difference between an interpreter and compiler? In a compiler commands are
translated into sequences of machine language instructions at compile time. An interpreter
translates each command as it is executed. Thus compilers are faster for execution while
interpreters are better for development because they support interactive program develop-
ment.

What can we do about compiling Logic Programs? Let us analyze how an interpreter for
LPs works to see which instructions are re-translated every time. Given a LP I' and a Goal
G, the objective is to find out whether 3x1 . . . s n G (where 21,. . . , xn are all the variables
appearing in G) holds in I'. In general one is interested values for the variables that make the
goal G true. In more formal terms, one is interested in a substitution 0 such that I' t O(G).
This is called an answer substitution. Let us consider a nondeterministic procedure to solve
the problem. Recall that an Logic Program is a set of definite clauses. The head of a definite
clause A t B1,. . . , B k is is A, and its body is B1,. . . , Bk.

Initially the set of goals consists of the initial goal G. The following steps are repeated
until the set of goals is empty.

1. Choose a goal g from the set of goals.

2. Pick a clause whose head unifies with the goal g.

3. Add the body of the clause to the set of goals.

4. Apply the unifying substitution obtained in step 2 to the new set of goals.

The procedure is clearly non-deterministic due to: a) Choosing a goal (step I), b) Choosing
a clause (step 2) and c) choosing a unifier (step 2).

Notice that this procedure might not end. It ends either when the set of goals is empty or
when step 2 is unsuccessful, In the first case the composition of the substitutions obtained
in step 2 is an answer substitution. If the latter case occurs, one can only say that the
current branch of the computation is unsuccessful which, due to the nondeterminism of the
algorithm does not mean that there exists no answer substitution. One can only negatively

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

answer the question "is 3x1.. . x,G provable from I'?" provided all branches of computation
are unsuccessful.

Different interpreters can deal in different ways with this non-deterministic aspect. A de-
terministic strategy can also be adopted. One could run an exhaustive breadth-first strategy
which considers all possible choices. However, this would be unbearably slow. The standard
Prolog [5] interpreter regards the set of clauses and the set of goals as ordered sequences. In
step 1 it picks the leftmost goal, and in step 2 it pick the first clause, i.e. the one appearing
earlier in the program.

One can say that in some sense steps 1 and 2 are re-translated continually by the inter-
preter. Step 2 is computationally expensive in two ways. It involves searching the program
for clauses that could unify with the goal, i.e. candidate clauses. Secondly, a unification al-
gorithm has to be run for each candidate clause and if successful, the resulting substitution
is to be applied to the new set of goals in step 4. This operation is tantamount to parameter
passing. It is on this aspect that we concentrate, proposing some techniques that might re-
place the implicit parameter passing represented by unification with a more explicit, directed
method. This is how our results relate to compilation. Instead of running similar sequences
of instructions whenever a unifying clause is obtained, it is possible to pre-compute some of
the parameter passing operations.

1.1 Preview of the results

In this paper we study a systematic way of performing the translation from a Logic Program
into an Attribute Grammar. Due to the intrinsic difference between the direction-less nature
of logic variables and the directedness of attributes it is not possible to produce a semantically
equivalent Attribute Grammar for an arbitrary Logic Program. We introduce a formalism,
Abstract Attribute Grammar (AAG), in which there is no classification of the attributes
into inherited or synthesized. The attributes are intrinsically directionless, thus we abstract
over the notion of direction present in AGs, hence the prefix Abstract to our formalism. We
give a linear time procedure to translate a LP into a semantically equivalent AAG and we
provide a proof of the correctness of this method.

In AAGs equations are not written using the equal sign. Instead of writing the equa-
tions t = tl , . . . , t = t,, we use a different notation which introduces the restriction set
{t, tl, . . . , t,). The semantics we impose forces all members of a restriction set to be inter-
preted by identical objects. We feel that this simplifies the notation.

We proceed with an example, leaving the formal definitions for section 3.

Example 1.1 Consider the Logic Program for syntactic addition given by:

Any proof tree for this LP will consist of a single branch ending with an instance of
add(0 ,Y ,Y). We define a Grammar with two symbols: a non-terminal symbol add and
a terminal symbol end which represents the end of a computational branch. The terminal

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

4 Can we transform Logic Programs into Attribute Grammars?

end has no attributes. The predicate add is ternary, we will associate with it the non-
terminal symbol add with three attributes: x , y and z. Using our method we obtain the
following AAG:

add + end (~ (6)) 0)
{Y(E), ~ (4 1

add +- add {7r8(x(~)), ~ (1))
(~ (4 , ~ (1))
{7r8(z(4), ~ (1) I

The function 7r8 when applied to a term of the form s(tl) returns tl . It is a projection
function. The idea behind the transformation is to relate different occurrences of the same
logic variable by semantic equations. Thus the set { y (~) = ~ (6)) in the first production
comes from the first clause in the LP where Y appears as the second and third argument of
add.

The difference between an AAG and an AG is that the attributes in AGs are directed
and that the equations can be used for computation. Notice that the LP can be used to
compute subtraction as well as addition. If we want to transform the above LP into a AG
we have to restrict ourselves to a specific behavior of the program. Let us now transform
this AAG into an AG that computes the value of z as the addition of x and y. We let x and
y be inherited attributes (since they act as input) and z be synthesized.

add + end zero(x(r))
Z(€) := Y(E)

add + add x(1) := 7r8(x(~))

~ (1) := Y k)
Z(E) := s(z(1))

The predicate zero is applied to an input attribute and represents a condition under which
the production applies. In this sense we have a Functional AG as opposed to a simple AG.
Notice that in the last equation we introduced the function s which is the inverse of 7r8.

As additional example of the utility of our work, we note that a Functional AG can be
transformed into a functional program. In our case, we interpret add as a function returning
the value of the attribute z.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

lbrnas Isakowitr 5

The functions s and 7r3 are to be interpreted as successor and predecessor, they can also be
defined with lambda expressions. This functional program can be compiled into machine
code and optimized. Thus, the whole process shows that it is possible to compile some logic
programs into machine code. We leave this topic for further research.

As mentioned earlier, it is not just a nuance that in order to obtain an AG we have
to restrict ourselves to a specific input/output behavior of a LP. The notion of a direction
assignment (d-assig) presented in [9] provides the ability to talk about the different behaviors
of the arguments of predicates appearing in a LP by classifying them into input or output.
This notion extends to AAGs. We show how to obtain an AG from a given AAG and
a suitable direction assignment. A proof of the correctness of this transformation is given.
Putting both transformations together, we see that starting from a LP and a suitable d-assig
it is possible to obtain a semantically equivalent AG by transiting through an AAG.

1.2 Related Work
Deransart and Maluszynski [9] show how to transform arbitrary LPs into Relational Attribute
Grammars (RAGs). In RAGs attribute equations are replaced by first order formulae, thus
RAGs are more general than AAGs which only permit equational formulae. Their translation
from LPs into RAGs provides an equivalence which is only reflected in the choice of the
semantic interpretation of the RAG, while in our case the equivalence is forced by the
syntactic qualifications of the AAG. Thus our transformation is more precise.

To summarize, we present a formalism (AAG) which captures via syntactic equations
the relations present in LPs and is still generous enough to allow for the representation of
arbitrary LPs. We also provide a transformation from a subclass of AAGs into AGs. We
give full correctness proofs. We feel that for the purposes of the problems we investigate
here, Abstract At tribute Grammars are more suitable than Relational Attribute Grammars.
First, the undirected nature of logical variables is better represented by restriction sets than
it is by general predicates. Second, the the relationship among different positions in a clause
is more transparent in our representation. We strongly feel that AAGs should be used as a
tool to investigate compilation aspects of Logic Programs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Can we transform Logic Programs into Attribute Grammars?

Preliminaries

2.1 Well Formed Terms

Well formed terms are used in the definitions of logic programs and attribute grammars.
We explain how terms are build inductively from a set of variables and function symbols.
Although the approach is in general many sorted, this is not needed in the scope of our
paper. For the sake of simplicity sorts are left out of the discussion.

Terms are defined inductively from a set of function symbols and a set of variables. Each
function symbol f takes a predetermined finite number of arguments which is called its arity
and denoted by arity(f) . Function symbols of 0 arity are called constants.

Definition 2.1 Given a set V of variables and a set F of function symbols, the set TF(V)
of well formed terms is defined inductively as follows:

1. each variable v E V is a term

2. if f is a function symbol of arity n and t l , . . . , t , are terms, then f (t l , . . . , t,) is also
a term.

From 2 it follows that constants are terms. The set of terms is freely generated from the
variables by the function symbols. This is important because it allows functions over T F (V)
to be defined recursively. For a discussion of inductive sets, free generation and recursive
functions see the second chapter of Logic for Computer Science by J . Gallier [Ill.

Given a syntactic characterization of the set of terms, we would like to interpret these
symbols in a coherent manner. That is, we want each function symbol f E F to stand for a
specific function, each constant c to stand for a specific value, and so on. This is formally
done by an interpretation.

Definition 2.2 An interpretation Z of a set of terms T'(V) is a mapping such that:

1. The set of variables is assigned a specific domain Z (V) = D called the semantic domain
of v.

2. For each function symbol f E F of arity n, Z(f) is a function from Dn into D. In
particular for a constant c, Z(c) E D.

