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Abstract 

In this paper we study the relationship between Attribute Grammars and Logic Pro- 
grams, concentrating on transforming logic programs into attribute grammars. This 
has potential applications in compilation techniques for logic programs. It does not 
seem possible to transform arbitrary Logic Programs into Attribute Grammars, basi- 
cally because the same logic variables can sometimes be used as input and sometimes as 
output. We introduce the notion of an Abstract Attribute Grammar, which is similar to 
that of an Attribute Grammar with the exception that attributes are not classified into 
inherited and synthesized, and that the semantic equations are replaced by restriction 
sets. These sets represent a restriction on the values of attribute occurrences namely, 
all elements within each set have to be equal. We give an effective translation schema 
which produces an equivalent Abstract Attribute Grammar for a given Logic Program. 
We provide a formal proof of this equivalence. We then proceed to classify a class 
of Abstract Attribute Grammars that can be transformed into Attribute Grammars, 
and show how to achieve this transformation. By composing both transformations one 
can transform certain logic programs into attribute grammars. Complete proofs ar5e 
given. 
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Can we transform Logic Programs into Attribute Grammars? 

Introduction 

This paper studies the possibility of translating Logic Programs (LPs) into Attribute Gram- 
mars (AGs). Deransart and Maluszynski [9] show how to perform this translation for a 
restricted class of LPs. Our method is more general in the sense that it applies to arbitrary 
LPs. However the formalism into which the translation is performed (AAG) is in some sense 
weaker than AG. The work presented here originated in [13] and was developed indepen- 
dently by the author. In this paper we have adopted terminology similar to the one used 
in [9]. As an example of the applications that a translation of the type investigated here 
has, we point out to work by Attali and Franchi-Zanettacci [2]. They show how one can 
use attribute evaluation techniques to run TYPOL programs. TYPOL can be regarded as a 
subset of the class of LPs with which we deal here. 

Logic programs are expressively powerful but might be computationally inefficient. How 
can the computational aspect be improved? One could apply techniques used for other pro- 
gramming languages, mainly those related to compilation. In general, LPs are interpreted. 
What is the difference between an interpreter and compiler? In a compiler commands are 
translated into sequences of machine language instructions at compile time. An interpreter 
translates each command as it is executed. Thus compilers are faster for execution while 
interpreters are better for development because they support interactive program develop- 
ment. 

What can we do about compiling Logic Programs? Let us analyze how an interpreter for 
LPs works to see which instructions are re-translated every time. Given a LP I' and a Goal 
G, the objective is to find out whether 3x1 . . . s n G  (where 21,. . . , xn are all the variables 
appearing in G) holds in I'. In general one is interested values for the variables that make the 
goal G true. In more formal terms, one is interested in a substitution 0 such that I' t O(G). 
This is called an answer substitution. Let us consider a nondeterministic procedure to solve 
the problem. Recall that an Logic Program is a set of definite clauses. The head of a definite 
clause A t B1,. . . , B k  is is A, and its body is B1,. . . , Bk. 

Initially the set of goals consists of the initial goal G. The following steps are repeated 
until the set of goals is empty. 

1. Choose a goal g from the set of goals. 

2. Pick a clause whose head unifies with the goal g. 

3. Add the body of the clause to the set of goals. 

4. Apply the unifying substitution obtained in step 2 to the new set of goals. 

The procedure is clearly non-deterministic due to: a) Choosing a goal (step I), b) Choosing 
a clause (step 2) and c) choosing a unifier (step 2). 

Notice that this procedure might not end. It ends either when the set of goals is empty or 
when step 2 is unsuccessful, In the first case the composition of the substitutions obtained 
in step 2 is an answer substitution. If the latter case occurs, one can only say that the 
current branch of the computation is unsuccessful which, due to the nondeterminism of the 
algorithm does not mean that there exists no answer substitution. One can only negatively 
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answer the question "is 3x1.. . x,G provable from I'?" provided all branches of computation 
are unsuccessful. 

Different interpreters can deal in different ways with this non-deterministic aspect. A de- 
terministic strategy can also be adopted. One could run an exhaustive breadth-first strategy 
which considers all possible choices. However, this would be unbearably slow. The standard 
Prolog [5] interpreter regards the set of clauses and the set of goals as ordered sequences. In 
step 1 it picks the leftmost goal, and in step 2 it pick the first clause, i.e. the one appearing 
earlier in the program. 

One can say that in some sense steps 1 and 2 are re-translated continually by the inter- 
preter. Step 2 is computationally expensive in two ways. It involves searching the program 
for clauses that could unify with the goal, i.e. candidate clauses. Secondly, a unification al- 
gorithm has to  be run for each candidate clause and if successful, the resulting substitution 
is to be applied to the new set of goals in step 4. This operation is tantamount to parameter 
passing. It is on this aspect that we concentrate, proposing some techniques that might re- 
place the implicit parameter passing represented by unification with a more explicit, directed 
method. This is how our results relate to compilation. Instead of running similar sequences 
of instructions whenever a unifying clause is obtained, it is possible to pre-compute some of 
the parameter passing operations. 

1.1 Preview of the results 

In this paper we study a systematic way of performing the translation from a Logic Program 
into an Attribute Grammar. Due to the intrinsic difference between the direction-less nature 
of logic variables and the directedness of attributes it is not possible to produce a semantically 
equivalent Attribute Grammar for an arbitrary Logic Program. We introduce a formalism, 
Abstract Attribute Grammar (AAG), in which there is no classification of the attributes 
into inherited or synthesized. The attributes are intrinsically directionless, thus we abstract 
over the notion of direction present in AGs, hence the prefix Abstract to our formalism. We 
give a linear time procedure to translate a LP into a semantically equivalent AAG and we 
provide a proof of the correctness of this method. 

In AAGs equations are not written using the equal sign. Instead of writing the equa- 
tions t = tl , . . . , t = t,, we use a different notation which introduces the restriction set 
{t, tl, . . . , t,). The semantics we impose forces all members of a restriction set to be inter- 
preted by identical objects. We feel that this simplifies the notation. 

We proceed with an example, leaving the formal definitions for section 3. 

Example 1.1 Consider the Logic Program for syntactic addition given by: 

Any proof tree for this LP will consist of a single branch ending with an instance of 
add(0 ,Y ,Y). We define a Grammar with two symbols: a non-terminal symbol add and 
a terminal symbol end which represents the end of a computational branch. The terminal 
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4 Can we transform Logic Programs into Attribute Grammars? 

end has no attributes. The predicate add is ternary, we will associate with it the non- 
terminal symbol add with three attributes: x ,  y and z. Using our method we obtain the 
following AAG: 

add + end ( ~ ( 6 ) )  0) 
{Y(E), ~ ( 4 1  

add +- add {7r8(x(~)), ~ ( 1 ) )  
( ~ ( 4 ,  ~ ( 1 ) )  
{7r8(z(4), ~ ( 1 )  I 

The function 7r8 when applied to a term of the form s(tl) returns tl .  It is a projection 
function. The idea behind the transformation is to relate different occurrences of the same 
logic variable by semantic equations. Thus the set { y ( ~ )  = ~ ( 6 ) )  in the first production 
comes from the first clause in the LP where Y appears as the second and third argument of 
add. 

The difference between an AAG and an AG is that the attributes in AGs are directed 
and that the equations can be used for computation. Notice that the LP can be used to 
compute subtraction as well as addition. If we want to transform the above LP into a AG 
we have to restrict ourselves to a specific behavior of the program. Let us now transform 
this AAG into an AG that computes the value of z as the addition of x and y. We let x and 
y be inherited attributes (since they act as input) and z be synthesized. 

add + end zero(x(r)) 
Z(€)  := Y(E) 

add + add x(1) := 7r8(x(~)) 

~ ( 1 )  := Y k )  
Z(E)  := s(z(1)) 

The predicate zero is applied to an input attribute and represents a condition under which 
the production applies. In this sense we have a Functional AG as opposed to a simple AG. 
Notice that in the last equation we introduced the function s which is the inverse of 7r8. 

As additional example of the utility of our work, we note that a Functional AG can be 
transformed into a functional program. In our case, we interpret add as a function returning 
the value of the attribute z. 
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lbrnas Isakowitr 5 

The functions s and 7r3 are to be interpreted as successor and predecessor, they can also be 
defined with lambda expressions. This functional program can be compiled into machine 
code and optimized. Thus, the whole process shows that it is possible to compile some logic 
programs into machine code. We leave this topic for further research. 

As mentioned earlier, it is not just a nuance that in order to obtain an AG we have 
to restrict ourselves to a specific input/output behavior of a LP. The notion of a direction 
assignment (d-assig) presented in [9] provides the ability to talk about the different behaviors 
of the arguments of predicates appearing in a LP by classifying them into input or output. 
This notion extends to AAGs. We show how to obtain an AG from a given AAG and 
a suitable direction assignment. A proof of the correctness of this transformation is given. 
Putting both transformations together, we see that starting from a LP and a suitable d-assig 
it is possible to obtain a semantically equivalent AG by transiting through an AAG. 

1.2 Related Work 
Deransart and Maluszynski [9] show how to transform arbitrary LPs into Relational Attribute 
Grammars (RAGs). In RAGs attribute equations are replaced by first order formulae, thus 
RAGs are more general than AAGs which only permit equational formulae. Their translation 
from LPs into RAGs provides an equivalence which is only reflected in the choice of the 
semantic interpretation of the RAG, while in our case the equivalence is forced by the 
syntactic qualifications of the AAG. Thus our transformation is more precise. 

To summarize, we present a formalism (AAG) which captures via syntactic equations 
the relations present in LPs and is still generous enough to allow for the representation of 
arbitrary LPs. We also provide a transformation from a subclass of AAGs into AGs. We 
give full correctness proofs. We feel that for the purposes of the problems we investigate 
here, Abstract At tribute Grammars are more suitable than Relational Attribute Grammars. 
First, the undirected nature of logical variables is better represented by restriction sets than 
it is by general predicates. Second, the the relationship among different positions in a clause 
is more transparent in our representation. We strongly feel that AAGs should be used as a 
tool to investigate compilation aspects of Logic Programs. 
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Can we transform Logic Programs into Attribute Grammars? 

