
SOFTWARE REUSE:
ISSUES AND RESEARCH DIRECTIONS

Yongbeom Kim
Leonard N. Stern School of Business

New l'ork University
New York, NY 10006

Edward A. Stohr
Leonard N. Stern School of Business

New York University
ITew \'or];, NY 10006

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-93-15

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

ABSTRACT

Software reuse has been considered as a means to help solve the

software development crisis. This paper surveys recent work based on

the broad framework of software reusability research, and suggests

directions for future research. We address general, technical, and non-

technical issues of software reuse, and conclude that reuse needs to be

viewed in the context of a total systems approach. We also envision a

software system or reuse support system(RSS) that helps document and

elucidate existing application systems so that the ideas and design

decisions involved in their creation can be reused either in the

context of maintenance or when building new systems.

1. INTRODUCTION

organizations face many problems in software development including

increased costs, delayed schedules, unsatisfied requirements, and

software professional shortages. This situation is often referred to

as the software development crisis. Increases in software development

productivity and improvement in software quality are necessary to allow

organizations to maximize the return on investment in information

technology. The new business environment, which is characterized by

increased competition, global markets, and the need to cut costs, makes

this improvement in software development productivity even more

important.

In this paper, we examine software reusability as a means to

improve the process of software development and also the quality of the

software produced. Software reuse refers to the use of previously

developed software components in new applications. Traditionally, this

has involved code reuse by other programmers in the same organization.

A more general concept is to reuse the concepts or ideas underlying the

software system as well as the code itself. These concepts and ideas

include the outputs of earlier phases in the system life cycle such as

knowledge about the purpose of the software, the business process that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

it is to support, the functions that are to be provided, and so on.

Some of these reusable objects may be reusable in a number of different

application domains. An example is provided by the development of the

open systems concept for standardizing user interfaces. Alternatively,

it may be possible to capture the common knowledge underlying a whole -

domain. (e.g. a branch of law or medicine) so that this can be reused

in a range of software applications. Finally, it is important to

consider the breadth of use of the reusable components - whether
software resources in this general sense are reused by the original

developer on different projects, a group of developers within a single

organization, or, as envisaged by the Department of Defense [DOD 861,

by a large number of different organizations.

We refer to the most general concepts of reusability as outlined

in the previous paragraph as "global reusability". Here, we

concentrate on an intermediate concept of reusability, "widespread

reusability" which we define as (1)reuse by other software developers

within the same organization as well as the original developer, (2)

reuse of objects produced by the systems analysis and design phases as

well as code, (3) reuse of general and specific purpose software

resources across a variety of application domains, and (4) reuse of

software resources along a continuum of task types from maintaining

existing systems to developing new software systems. The problems of

standardization across organizations and the capture of the knowledge

underlying a given domain are not addressed directly in this paper.

The search for effective methods of promoting software reuse has

an economic basis. When software systems are developed with the concept

of software reuse, fewer total lines of code may need to be written and

also the amount of documentation and testing may be reduced. That is,

software reuse should increase productivity. Increased 'productivity

will reduce development cost and schedule overruns. Since reusable

software resources have usually been rigorously tested and verified,

software quality should also be improved by software reuse.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

There are several survey papers concerning software reusability

including [Sundfor 8 3 1 , [Horowitz and Munson 841, [Seppanen 871, and

[Biggerstaff and Richter 891. The goal of this paper is to survey more

recent work based on a broad framework of software reusability research

as well as to provide directions for future research in software

reusability.

2. A FRAMEWORK FOR SOFTWARE REUSE

There are many approaches to the concept of software reuse. To

organize and place various concepts and models of reuse (or reusability

research), a number of conceptual frameworks for software reuse have

been proposed.

A framework which classifies the available technologies for

reusability into two major groups, composition technologies and

generation technologies, is proposed by [Biggerstaff and Richter 891.

We will discuss these technologies in more detail in Section 6.

Another framework based on three research and development questions,

what is being reused?, how should it be reused?, and what is needed to

enable successful reuse?, is developed by [Freeman 871. In Freeman's

framework, five levels of reusable information (code fragments, logical

structure, functional architecture, external knowledge (such as

application domain knowledge and software development knowledge), and

environmental knowledge related to organizational and psychological

issues) are defined. For each of the five information levels, typical

projects of three different expected payoff periods are identified to

answer research and development questions. Other frameworks by

[Horowitz and Munson 841 and [Jones 841 are based on the forms of reuse

such as data, code, and design.