A way of relating variables to their domains is also needed. This is done with valuations. A
valuation (2 for a set of variables V is a mapping assigning to each variable an element of its
domain, that is: a (v) E D. Valuations are naturally extended to terms as follows. Given
a set L of terms, an interpretation Z and a valuation a for variables, a is extended to a
valuation E of arbitrary terms as follows:

1. for a variable v, -ii;(u) = a(v)

From the definition it follows that for constants c, Z(c) = Z(c). That E is well defined follows
from its definition and from the inductive definition of terms.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-06

Tomes Isakowitz

2.2 Logic Languages

A logic language LC is given by a tuple < F, F, V > where:

1. P is a set of predicate symbols with assigned arities,

2. 3: is a set of function symbols,

3. V is a countably infinite set of variables.

The set of terms of LC is given by TF(V), the set of terms constructed from V and F, it is
also denoted by Terms(L).

Notice that in a logic language LC, the set of terms is freely generated from the variables
by the function symbols. We can therefore conclude that any function mapping variables in
LC to terms in Terms(L) has a unique extension to a function over Terms(L). We use this
to define the notion of a substitution. A substitution is a mapping from formulae to formulae
which replaces some variables by terms in a systematic manner. Formally:

Definition 2.3 Given a function 0 : Var(L) I-+ Terms(LC), its unique extension to terms -
0 : Terms(C) I-+ Terms(LC) is a substitution.

We will identify $ with 0. If 0 is a substitution and t a term, then 0(t) is called an instance
of t.

Atomic formulae are of the form P(tl , . . . , t,) where tl, . . . , t, are terms and P is a
predicate symbol of arity n. The set of formulae is built up inductively from the atomic
formulae, the logic connectives and the quantifiers. For a more detailed discussion on the
formal definition of logic languages see [ll]. The semantics are defined via structures and
assignments to free variables as usual.

2.3 Definite Clause Programs

Logic Programming deals with the computation of relations specified by logic formulae. This
section briefly outlines the main concepts which are used in the sequel. For more details,
the reader is referred to the literature 11, 151.

2.3.1 Syntax

We focus our attention on a special type of logic formulae. A definite clause is a pair
consisting of an atomic formula A and a finite set of atomic formulae {B1,. . . , Bk), with
k >_ 0, commonly written as

A t Bl, ..., Bk.

In standard logic notation the clause described above is represented by the formula:

where XI,. . . , xn are all the variables appearing in B1,. . . , B k , A.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

8 Can we transform Logic Programs into Attribute Grammars?

Definition 2.4 A Definite Clause Program (DCP) is a finite set of definite clauses belonging
to a logic language L.

Throughout the rest of this paper when referring to a definite clause program we might use
the name logic program although the latter constitutes a larger class of programs. (A Logic
Program can have clauses without positive litterals.)

2.3.2 Proof Theory

Following [I], a Definite Clause Program is considered to denote its least Herbrand model.
It was shown in [4] that one can instead deal with the set of all atomic formulae which are
logical consequences of the definite clause program. Each element in this set can be obtained
by constructing a proof tree having the term as its root. For our purposes it is convenient to
consider a definite clause program to be the specification of the set of all its proof trees.

Definition 2.5 A prooftree is an ordered labeled tree whose labels are atomic formulae (not
necessarily ground). The set of proof trees for a given definite clause program I' is defined
inductively as follows:

1. If A t- 0 (i.e. with empty body) is an instance of a clause of I?, then the tree consisting
of the two nodes whose root is labeled by A and whose only leaf is labeled by end is a
proof tree.

2. If TI,. . . ,irk for some k: > 0 are proof trees with roots labeled B1,. . . , Bk and A +-

B1,. . . , Bk is an instance of a clause in I', then the tree consisting of the root labeled
with A and the subtrees TI, . . . , T k is a proof tree.

Example 2.6 The following definite clause program computes syntactic addition. The num-
ber n is represented by sn(0).

The tree appearing in figure 1 is a proof tree of this definite clause program. It states a proof
tree for 2 $1 = 3.

2.4 Attribute Grammars

In this section we briefly introduce Attribute Grammars. For a more detailed treatment
see [lo]. Attribute Grammars were introduced by Knuth 1141. The following definition is
inspired from Chirica and Martin [3] and Courcelle and Franchi Zannettacci 161, 171. Some
adaptations have been made to simplify the definition. An Attribute -Grammar is a pair
(A, Z) consisting of a syntactical part A called an attribute system, and a semantic part Z
called an interpretation. Roughly speaking, an attribute system defines a set t: of function

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tornas Isakowitz

I
end

Figure 1: The proof tree for add(s(s(O)), s(O), s(s(s(0))))

symbols, a context-free grammar G, a set of attributes for each symbol in G, and a set E of
semantic equations formed from the function names in C and the attributes. Normally the
attributes and the function symbols are typed (sorted). This however is not needed in the
scope of our paper and we leave it out for the sake of clarity.

Definition 2.7 An attribute system 34 consists of the following components:

1. A finite set C of function symbols.

2. A context-free grammar G = (N,T, P, Z), where N is the set of nonterminals, T is
the set of terminals, Z E N is the start symbol, and P 5 N x (N U T)* is the set of
productions.

3. With every symbol X of the grammar, a finite set A(X) of attributes is associated.
The cardinality of A(X) will be denoted by n x .

4. Two functions S : X ++ 2A(X) and I : X ++ 2 A (X) determine which of the attributes
of X are synthesized and which are inherited. If the start symbol Z has inherited
attributes, or any terminal symbol has synthesized at tributes, the at tribute grammar
is said to have parameters.

5. For every production p : XE --+ XI ... Xn, a finite set Ep of semantic equations (or restric-
tions) which satisfies the following constraints. First, the set of attribute occurrences

Each attribute occurrence z(i) has a tag i indicating that it is associated with the gram-
mar symbol Xi in p. This is necessary because the same attribute z may be associated
to distinct grammar symbols in the same production and to different occurrences of
the same grammar symbol.

We now define the set of equations Ep associated with a production.

i) The only attributes of XE that are defined in p are synthesized. That is, for every
synthesized attribute a E S(XE), there is exactly one equation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Can we transform Logic Programs in to Attribute Grammars?

where t:(E) is some term in TE(ATOC(p)).

ii) Only inherited attributes of the right hand side are defined in p. For every k,
1 < k < n, for every inherited attribute y E I (Xk), there is exactly one equation

where ti(k) is some term in Tx(ATOC(p)).

It should be noted that a semantic rule is oriented, in the sense that it has a left-hand
side and a right-hand side which are not interchangeable.

We now turn to the semantics of Attribute Grammars. Our goal is to define the meaning
assigned by an attribute grammar to a parse tree. Given an attribute grammar = (A,Z),
the interpretation Z is used to provide meaning to parse trees. For every parse tree T, Chirica
and Martin [3] define a system ET of equations among variables called attribute instances,
and show that this system has a least fixed point, which is taken as the semantics of T. For
the purpose of our work, we change this definition and take the set of all solutions of ET
to be the semantics of T. Intuitively, attribute instances are copies of attribute occurrences
assigned to the nodes of the parse tree, and attribute evaluation consists in computing the
values of these instances.

In order to refer to nodes in parse trees, we use an addressing scheme due to S. Gorn [12].
The root of the tree receives as address the empty string E . If a node has the address u and
this node has exactly n successors, they receive the addresses u l , ..., un from left to right. An
attribute instance is an expression of the form a(u), where a is an attribute of a symbol X,
and u is the tree address of a node labeled X in a parse tree. Instead of dealing with parse
trees we will use attributed trees in our discussion. These are obtained from parse trees by
replacing each node X by the node X (X. 1 (m), . . . , X.nx (m)) where X. 1, . . . , X.nx are all
the attributes of X and m is the position of the node.

Given an attributed tree T, the set AIT of attribute instances associated with T and the
system of equations f i are defined inductively as follows (see [3, 161).

Definition 2.8 If T is an attributed tree of depth 1, then the production applied at the
root is some production (p) : A 4 u, where u E T* is a terminal string. Then,

ET = Ep, and AIT = ATOC(p).

If T is an attributed tree of depth > 2, then the production applied at the root is some
production p : Xe 4 XI . . . Xn, where XI . . . Xn contains some nonterminals, say B1,. . . , Bk.
Let XI . . . X, = u1B1u2 . . . u ~ B ~ u ~ + ~ , with ~ 1 , . . . , uk+l E T*. Then, if the subtrees rooted
at Bl, . . . , Bk are TI,. . . , Tk, for 1 < i 5 k, let

AIki = {a(ju) I a(u) E AIT,), with B; = Xj

E& = {(x = t)[a(ju)/a(u), a(u) E AIT,] I (I = t) E ET, } ,
with B; = Xj,

where (x = t)[a(ju)/a(u), a(u) E AITi] is the result of simultaneously substituting a(ju) for
every occurrence of a(u), for each a(u) E AITi, in the equation x = t. Then,

AIT =ATOC(p)UAI$l U. . .UAI&, and
ET = E l ? , U E + l U . . . U E & k .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tomas Isakowitz 11

If the attribute grammar has attribute parameters, then for each instance a(u) of an
inherited parameter a associated with the root, there is an equation of the form a(u) = xo
where xo is an initial value. Similarly the synthesized attributes of the leaves have equations
which initialize them.

Notice that the equations in ET contain terms over AI(T). Denote by AI (d) the set of
all attribute instances of the attributed trees of the attribute system A. The terms appearing
in _ET are in Tc(AI(A)), the interpretation part Z of an attribute grammar assigns a specific
domain to AI(A) and actual partial functions over that domain to the function names in C.
Given an attributed tree T, a valuation a assigning values in D to all the attribute instances
in AI(T) is is valid if no term in ET is undefined, and all the equations in ET are satisfied.
The semantics of T is defined to be the set of all valid valuations of T. The semantics of the
attribute grammar (A,Z) is the set of all pairs (T,a) where T is an attributed tree and a a
valid valuation for T. Notice that we use partial functions to interpret the function symbols.