Preliminaries 

2.1 Well Formed Terms 

Well formed terms are used in the definitions of logic programs and attribute grammars. 
We explain how terms are build inductively from a set of variables and function symbols. 
Although the approach is in general many sorted, this is not needed in the scope of our 
paper. For the sake of simplicity sorts are left out of the discussion. 

Terms are defined inductively from a set of function symbols and a set of variables. Each 
function symbol f takes a predetermined finite number of arguments which is called its arity 
and denoted by arity(f) .  Function symbols of 0 arity are called constants. 

Definition 2.1 Given a set V of variables and a set F of function symbols, the set TF(V)  
of well formed terms is defined inductively as follows: 

1. each variable v E V is a term 

2. if f is a function symbol of arity n and t l , .  . . , t ,  are terms, then f ( t l ,  . . . , t,) is also 
a term. 

From 2 it follows that constants are terms. The set of terms is freely generated from the 
variables by the function symbols. This is important because it allows functions over T F ( V )  
to be defined recursively. For a discussion of inductive sets, free generation and recursive 
functions see the second chapter of Logic for Computer Science by J .  Gallier [Ill. 

Given a syntactic characterization of the set of terms, we would like to interpret these 
symbols in a coherent manner. That is, we want each function symbol f E F to stand for a 
specific function, each constant c to stand for a specific value, and so on. This is formally 
done by an interpretation. 

Definition 2.2 An interpretation Z of a set of terms T'(V) is a mapping such that: 

1. The set of variables is assigned a specific domain Z ( V )  = D called the semantic domain 
of v. 

2. For each function symbol f E F of arity n, Z(f) is a function from Dn into D. In 
particular for a constant c, Z(c) E D. 

A way of relating variables to their domains is also needed. This is done with valuations. A 
valuation (2 for a set of variables V is a mapping assigning to each variable an element of its 
domain, that is: a (v )  E D. Valuations are naturally extended to terms as follows. Given 
a set L of terms, an interpretation Z and a valuation a for variables, a is extended to a 
valuation E of arbitrary terms as follows: 

1. for a variable v, -ii;(u) = a(v )  

From the definition it follows that for constants c, Z(c)  = Z(c). That E is well defined follows 
from its definition and from the inductive definition of terms. 
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Tomes Isakowitz 

2.2 Logic Languages 

A logic language LC is given by a tuple < F, F, V > where: 

1. P is a set of predicate symbols with assigned arities, 

2. 3: is a set of function symbols, 

3. V is a countably infinite set of variables. 

The set of terms of LC is given by TF(V), the set of terms constructed from V and F, it is 
also denoted by Terms(L). 

Notice that in a logic language LC, the set of terms is freely generated from the variables 
by the function symbols. We can therefore conclude that any function mapping variables in 
LC to terms in Terms(L) has a unique extension to a function over Terms(L). We use this 
to define the notion of a substitution. A substitution is a mapping from formulae to formulae 
which replaces some variables by terms in a systematic manner. Formally: 

Definition 2.3 Given a function 0 : Var(L) I-+ Terms(LC), its unique extension to terms - 
0 : Terms(C) I-+ Terms(LC) is a substitution. 

We will identify $ with 0. If 0 is a substitution and t a term, then 0(t) is called an instance 
of t. 

Atomic formulae are of the form P(tl , .  . . , t,) where tl, . . . , t, are terms and P is a 
predicate symbol of arity n. The set of formulae is built up inductively from the atomic 
formulae, the logic connectives and the quantifiers. For a more detailed discussion on the 
formal definition of logic languages see [ll]. The semantics are defined via structures and 
assignments to free variables as usual. 

2.3 Definite Clause Programs 

Logic Programming deals with the computation of relations specified by logic formulae. This 
section briefly outlines the main concepts which are used in the sequel. For more details, 
the reader is referred to the literature 11, 151. 

2.3.1 Syntax 

We focus our attention on a special type of logic formulae. A definite clause is a pair 
consisting of an atomic formula A and a finite set of atomic formulae {B1,. . . , Bk), with 
k >_ 0, commonly written as 

A t  Bl, ..., Bk. 

In standard logic notation the clause described above is represented by the formula: 

where XI,. . . , xn are all the variables appearing in B1,. . . , B k ,  A. 
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8 Can we transform Logic Programs into Attribute Grammars? 

Definition 2.4 A Definite Clause Program (DCP) is a finite set of definite clauses belonging 
to a logic language L. 

Throughout the rest of this paper when referring to a definite clause program we might use 
the name logic program although the latter constitutes a larger class of programs. (A Logic 
Program can have clauses without positive litterals.) 

2.3.2 Proof Theory 

Following [I], a Definite Clause Program is considered to denote its least Herbrand model. 
It was shown in [4] that one can instead deal with the set of all atomic formulae which are 
logical consequences of the definite clause program. Each element in this set can be obtained 
by constructing a proof tree having the term as its root. For our purposes it is convenient to 
consider a definite clause program to be the specification of the set of all its proof trees. 

Definition 2.5 A prooftree is an ordered labeled tree whose labels are atomic formulae (not 
necessarily ground). The set of proof trees for a given definite clause program I' is defined 
inductively as follows: 

1. If A t- 0 (i.e. with empty body) is an instance of a clause of I?, then the tree consisting 
of the two nodes whose root is labeled by A and whose only leaf is labeled by end is a 
proof tree. 

2. If TI,. . . ,irk for some k: > 0 are proof trees with roots labeled B1,. . . , Bk and A +- 

B1,. . . , Bk is an instance of a clause in I', then the tree consisting of the root labeled 
with A and the subtrees TI, . . . , T k  is a proof tree. 

Example 2.6 The following definite clause program computes syntactic addition. The num- 
ber n is represented by sn(0). 

The tree appearing in figure 1 is a proof tree of this definite clause program. It states a proof 
tree for 2 $1 = 3. 

2.4 Attribute Grammars 

In this section we briefly introduce Attribute Grammars. For a more detailed treatment 
see [lo]. Attribute Grammars were introduced by Knuth 1141. The following definition is 
inspired from Chirica and Martin [3] and Courcelle and Franchi Zannettacci 161, 171. Some 
adaptations have been made to simplify the definition. An Attribute -Grammar is a pair 
(A, Z) consisting of a syntactical part A called an attribute system, and a semantic part Z 
called an interpretation. Roughly speaking, an attribute system defines a set t: of function 
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I 
end 

Figure 1: The proof tree for add(s(s(O)), s(O), s(s(s(0)))) 

symbols, a context-free grammar G, a set of attributes for each symbol in G, and a set E of 
semantic equations formed from the function names in C and the attributes. Normally the 
attributes and the function symbols are typed (sorted). This however is not needed in the 
scope of our paper and we leave it out for the sake of clarity. 

Definition 2.7 An attribute system 34 consists of the following components: 

1. A finite set C of function symbols. 

2. A context-free grammar G = (N,T, P, Z), where N is the set of nonterminals, T is 
the set of terminals, Z E N is the start symbol, and P 5 N x ( N  U T)* is the set of 
productions. 

3. With every symbol X of the grammar, a finite set A(X) of attributes is associated. 
The cardinality of A(X) will be denoted by n x .  

4. Two functions S : X ++ 2A(X)  and I : X ++ 2 A ( X )  determine which of the attributes 
of X are synthesized and which are inherited. If the start symbol Z has inherited 
attributes, or any terminal symbol has synthesized at tributes, the at tribute grammar 
is said to have parameters. 

5. For every production p : XE --+ XI ... Xn, a finite set Ep of semantic equations (or restric- 
tions) which satisfies the following constraints. First, the set of attribute occurrences 

Each attribute occurrence z(i) has a tag i indicating that it is associated with the gram- 
mar symbol Xi in p. This is necessary because the same attribute z may be associated 
to distinct grammar symbols in the same production and to different occurrences of 
the same grammar symbol. 

We now define the set of equations Ep associated with a production. 

i) The only attributes of XE that are defined in p are synthesized. That is, for every 
synthesized attribute a E S(XE), there is exactly one equation 
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where t:(E) is some term in TE(ATOC(p)). 

ii) Only inherited attributes of the right hand side are defined in p. For every k, 
1 < k < n, for every inherited attribute y E I (Xk),  there is exactly one equation 

where ti(k) is some term in Tx(ATOC(p)). 

It should be noted that a semantic rule is oriented, in the sense that it has a left-hand 
side and a right-hand side which are not interchangeable. 

We now turn to the semantics of Attribute Grammars. Our goal is to define the meaning 
assigned by an attribute grammar to a parse tree. Given an attribute grammar = (A,Z), 
the interpretation Z is used to provide meaning to parse trees. For every parse tree T, Chirica 
and Martin [3] define a system ET of equations among variables called attribute instances, 
and show that this system has a least fixed point, which is taken as the semantics of T. For 
the purpose of our work, we change this definition and take the set of all solutions of ET 
to be the semantics of T. Intuitively, attribute instances are copies of attribute occurrences 
assigned to the nodes of the parse tree, and attribute evaluation consists in computing the 
values of these instances. 

In order to refer to nodes in parse trees, we use an addressing scheme due to S. Gorn [12]. 
The root of the tree receives as address the empty string E .  If a node has the address u and 
this node has exactly n successors, they receive the addresses u l ,  ..., un from left to right. An 
attribute instance is an expression of the form a(u), where a is an attribute of a symbol X, 
and u is the tree address of a node labeled X in a parse tree. Instead of dealing with parse 
trees we will use attributed trees in our discussion. These are obtained from parse trees by 
replacing each node X by the node X (X. 1 (m), . . . , X.nx (m)) where X. 1, . . . , X.nx are all 
the attributes of X and m is the position of the node. 