In this paper, the framework for software reusability research

shown in Figure 1 is used to organize our discussion. This framework is
inclusive in the sense that most issues in other frameworks are

discussed.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

In Figure 1, research on software reuse is divided into three

groups according to the point of view: general issues, technical

issues, and non-technical issues. General issues are classified into

definitions and scope of software reuse and economic issues. Technical

issues are classified into reuse methodologies and software approaches.

lion-technical issues are classified into organizational issues and

psychological issues.

software reusability research

general
issues

technical
issues

non-technical
issues

I I
I softwire I I

and issues reuse approaches psychological organizational
scope methodologies issues issues

A I I 1 I
I

economic cost generation composition object
benefits benefit methods methods

CASE
oriented approach

models
I 1 methods

I I I 1 1

language transformation
based systems

systems

application
generators

retrieval

strategies

application software composition
classification l~brar~es principles

and

Figure 1. A Framework of Software Reusability Research

3. DEFINITIONS AND SCOPE OF SOFTWARE REUSE

Questions related to software reuse (such as what is software

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

reuse?, what do we reuse?, when do we apply software reuse?, and who

reuses software?) have been considered by a number of researchers

[Horowitz and Munson 84][Jones 84][Freeman 87][Tracz 90][Rubin 901.

Software reuse is defined as the use of previously developed software

artifacts such as design, code, documentation, etc., in new

applications by various users such as programmers and systems analysts.

TO provide an organized and inclusive point of view, we define the

concept of widespread software reuse with respect to the following

criteria: user types, reusable resource types, and task types.

User Types

Users of reusable software resources can be classified into three

groups: (1) the original developers, (2) individuals in the same

organization, and (3) people in different organizations

When reusable software resources are well classified and easily

retrievable, anyone in the same organization should be able to use them

for software systems development. For organizations such as the

Department of Defense that normally involve a number of different

software contractors, reuse across different organizations can be

extremely important both economically and from the point of view of

developing sound, cohersnt, and maintainable systems [Myers 871 [DOD

863. Software reuse by people in different organizations implies such

problems as standardization and legal rights that will not be

considered in this paper.

Reusable Resource Types

Reusable software resources can be classified by entity types,

application area types, and abstraction level types as follows.

Entity

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

There are three kinds of entities that can be reusable: process,

data, and object. An object resource is a combination of data and

process resources [Wegner 901 [Micallef 881. Note that in this paper,

we focus on process and data resources only.

Process resources are usually considered the main target of

software reuse. However, the importance of data resources as reusable

software objects is recognized by the emergence of data base management

systems(DBMS), standard data interchange format [Fylstra and Gill 801,

expanded data definition which includes various data types such as

graphics and voice, and many data-related applications.

Application Area Types

A given software resource (process or data) can exist in a wide

range of contexts varying in a continuum from customized resources, to

functional resources to generic resources.

A customized process resource is a set of application functions

developed to satisfy the specific requirements of users in an

organization. All of the software resources can be thought as working

together to satisfy a set of organizational needs. Common examples are

data processing systems for payroll, accounts receivable, etc. Examples

of customized data resources are the files and screens used by

customized software.

A functional process resource is a set of application functions

that are packaged as a unit for a given application area such as

management science, finance, accounting, or statistics. Each function

of a functional collection can be used separately. Software packages

such as IMSL [IMSL 841 and SPSSX [SPSS 8 6 1 fit in this category.

Functional data resources are data definitions or data item values that

are useful in awarea of application. An example might be the data

definitions in a data dictionary for a commonly used database of

financial information.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

A seneric process resource is a general-purpose software resource

that can be used in many different applications. Examples include file

management, screen management, graphics, string management, print

routines, keyboard management routines, help functions, editing

routines, data entry routines, and date manipulation routines. Generic

data resources include definitions and formats for items such as dates

and personnel and product identifiers that are used across many

applications. Generic or functional resources are used in customized

resources.

Abstraction Levels

There are number of levels of abstraction, from abstract to

concrete, at which both data and process entities may be considered.

~epresentations of aggregations of processes into higher level

subsystems or systems are at the abstract level. A process resource is

at the concrete end of the spectrum, if it is in a form that can be

directly used in a functioning software system, e.g., object code. In

the middle, one has process entities on data flow diagrams, process

narratives, or source code. Similarly, the abstract to concrete

spectrum for data ranges from data objects in the conceptual models

such as ~ntity-Relationship model to descriptions in data dictionaries

to physical files through data declarations in programming language

format.

It is generally agreed that the cost for coding is only a small

portion of total software development cost [Freeman 873. By reusing

both concrete resources such as code, and abstract resources such as

entity-relationship diagrams and data flow diagrams, software

development costs should be reduced. Both modification of existing

software resources and adaptation of existing software resources to new

applications require understanding of existing reusable software

resources. The existence of reusable resources at higher levels of

abstraction can help the understanding process.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

Task Types

The tasks related to software reuse can be classified along a

continuum from maintaining existing systems to developing new software

systems.