From a computational point of view it is important that the attributes are split into
inherited and synthesized; and that the semantic equations satisfy the conditions i) and ii)
of page 5. These support an algorithm for finding a valid valuation for an attributed tree.
The evaluation problem consists in finding a partial order on the attributed tree so that the
variable elimination described in the previous example works.

2.5 Conditional Attribute Grammars

A conditional attribute grammar is similar to an attribute grammar except that in addition
to the equations associated with each production, a predicates on some input attribute
occurrences are present. We follow [8] for this definition. In order to proceed we need to
formalize what we mean by input and output at tribute occurrences.

Intuitively, Input attribute occurrences of a production are occurrences in its left hand
side of inherited attributes and right hand side occurrences of synthesized attributes. Output
attribute occurrences of a production are occurrences of synthesized attributes in its left hand
side and occurrences of inherited attributes in its right hand side. This is formalized as
follows.

Definition 2.9 Given an attribute system A and a production p of the form X, .=j

XI . . . X,, a splitting of attributes into inherited and synthesized via functions I and S
induces a splitting of the attribute occurrences of p into input and output as follows.

In conditional attribute grammars conjunctions of literals on input attribute occurrences
are introduced into the productions. The interpretation part of a Conditional Attribute
Grammar associates subsets of the corresponding cartesian product to predicates. Given a
decorated tree, a valuation will be valid provided not only that the equations are verified,
but also that the conjunction of literals of each production is satisfied.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

12 Can we transform Logic Programs into Attribute Grammars?

Definition 2.10 A Conditional Attribute Grammar is an Attribute Grammar that contains
a set of predicate symbols P = PI,. . . , P,. Each production p has associated, in addition
to the equations E,, a logic formula Bp which is a conjunction of formulas of the form
Pj(tl, . . . , tn) or 7P(t r , . . . , t,) for some n-ary predicate symbol P E P, and some terms
tl, . . . , t, that contain only input attribute occurrences.
The semantics of Conditional Attribute Grammars are sets of decorated trees with valid
valuations as in the case of attribute grammars, except that in addition, each valid valuation
has to satisfy the the formula B,.

NOTICE: the fact that the arguments of the predicates B, are input attribute occurrences
is important since this will guarantee the computability of valid valuations. Since satisfying
the logic formula Bp will involve just checking the values already computed.

Deransart and Maluszynski introduce Functional Attribute Grammars (FG) and show
their relationship with Logic Programs 191. They use the name Functional Attribute Gram-
mar for what we here call Conditional Attribute Grammar.

2.6 Relational Attribute Grammars

Relational Attribute Grammars have less structure than Attribute Grammars. Each pro-
duction has a logic formula associated with it. In order for a valuation for an attributed tree
to be valid, it has to satisfy some logic formulae.

Definition 2.11 A Relational Attribute Grammar consists of

1. A finite set C of function symbols.

2. A finite set P of predicate symbols.

3. A Context Free Grammar G = (N, T, P, 2) ,

4. With every symbol X of the grammar, a finite set A(X) of attributes is associated.

For every production p : XE ---+ Xl...Xn, a logic formula R, of the logic language
< P, C, ATOC(p) >, that is, the variables in R, are attribute occurrences of p.

5. An interpretation which is similar to the interpretation of Attribute Grammars except
that each n-ary predicate P is interpreted by a subset of the cartesian product of
the domains of the attribute occurrences. The boolean operators receive their normal
interpretation.

The semantics of Relational Attribute Grammars are as that of Attribute Grammars,
except that RAGS have no computational semantics. Valid valuations for an attributed tree
have to satisfy the logic formula associated with each address in the tree, but there is no
algorithm for computing valid valuations.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

3 Abstract Attribute Grammars

To the best knowledge of the author this formalism is new. It abstracts over the inher-
itedlsynthesized splitting of attributes in an attribute grammar. The syntactic part consists
of an abstract attribute system which differs from an attribute system in that there is no
splitting of attributes into inherited and synthesized; and the equations are replaced by
restriction sets. The semantic part consists of an interpretation Z as before.

Definition 3.1 An abstract attribute system A consists of the following components:

1. A finite set C of function symbols.

2. A context-free grammar G = (N, T, P, Z), where N is the set of nonterrninals, T is
the set of terminals, Z E N is the start symbol, and P C N x V = N U T* is the set
of productions.

3. With every symbol X of the grammar, a finite set A(X) of attributes is associated.
The cardinality of A(X) will be denoted by nx.

4. The set of attribute occurrences is defined as in page 9. For every production p :

X, + XI . . . X,, a finite set R, of restriction sets whose elements are terms in
Tc(ATOC(p))

From any attribute grammar one can obtain an abstract attribute grammar by replacing
each equation a(i) = t by the restriction set {a(i), t). Abstract Attribute Grammars can
be viewed as a special type of Relational Attribute Grammars which use only the equality
predicate and where a shorthand notation has been introduced to express equalities of the
form XI = 2-2 = 23 = . . . = x, as sets {xl, . . . , x,}. We think however, that this restriction
is important enough to be considered in a class by itself. It stands in an intermediate position
inbetween Attribute Grammars and Relational Attribute Grammars because although it
does not have a computational component derived purely from its syntactic part as AGs
do, it does not push to the semantic level all constraints on its valid attributed- trees as
RAGs do. We can view AAGs as AGs devoid of procedural connotations but retaining
their declarative semantics. In RAGs, all semantics are pushed to the interpretation level
by assigning meaning to the different predicates. The difference relies on the fact that the
meaning of the only predicate appearing in AAGs (equality) is fixed for all interpretations,
while that is not true for the predicates which appear in RAGs. Furthermore, we see that
AAGs are the adequate formalism to express the constraints implicit in LPs in grammar
form.

Example 3.2 Consider the following abstract attribute grammar which is similar to the
functional attribute grammar presented in example 1.1.

add + end (0 , X(E))
{Z(E), Y(41

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Can we transform Logic Programs into Attribute Grammars?

end

Figure 2: An attributed tree for the abstract attribute grammar

As it turns out, for the purpose of this paper, it is enough to consider just one class of
interpretations to be introduced in section 4.3. These interpretations have as domain the set
of terms and a fixed interpretation for some of the function symbols. We feel however, that
AAG as a formalism should have a more general semantics, as we proceed to present now.

The semantics are defined using the interpretation 1. Attributed Trees are defined as for
attribute grammars except that instead of a set ET of equations, a set RT obtained from
the restriction sets of the production instances appearing in T is associated with the tree.
Given an attributed tree, a valuation a is valid if the elements of each restriction set are
assigned identical elements of the domain. If the interpretation assigns partial fgnctions to
the function symbols, the values assigned to the attribute instances have to belong to the
domain of the functions applied to them. The semantics of an abstract attribute grammar
is taken to be the set of all its valid attributed trees.

Exarnple 3.3 For the previous example consider the interpretation:

1. D is the set of natural numbers n(,

2. p is the predecessor function (subtract I),

Consider the attributed tree of figure 2. The following valuation is valid:

Any valid valuation for this tree has to assign 1 to X (E) ; Z(E) will be assigned the successor
of Y (E) .

Abstract Attribute Grammars lack an evaluation algorithm. The restrictions are simply
stated, no hint as to how a valid valuation could be obtained is given. This is a drawback
of the formalism for computational purposes. However, we find it suitable for dealing with
logic programs in their full generality since there, as well, the semantics are declarative.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tornas Isakowitz 15

4 Transforming a Logic Program into an Abstract At-
tribute Grammar

4.1 Overview of the method

Let us explain our approach for converting a Logic Program into an equivalent Abstract
Attribute Grammar via an example. Consider the following LP I? (it decribes syntactic
addition)

Any proof tree for this logic program will consist of a single branch ending in an instance
of add(0, Y, Y). The syntactic component of the proof trees of I' is captured by the Context
Free Grammar G given by:

(pi) add =+ end
(pi) add + add

By "erasing" the arguments of the predicate add in a proof tree one obtains a parse tree
of G. However, these parse trees lack information about values appearing as arguments of
the predicate add. In order to represent these arguments, we associate three attributes a, b, c
with the nonterminal add, each corresponding to an argument of the predicate add. What
restrictions should one place upon these attributes? We will introduce a restriction for each
production and each variable or constant appearing in its corresponding clause. We adopt
the following naming convention. Paths(p, T) is the restriction related to clause p that deals
with the variable (or constant) T.

Let us look at clause (pl). The constant 0 appears as the first argument of udd. We
represent this by introducing the restriction:

The idea is that all members of Paths(pl, 0) should be made identical. Since 0 is a constant,
this forces , a(&) = 0. We deal in a similar fashion with the variable Y. It appears as the
second and third argument of add. We introduce the restriction:

This set represents d l positions in which the variable Y occurs. One wants to force all
members of that set to be equal. Let us deal now with the second clause:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Can we transform Logic Programs in to Attribute Grammars?

end

Figure 3: The proof tree for add(s(O), s(O), s (s (0))) .

We introduce a projection function ns on terms. When applied to a term of the form s (t) , it
returns the term t . If the argument of nS is not of that form, the result is I, the undefined
value. If one thinks of s as the successor function, one can think of p as the predecessor
function. In order to state the restrictions corresponding to clause (2). We take one variable
at a time and build a set representing all positions in which that variable occurs. For example
X appears in the first argument of the left and right occurrences of add. On the left side it
is the subterm of the first argument. This occurrence is denoted by nS(a(c)) . On the right
side, it occurs as the first argument of add. Grouping these occurrences we obtain:

The case of Y is simpler since it occurs directly as the second argument of the left and the
right appearances of add. The set is:

The case of Z is similar to that of X:

These are all the restrictions needed for this clause. Intuitively, a valuation is acceptable if
it induces identity within each set. This should be clear by the way those sets were defined,
they represent all occurrences of a variable or constant.