Given an attributed tree T, the set AIT of attribute instances associated with T and the 
system of equations f i  are defined inductively as follows (see [3, 161). 

Definition 2.8 If T is an attributed tree of depth 1, then the production applied at the 
root is some production (p) : A 4 u, where u E T* is a terminal string. Then, 

ET = Ep, and AIT = ATOC(p). 

If T is an attributed tree of depth > 2, then the production applied at the root is some 
production p : Xe 4 XI . . . Xn, where XI . . . Xn contains some nonterminals, say B1,. . . , Bk. 
Let XI . . . X, = u1B1u2 . . . u ~ B ~ u ~ + ~ ,  with ~ 1 , .  . . , uk+l E T*. Then, if the subtrees rooted 
at Bl, . . . , Bk are TI,. . . , Tk, for 1 < i 5 k, let 

AIki = {a(ju) I a(u) E AIT,), with B; = Xj 

E& = {(x = t)[a(ju)/a(u), a(u) E AIT,] I (I = t)  E ET, } , 
with B; = Xj, 

where (x = t)[a(ju)/a(u), a(u) E AITi] is the result of simultaneously substituting a(ju) for 
every occurrence of a(u), for each a(u) E AITi, in the equation x = t. Then, 

AIT =ATOC(p)UAI$l U. . .UAI&, and 
ET = E l ? , U E + l U . . . U E & k .  
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If the attribute grammar has attribute parameters, then for each instance a(u) of an 
inherited parameter a associated with the root, there is an equation of the form a(u) = xo 
where xo is an initial value. Similarly the synthesized attributes of the leaves have equations 
which initialize them. 

Notice that the equations in ET contain terms over AI(T). Denote by AI (d )  the set of 
all attribute instances of the attributed trees of the attribute system A. The terms appearing 
in _ET are in Tc(AI(A)), the interpretation part Z of an attribute grammar assigns a specific 
domain to AI(A) and actual partial functions over that domain to the function names in C. 
Given an attributed tree T,  a valuation a assigning values in D to all the attribute instances 
in AI(T) is is valid if no term in ET is undefined, and all the equations in ET are satisfied. 
The semantics of T is defined to be the set of all valid valuations of T. The semantics of the 
attribute grammar (A,Z) is the set of all pairs (T,a) where T is an attributed tree and a a 
valid valuation for T. Notice that we use partial functions to interpret the function symbols. 

From a computational point of view it is important that the attributes are split into 
inherited and synthesized; and that the semantic equations satisfy the conditions i) and ii) 
of page 5. These support an algorithm for finding a valid valuation for an attributed tree. 
The evaluation problem consists in finding a partial order on the attributed tree so that the 
variable elimination described in the previous example works. 

2.5 Conditional Attribute Grammars 

A conditional attribute grammar is similar to an attribute grammar except that in addition 
to the equations associated with each production, a predicates on some input attribute 
occurrences are present. We follow [8] for this definition. In order to proceed we need to 
formalize what we mean by input and output at tribute occurrences. 

Intuitively, Input attribute occurrences of a production are occurrences in its left hand 
side of inherited attributes and right hand side occurrences of synthesized attributes. Output 
attribute occurrences of a production are occurrences of synthesized attributes in its left hand 
side and occurrences of inherited attributes in its right hand side. This is formalized as 
follows. 

Definition 2.9 Given an attribute system A and a production p of the form X, .=j 

XI . . . X,, a splitting of attributes into inherited and synthesized via functions I and S 
induces a splitting of the attribute occurrences of p into input and output as follows. 

In conditional attribute grammars conjunctions of literals on input attribute occurrences 
are introduced into the productions. The interpretation part of a Conditional Attribute 
Grammar associates subsets of the corresponding cartesian product to predicates. Given a 
decorated tree, a valuation will be valid provided not only that the equations are verified, 
but also that the conjunction of literals of each production is satisfied. 
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12 Can we transform Logic Programs into Attribute Grammars? 

Definition 2.10 A Conditional Attribute Grammar is an Attribute Grammar that contains 
a set of predicate symbols P = PI,. . . , P,. Each production p has associated, in addition 
to the equations E,, a logic formula Bp which is a conjunction of formulas of the form 
Pj(tl, . . . , tn)  or 7P( t r , .  . . , t,) for some n-ary predicate symbol P E P, and some terms 
tl,  . . . , t, that contain only input attribute occurrences. 
The semantics of Conditional Attribute Grammars are sets of decorated trees with valid 
valuations as in the case of attribute grammars, except that in addition, each valid valuation 
has to satisfy the the formula B,. 

NOTICE: the fact that the arguments of the predicates B, are input attribute occurrences 
is important since this will guarantee the computability of valid valuations. Since satisfying 
the logic formula Bp will involve just checking the values already computed. 

Deransart and Maluszynski introduce Functional Attribute Grammars (FG) and show 
their relationship with Logic Programs 191. They use the name Functional Attribute Gram- 
mar for what we here call Conditional Attribute Grammar. 

2.6 Relational Attribute Grammars 

Relational Attribute Grammars have less structure than Attribute Grammars. Each pro- 
duction has a logic formula associated with it. In order for a valuation for an attributed tree 
to be valid, it has to satisfy some logic formulae. 

Definition 2.11 A Relational Attribute Grammar consists of 

1. A finite set C of function symbols. 

2. A finite set P of predicate symbols. 

3. A Context Free Grammar G = (N, T, P, 2) , 

4. With every symbol X of the grammar, a finite set A(X) of attributes is associated. 

For every production p : XE ---+ Xl...Xn, a logic formula R, of the logic language 
< P, C, ATOC(p) >, that is, the variables in R, are attribute occurrences of p. 

5. An interpretation which is similar to the interpretation of Attribute Grammars except 
that each n-ary predicate P is interpreted by a subset of the cartesian product of 
the domains of the attribute occurrences. The boolean operators receive their normal 
interpretation. 

The semantics of Relational Attribute Grammars are as that of Attribute Grammars, 
except that RAGS have no computational semantics. Valid valuations for an attributed tree 
have to satisfy the logic formula associated with each address in the tree, but there is no 
algorithm for computing valid valuations. 
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3 Abstract Attribute Grammars 

To the best knowledge of the author this formalism is new. It abstracts over the inher- 
itedlsynthesized splitting of attributes in an attribute grammar. The syntactic part consists 
of an abstract attribute system which differs from an attribute system in that there is no 
splitting of attributes into inherited and synthesized; and the equations are replaced by 
restriction sets. The semantic part consists of an interpretation Z as before. 

Definition 3.1 An abstract attribute system A consists of the following components: 

1. A finite set C of function symbols. 

2. A context-free grammar G = (N, T, P, Z), where N is the set of nonterrninals, T is 
the set of terminals, Z E N is the start symbol, and P C N x V = N U T* is the set 
of productions. 

3. With every symbol X of the grammar, a finite set A(X) of attributes is associated. 
The cardinality of A(X) will be denoted by nx. 

4. The set of attribute occurrences is defined as in page 9. For every production p : 

X, + XI . . . X,, a finite set R, of restriction sets whose elements are terms in 
Tc(ATOC(p)) 

From any attribute grammar one can obtain an abstract attribute grammar by replacing 
each equation a(i) = t by the restriction set {a(i), t). Abstract Attribute Grammars can 
be viewed as a special type of Relational Attribute Grammars which use only the equality 
predicate and where a shorthand notation has been introduced to express equalities of the 
form XI = 2-2 = 23 = . . . = x, as sets {xl, . . . , x,}. We think however, that this restriction 
is important enough to be considered in a class by itself. It stands in an intermediate position 
inbetween Attribute Grammars and Relational Attribute Grammars because although it 
does not have a computational component derived purely from its syntactic part as AGs 
do, it does not push to the semantic level all constraints on its valid attributed- trees as 
RAGs do. We can view AAGs as AGs devoid of procedural connotations but retaining 
their declarative semantics. In RAGs, all semantics are pushed to the interpretation level 
by assigning meaning to the different predicates. The difference relies on the fact that the 
meaning of the only predicate appearing in AAGs (equality) is fixed for all interpretations, 
while that is not true for the predicates which appear in RAGs. Furthermore, we see that 
AAGs are the adequate formalism to express the constraints implicit in LPs in grammar 
form. 

Example 3.2 Consider the following abstract attribute grammar which is similar to the 
functional attribute grammar presented in example 1.1. 

add + end (0 ,  X(E)) 
{Z(E), Y(41  

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-06 



Can we transform Logic Programs into Attribute Grammars? 

end 

Figure 2: An attributed tree for the abstract attribute grammar 

As it turns out, for the purpose of this paper, it is enough to consider just one class of 
interpretations to be introduced in section 4.3. These interpretations have as domain the set 
of terms and a fixed interpretation for some of the function symbols. We feel however, that 
AAG as a formalism should have a more general semantics, as we proceed to present now. 

The semantics are defined using the interpretation 1. Attributed Trees are defined as for 
attribute grammars except that instead of a set ET of equations, a set RT obtained from 
the restriction sets of the production instances appearing in T is associated with the tree. 
Given an attributed tree, a valuation a is valid if the elements of each restriction set are 
assigned identical elements of the domain. If the interpretation assigns partial fgnctions to 
the function symbols, the values assigned to the attribute instances have to belong to the 
domain of the functions applied to them. The semantics of an abstract attribute grammar 
is taken to be the set of all its valid attributed trees. 

Exarnple 3.3 For the previous example consider the interpretation: 

1. D is the set of natural numbers n(, 

2. p is the predecessor function (subtract I), 

Consider the attributed tree of figure 2. The following valuation is valid: 

Any valid valuation for this tree has to assign 1 to X ( E ) ;  Z(E) will be assigned the successor 
of Y ( E ) .  