Maintenance includes two task types: modifying existing software

systems and adding new components to enhance existing software systems.

In both cases, maintenance can be viewed as a reuse-oriented task in

which the appropriate requirements, design, and code from earlier

versions of the system has to be accessed and understood by the

maintenance programmer.

Three different task types are involved in developing new software

systems. The classification is based on the degree of similarity of the

application addressed by the new and old systems.

The first task type is building a new system that has process and

data in common with an existing software system. An extreme example of

this task type is building a new software system with the same

functions as the existing software system but in a different

implementation language. Both abstract level process and data resources

from the old system are reused in this case. A less extreme example

occurs when a completely new system is to be built that will replicate

the logic of a part of the old system.

The second task type is building a new software system that

performs an entirely different function but is related to an existing

system because of common data. Here, the new system can reuse common

files, file definitions, and screens. Thus, the reusable items are data

entities, although 11generic88 software elements such' as screen

management routines that have been developed in the context of the

first application'might be reused in the second.

The third task type is building a completely independent new

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

9

software system. Here, the opportunities for reuse are probably limited

to generic resources such as report writers, screen managers, and date

routines.

Table 1 shows the potential of reuse of the various class of

reusable resources over the different task types.

Table 1. Likelihood of Reuse of Various Software Resources

Entity Type

Application
TY pe

Task Type

Maintenance

Developing
new systems

common data
and process

related

common data
related

completely
independent

By definition customized resources are likely to be "reuseds1 in the

maintenance task. Note that the reuse of previously developed ideas is

almost total in a maintenance task. Because understanding of the

existing system is essential, abstract resources from early phases in

the life cycle can be important. On the other hand, for new application

development, generic resources in the concrete level 'of abstraction

(e.g., procedures for report writing, date routines, etc.) are more

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

Data

Generic - Customized

Low High

1

Process

Generic '- Customized

Low High

v

Low - Medium Low

*

b

High Low

.

*

•

likely to be important.

In summary, the concept of widespread software reuse is defined

with equal emphasis on data and process resources, abstract and

concrete resources, specific application-oriented and generic

function-oriented resources. It also emphasizes a wide range of tasks

from maintenance of existing systems to development of new systems.

4 . ECONOMIC I S S U E S

Reusing software resources can result in increases in productivity

and improvements in quality [Standish 841 [Horowitz and Munson 841

[Boldyreff 891 [Rubin 901 and reliability [Lubars 861. Economic issues

concern (1) actual evidence of productivity and quality increase from

software reuse and (2) cost benefit models of software reuse.

4.1 Economic Benefits from Software Reuse

Improving productivity is a major goal of software reuse, and is

a key focus of many corporate IS groups [Frank 811. Table 2 summarizes

reported statistics about reuse rates and productivity increases from

software reuse in organizations. Reuse rate is defined as the

proportion of reused code in new systems. Productivity increase can be

defined in terms of the number of lines of source code produced by

programmers/unit-time, savings in man-months, or dollar savings.

Reference Reuse Rate (%) Projects Productivity (Increase)
[Matsumoto 87) 48 % multiple 8-9 % yearly increase
[Love 883 25 % single save 130 man-months
[Conte 881 60 % multiple 50- % increase
[Joyce 881 35 % multiple save 250 man-days/month
[Coome et al. 901 42 % multiple 33.9 non-comment lines/day
[Todd 901 14 % multiple a savings of $1.5 million
[Banker and Kauffman 901 65 % multiple see text
Average 41.3 %

Table 2. Reported Statistics of Software Reuse

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

Unfortunately, there has been very little consistency or

standardization in the productivity measures as can be seen in Table

2. It is therefore necessary to explain each case in some detail.

Matsumoto reported 48 % code reuse rate in the Fuchu Factory of Toshiba

Corporation in 1985; the average rate of yearly improvement of

productivity was approximately 8-9 % between 1977 and 1985 [Matsumoto

871. [Love 883 reported that 130 man-months was saved (from 460 man-

months to 330 man-months) by reusing 50 components rather than

building them from scratch for a 200 components development project

using pPI1s (Productivity Products International, Inc.) workplace tools

for the objective-C language. Raytheon is reported to have achieved 60

% reusable code in new development of COBOL applications and a 50 %

increase in productivity at their Missile Systems Division in Bedford,

MA [Conte 883. The Hartford Insurance Group has a reusable library of

3 5 documented and tested COBOL code modules maintained on a Wang

minicomputer [Joyce 881 ; 35 % of the code in new systems comes from the

reusable library. By reusing code in the library, they realized a

savings of 250 man-days per month at a cost of 25 man-days in support

and maintenance time- In Ada projects at NASA, 42 % of the projects'