Our claim is that the logic program I' and the abstract attribute grammar G' consisting
of G and the sets described above, are equivalent. That is, the set of proof trees of I' and
the set of valid attributed trees of G' are equivalent.

Let us look at a proof tree for add(s(O), s(O), s (s (0))) appearing in figure 3.
The attributed tree corresponding to it appears in figure 4. The valuation corresponding

to the proof tree of figure 3 is:

Similarly, for any valid attributed tree there is an isomorphic proof tree. Let us analyze
what all valid attributed trees of the form given in figure 4 are. The restriction (0 , a (1))
fixes the value a(1) as 0. The restriction {ns(a(c)) , a (1)) forces a (€) = s(a(1)) = s(0). The
values of b(c), b(1) and c(1) have to be identical , and provided c(c) is of the form s (t) , the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Figure 4: The corresponding attributed tree.

restriction {rS(c(e)), ~ (1)) forces C(E) = s(b(~)) . It follows that the only possible values at
the root of the tree are: a(€) = s(O), C(E) = s(~(E)) . SO the value of the third argument has
to be the successor of the second argument. This is exactly what the logic program does.
Notice that we need not specify which of the arguments are input and which are output.
There is however, a problem with the following valuation:

This valuation satisfies the restrictions of the attributed tree but does not correspond to any
proof tree. The reason is the occurrence of I. In this case it stems from the fact that C(E) is
not a term of the form s(t). We rule out solutions which are undefined for some elements of
a restriction set. This corresponds to imposing some structure on certain attributes (in this
case c(E)).

We now proceed to give a formal treatment of the ideas just exposed,

4.2 The path function symbols

In section 4.1 we defined a function .rrs that "strippedn the s from terms of the form s(t).
We are interested in functions that denote all occurrences of a variable or a constant within
a term. Throughout this paper we use the word atom to refer to a variable or a constant.

Let L be the logical language in which the definite clauses are written. Recall that
Terms(L) denotes the set of terms of L. Also let Var(L) be the set of variables of L,
Func(F) the set of function symbols of L and let Atoms(L) be the set of atoms (i.e. variables
and constants) of L. For each term t, let Atoms(t) denote the set of variables and constants
appearing in t.

For each function symbol f of arity n appearing in Func(F) we introduce n function
f symbols rl, . . . , ~ , f . These represent functions that select each of the arguments of f and

are called selectors. We also need a function symbol for the identity: id, and a new constant
I to denote the undefined value. The collection of all selector function symbols, I and id
will be denoted by CFunc(L). When this does not lead to confusion, we drop the Func(L)
from XFunc(~+. Let o denote the concatenation of function symbols, and let C* denote the

Center for Digital Economy Research
Stem School o f Business
Working Paper IS-91-06

18 Can we transform Logic Programs into Attribute Grammars?

set of finite strings over E. Given a term t and an atom x appearing in it, we are interested
in specifying all access paths to x. This is done as follows.

Definition 4.1 For each term t E Terms(L) and each x E Atoms(L), we define a set of
terms @(t, x) in C* recursively as follows.

1. if x 4 Atoms(t) then @(t, x) = 0;

2. if x = t then @ (t , x) = { i d)

3. if t = f (t l , . . . , tn) then

m (t , ~) = U jy; { r l o ~ 1 T E @ (~ ~ , x))

The elements of @(t, x) will be called paths.

Example 4.2 Consider t = f (g(z , x) , x) and let us compute @(t , x) . Since x appears twice,
we should get two paths.

Clearly @ (x , x) = { id) , hence the last component of the union evaluates to {a,' o i d) . In
order to find the value of the first expression we have to compute @ (g (2 , x) , x) .

g x) , x) = {r; 0 7- 1 . E @(z , x)) U {I : 0 7- 1 7- E @(x7 x))

= 0 U {rq o id)

= {ri o id)

Replacing @(g(z, x) , x) for its value in equation 1 we obtain

@(t, X) = {r{ o r; o i d , r,' o i d }

NOTE: The fact that i d appears at the tail of each member of @ (t , x) is a technicality.
It arises from our recursive definition. Since concatenation will be interpreted as function
composition and i d will be interpreted as the identity function, we might as well erase the
trailing ids.

4.3 The terrnal interpretation

Notice that the elements of @(t, y) are strings in C*, with concatenation denoted by o.
However, when considering the set Tz(V) of terms build up from a set of variables V and
the function symbols in C, we can uniquely relate elements in TE*(V) with elements of Tx(V)
by interpreting o as function composition. This is done by the mapping-

(rl o r 2 o . . . o r n) (t) I+ rn (. . . (r2(rl (t))) . . .)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Notice the reversed order. For example, r{ o r: o id(t) is mapped to id(r i (rf (t))). -
f Let T E R M S denote the set of all terms in L. We interpret r! as a function ri on

T E R M S as follows: - ti if t = f(t l , . . . ,t,)
r!(t) = {

1_ otherwise

Let us also interpret id as the identity on TERMS. We now have an interpretation for all
of C*, which we will call NAT (since it is natural). For each element r in C*, let denote
denote its interpretation in NAT. Since our motivation for defining the sets @(t, x) was to
specify all access paths to x in t, we should have that for any r E @(t, x),

One can easily proof this by an inductive argument on the complexity of t. We show how
this works with an example.

Example 4.3 Let t = f (g(z, x), x). In example 4.2 above we showed that

@(t, X) = {K{ o T: o id, o id}

Thus (a{ o a: o id)(t) should evaluate to x.

Since the path functions will be used in transforming logic trees, it is interesting to study
how they interact with substitutions. In particular we are interested in knowing whether
they commute with substitutions.

Example 4.4 Let t = g(x) and let 8 be a substitution such that 6(x) = h(a), We see that
6 and 3 commute:

However, if we try the same with ri o rt, it does not work:

The reason that the second function does not commute with 0 is that rlg o ~ : (t) is undefined.
We can also show that those are the only cases in which this happens.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

20 Can we transform Logic Programs into Attribute Grammars?

Lemma 4.5 For any n E C", any term t and any substitution 0

if ~ (t) f: I then 0 (~ (t)) = ~ (0 (t))

Proof: One proceeds by induction on the length of n. We show here the base case for n of
length 1, i.e. n E I=. The inductive argument follows easily.

From the definition of C, n is either the identity or of the form ?rf for some f and some
i. In the first case the result clearly holds. In the second case since ~ (t) # I, t is of the
form f (t l , . . . , tn). Therefore,

((f (I - 7) = - @(ti)
= - ~ { (f (0 (~ 1) 1 - 1 0 (t n)))
= n f (0 (t))

4.4 The construction

Given a logic program I?, we show how to construct an abstract attribute grammar by
transforming each clause into a production and its restriction sets. First however, we have
to define the set of terminals and non-terminals of the Abstract Attribute Grammar and
their attributes. For each predicate P of arity n p appearing in I?, there is a nonterminal
P with n p attributes P.1, . . . , P.np. Each attribute corresponds to an argument position of
the predicate P. The only non-terminal is end , it has no attributes. Given a clause

we associate with it the context free production

Example 4.6 Consider the following clauses from a program for symbolic differentiation.

(a) d i f (x (U , V) , X , + (x (B , U) , x (A , V))) +-- d i f (U 7 X 7 A) 7 d i f (V , X 7 B)
(b) d i f (X , X , 1)
(c) d i f (u, V, 0)
(d) d i f ('7 u 7 O)

The corresponding abstract attribute grammar will have one non-terminal d i f with three
attributes d i f . l , d i f.2 and dif .3. The productions are:

(a t) d i f =+ d i f d i f
(b') di f + end
(c') d i f =+ end
(d') d i f =+ end

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

There is a one to one correspondence between the terms that appear as arguments of the
predicates in clause p and the attributes of the non-terminals appearing in the production
pt. The nomenclature used makes this clear. One can define a mapping trp' from the set of
attribute occurrences to the set of terms which represents this correspondence:

The restriction sets associated with the clause make sure all occurrences of the same variable
have the same value. This is achieved by forcing all paths leading to that variable to be equal.
The sets B(t, x) defined in section 4.2 are used to this end. For a given at tribute occurrence
a, every member of @(trpJ(a), x) is applied to a, all these expressions are collected into the
set Paths(pt, x):

Paths(pt, s) = U . ~ a ~ o c ~ ~ l , {~(o) I T E @(trpt(a), x) }

In other words, every path leading to x in a term is applied to its corresponding attribute.

Example 4.7 Take the first clause of the logic program appearing above:

(a) d i f (x (U , V) , X , + (x (B , U) , x (A , V))) +- dif(U,X,A),dif(V,X,B)

The correspondence between attributes and terms is:

trpl(di f . 1 (E)) = x (U, V)
trPl(dif.2(c)) = X
trp~(dif.3(c)) = +(x (B , U) , x(A, V))

Let us calculate Paths(al, V) . Since @(t, V) = 0 whenever V does not appear in t , one only
needs to consider the following sets:

@(tr,t(di f . l(t)) , V) = B (x (U, V) , V) = {T: o id)

@(tr,~(di f . 3 (~)) , V) = @(+(x(B, U) , x(A, V)) , V) = {n: 0 T: 0 id}
@(trPl(dif.l(2)), V) = @(V, V) = { i d)

Collecting all these, one obtains

In a similar fashion one obtains the restrictions for X, U, B and A.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

22 Can we transform Logic Programs into Attribute Grammars?

We have described how to deal with the variables. The constants are treated similarly, except
that one adds the constant itself to the set.