Abstract Attribute Grammars lack an evaluation algorithm. The restrictions are simply 
stated, no hint as to how a valid valuation could be obtained is given. This is a drawback 
of the formalism for computational purposes. However, we find it suitable for dealing with 
logic programs in their full generality since there, as well, the semantics are declarative. 
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4 Transforming a Logic Program into an Abstract At- 
tribute Grammar 

4.1 Overview of the method 

Let us explain our approach for converting a Logic Program into an equivalent Abstract 
Attribute Grammar via an example. Consider the following LP I? (it decribes syntactic 
addition) 

Any proof tree for this logic program will consist of a single branch ending in an instance 
of add(0, Y, Y). The syntactic component of the proof trees of I' is captured by the Context 
Free Grammar G given by: 

(pi) add =+ end 
(pi) add + add 

By "erasing" the arguments of the predicate add in a proof tree one obtains a parse tree 
of G. However, these parse trees lack information about values appearing as arguments of 
the predicate add. In order to represent these arguments, we associate three attributes a,  b, c 
with the nonterminal add, each corresponding to an argument of the predicate add. What 
restrictions should one place upon these attributes? We will introduce a restriction for each 
production and each variable or constant appearing in its corresponding clause. We adopt 
the following naming convention. Paths(p, T) is the restriction related to clause p that deals 
with the variable (or constant) T. 

Let us look at clause (pl). The constant 0 appears as the first argument of udd. We 
represent this by introducing the restriction: 

The idea is that all members of Paths(pl, 0) should be made identical. Since 0 is a constant, 
this forces , a(&) = 0. We deal in a similar fashion with the variable Y. It appears as the 
second and third argument of add. We introduce the restriction: 

This set represents d l  positions in which the variable Y occurs. One wants to force all 
members of that set to be equal. Let us deal now with the second clause: 
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end 

Figure 3: The proof tree for add(s(O), s(O), s ( s (0 ) ) ) .  

We introduce a projection function ns on terms. When applied to a term of the form s ( t ) ,  it 
returns the term t .  If the argument of nS is not of that form, the result is I, the undefined 
value. If one thinks of s  as the successor function, one can think of p as the predecessor 
function. In order to state the restrictions corresponding to clause (2). We take one variable 
at a time and build a set representing all positions in which that variable occurs. For example 
X appears in the first argument of the left and right occurrences of add. On the left side it 
is the subterm of the first argument. This occurrence is denoted by nS(a(c)) .  On the right 
side, it occurs as the first argument of add. Grouping these occurrences we obtain: 

The case of Y is simpler since it occurs directly as the second argument of the left and the 
right appearances of add. The set is: 

The case of Z is similar to that of X: 

These are all the restrictions needed for this clause. Intuitively, a valuation is acceptable if 
it induces identity within each set. This should be clear by the way those sets were defined, 
they represent all occurrences of a variable or constant. 

Our claim is that the logic program I' and the abstract attribute grammar G' consisting 
of G and the sets described above, are equivalent. That is, the set of proof trees of I' and 
the set of valid attributed trees of G' are equivalent. 

Let us look at a proof tree for add(s(O), s(O), s ( s (0 ) ) )  appearing in figure 3. 
The attributed tree corresponding to it appears in figure 4. The valuation corresponding 

to the proof tree of figure 3 is: 

Similarly, for any valid attributed tree there is an isomorphic proof tree. Let us analyze 
what all valid attributed trees of the form given in figure 4 are. The restriction (0 ,  a (1 ) )  
fixes the value a(1) as 0. The restriction {ns(a(c)) ,  a (1 ) )  forces a ( € )  = s(a(1))  = s(0). The 
values of b(c), b(1) and c(1) have to be identical , and provided c(c) is of the form s ( t ) ,  the 
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Figure 4: The corresponding attributed tree. 

restriction {rS(c(e)), ~ (1) )  forces C(E) = s(b(~)) .  It follows that the only possible values at 
the root of the tree are: a(€) = s(O), C(E) = s(~(E)) .  SO the value of the third argument has 
to be the successor of the second argument. This is exactly what the logic program does. 
Notice that we need not specify which of the arguments are input and which are output. 
There is however, a problem with the following valuation: 

This valuation satisfies the restrictions of the attributed tree but does not correspond to any 
proof tree. The reason is the occurrence of I. In this case it stems from the fact that C(E) is 
not a term of the form s(t). We rule out solutions which are undefined for some elements of 
a restriction set. This corresponds to imposing some structure on certain attributes (in this 
case c(E)). 

We now proceed to give a formal treatment of the ideas just exposed, 

4.2 The path function symbols 

In section 4.1 we defined a function .rrs that "strippedn the s from terms of the form s(t). 
We are interested in functions that denote all occurrences of a variable or a constant within 
a term. Throughout this paper we use the word atom to refer to a variable or a constant. 

Let L be the logical language in which the definite clauses are written. Recall that 
Terms(L) denotes the set of terms of L. Also let Var(L) be the set of variables of L, 
Func(F)  the set of function symbols of L and let Atoms(L) be the set of atoms (i.e. variables 
and constants) of L. For each term t, let Atoms(t) denote the set of variables and constants 
appearing in t. 

For each function symbol f of arity n appearing in Func(F)  we introduce n function 
f symbols rl, .  . . , ~ , f .  These represent functions that select each of the arguments of f and 

are called selectors. We also need a function symbol for the identity: id, and a new constant 
I to denote the undefined value. The collection of all selector function symbols, I and id 
will be denoted by CFunc(L). When this does not lead to confusion, we drop the Func(L) 
from XFunc(~+. Let o denote the concatenation of function symbols, and let C* denote the 
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18 Can we transform Logic Programs into Attribute Grammars? 

set of finite strings over E. Given a term t  and an atom x  appearing in it, we are interested 
in specifying all access paths to x. This is done as follows. 

Definition 4.1 For each term t E Terms(L) and each x  E Atoms(L), we define a set of 
terms @(t,  x )  in C* recursively as follows. 

1. if x  4 Atoms(t) then @(t, x )  = 0; 

2. if x  = t then @ ( t , x )  = { i d )  

3. if t = f ( t l , . .  . , tn) then 

m ( t , ~ ) =  U jy; { r l o ~  1 T E @ ( ~ ~ , x ) )  

The elements of @(t, x )  will be called paths. 

Example 4.2 Consider t = f (g(z ,  x ) ,  x )  and let us compute @(t ,  x) .  Since x  appears twice, 
we should get two paths. 

Clearly @ ( x ,  x )  = { id) ,  hence the last component of the union evaluates to {a,' o i d ) .  In 
order to find the value of the first expression we have to compute @ ( g  ( 2 ,  x )  , x) .  

g x ) ,  x )  = {r; 0 7- 1 . E @(z ,  x ) )  U {I :  0 7- 1 7- E @(x7 x ) )  

= 0 U {rq o  id)  

= {ri o id)  

Replacing @(g(z,  x ) ,  x )  for its value in equation 1 we obtain 

@(t, X )  = {r{ o  r; o  i d ,  r,' o  i d }  

NOTE: The fact that i d  appears at the tail of each member of @ ( t , x )  is a technicality. 
It arises from our recursive definition. Since concatenation will be interpreted as function 
composition and i d  will be interpreted as the identity function, we might as well erase the 
trailing ids. 

4.3 The terrnal interpretation 

Notice that the elements of @(t, y) are strings in C*, with concatenation denoted by o. 
However, when considering the set Tz(V) of terms build up from a set of variables V and 
the function symbols in C, we can uniquely relate elements in TE*(V) with elements of Tx(V) 
by interpreting o as function composition. This is done by the mapping- 

(rl o  r 2  o  . . . o  r n ) ( t )  I+ rn (. . . (r2(rl ( t ) ) )  . . .) 
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Notice the reversed order. For example, r{ o r: o id(t) is mapped to id(r i  (rf (t))). - 
f Let T E R M S  denote the set of all terms in L. We interpret r! as a function ri on 

T E R M S  as follows: - ti if t = f(t l , .  . . ,t,) 
r!(t) = { 

1_ otherwise 

Let us also interpret id as the identity on TERMS. We now have an interpretation for all 
of C*, which we will call NAT (since it is natural). For each element r in C*, let denote 
denote its interpretation in NAT. Since our motivation for defining the sets @(t, x) was to 
specify all access paths to x in t, we should have that for any r E @(t, x), 

One can easily proof this by an inductive argument on the complexity of t. We show how 
this works with an example. 

Example 4.3 Let t = f (g(z, x), x). In example 4.2 above we showed that 

@(t, X )  = {K{ o T: o id, o id} 

Thus (a{ o a: o id)(t) should evaluate to x. 

Since the path functions will be used in transforming logic trees, it is interesting to study 
how they interact with substitutions. In particular we are interested in knowing whether 
they commute with substitutions. 

Example 4.4 Let t = g(x) and let 8 be a substitution such that 6(x) = h(a), We see that 
6 and 3 commute: 

However, if we try the same with ri o rt, it does not work: 

The reason that the second function does not commute with 0 is that rlg o ~ : ( t )  is undefined. 
We can also show that those are the only cases in which this happens. 
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20 Can we transform Logic Programs into Attribute Grammars? 

Lemma 4.5 For any n E C", any term t and any substitution 0  

if ~ ( t )  f: I then 0 ( ~ ( t ) )  = ~ ( 0 ( t ) )  

Proof: One proceeds by induction on the length of n. We show here the base case for n of 
length 1, i.e. n E I=. The inductive argument follows easily. 