code was reused code and the productivity increase was 33.9 non-comment

lines of code per staff day [Coome et al. 901. With a library of 136

components consisting of l68,OOO source code lines available to 700

programmers, GTE Data Services achieved a 14 % code reuse rate for new

systems and a savings of 1.5 million dollars in 1987 [Todd 901. [Banker

and Kauffman 901 reported 65% reuse rate for 21 financial projects that

were developed using a CASE tool. In this specialized environment, a

productivity increase of 796 % in the second year was reported,

However, it is difficult to determine how much of this productivity

increase is due to reuse, .and how much is due to the automated CASE

environment and application generation facilities provided by the CASE

tool.

Another benefit related to software reuse comes from higher

quality and reduced need for testing. Quality is improved by reusing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

software resources which are already tested and verified by use. The

~uchu Software Factory maintained an average program quality level of

2-3 faults per thousand lines of code [Matsumoto 871. The Hartford

Insurance Group reported that 17 software engineers and other staff

people spent 20 hours to qualify each 1,000 lines of code accepted for

reuse [Joyce 881. One defect per thousand lines of code was reported

in NASA's third Ada project [Coome et al. 901.

In summary, reuse rates in the range 14-65 % have been reported

with productivity increases in the range 10-50 %. Despite this evidence

of large increases in productivity, software reuse is not widespread

for a number of technical, behavioral and economic reasons as discussed

later in this paper.

4.2 cost-benefit Models

In [Gaffney and Durek 8 9 1 , several economic models of software

reuse are presented. These model the impact of software reuse on

development productivity relative to that obtained if the software

product was to be built using all new code. Relationships among

productivity, reuse rate, and cost are investigated in several

different situations. Their theoretical model supports the order of

magnitude of the results in Table 2. For example, when the reuse rate

is 50% and the relative cost of reused software (compared to the cost

of all new software) is 40 %, their formula shows a theoretical

increase in productivity of 25%. Other economic models of software

reuse to evaluate software development performance include [Banker et

al. 901 and [Balda and Gustafson 901.

Papers on economic issues support the idea that software reuse can

be a keystone in efforts to improve productivity and quality. However

there are few papers about how to measure reuse rate and gains in

productivity from software reuse when software development is

considered as an ongoing activity. Cost for the installation of the

methodology to support software reuse and maintenance cost are usually

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

not considered. Developing economic models of software reuse which

consider software development as an ongoing activity in organizations

is a needed future research direction. An economic model of software

reuse that considers time in software development and costs for the

methodology installation and maintenance, is needed to address

measurement problems and provide analyses of software reuse approaches.

5 . REUSE METHODOLOGIES

In the framework in Figure 1, technical issues are divided into

two categories: reuse methodologies and software approaches. In this

section, we group the challenges involved in developing a reuse

methodology. Section 6 will discuss the various software approaches

that can be used to support whatever methodology is adopted.

As the development costs of software systems increase, the role of

reuse becomes more important in software engineering. For this reason,

a software engineering methodology should support the notion of

developing and leveraging reusable software resources [Rubin 901.

 eve loping a software methodology that supports reuse is an active

focus of current research [Hall 891 [Freeman 87a] [Wirfs-Brock and

Wilkerson 891.

Here, we look at reuse methodologies rather narrowly in terms of

the process steps that might be performed by a software development

group. Approaches to reusability that involve broader organizational

strategies are discussed in section 7. Table 3 summarizes the reuse

processes proposed by a number of researchers. Obviously, the

researchers describe, or implicitly assume, essentially the same steps

in the reuse process even though each emphasizes different processes.

For example, [Prieto-Diaz and Freeman 871 emphasized the role of

classification in code reuse. The decomposition/abstraction process

proposed by Boldyreff is for the decomposition of large software

systems into their component concepts and the abstraction of a reusable

software concept that is generic from a number of similar specific

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

software concepts.

Table 3. The Summary Table of the Proposed Reuse Processes

[Boldyreff 891

decomposition/
abstraction

classification

selection

adaptation

composition

Because it cannot be expected that new software projects can be

developed entirely by reusing existing reusable components, part of the

target software systems will normally be developed from scratch.