Example 4.8 The clause di f (X , X , 1) of example 4.6 above is translated into the following
abstract attribute grammar production.

(b') di f + end Paths(bf, X) = (id(di f . l (e)) , id(di f .2(c)))
Paths(bf, 1) = (1, id(di f .3(c)))

This construction is repeated for each clause of the logic program. As a result one obtains
a production for each clause, each production has as many restriction sets as variables and
constants appear in the original definite clause. We now turn to study which values satisfy
the restrictions imposed by the sets Pat hs(p, x) .

Consider the interpretation NAT for C* presented in section 4.3. The domain of at-
tributes is T E R M S , the function symbols a are interpreted as selectors, id as the identity
function on T E R M S . If we substitute for each attribute occurrence a its corresponding
term tr,t(a), all elements of Paths(pf, x) should evaluate to x. Furthermore, by assigning
substitutions of the corresponding terms to the at tributes, the restrictions should be satisfied
as well. This is proven in the next lemma.

Lemma 4.9 Every element ~ (a) E Paths(pf, x) satisfies

(1) F(trPt(a)) = x
(2) for any substitution B ,

T(0(trPt (a))) = 0 (x)

Thus any valuation of the form a (a) = B(tr,t(a))) satisfies all restriction sets of the produc-
tion p'.
Proof: By definition, if ~ (a) E Pat hs(pf , x) then T E @(tr,J (a) , x) . As explained on page

19 this implies y(tr,t(a)) = x , which is exactly (1) .
In order to prove (2) notice that since F(tr,,(a)) = 2, it is the case that ?(tr,t(a)) f 1_

hence by lemma 4.5 on page 20 any substitution 0 will commute with T on tr,,(a), thus

;i.(O(trpl (a))) = 0(T(trPt (a))) = 0 (x)

Example 4.10 In page 21 we calculated Paths(af , V):

Pat hs(al, V) = {a; o id(di f .l (c)) , a: o a; o id(di f .3(e)), id(di f . l (2)) }

There we also had that trat(di f .l(&)) = x (0 , V) . Clearly,

a; o id(tra~(di f . l (c))) = 71-; 0 i d (x (0, V))

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tomas Isakowitz 23

The previous lemma shows that the terms obtained by applying a substitution to the terms
appearing in a clause satisfy the restriction sets of the corresponding production. They are
therefore good candidates for valid valuations. Notice that for these valuations, none of the
elements of a restriction set evaluates to the undefined value. The lemma just proved shows
that substitutions of the original terms are valid valuations. With the aid of the following
lemma one shows the converse, namely that any valid valuation of a production can be
obtained by applying a substitution to the terms of the original clause.

Lemma 4.1 1 Let t , t' be terms so that:

1. For any variable x appearing in t and for any T E @(t , x), ~ (t ') # I,

2. For any variable x appearing in t and for any 7-1, 7-2 E @(t , x), ~ (t ') = ~ (t ') ,

3. for any constant b appearing in t and for any T E @(t, b), ~ (t ') = b,

then there exists a substitution 8 such that t' = 8(t).
Proof: Intuitively condition 1 tells us that t and t' have similar structure and condition 2
that all occurrences of a variable in t are substituted for the same term in t'. Condition 3
makes sure that constants appear in the same places in t and in t'.

Notice that a substitution is uniquely determined by the value it assigns to variables. We
will define the substitution 8 by specifying the value of 8(x) for every variable x appearing
in t.

Let x be a variable of t, and let T be a member of @(t, x) we define 8(x) as follows:

It is not clear that 8 is well defined, i.e. is independent of the choice of r. Condition 2 forces
any two members of @(t, x) to agree on the value they assign to t hence 8 is well defined.
Next we prove that 8 is such that t' = 8(t). The proof is by induction on the complexity of
t.

1. If t is a constant b then @(t, b) = {id). By condition (3) we have that z(t ') = b, hence
t' = b thus 8(t) = t = b = t'.

2. If t is a variable x, then @(t, x) = {id) and r is the identity. By condition (1) we have
that s (t ') # I therefore t' f: I, and B(t) = 8(s) = s(t ') = t'.

3. Suppose now that t = f (t l, . . . , t,). For any variable or constant x of t , any r f @ (t , x)
has to be of the form r = a! 07' with T' an element of C* . Since i (t f) = (a! o T ') (t') # I
we conclude that t' is of the form: f (ti, . . . , t',). We show that for 1 < i < n, @(ti) = ti.
This implies 8(t) = t'.

Let us concentrate on i = 1, the treatment being the same for the other cases. Notice
that any variable or constant appearing in tl has to appear in t as well. Therefore
7 E O(tl, s) if and only if irf o r E @(t , 2). It is easy to show that t, and ti satisfy
conditions 1-3 of the lemma. By inductive hypothesis we conclude that the substitution

df O1 defined by O1(x) = q (t i) where TI E @(tI,x), is such that B(t1) = ti.

Center for Digital Economy Research
Stem School o f Business
Working Paper IS-91-06

Can we transform Logic Programs into Attribute Grammars?

We show that 0 and B1 agree on all variables of tl. By definition, 7-1 E @(tl, x) implies
a! o r1 E @(t, x). Since the T used to define the value of 0 on x is also an element of

- @(t, z), condition 2 allows us to conclude a[o q(t i) = Clearly, B(x) = r (t l) =
-

a! o 7-1 (ti) = .r1 (ti) = O1(x). Since 0 and B1 agree on all variables of tl we have that
6(tl) = O1(tl) = ti as wanted.

Corollary 4.12 Given a definite clause p for any valid valuation CY of its corresponding
production pi one can effectively construct a substitution B , , such that for each attribute
occurrence a of pi,

40) = 4,ff (trP'(4)

Proof: Consider a valid valuation for the attribute occurrences of a production p'. Let

tr,,(a) be t and a(a) be ti in the hypothesis of lemma 4.11. The first condition of the
lemma is satisfied because valid valuations are required to be defined on all members of the
restriction sets, since a is valid and t' = a(t). Conditions 2 and 3 are satisfied because CY is
valid, i.e, all elements of each restriction set agree on their value. Thus the lemma allows us
to conclude that there exists a substitution 0,,, such that t' = O,,,(t). This is exactly what
we set out to prove. 0

We now show that there is a one to one correspondence between the set of proof trees
of a logic program and the set of valid attributed trees of the abstract attribute grammar
obtained from it.

Given a proof tree T, one constructs an attributed tree A(T) with valid valuation CYT as
follows. If the subtree at position m of T is an instance of clause

and the production constructed from p is

(p') PC =5 PI . . . Pi

then the subtree corresponding to pi appearing at position m of A(T) is shown in figure 5.
Clearly there is a one to one correspondence between the attribute instances of A(T)

and the arguments of the predicates in T. Let this correspondence be denoted by G. We
show that the valuation a~ defined as aT(o(m)) df G(o) is valid. Let m be a position
in A(T) other than the root or a leaf, and let N,,, = Pi (P;.l(m), . . . , Pi.np, (m)) be the
node appearing there. N, belongs to the instances of two productions, its lower and its
upper production. We have to show that a~ is valid for both of them. Consider the lower
production p' . Since T is a proof tree, the subtree of depth 1 rooted at position m is an
instance of a definite clause p with substitution 8. Furthermore, p is the clause from which
p' was obtained. Hence CYT operates on every attribute instance a(m) of N, as follows

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tomas Isakowitz

Figure 5: The subtree at position m of A(T)

Figure 6: The subtree of L ((S , a)) at position m

By virtue of lemma 4.9 a~ is valid for the lower production. In a similar fashion one
proves that OT is valid for the upper production. Clearly the same argument applies to the
root of A(T) which only has a lower production, and to the leaves which only have upper
productions. We have proved the following:

Theorem 4.13 If T is a proof tree then (A(T), aT) is a valid attributed tree.

We now proceed to show how to obtain a proof tree from a valid attributed tree. Given a
valid attributed tree (S , a) a proof tree L((S, a)) is constructed as follows. If an instance of
production (p') PC =+ PI . . . f i appears at position m of S as shown in figure 5 on page
25 then the subtree shown in figure 6 appears at position rn of L((S, a)). The arguments of
the predicates are the terms obtained by applying a to the corresponding attribute instances.
We to show that this subtree corresponds to an instance of the definite clause p from which
p' was obtained. Clearly a is valid for p', hence by lemma 4.11 there is a substitution 8,
such that

a(P,. j (mk)) = B,(tr,t(P;. j(k))) = 8,(t:)

This shows that the subtree of figure 6 corresponds indeed to an instance of the definite
clause p as wanted. We have proven the following theorem.

Theorem 4.14 If (S, a) is a valid attributed tree then L((S, a)) is a proof tree.

By starting with a proof tree T, theorem 4.13 gives a valid attributed tree (A(T), aT).
By applying theorem 4.14 one obtains a proof tree L((A(T), a ~)) . Clearly

The mapping T I+ (A(T), aT) is therefore injective. One can easily see that it is also
surjective. Therefore there is a bijection between the proof trees of a logic program I' and the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

26 Can we transform Logic Programs into Attribute Grammars?

valid attributed trees of its corresponding abstract attribute grammar A(I'). Furthermore,
by construction, this bijection is computable. This is our main result, stated as follows.