From the definition of C, n is either the identity or of the form ?rf for some f  and some 
i. In the first case the result clearly holds. In the second case since ~ ( t )  # I, t is of the 
form f  ( t l ,  . . . , tn). Therefore, 

( ( f  ( I  - 7 ) = - @(ti) 
= - ~ { ( f ( 0 ( ~ 1 ) 1  - 1 0 ( t n ) ) )  
= n f ( 0 ( t ) )  

4.4 The construction 

Given a logic program I?, we show how to construct an abstract attribute grammar by 
transforming each clause into a production and its restriction sets. First however, we have 
to define the set of terminals and non-terminals of the Abstract Attribute Grammar and 
their attributes. For each predicate P of arity n p  appearing in I?, there is a nonterminal 
P with n p  attributes P.1, . . . , P.np. Each attribute corresponds to an argument position of 
the predicate P. The only non-terminal is end ,  it has no attributes. Given a clause 

we associate with it the context free production 

Example 4.6 Consider the following clauses from a program for symbolic differentiation. 

( a )  d i f ( x ( U , V ) , X , + ( x ( B , U ) , x ( A , V ) ) )  +-- d i f ( U 7 X 7 A ) 7 d i f ( V , X 7 B )  
( b )  d i f  ( X ,  X ,  1) 
(c )  d i f  (u,  V, 0 )  
( d )  d i f  ('7 u 7  O) 

The corresponding abstract attribute grammar will have one non-terminal d i  f with three 
attributes d i f . l , d i  f.2 and dif .3.  The productions are: 

(a t )  d i  f =+ d i  f  d i  f 
(b') di  f  + end  
(c') d i f  =+ end  
(d') d i f  =+ end  
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There is a one to  one correspondence between the terms that appear as arguments of the 
predicates in clause p and the attributes of the non-terminals appearing in the production 
pt. The nomenclature used makes this clear. One can define a mapping trp' from the set of 
attribute occurrences to the set of terms which represents this correspondence: 

The restriction sets associated with the clause make sure all occurrences of the same variable 
have the same value. This is achieved by forcing all paths leading to that variable to be equal. 
The sets B(t, x )  defined in section 4.2 are used to this end. For a given at tribute occurrence 
a, every member of @(trpJ(a), x) is applied to a, all these expressions are collected into the 
set Paths(pt, x): 

Paths(pt, s)  = U . ~ a ~ o c ~ ~ l ,  {~(o) I T E @(trpt(a), x ) }  

In other words, every path leading to x in a term is applied to its corresponding attribute. 

Example 4.7 Take the first clause of the logic program appearing above: 

( a )  d i f ( x ( U , V ) , X , + ( x ( B , U ) , x ( A , V ) ) )  +- dif(U,X,A),dif(V,X,B) 

The correspondence between attributes and terms is: 

trpl(di f .  1 ( E ) )  = x (U, V )  
trPl(dif.2(c)) = X 
trp~(dif.3(c)) = +(x  (B ,  U ) ,  x(A,  V ) )  

Let us calculate Paths(al, V ) .  Since @(t, V )  = 0 whenever V does not appear in t ,  one only 
needs to consider the following sets: 

@(tr,t(di f . l( t)) ,  V )  = B ( x  (U,  V ) ,  V )  = {T: o id) 

@(tr,~(di f . 3 ( ~ ) ) ,  V )  = @(+(x(B,  U ) ,  x(A,  V ) ) ,  V )  = {n: 0 T: 0 id} 
@(trPl(dif.l(2)), V )  = @(V, V )  = { i d )  

Collecting all these, one obtains 

In a similar fashion one obtains the restrictions for X, U, B and A. 
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We have described how to deal with the variables. The constants are treated similarly, except 
that one adds the constant itself to the set. 

Example 4.8 The clause di f ( X ,  X ,  1) of example 4.6 above is translated into the following 
abstract attribute grammar production. 

(b') di f + end Paths(bf, X )  = (id(di f . l (e)) ,  id(di f .2(c))) 
Paths(bf, 1)  = (1, id(di f .3(c))) 

This construction is repeated for each clause of the logic program. As a result one obtains 
a production for each clause, each production has as many restriction sets as variables and 
constants appear in the original definite clause. We now turn to study which values satisfy 
the restrictions imposed by the sets Pat hs(p, x ) .  

Consider the interpretation NAT for C* presented in section 4.3. The domain of at- 
tributes is T E R M S ,  the function symbols a are interpreted as selectors, id as the identity 
function on T E R M S .  If we substitute for each attribute occurrence a its corresponding 
term tr,t(a), all elements of Paths(pf,  x )  should evaluate to x. Furthermore, by assigning 
substitutions of the corresponding terms to the at tributes, the restrictions should be satisfied 
as well. This is proven in the next lemma. 

Lemma 4.9 Every element ~ ( a )  E Paths(pf,  x) satisfies 

(1 )  F(trPt(a)) = x 
(2 )  for any substitution B ,  

T(0(trPt ( a ) ) )  = 0 ( x )  

Thus any valuation of the form a ( a )  = B(tr,t(a))) satisfies all restriction sets of the produc- 
tion p'. 
Proof: By definition, if ~ ( a )  E Pat hs(pf , x )  then T E @(tr,J ( a ) ,  x ) .  As explained on page 

19 this implies y(tr,t(a)) = x ,  which is exactly (1) .  
In order to prove ( 2 )  notice that since F(tr,,(a)) = 2, it is the case that ?(tr,t(a)) f 1_ 

hence by lemma 4.5 on page 20 any substitution 0 will commute with T on tr,,(a), thus 

;i.(O(trpl ( a ) ) )  = 0(T(trPt ( a ) ) )  = 0 ( x )  

Example 4.10 In page 21 we calculated Paths(af ,  V): 

Pat hs(al, V )  = {a; o id(di f .l (c ) ) ,  a: o a; o id(di f .3(e)), id(di f . l ( 2 ) ) }  

There we also had that trat(di f .l(&)) = x (0 ,  V ) .  Clearly, 

a; o id( tra~(di  f . l (c) ) )  = 71-; 0 i d ( x  (0,  V ) )  
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The previous lemma shows that the terms obtained by applying a substitution to the terms 
appearing in a clause satisfy the restriction sets of the corresponding production. They are 
therefore good candidates for valid valuations. Notice that for these valuations, none of the 
elements of a restriction set evaluates to the undefined value. The lemma just proved shows 
that substitutions of the original terms are valid valuations. With the aid of the following 
lemma one shows the converse, namely that any valid valuation of a production can be 
obtained by applying a substitution to the terms of the original clause. 

Lemma 4.1 1 Let t ,  t' be terms so that: 

1. For any variable x appearing in t and for any T E @(t , x), ~ ( t ' )  # I, 

2. For any variable x appearing in t and for any 7-1, 7-2 E @(t , x), ~ ( t ' )  = ~ ( t ' ) ,  

3. for any constant b appearing in t and for any T E @(t, b), ~ ( t ' )  = b, 

then there exists a substitution 8 such that t' = 8(t). 
Proof: Intuitively condition 1 tells us that t and t' have similar structure and condition 2 
that all occurrences of a variable in t are substituted for the same term in t'. Condition 3 
makes sure that constants appear in the same places in t and in t'. 

Notice that a substitution is uniquely determined by the value it assigns to variables. We 
will define the substitution 8 by specifying the value of 8(x) for every variable x appearing 
in t. 

Let x be a variable of t,  and let T be a member of @(t, x) we define 8(x) as follows: 

It is not clear that 8 is well defined, i.e. is independent of the choice of r. Condition 2 forces 
any two members of @(t, x) to agree on the value they assign to t hence 8 is well defined. 
Next we prove that 8 is such that t' = 8(t). The proof is by induction on the complexity of 
t. 

1. If t is a constant b then @(t, b) = {id). By condition (3) we have that z(t ' )  = b, hence 
t' = b thus 8(t) = t = b = t'. 

2. If t is a variable x, then @(t, x) = {id) and r is the identity. By condition (1) we have 
that s ( t ' )  # I therefore t' f: I, and B(t) = 8(s) = s( t ' )  = t'. 

3. Suppose now that t = f (t l, . . . , t,). For any variable or constant x of t ,  any r f @ (t , x) 
has to be of the form r = a! 07' with T' an element of C* . Since i ( t f )  = (a! o T ' )  (t') # I 
we conclude that t' is of the form: f (ti, . . . , t',). We show that for 1 < i < n, @(ti) = ti. 
This implies 8(t) = t'. 

Let us concentrate on i = 1, the treatment being the same for the other cases. Notice 
that any variable or constant appearing in tl has to appear in t as well. Therefore 
7 E O(tl, s) if and only if irf o r E @(t ,  2). It is easy to show that t, and ti satisfy 
conditions 1-3 of the lemma. By inductive hypothesis we conclude that the substitution 

df O1 defined by O1(x) = q ( t i )  where TI E @(tI,x), is such that B(t1) = ti. 
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We show that 0 and B1 agree on all variables of tl. By definition, 7-1 E @(tl, x) implies 
a! o r1 E @(t, x). Since the T used to define the value of 0 on x is also an element of 

- @(t, z), condition 2 allows us to conclude a[ o q( t i )  = Clearly, B(x) = r ( t l )  = 
- 

a! o 7-1 (ti) = .r1 (ti) = O1(x). Since 0 and B1 agree on all variables of tl we have that 
6(tl) = O1(tl) = ti as wanted. 

Corollary 4.12 Given a definite clause p for any valid valuation CY of its corresponding 
production pi one can effectively construct a substitution B , ,  such that for each attribute 
occurrence a of pi, 

40) = 4,ff (trP'(4) 

Proof: Consider a valid valuation for the attribute occurrences of a production p'. Let 

tr,,(a) be t and a(a) be ti in the hypothesis of lemma 4.11. The first condition of the 
lemma is satisfied because valid valuations are required to be defined on all members of the 
restriction sets, since a is valid and t' = a(t). Conditions 2 and 3 are satisfied because CY is 
valid, i.e, all elements of each restriction set agree on their value. Thus the lemma allows us 
to conclude that there exists a substitution 0,,, such that t' = O,,,(t). This is exactly what 
we set out to prove. 0 

We now show that there is a one to one correspondence between the set of proof trees 
of a logic program and the set of valid attributed trees of the abstract attribute grammar 
obtained from it. 

Given a proof tree T, one constructs an attributed tree A(T) with valid valuation CYT as 
follows. If the subtree at position m of T is an instance of clause 

and the production constructed from p is 

(p') PC =5 PI . . . Pi 

then the subtree corresponding to pi appearing at position m of A(T) is shown in figure 5. 
Clearly there is a one to one correspondence between the attribute instances of A(T) 

and the arguments of the predicates in T. Let this correspondence be denoted by G. We 
show that the valuation a~ defined as aT(o(m)) df G(o) is valid. Let m be a position 
in A(T) other than the root or a leaf, and let N,,, = Pi (P;.l(m), . . . , Pi.np, (m)) be the 
node appearing there. N, belongs to the instances of two productions, its lower and its 
upper production. We have to show that a~ is valid for both of them. Consider the lower 
production p' . Since T is a proof tree, the subtree of depth 1 rooted at  position m is an 
instance of a definite clause p with substitution 8. Furthermore, p is the clause from which 
p' was obtained. Hence CYT operates on every attribute instance a(m) of N, as follows 
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Figure 5: The subtree at position m of A(T) 

Figure 6: The subtree of L ( ( S ,  a ) )  at position m 

By virtue of lemma 4.9 a~ is valid for the lower production. In a similar fashion one 
proves that OT is valid for the upper production. Clearly the same argument applies to the 
root of A(T) which only has a lower production, and to the leaves which only have upper 
productions. We have proved the following: 

Theorem 4.13 If T is a proof tree then (A(T), aT) is a valid attributed tree. 

We now proceed to show how to obtain a proof tree from a valid attributed tree. Given a 
valid attributed tree (S ,  a) a proof tree L((S, a)) is constructed as follows. If an instance of 
production (p') PC =+ PI . . . f i  appears at position m of S as shown in figure 5 on page 
25 then the subtree shown in figure 6 appears at position rn of L((S, a)). The arguments of 
the predicates are the terms obtained by applying a to the corresponding attribute instances. 
We to show that this subtree corresponds to an instance of the definite clause p from which 
p' was obtained. Clearly a is valid for p', hence by lemma 4.11 there is a substitution 8, 
such that 

a(P,. j (mk))  = B,(tr,t(P;. j(k))) = 8,(t:) 

This shows that the subtree of figure 6 corresponds indeed to an instance of the definite 
clause p as wanted. We have proven the following theorem. 

Theorem 4.14 If (S, a) is a valid attributed tree then L((S, a)) is a proof tree. 

By starting with a proof tree T, theorem 4.13 gives a valid attributed tree (A(T), aT). 
By applying theorem 4.14 one obtains a proof tree L((A(T), a ~ ) ) .  Clearly 

The mapping T I+ (A(T), aT) is therefore injective. One can easily see that it is also 
surjective. Therefore there is a bijection between the proof trees of a logic program I' and the 
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valid attributed trees of its corresponding abstract attribute grammar A(I'). Furthermore, 
by construction, this bijection is computable. This is our main result, stated as follows. 

Corollary 4.15 Given a Logic Program I?, one can construct an Abstract Attribute Gram- 
mar A(r)  such that there is a computable one to one correspondence between the proof trees 
of I' and the valid attributed trees of A ( r )  

We now revisit the example for the Logic Program to perform syntactic addition presented 
in the introduction. 

Example 4.16 Consider the Logic Program for syntactic addition given by: 

(PI) add(O,~,~). 
(PZ) add(s(X) ,Y,s(Z)) -+ add(X,Y,Z). 

Using our construction we come up with the following Abstract Attribute Grammar 

(P: > add =$ end Paths(pl, 0) = {add.l(~), 0) 
Paths(pl, Y) = {add.2(c), add.3(c)} 

(P;) add + add Paths(p2, X) = {xS(add.l(c)), add.l(l)) 
Paths(pl, Y )  = {add.2(€), add.2(1)} 
Paths(p1,Z) = {xS(add.3(c)), add.3(1)} 

This is exactly the same (modulo renaming) Abstract Attribute Grammar which we pre- 
sented in the introduction and again in section 4.1. 

4.5 Comparison with previous published results 

In [9], Deransart Maluszynski show how to construct a Relational Attribute Grammar se- 
mantically equivalent to a Logic Program. How does our result differ? After all AAGs are 
special types of RAGS, hence our result does not seem to add anything new. Their trans- 
formation however, does not involve any amount of term-matching or pre-processing. They 
associate with each definite clause a context free production as we do. In addition, with 
each context free production pj a logic formula of the form Rj(xl, . . . , x,, ) is associated 
where ATOC(pj) = setxl, . . . , xn,. In order to establish semantic equivalence between the 
RAG and the LP, the interpretation part of the RAG is chosen so that the predicates Rj are 
mapped into all nj-tuples of terms which are instances of the terms s1, . . . , s,, which appear 
(in their textual order) in the n j  different positions of the original definite clause. 

Any relationship between attributes which would result from the same variables being 
used at different argument positions in the definite clause are absent in the syntactic part of 
the equivalent RAG. All agreements are pushed to the semantic level. There is no gain in 
terms of term-matching or possible evaluation of the LP by doing this. 

However, our transformation makes explicit the agreements necessary between the differ- 
ent attribute occurrences at the syntactic level by making strong use of the Path functions. 
We push a semantic condition to a syntactic level, which makes the transformation more 
interesting. 
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5 Transforming Abstract Attribute Grammars into 
Conditional Attribute Grammars 

We mentioned the lack of an algorithm to evaluate abstract attribute grammars. Since 
evaluation algorithms for attribute grammars have been extensively studied, it is interesting 
to investigate when an abstract attribute grammar can be transformed into an equivalent 
attribute grammar. In this section we state sufficient conditions. By applying our method, 
starting from a logic program one obtains a conditional attribute grammar which is similar 
to the one obtained by the method described in [9]. We should mention here that the 
difference between At tribute Grammars and Conditional At tribute Grammars is irrelevant 
when considering evaluation methods since those developed for Attribute Grammars also 
work for Conditional Attribute Grammars. 

An abstract attribute grammar is said to be reversible if every attribute occurrence in a 
production can be reconstructed from its occurrences in the restriction sets . More formally: 

Definition 5.1 An abstract attribute grammar < A,Z > is said to be reversible if for every 
attribute occurrence a appearing in a production p there exists a function f,, over the 
domain of 2' which satisfies the following condition. 

Let {tl,. . . , tk} be the union of all the restriction sets in which a appears, and 
let a be a locally valid valuation (i.e. valid when considering the attributed tree 
composed of the production p by itself). Then, 

NOTE: the actual function fOlp depends upon the ordering of the terms a(tl), . . . , a(tk).  
Also f, depends depends on the interpretation Z but not on the valuation a. 

Example 5.2 Every abstract attribute grammar obtained from a logic program by the 
construction described in section 4.4 is reversible. Consider the abstract at tribute grammar 
for syntactic addition of example 4.16. Recall the interpretation described in section 4.3. 
The domain is the set of terms of a logic language, and 71.15 is the selector function for terms 
of the form s(t). The first production is: 

(pi) add + end ( 0 ,  a(c))  

(~(4, b ( 4 1  

The functions fa (~) ,p ;  , f a f ~ ) , ~ ;  and fc(e),p; are given by: 
f@(~),p; (tl) t2) = t2, 

fb(€).p; (t 1 t2) = t2 7 

and f c ( ~ ) . ~ ;  t2) = tl. 
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In this f a ( q , p & ,  f a ( ~ ) , ~ i ,  fb(l),p; and fc(l),p; are similar to the first production, and fa(l),p&(tl, t2) = 
fc(s),p;(ti, t l)  = s(t2) for any terms tl,  t2. 

The reversibility condition will be needed in order to reconstruct an attribute from its pieces. 
In order to obtain a conditional attribute grammar a splitting of attributes into inherited 
and synthesized is needed. For a special kind of splittings called safe, it will be possible to 
construct a conditional attribute grammar. 

Since the parameter passing concept is easier captured by an Input/Output classification, 
and such a classification is implicit in the Attribute Grammar formalism, we will phrase our 
results in terms of Input/Output attributes. Recall from section 2.5 the definition of Input 
and Output positions of a production p of the form X, =+ XI . . . X,. 

output(p) = {@(€)la E S(Xa)} u (j {a(i)ja E  xi)} 
i=l 

Where S(X)  denotes the set of synthesized attributes of X and I (X)  the set of its inherited 
attributes. We now define safe split tings. 

Definition 5.3 Given an Abstract Attribute Grammar < A,Z >, a splitting of its at- 
tributes into inherited and synthesized, a production (p) X, + XI . . . X, and a term t in 
Tc(ATOC(p)), we say that t is output-free if the i/o-splitting induced by it is such that no 
term in Output(p) occurs in t. 
A production (p) X, XI . . . X, is said to be output-free if every restriction set associated 
with that production has one term which is output-free. 

Definition 5.4 Given an Abstract Attribute Grammar, we say that a splitting of its at- 
tributes into inherited and synthesized is safe if the i/o-splitting induced by it is such that 
every production in A is output-free. 

Example 5.5 For the abstract attribute grammar discussed in example 5.2, consider the 
following splitting: 

inherited = {a, b} 
synthesized = {c} 

The Input/Output attribute occurrences of production p', are: 

~ P U ~ ( P : >  = {a (&) ,  b(c)} 
Output(p',) = {C(€)}. 

The restriction sets associated with p', are: (0, a(€)} and { b ( c ) ,  c(~)}.  Since the terms 0, a(&) 
and b ( ~ )  are output-free, so is the production pi. 
Similarly, for production p;, since a(€), b(&) and ~ ( 1 )  are output-free, so is the production pi. 
This shows that for this Abstract Attribute Grammar, the splitting given above is safe. 
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Definition 5.6 An abstract attribute grammar will be called simple if has some safe split- 
ting of attributes. 