Corollary 4.15 Given a Logic Program I?, one can construct an Abstract Attribute Gram-
mar A(r) such that there is a computable one to one correspondence between the proof trees
of I' and the valid attributed trees of A (r)

We now revisit the example for the Logic Program to perform syntactic addition presented
in the introduction.

Example 4.16 Consider the Logic Program for syntactic addition given by:

(PI) add(O,~,~).
(PZ) add(s(X) ,Y,s(Z)) -+ add(X,Y,Z).

Using our construction we come up with the following Abstract Attribute Grammar

(P: > add =$ end Paths(pl, 0) = {add.l(~), 0)
Paths(pl, Y) = {add.2(c), add.3(c)}

(P;) add + add Paths(p2, X) = {xS(add.l(c)), add.l(l))
Paths(pl, Y) = {add.2(€), add.2(1)}
Paths(p1,Z) = {xS(add.3(c)), add.3(1)}

This is exactly the same (modulo renaming) Abstract Attribute Grammar which we pre-
sented in the introduction and again in section 4.1.

4.5 Comparison with previous published results

In [9], Deransart Maluszynski show how to construct a Relational Attribute Grammar se-
mantically equivalent to a Logic Program. How does our result differ? After all AAGs are
special types of RAGS, hence our result does not seem to add anything new. Their trans-
formation however, does not involve any amount of term-matching or pre-processing. They
associate with each definite clause a context free production as we do. In addition, with
each context free production pj a logic formula of the form Rj(xl, . . . , x,,) is associated
where ATOC(pj) = setxl, . . . , xn,. In order to establish semantic equivalence between the
RAG and the LP, the interpretation part of the RAG is chosen so that the predicates Rj are
mapped into all nj-tuples of terms which are instances of the terms s1, . . . , s,, which appear
(in their textual order) in the n j different positions of the original definite clause.

Any relationship between attributes which would result from the same variables being
used at different argument positions in the definite clause are absent in the syntactic part of
the equivalent RAG. All agreements are pushed to the semantic level. There is no gain in
terms of term-matching or possible evaluation of the LP by doing this.

However, our transformation makes explicit the agreements necessary between the differ-
ent attribute occurrences at the syntactic level by making strong use of the Path functions.
We push a semantic condition to a syntactic level, which makes the transformation more
interesting.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

5 Transforming Abstract Attribute Grammars into
Conditional Attribute Grammars

We mentioned the lack of an algorithm to evaluate abstract attribute grammars. Since
evaluation algorithms for attribute grammars have been extensively studied, it is interesting
to investigate when an abstract attribute grammar can be transformed into an equivalent
attribute grammar. In this section we state sufficient conditions. By applying our method,
starting from a logic program one obtains a conditional attribute grammar which is similar
to the one obtained by the method described in [9]. We should mention here that the
difference between At tribute Grammars and Conditional At tribute Grammars is irrelevant
when considering evaluation methods since those developed for Attribute Grammars also
work for Conditional Attribute Grammars.

An abstract attribute grammar is said to be reversible if every attribute occurrence in a
production can be reconstructed from its occurrences in the restriction sets . More formally:

Definition 5.1 An abstract attribute grammar < A,Z > is said to be reversible if for every
attribute occurrence a appearing in a production p there exists a function f,, over the
domain of 2' which satisfies the following condition.

Let {tl,. . . , tk} be the union of all the restriction sets in which a appears, and
let a be a locally valid valuation (i.e. valid when considering the attributed tree
composed of the production p by itself). Then,

NOTE: the actual function fOlp depends upon the ordering of the terms a(tl), . . . , a(tk).
Also f, depends depends on the interpretation Z but not on the valuation a.

Example 5.2 Every abstract attribute grammar obtained from a logic program by the
construction described in section 4.4 is reversible. Consider the abstract at tribute grammar
for syntactic addition of example 4.16. Recall the interpretation described in section 4.3.
The domain is the set of terms of a logic language, and 71.15 is the selector function for terms
of the form s(t). The first production is:

(pi) add + end (0 , a(c))

(~(4, b (4 1

The functions fa (~) ,p ; , f a f ~) , ~ ; and fc(e),p; are given by:
f@(~),p; (tl) t2) = t2,

fb(€).p; (t 1 t2) = t2 7

and f c (~) . ~ ; t2) = tl.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

28 Can we transform Logic Programs in t o At tribute Grammars?

In this f a (q , p & , f a (~) , ~ i , fb(l),p; and fc(l),p; are similar to the first production, and fa(l),p&(tl, t2) =
fc(s),p;(ti, t l) = s(t2) for any terms tl, t2.

The reversibility condition will be needed in order to reconstruct an attribute from its pieces.
In order to obtain a conditional attribute grammar a splitting of attributes into inherited
and synthesized is needed. For a special kind of splittings called safe, it will be possible to
construct a conditional attribute grammar.

Since the parameter passing concept is easier captured by an Input/Output classification,
and such a classification is implicit in the Attribute Grammar formalism, we will phrase our
results in terms of Input/Output attributes. Recall from section 2.5 the definition of Input
and Output positions of a production p of the form X, =+ XI . . . X,.

output(p) = {@(€)la E S(Xa)} u (j {a(i)ja E xi)}
i=l

Where S(X) denotes the set of synthesized attributes of X and I (X) the set of its inherited
attributes. We now define safe split tings.

Definition 5.3 Given an Abstract Attribute Grammar < A,Z >, a splitting of its at-
tributes into inherited and synthesized, a production (p) X, + XI . . . X, and a term t in
Tc(ATOC(p)), we say that t is output-free if the i/o-splitting induced by it is such that no
term in Output(p) occurs in t.
A production (p) X, XI . . . X, is said to be output-free if every restriction set associated
with that production has one term which is output-free.

Definition 5.4 Given an Abstract Attribute Grammar, we say that a splitting of its at-
tributes into inherited and synthesized is safe if the i/o-splitting induced by it is such that
every production in A is output-free.

Example 5.5 For the abstract attribute grammar discussed in example 5.2, consider the
following splitting:

inherited = {a, b}
synthesized = {c}

The Input/Output attribute occurrences of production p', are:

~ P U ~ (P : > = {a (&) , b(c)}
Output(p',) = {C(€)}.

The restriction sets associated with p', are: (0, a(€)} and { b (c) , c(~)}. Since the terms 0, a(&)
and b (~) are output-free, so is the production pi.
Similarly, for production p;, since a(€), b(&) and ~ (1) are output-free, so is the production pi.
This shows that for this Abstract Attribute Grammar, the splitting given above is safe.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tornas Isakowitr 29

Definition 5.6 An abstract attribute grammar will be called simple if has some safe split-
ting of attributes.

Theorem 5.7 Let G =< A,Z > be a reversible Abstract Attribute Grammar and let I / S
be a safe splitting of the attributes of G. There exists a Conditional Attribute Grammar
G' =< At,Z' > which is semantically equivalent to G (i.e. whose sets of valid decorated
trees are isomorphic).
Proof: We give a constructive proof. G' is constructed by transforming each production p

of G into a production p' with its associated equations. The context free components are
identical as are the interpretations, except for some new function symbols are introduced in
G' .

For each production p in the AAG we introduce a production p' in G'. The Context Free
component is the same, the equations associated with p' are constructed given a fixed safe
splitting. We set up an equation for each output position a(j). Let ti,, . . . tikao, be all the

terms appearing in the restriction sets which a(j) appears. Since G is reversible there exists
a function such that

for any locally valid valuation a. A function symbol is added to A' for fa(ih, which we will
denote by fa(j),p. The interpretation Z' part of G' will interpret by fa(j),p.

Let R1,. . . , Rka,j, be the restriction sets of which ti,, . . . t - are members. Since the
2ka(j)

splitting I / S of G is safe, there exist terms hi, E R,, , . . . E Rikij, that are output-free.
The following equation is associated with p' (notice that this step is non-deterministic since
there might be more than one output-free term in each restriction set). . .

One also has to ensure that all the terms belonging to a restriction set are identical. In order
to do so, from each term q in a restriction set, a term q' is constructed by substituting every
occurrence of an output attribute in q by the term to which it is equated. In the case of a (j)
above, one replaces every occurrence of it by fa(j),p(hil,. . . ka(,) 1 -

For each restriction set Ri = {qil.. . , qni) we obtain a logic formula R: = (qi,l =
I q:,, A .. . A qiVni-, = $,). (The symbol = stands for equality in the logic language, the

dot is added to differentiate it from the equality used in equations). To avoid redundancy,
expressions of the form q' = q' are left out. The formulae Ri, . . . , Rk corresponding to the
restriction sets R1,. . . , R, are collected into the logic formula R' = Ri A . . . A RL, which is
associated with p'. Notice that R' has been constructed so that it only contains occurrences
of input attributes. This completes the construction of the conditional attribute grammar
G'.

We now show that G and G' have equivalent semantics. There is a natural correspon-
dence between the attributed trees T of G and attributed trees T' of G' given by the above

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

30 Can we transform Logic Programs into Attribute Grammars?

transformation which relates the equations and input predicate associated with productions
of G' with restriction sets of G. Notice also that a is a valuation defined for T if and only
if it is defined for T'.

We first show that if a is a valid valuation for T , and production p occurs at address n
in T , then

Since a is a valid valuation for T , and any valid valuation for T is also locally valid for every
production p that appears in T , it follows from the reversibility of G that a has to satisfy
the following equality:

for the terms ti,, . . . ,tik appearing in the restriction sets associated with p. Since ti, and
41)

hi, are both members of R, it follows from the validity of a that a(t;,(n)) = a(hil(n)) hence
equality 3 follows.