Theorem 5.7 Let G =< A,Z > be a reversible Abstract Attribute Grammar and let I / S  
be a safe splitting of the attributes of G. There exists a Conditional Attribute Grammar 
G' =< At,Z' > which is semantically equivalent to G (i.e. whose sets of valid decorated 
trees are isomorphic). 
Proof: We give a constructive proof. G' is constructed by transforming each production p 

of G into a production p' with its associated equations. The context free components are 
identical as are the interpretations, except for some new function symbols are introduced in 
G' . 

For each production p in the AAG we introduce a production p' in G'. The Context Free 
component is the same, the equations associated with p' are constructed given a fixed safe 
splitting. We set up an equation for each output position a(j). Let ti,, . . . tikao, be all the 

terms appearing in the restriction sets which a( j )  appears. Since G is reversible there exists 
a function such that 

for any locally valid valuation a. A function symbol is added to A' for fa(ih, which we will 
denote by fa(j),p. The interpretation Z' part of G' will interpret by fa(j),p. 

Let R1,. . . , Rka,j, be the restriction sets of which ti,, . . . t -  are members. Since the 
2ka(j) 

splitting I / S  of G is safe, there exist terms hi, E R,, , . . . E Rikij, that are output-free. 
The following equation is associated with p' (notice that this step is non-deterministic since 
there might be more than one output-free term in each restriction set). . .  

One also has to ensure that all the terms belonging to a restriction set are identical. In order 
to do so, from each term q in a restriction set, a term q' is constructed by substituting every 
occurrence of an output attribute in q by the term to which it is equated. In the case of a ( j )  
above, one replaces every occurrence of it by fa(j),p(hil,. . . ka( ,) 1 - 

For each restriction set Ri = {qil.. . , qni ) we obtain a logic formula R: = (qi,l = 
I q:,, A .. . A qiVni-, = $,). (The symbol = stands for equality in the logic language, the 

dot is added to differentiate it from the equality used in equations). To avoid redundancy, 
expressions of the form q' = q' are left out. The formulae Ri, . . . , Rk corresponding to the 
restriction sets R1,. . . , R, are collected into the logic formula R' = Ri A . . . A RL, which is 
associated with p'. Notice that R' has been constructed so that it only contains occurrences 
of input attributes. This completes the construction of the conditional attribute grammar 
G'. 

We now show that G and G' have equivalent semantics. There is a natural correspon- 
dence between the attributed trees T of G and attributed trees T' of G' given by the above 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-06 



30 Can we transform Logic Programs into Attribute Grammars? 

transformation which relates the equations and input predicate associated with productions 
of G' with restriction sets of G. Notice also that a is a valuation defined for T if and only 
if it is defined for T'. 

We first show that if a is a valid valuation for T ,  and production p occurs at address n 
in T ,  then 

Since a is a valid valuation for T ,  and any valid valuation for T is also locally valid for every 
production p that appears in T ,  it follows from the reversibility of G that a has to satisfy 
the following equality: 

for the terms ti,, . . . ,tik appearing in the restriction sets associated with p. Since ti, and 
41) 

hi, are both members of R, it follows from the validity of a that a(t;,(n)) = a(hil(n)) hence 
equality 3 follows. 

Similarly, if a is valid for TI, then equality 3 follows from the fact that the equation 

appears in T' and that fa(j),, is interpreted as 

We now show that a is valid for T if and only if it is valid for T' by showing that for 
every tree address n in T ,  a is valid at n if and only if it is valid at address n in T .  Let 
p be the production that is used at address n and let p' be its corresponding production in 
G' (it follows that p' is used at address n in T'). Since the terms hi, were chosen from the 
same restriction set as ti,, and since a is a valid valuation , we have that .(hi,) = a(t;,). 
Each term q' is obtained from q by replacing each occurrence of a term of the form ti, by a 
term hi,. It follows that a(q'i,jl(n)) = a(qi,i,(n)) for i = 1, .  . . , n and 1 = 1, .  . . , ni. Thus a 
valuation a satisfies a restrict~on set Ri(n) = {qill(n), . . . , qi,,; ( n ) }  if 

a(qi,l(n)) = . . . = ~ ( q i , n ;  (n))iff  
.(ql,lcn)) = . . . = a(q:,.,(n))iff 
it satisfies the logic formula R';(n). 

We have shown that: 

1. the set of attributed trees of G and G' are isomorphic, 

2. given isomorphic decorated trees T of G and T' of G', and an address n in their 
respective domains, the set of valid valuations of T at address n is the same as the set 
of valid valuations of 2'' at address n. 

It follows that G and G' have the same semantics. 0 
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NOTE: An important point that follows from our definition of valid valuations and which 
is not made explicit here, is that values assigned to input positions have to be such that no 
term appearing in either an equation or a logic formula is undefined, i.e. they belong to the 
domain of the functions (or composition of functions) which are applied to them. 

Example 5.8 The result of applying this construction to the addition abstract attribute 
grammar with the splitting described above is the following Conditional At tribute Grammar: 

The interpretation part of the Conditional Attribute Grammar, partly obtained from exam- 
ple 5.2, is as follows: 

Z1(n,S) = the projection function on terms of the form s(z) 

Given the interpretation Z', it is easy to see that the Conditional Attribute Grammar 
given above is equivalent to the following notationally more intuitive Conditional Attribute 
Grammar. 

(pi:) add =+ end c(6) = b(e)  
(a(€) = 0) 

(pi) add + add a(1) = r;(a(e)) 
b(1) = b(€) 

~ ( € 1  = s(c(1)) 
This last Conditional Attribute Grammar is similar to the one obtained from the logic 
program for addition by the method described in [9] except that instead of a(€) = 0 they 
introduce the predicate instance(a(c), 0); also a predicate instance(a(e), s(X)) is introduced 
in the second production by them which is not needed here because of the way valid valuations 
are defined, namely no term can be undefined. This forces a(€) to be an instance of the term 

s(X>- 
From theorem 5.7 we obtain the following corollary. 

Corollary 5.9 For every reversible simple Abstract Attribute Grammar one can construct 
an equivalent Conditional Attribute Grammar 
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6 Transforming a Logic Program into a Conditional 
Attribute Grammar 

We will now show how to transform a Logic Program with a legal Input / Output assignment 
to its predicate positions into a Conditional Attribute Grammar. (The exact meaning of legal 
will be stated below.) This is done in two steps. First the Logic Program is transformed 
into an Abstract Attribute Grammar as described in section 4. Them the transformation of 
the section 5 is applied to obtain an equivalent Conditional Attribute Grammar. In order 
to utilize the construction given in theorem 5.7 we have to make sure that the Abstract 
Attribute Grammar obtained from the Logic Program is indeed reversible. That is the focus 
of the next lemma. 

Lemma 6.1 The Abstract Attribute Grammar obtained from a Logic Program using the 
construction described in section 4.4 is reversible. 
Proof: Recall that the construction associated predicate symbols with non-terminals and 

predicate argument positions with attributes. The natural mapping between attributes and 
the terms appearing in the corresponding argument position of the clause was denoted by 
tr,~, i.e. if a is an attribute occurrence in production p', then trpI(a) is the term appearing 
in the original clause of the LP in the argument position corresponding to a (refer to page 
24). 

In order to show reversibility of the Abstract Attribute Grammar we pick an arbitrary 
production p' (which corresponds to a definite clause p) and an arbitrary attribute occurrence 
a of p' and we construct a function f,,,t such that for any locally valid valuation a, 

where tl, . . . , tk are all the terms in the restriction sets of p' in which a appears. Intuitively, 
this is possible because each restriction set associated with p' represents an atom occurring 
in the original definite clause. Thus the atoms that make up the term corresponding to 
a are scattered among the restriction sets. Since we can construct a term from the atoms 
appearing in it, we can reconstruct it from selected elements of the restriction sets. 

Let us denote by t the term tr,l(a). Let sl, . . . , s, be all the atoms (i.e. variables 
and constants) appearing in t .  Clearly, t can be constructed from its atoms by using term 
constructors7 hence 

t = $ ( ~ l , .  . , s n )  ( 6 )  

for a function 4 that is a composition of term constructors. For example, the term t = 
h(f (X, Y), a) can be constructed from X, Y and a by the function 

Clearly, for any substitution 0, 0(t) = $(O(sl), . . . , O(sn)). Since a is a locally valid valuation 
for pi, we have by corollary 4.12 on page 24 that a (a )  = Bp,cr(t). Hence; 
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Recall that each restriction set R, associated with p' represents all the paths leading to an 
atom in p, i.e. R, = Paths(p, s;) for some s;. Let s: E Paths(p, s;), hence s: is of the form 
~ ( a ; )  for some attribute occurrence a; of p'. Hence 

By corollary 4.12, 
a(a;)  = Op,, ( tr, (a; ) )  

hence, 
a ( ~ : )  = ~(Op,a(trp(bi))) 

Since ~ ( a )  E Paths(p, s;), by lemma 4.9 on page 22, 

Hence, from equations 7, 10 and 11 we obtain the following equality 

for s{, . . . , sk members of the restriction sets of p' in which a appears. Since cr is valid, it 
has to agree on all members of each restriction set thus for for any terms t l ,  . . . , tn such that 
ti and s: are in the same restriction set we have that 

If we now denote 4 by f,,p~, we have equality 5 as wanted. CI 

Now, in order to obtain a Conditional Attribute Grammar from an Abstract Attribute 
Grammar, theorem 5.7 requires the AAG to be not only reversible but also safe. Therefore, in 
order to transform a Logic Program into a Conditional Attribute Grammar we will also need 
to impose certain conditions on the LP that will result in a safe splitting of the attributes 
of the AAG. We borrow our notation from 191. 

Definition 6.2 Given a Logic Program, a direction assignment (d-assig) is a mapping of 
the arguments of each predicate symbol occurring in the LP into the set (4, f). 

A d-assig splits the argument positions of each definite clause into input positions and 
output positions similarly to the way a splitting of attributes into inherited and synthesized 
results in an Input/Output splitting of the attribute occurrences of a production. Given a 
definite clause, its input positions are J. positions of the head of the clause and f positions 
of its body. Output positions are t positions of its head and J. positions of its body. 

The condition needed to obtain an Attribute Grammar is that each output position be 
computable from input positions. This can be done if each variable which occurs in some 
term in an output position also occurs in a term which is in an input position. This will 
guarantee that the value of the variable be instantiated when it is needed. 
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Definition 6.3 A d-assig is called safe if each variable occurs in at least one input position. 

Since there is a one-to-one correspondence between argument positions of predicates 
and at tributes, a d-assig imposes a splitting of the at tributes: at tributes corresponding to 
argument positions to which the d-assig gives the v ~ l u e  j. are inherited, while attributes 
corresponding to  argument positions that receive the value f are synthesized. It is easy 
to see that input argument positions of a definite clause p correspond to input attribute 
occurrences of the corresponding production p' and similarly for the output positions and 
attribute occurrences. Thus, it makes sense to ask the question of the safeness, in Abstract 
Attribute Grammar terms, of the d-assig. We have the following lemma. 

Lemma 6.4 Let I' be a Logic Program, let G be its equivalent Abstract Attribute Grammar 
obtained using our construction. Also, let d be a d-assig for I' and let I / O  be its induced 
splitting on the attributes of G. If d is safe so is I /O.  
Proof: Let p be a definite clause appearing in I' and let p' be its corresponding production 

in G. We have to show that each restriction set associated with p' has an output-free element. 
Recall that each restriction set R is of the form Paths(p, s) for some atom s. If s is a 

constant, then s E Paths(p, s) by definition of Paths(p, s), hence R is output-free. If s is 
a variable X, by the safeness of I', there exists an input position of p where X appears. 
Let a be the attribute corresponding to that input position. By definition, a is an input 
attribute occurrence of p'. Since R = Paths(p, X) and X appears in t r (a) ,  there has to be a 
term of the form ~ ( a )  in R. Since a is ar, input attribute occurrence, ~ ( a )  is an output-free 
term, hence R has an output-free element. Since R was chosen arbitrarily, this completes 
our proof. 13 

By putting together lemmas 6.1 and 6.4 with theorem 5.7 we obtain the following corol- 
lary. 

Corollary 6.5 Let I' be a Logic Program and let d be a safe d-assig for I', there exists a 
Conditional At tribute Grammar which is semantically equivalent to I' . 
Proof: First, construct an Abstract Attribute Grammar G which is equivalent to I' by using 

the construction of section 4.4. Lemma 6.1 tells us that G is reversible. Lemma 6.4 shows 
that the induced I / O  splitting is safe. Thus, the conditions for theorem 5.7 are met allowing 
us to construct a Conditional Attribute Grammar G' which is semantically equivalent to G, 
hence to I'. 0 

Definition 6.6 A Logic Program for wich there exists a safe d-assig will be called a simple 
Logic Program. 

From our previous results, the following corollary follows. 

Corollary 6.7 Every simple logic program has an equivalent conditional attribute grammar. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-06 



Tomas Isakowitz 35 

In general, the problem we are trying to tackle is that of finding an answer substitution 
for a query posed to a Logic Program. A query that induces, by virtue of its ground terms, a 
safe splitting of the argument positions, will be called a safe query. Given a Logic Program 
I' and a safe query, an equivalent Conditional Attribute Grammar can be constructed on the 
fly to assist in its unification-free evaluation (how exactly this evaluation proceeds is beyond 
the scope of this paper). The process will become more efficient if the amount of processing 
to be done for each query could be reduced. 

Notice that the reversing functions f,,,~ used in lemma 6.1 do not depend upon a specific 
valuation nor upon a specific splitting of the attributes. Thus, these functions can a11 be 
precomputed for all attribute occurrences and productions at once when first transform- 
ing a Logic Program into an Abstract Attribute Grammar. Then, in order to construct a 
Conditional Attribute Grammar in response to a safe query, it will be enough to determine 
the input and output positions of each production and then assemble the necessary equations 
and predicates by using the reversing functions precomputed when constructing the Abstract 
Attribute Grammar. 

We now compare our results with the transformation from logic programs to conditional 
attribute grammars described in [9]. Their Construction 3shows how to obtain a Conditional 
Attribute Grammar equivalent to a Logic Program with respect to a safe d-assig. Proposition 
I states that every simple Logic Program can be transformed into an equivalent Conditional 
Attribute Grammar. This is similar to our corollary 6.7. 

Given Logic Program with a safe d-assig our transformation will exhibit an equivalent 
Conditional Attribute Grammar by performing an intermediate transformation into a Ab- 
stract Attribute Grammar. Thus we have two steps in our transformation: from a Logic 
Program to an Abstract Attribute Grammar and from an Abstract Attribute Grammar into 
a Conditional Attribute Grammar. What is the gain? 

The method described in [9] requires a specific input/output assignment to transform a 
logic program into a conditional attribute grammar. With our method however, one can 
construct a generic abstract attribute grammar for a given logic program without dealing 
with input/output assignments. When a specific input/output behavior is imposed, its safe- 
ness can be checked and the corresponding conditional attribute grammar constructed from 
the abstract attribute grammar. Furthermore, as we discussed above, the amount of pro- 
cessing needed to produce a Conditional Attribute Grammar from a specific query can be 
substantially lowered by precomputing the reversing functions. 

The advantage of our method when compared to theirs is that a significant portion of 
the translation can be done independently of the specific input/output assignment, which 
means that portions of the compilation process can be done for the entire logic program 
independently of any query. It is the part that generates an abstract attribute grammar 
equivalent to the original logic program. Whenever a specific query is to be evaluated, an 
input/output assignment is imposed. Our method then proceeds to check for safeness of the 
assignment and then to the construction of the equivalent conditional attribute grammar 
whenever possible. In 191 a complete translation has to  be performed each time query is 
posed. Our method therefore achieves a greater level of efficiency by identifying aspects of 
the logic program which are independent of the particular i/o assignment. 
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7 Conclusion 
In this paper we have investigated the relationship between Logic Programs and Attribute 
Grammars. The lack of an inputloutput behavior in the former clashes with the nature of 
the latter, This led us to introduce Abstract Attribute Grammars. We have shown the close 
relationship between both formalisms, and we have provided a construction that transforms 
any logic program into an equivalent abstract at tribute grammar. 

We have given sufficient conditions for transforming an Abstract Attribute Grammar 
into an equivalent Conditional Attribute Grammar. These conditions apply in the cases of 
Abstract Attribute Grammars obtained from Logic Programs via the construction described 
in section 4.4. 

We have also shown how our work ties in with the work by Deransart and Maluszynski 
[9]. When constrained to the domain of their investigations (simple logic programs), the end 
results of applying the transformations described there and here do coincide. The types of 
constructions described here and in [9] can be viewed as an attempt to exclude unification 
from the computation of proof-trees, by replacing it by a form of pre-processed matching. 
Our approach is more powerful in a number of ways: 

1. The transformation from Logic Programs into Abstract Attribute Grammars is not 
restricted to a particular class of LPs. 

2. Although, Deransart and Maluszynski are able to transform arbitrary Logic Programs 
into equivalent Relational Attribute Grammars, their transformation does not provide 
any degree of term matching. Our transformation from Logic Programs to Abstract 
Attribute Grammars does. 

3. There is a certain amount of pre-processed matching that can be done independently 
of a particular query being posed to a Logic Program. Our transformation from Logic 
Programs to Abstract Attribute Grammars captures that. In [9] ,  all meaningful trans- 
formations are dependent upon a specific i/o assignment, hence to a specific class of 
queries. 

4. By performing a greater amount of preprocessing, which involves pre-computing the 
reversing functions at the time a Logic Program is transformed into an Abstract At- 
tribute Grammar, we show how to construct of a Conditional Attribute Grammar 
equivalent to the Logic Program with respect to a specific safe query without per- 
formiong any amount of term matching. This sets the ground for a scheme to do 
Unification-Free evaluation of Logic Programs. 

In this paper we have presented two transformations: LPs to AAGs and AAGs to LPs. 
We have formally shown the correctness of these transformations and explained what their 
advantage is. We have compared our results to those published elsewhere and we have argued 
for the generality and rigurosity of our approach. 

8 Further Research 

We are also interested in continuing our investigations on the following topics: 
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Evaluation: how to use attribute evaluators to run Logic Programs that have been 
transformed into Abstract At tribute Grammars? 
One can look at the Abstract Attribute Grammar as a compiled form of the logic 
program. The exact way in which this intermediate code can be used is not clear at 
the moment. One way of tacking this problem is to use logic programming interpreter 
techniques although it is not clear how efficient and practical this would be. Another 
possibility is to adapt Attribute Grammar techniques to AAG. 

We have given suficient conditions for transforming an Abstract Attribute Grammar 
into an equivalent Conditional Attribute Grammar, the topic of finding necessary con- 
ditions is worth studying. 

Functionality: by un-freezing the interpretation of functions in a Logic Program and 
by using Conditional At tribute Grammar evaluation techniques, it seems plausible to 
add functional programming capabilities to logic programs. 

Natural Language Processing: It is possible to transform some DCGs into AGs. In 
doing so one can separate the parsing process from the rest of the computation which 
can be dealt by an attribute evaluator. This leads to efficient implementations of 
Natural Language Processing systems whose prototypes are built in Prolog and then 
transformed into AGs. Characterizing the class of DCGs for which this will work is 
worth studying. 

It is our thesis that the preprocessing of clauses of a Logic Program proposed here will sub- 
stantial improve the run time for a large class of LPs. 

The author is very greatful to Jean Gallier for his stimulating discussions, to Pierre Deransart 
for his comments on earlier versions of this paper and to the referees of this paper for their 
constructive criticism. 
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