Similarly, if a is valid for TI, then equality 3 follows from the fact that the equation

appears in T' and that fa(j),, is interpreted as

We now show that a is valid for T if and only if it is valid for T' by showing that for
every tree address n in T , a is valid at n if and only if it is valid at address n in T . Let
p be the production that is used at address n and let p' be its corresponding production in
G' (it follows that p' is used at address n in T'). Since the terms hi, were chosen from the
same restriction set as ti,, and since a is a valid valuation , we have that .(hi,) = a(t;,).
Each term q' is obtained from q by replacing each occurrence of a term of the form ti, by a
term hi,. It follows that a(q'i,jl(n)) = a(qi,i,(n)) for i = 1, . . . , n and 1 = 1, . . . , ni. Thus a
valuation a satisfies a restrict~on set Ri(n) = {qill(n), . . . , qi,,; (n) } if

a(qi,l(n)) = . . . = ~ (q i , n ; (n))iff
.(ql,lcn)) = . . . = a(q:,.,(n))iff
it satisfies the logic formula R';(n).

We have shown that:

1. the set of attributed trees of G and G' are isomorphic,

2. given isomorphic decorated trees T of G and T' of G', and an address n in their
respective domains, the set of valid valuations of T at address n is the same as the set
of valid valuations of 2'' at address n.

It follows that G and G' have the same semantics. 0

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tornas Isakowitz 31

NOTE: An important point that follows from our definition of valid valuations and which
is not made explicit here, is that values assigned to input positions have to be such that no
term appearing in either an equation or a logic formula is undefined, i.e. they belong to the
domain of the functions (or composition of functions) which are applied to them.

Example 5.8 The result of applying this construction to the addition abstract attribute
grammar with the splitting described above is the following Conditional At tribute Grammar:

The interpretation part of the Conditional Attribute Grammar, partly obtained from exam-
ple 5.2, is as follows:

Z1(n,S) = the projection function on terms of the form s(z)

Given the interpretation Z', it is easy to see that the Conditional Attribute Grammar
given above is equivalent to the following notationally more intuitive Conditional Attribute
Grammar.

(pi:) add =+ end c(6) = b(e)
(a(€) = 0)

(pi) add + add a(1) = r;(a(e))
b(1) = b(€)

~ (€ 1 = s(c(1))
This last Conditional Attribute Grammar is similar to the one obtained from the logic
program for addition by the method described in [9] except that instead of a(€) = 0 they
introduce the predicate instance(a(c), 0); also a predicate instance(a(e), s(X)) is introduced
in the second production by them which is not needed here because of the way valid valuations
are defined, namely no term can be undefined. This forces a(€) to be an instance of the term

s(X>-
From theorem 5.7 we obtain the following corollary.

Corollary 5.9 For every reversible simple Abstract Attribute Grammar one can construct
an equivalent Conditional Attribute Grammar

Center for Digital Economy Research
Stem School o f Business
IVorking Paper IS-91-06

32 Can we transform Logic Programs into Attribute Grammars?

6 Transforming a Logic Program into a Conditional
Attribute Grammar

We will now show how to transform a Logic Program with a legal Input / Output assignment
to its predicate positions into a Conditional Attribute Grammar. (The exact meaning of legal
will be stated below.) This is done in two steps. First the Logic Program is transformed
into an Abstract Attribute Grammar as described in section 4. Them the transformation of
the section 5 is applied to obtain an equivalent Conditional Attribute Grammar. In order
to utilize the construction given in theorem 5.7 we have to make sure that the Abstract
Attribute Grammar obtained from the Logic Program is indeed reversible. That is the focus
of the next lemma.

Lemma 6.1 The Abstract Attribute Grammar obtained from a Logic Program using the
construction described in section 4.4 is reversible.
Proof: Recall that the construction associated predicate symbols with non-terminals and

predicate argument positions with attributes. The natural mapping between attributes and
the terms appearing in the corresponding argument position of the clause was denoted by
tr,~, i.e. if a is an attribute occurrence in production p', then trpI(a) is the term appearing
in the original clause of the LP in the argument position corresponding to a (refer to page
24).

In order to show reversibility of the Abstract Attribute Grammar we pick an arbitrary
production p' (which corresponds to a definite clause p) and an arbitrary attribute occurrence
a of p' and we construct a function f,,,t such that for any locally valid valuation a,

where tl, . . . , tk are all the terms in the restriction sets of p' in which a appears. Intuitively,
this is possible because each restriction set associated with p' represents an atom occurring
in the original definite clause. Thus the atoms that make up the term corresponding to
a are scattered among the restriction sets. Since we can construct a term from the atoms
appearing in it, we can reconstruct it from selected elements of the restriction sets.

Let us denote by t the term tr,l(a). Let sl, . . . , s, be all the atoms (i.e. variables
and constants) appearing in t . Clearly, t can be constructed from its atoms by using term
constructors7 hence

t = $ (~ l , . . , s n) (6)

for a function 4 that is a composition of term constructors. For example, the term t =
h(f (X, Y), a) can be constructed from X, Y and a by the function

Clearly, for any substitution 0, 0(t) = $(O(sl), . . . , O(sn)). Since a is a locally valid valuation
for pi, we have by corollary 4.12 on page 24 that a (a) = Bp,cr(t). Hence;

Center for Digital Economy Research
Stem School o f Business
Working Paper IS-91-06

Tomas Isakowitz 33

Recall that each restriction set R, associated with p' represents all the paths leading to an
atom in p, i.e. R, = Paths(p, s;) for some s;. Let s: E Paths(p, s;), hence s: is of the form
~ (a ;) for some attribute occurrence a; of p'. Hence

By corollary 4.12,
a(a;) = Op,, (tr, (a;))

hence,
a (~ :) = ~(Op,a(trp(bi)))

Since ~ (a) E Paths(p, s;), by lemma 4.9 on page 22,

Hence, from equations 7, 10 and 11 we obtain the following equality

for s{, . . . , sk members of the restriction sets of p' in which a appears. Since cr is valid, it
has to agree on all members of each restriction set thus for for any terms t l , . . . , tn such that
ti and s: are in the same restriction set we have that

If we now denote 4 by f,,p~, we have equality 5 as wanted. CI

Now, in order to obtain a Conditional Attribute Grammar from an Abstract Attribute
Grammar, theorem 5.7 requires the AAG to be not only reversible but also safe. Therefore, in
order to transform a Logic Program into a Conditional Attribute Grammar we will also need
to impose certain conditions on the LP that will result in a safe splitting of the attributes
of the AAG. We borrow our notation from 191.

Definition 6.2 Given a Logic Program, a direction assignment (d-assig) is a mapping of
the arguments of each predicate symbol occurring in the LP into the set (4, f).

A d-assig splits the argument positions of each definite clause into input positions and
output positions similarly to the way a splitting of attributes into inherited and synthesized
results in an Input/Output splitting of the attribute occurrences of a production. Given a
definite clause, its input positions are J. positions of the head of the clause and f positions
of its body. Output positions are t positions of its head and J. positions of its body.

The condition needed to obtain an Attribute Grammar is that each output position be
computable from input positions. This can be done if each variable which occurs in some
term in an output position also occurs in a term which is in an input position. This will
guarantee that the value of the variable be instantiated when it is needed.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-06

34 Can we transform Logic Programs into Attribute Grammars?

Definition 6.3 A d-assig is called safe if each variable occurs in at least one input position.

Since there is a one-to-one correspondence between argument positions of predicates
and at tributes, a d-assig imposes a splitting of the at tributes: at tributes corresponding to
argument positions to which the d-assig gives the v ~ l u e j. are inherited, while attributes
corresponding to argument positions that receive the value f are synthesized. It is easy
to see that input argument positions of a definite clause p correspond to input attribute
occurrences of the corresponding production p' and similarly for the output positions and
attribute occurrences. Thus, it makes sense to ask the question of the safeness, in Abstract
Attribute Grammar terms, of the d-assig. We have the following lemma.

Lemma 6.4 Let I' be a Logic Program, let G be its equivalent Abstract Attribute Grammar
obtained using our construction. Also, let d be a d-assig for I' and let I / O be its induced
splitting on the attributes of G. If d is safe so is I /O.
Proof: Let p be a definite clause appearing in I' and let p' be its corresponding production

in G. We have to show that each restriction set associated with p' has an output-free element.
Recall that each restriction set R is of the form Paths(p, s) for some atom s. If s is a

constant, then s E Paths(p, s) by definition of Paths(p, s), hence R is output-free. If s is
a variable X, by the safeness of I', there exists an input position of p where X appears.
Let a be the attribute corresponding to that input position. By definition, a is an input
attribute occurrence of p'. Since R = Paths(p, X) and X appears in t r (a) , there has to be a
term of the form ~ (a) in R. Since a is ar, input attribute occurrence, ~ (a) is an output-free
term, hence R has an output-free element. Since R was chosen arbitrarily, this completes
our proof. 13

By putting together lemmas 6.1 and 6.4 with theorem 5.7 we obtain the following corol-
lary.

Corollary 6.5 Let I' be a Logic Program and let d be a safe d-assig for I', there exists a
Conditional At tribute Grammar which is semantically equivalent to I' .
Proof: First, construct an Abstract Attribute Grammar G which is equivalent to I' by using

the construction of section 4.4. Lemma 6.1 tells us that G is reversible. Lemma 6.4 shows
that the induced I / O splitting is safe. Thus, the conditions for theorem 5.7 are met allowing
us to construct a Conditional Attribute Grammar G' which is semantically equivalent to G,
hence to I'. 0

Definition 6.6 A Logic Program for wich there exists a safe d-assig will be called a simple
Logic Program.

From our previous results, the following corollary follows.

Corollary 6.7 Every simple logic program has an equivalent conditional attribute grammar.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Tomas Isakowitz 35

In general, the problem we are trying to tackle is that of finding an answer substitution
for a query posed to a Logic Program. A query that induces, by virtue of its ground terms, a
safe splitting of the argument positions, will be called a safe query. Given a Logic Program
I' and a safe query, an equivalent Conditional Attribute Grammar can be constructed on the
fly to assist in its unification-free evaluation (how exactly this evaluation proceeds is beyond
the scope of this paper). The process will become more efficient if the amount of processing
to be done for each query could be reduced.

Notice that the reversing functions f,,,~ used in lemma 6.1 do not depend upon a specific
valuation nor upon a specific splitting of the attributes. Thus, these functions can a11 be
precomputed for all attribute occurrences and productions at once when first transform-
ing a Logic Program into an Abstract Attribute Grammar. Then, in order to construct a
Conditional Attribute Grammar in response to a safe query, it will be enough to determine
the input and output positions of each production and then assemble the necessary equations
and predicates by using the reversing functions precomputed when constructing the Abstract
Attribute Grammar.

We now compare our results with the transformation from logic programs to conditional
attribute grammars described in [9]. Their Construction 3shows how to obtain a Conditional
Attribute Grammar equivalent to a Logic Program with respect to a safe d-assig. Proposition
I states that every simple Logic Program can be transformed into an equivalent Conditional
Attribute Grammar. This is similar to our corollary 6.7.

Given Logic Program with a safe d-assig our transformation will exhibit an equivalent
Conditional Attribute Grammar by performing an intermediate transformation into a Ab-
stract Attribute Grammar. Thus we have two steps in our transformation: from a Logic
Program to an Abstract Attribute Grammar and from an Abstract Attribute Grammar into
a Conditional Attribute Grammar. What is the gain?

The method described in [9] requires a specific input/output assignment to transform a
logic program into a conditional attribute grammar. With our method however, one can
construct a generic abstract attribute grammar for a given logic program without dealing
with input/output assignments. When a specific input/output behavior is imposed, its safe-
ness can be checked and the corresponding conditional attribute grammar constructed from
the abstract attribute grammar. Furthermore, as we discussed above, the amount of pro-
cessing needed to produce a Conditional Attribute Grammar from a specific query can be
substantially lowered by precomputing the reversing functions.

The advantage of our method when compared to theirs is that a significant portion of
the translation can be done independently of the specific input/output assignment, which
means that portions of the compilation process can be done for the entire logic program
independently of any query. It is the part that generates an abstract attribute grammar
equivalent to the original logic program. Whenever a specific query is to be evaluated, an
input/output assignment is imposed. Our method then proceeds to check for safeness of the
assignment and then to the construction of the equivalent conditional attribute grammar
whenever possible. In 191 a complete translation has to be performed each time query is
posed. Our method therefore achieves a greater level of efficiency by identifying aspects of
the logic program which are independent of the particular i/o assignment.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

Can we transform Logic Programs in to Attribute Grammars?

7 Conclusion
In this paper we have investigated the relationship between Logic Programs and Attribute
Grammars. The lack of an inputloutput behavior in the former clashes with the nature of
the latter, This led us to introduce Abstract Attribute Grammars. We have shown the close
relationship between both formalisms, and we have provided a construction that transforms
any logic program into an equivalent abstract at tribute grammar.

We have given sufficient conditions for transforming an Abstract Attribute Grammar
into an equivalent Conditional Attribute Grammar. These conditions apply in the cases of
Abstract Attribute Grammars obtained from Logic Programs via the construction described
in section 4.4.

We have also shown how our work ties in with the work by Deransart and Maluszynski
[9]. When constrained to the domain of their investigations (simple logic programs), the end
results of applying the transformations described there and here do coincide. The types of
constructions described here and in [9] can be viewed as an attempt to exclude unification
from the computation of proof-trees, by replacing it by a form of pre-processed matching.
Our approach is more powerful in a number of ways:

1. The transformation from Logic Programs into Abstract Attribute Grammars is not
restricted to a particular class of LPs.

2. Although, Deransart and Maluszynski are able to transform arbitrary Logic Programs
into equivalent Relational Attribute Grammars, their transformation does not provide
any degree of term matching. Our transformation from Logic Programs to Abstract
Attribute Grammars does.

3. There is a certain amount of pre-processed matching that can be done independently
of a particular query being posed to a Logic Program. Our transformation from Logic
Programs to Abstract Attribute Grammars captures that. In [9] , all meaningful trans-
formations are dependent upon a specific i/o assignment, hence to a specific class of
queries.

4. By performing a greater amount of preprocessing, which involves pre-computing the
reversing functions at the time a Logic Program is transformed into an Abstract At-
tribute Grammar, we show how to construct of a Conditional Attribute Grammar
equivalent to the Logic Program with respect to a specific safe query without per-
formiong any amount of term matching. This sets the ground for a scheme to do
Unification-Free evaluation of Logic Programs.

In this paper we have presented two transformations: LPs to AAGs and AAGs to LPs.
We have formally shown the correctness of these transformations and explained what their
advantage is. We have compared our results to those published elsewhere and we have argued
for the generality and rigurosity of our approach.

8 Further Research

We are also interested in continuing our investigations on the following topics:

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-06

Tomes Isakowitz 37

Evaluation: how to use attribute evaluators to run Logic Programs that have been
transformed into Abstract At tribute Grammars?
One can look at the Abstract Attribute Grammar as a compiled form of the logic
program. The exact way in which this intermediate code can be used is not clear at
the moment. One way of tacking this problem is to use logic programming interpreter
techniques although it is not clear how efficient and practical this would be. Another
possibility is to adapt Attribute Grammar techniques to AAG.

We have given suficient conditions for transforming an Abstract Attribute Grammar
into an equivalent Conditional Attribute Grammar, the topic of finding necessary con-
ditions is worth studying.

Functionality: by un-freezing the interpretation of functions in a Logic Program and
by using Conditional At tribute Grammar evaluation techniques, it seems plausible to
add functional programming capabilities to logic programs.

Natural Language Processing: It is possible to transform some DCGs into AGs. In
doing so one can separate the parsing process from the rest of the computation which
can be dealt by an attribute evaluator. This leads to efficient implementations of
Natural Language Processing systems whose prototypes are built in Prolog and then
transformed into AGs. Characterizing the class of DCGs for which this will work is
worth studying.

It is our thesis that the preprocessing of clauses of a Logic Program proposed here will sub-
stantial improve the run time for a large class of LPs.

The author is very greatful to Jean Gallier for his stimulating discussions, to Pierre Deransart
for his comments on earlier versions of this paper and to the referees of this paper for their
constructive criticism.

Center for Digital Economy Research
Stern School of Busilless
IVorking Paper IS-91-06

38 Can we transform Logic Programs in to Attribute Grammars?

References

[I] K.R. Apt and M.H. Van Emden. Contributions to the theory of Logic Programming.
Journal of the ACM, 29(3):841-862, 1982.

[2] I. At tali and P. Fracnchi-Zannettacci. Unification Free Execution of TYPOL programs
by Semantic Attribute Evaluation. In Robert A. Kowalski and Kenneth A. Bowen, ed-
itors, Proceedings of the Fifth International Conference and Symposium on Logic Pro-
gramming, pages 160-177, 1988.

[3] L. Chirica and D. Martin. An Order-Algebraic definition of Knuthian Semantics. Math-
ematical Systems Theory, (13):l-27, 1979.

[4] K, L. Clark. Predicate Logic as a Computational Formalism. Research Monograph
79/59? Imperial College, London, 1979.

151 W. F. Clocksin and C.S. Melish. Programming in Prolog. Springer-Verlag, 1984.

[6] B. Courcelle. Attribute Grammars: Theory and Applications. In Lecture Notes in
Computer Science, pages 75-95. Springer-Verlag, 1981.

[7] B. Courcelle and P. Franchi-Zannettacci. Attribute Grammars and Recursive Program
Schemes: Theoretical Computer Science, 17(2):235-258, 1982.

[8] Bruno Courcelle and Pierre Deransart. Proofs of Partial Correctness for Attribute Gram-
mars with Applications to Recursive Procedures and Logic Programming. Information
and Computation, 78(1):1-55, 1988.

[9] P. Deransart and J. Maluszynski. Relating Logic Programs and Attribute Grammars.
Journal of Logic Programming, 1(2):119-225, 1985.

[lo] Jean H. Gallier. An efficient evaluator for Attribute Grammars with Conditional Rules.
Technical report, Computer and Information Sciences Department, University of Penn-
sylvania, Philadelphia, PA, 1985.

[ll] Jean H. Gallier. Logic for Computer Science. Harper and Row, 1985.

[12] S. Gorn. Explicit Definitions and Linguistic Dominoes. In John Hart and Satoru
Tazkasu, editors, Systems and Computer Science. Hedonist Press, 1965.

I131 Tom& Isakowitz. On the Relationship between Logic Programs and Attribute Gram-
mars. Master's thesis, CIS Department, University of Pennsylvania, Philadelphia, PA
19104, December 1985.

[14] D. Knuth. Semantics of Context Free Languages. Mathematical Systems Theory,
2(2):127-145, 1968.

[15] R. A. Kowalski. Predicate Logic as a Programming Language. In J. Rosenfeld, editor,
Information Processing 7'4, pages 556-574. North-Holland, 1974.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-06

[16] B.M. Mayoh. Attribute Grammars and Mathematical Systems. SIAM on Computing,
3(10):503-518, 1981.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-06