Therefore, traditional software development methodologies (such as the

software development life cycle or prototyping) need to be expanded to

support software development in part from scratch and in part from

reuse as shown in Figure 2. Six processes are involved in developing

a target software system. The first process involves classifying the

existing software resources to be reused in the future. This has to be

performed at the initiation of the reuse program to develop a library

of software resources. It must also be performed each time a new

reusable resource is to be cataloged. The remaining processes form part

of the software development life cycle proper. The second process is

for specifying requirements for the new system. This has to be

performed regardless of whether the software component is to be

developed from scratch or not. The third process is for identifying and

selecting appropriate target software resources from reusable software

resources based on the requirements specification. The fourth process,

modifying software resources, is necessary when the library resources

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

[Redwine and
Riddle 891

cataloging

selection

adaptation

assembly

[Biggerstaff
and Richter 891

finding

finding

understanding,
modifying

composing

[Prieto-Diaz
and Freeman 871

accessing

accessing

understanding,
adapting

,

retrieved do not exactly match the requirements specification. The

fifth process, build new components, is necessary when there is no

similar software resource in the existing reusable software resources

for some of the requirements. Finally the sixth process is required to

combine the new and reused software resources into the target software

system.

existing
software resources

classified reusable
software resources

requirements description
specification of selected

resources

customized
software resources

Figure 2. System Development with the Concept of Software Reuse

Note that the normal systems development life cycle involves only

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

Steps 2, 5, and 6 in Figure 2. For any project, the main gain from the

reusability approach is given by the difference in the costs of

performing Step 5 versus Steps 3 and 4. The cost of establishing and

updating the reusability library (Step 1) has to be amortized over all

projects.

Since we are dealing with reusable resources from all phases of

the software development life cycle, the software resources that are

retrieved in Figure 2 might be in the form of specifications, data flow

diagrams, program structure charts, source code, or object code. If a

strict life cycle approach is used, the steps in the above diagram

might be iterated for each phase of the lifecycle in order to complete

the specification for the entire target system (or a subsystem of the

target system) that is relevant to that phase. Alternatively, the user

might wish to retrieve the documentation for all lifecycle phases for

a single reusable object at once. Both approaches seem to be useful a

priori. Further research will be needed to investigate the

applicability of these two strategies.

The steps in Figure 2 can be performed independently of the use of

CASE tools or application generators. However, the use of CASE tools

implies that information concerning all the phases of development is

captured in the normal course of affairs. This implies that CASE tools

provide a high potential for software reuse.

6. SOFTWARE APPROACHES

The many different software development approaches can be

separated into four categories: generation methods, composition

methods, object-oriented methods, and the CASE approach.

6.1 Generation Methods

The objects being reused are general problem solving patterns that

drive the generation of the target programs. There are three classes of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

generation methods: language-based systems, application generators, and

transformation-based systems.

When a problem solution is generic and well understood, it may be
possible to develop a language-based system that reuses previously

developed software solutions. Language-based systems emphasize the

notation that is to be used to describe the target system. The language

types range from general purpose languages, called very high level

languages (VHLL's) [Dubinsky et al. 891, to special purpose languages,

called problem oriented languages (POL'S) [Lee 861. The major problem

with language-based systems is that they are generally feasible only

for domains with a very large number of users. Otherwise, the expense

in developing the systems may not be justified. In addition, unless

there is a broad domain of application, it may be difficult to get

agreement on the language to be used and sufficient people to learn the

language. Finally, the reuse problem remains at a different level - the
objects developed in these languages, are themselves reusable.

~ ~ ~ l i c a t i o n generators are software packages which are designed to

help end-users build applications in a given domain. Computer Aided

Software ~ngineering(CASE) tools such as Texas Instrument's Information

~ngineering Facility(I~~), Knowledgeware's Information Engineering

Workbench(IEW), and Seer Technologies1 High Productivity Systems(HPS)

contain code generators that produce executable code directly from the

design specifications. Application generators differ from language-

based systems in that code is generated from a higher level

specification of the task in a nonprocedural language which is usually

designed to be easier to use than procedural languages. In comparison

with language-based systems, the domain of application for application

generators has generally been more restricted. Application generators

reuse built-in patterns of code to generate new systems'. Again, the

reusability problem is transformed to a different level - i.e., to the
higher ievel objects in the design specification language

 ran sf or mat ion systems transform code written one language

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

18

code in another language. There are three areas where transformation

systems are useful: (1) writing in a powerful language such as Lisp,

then reusing the logic by transforming it to a language in which

execution is more efficient (e.g. FORTRAN) [Boyle and Muralidharan 841

or more portable (e.g. C), (2) reusing software when hardware upgrades

or operating system changes occur, and (3) migrating to a newer, more

common language for reasons of standardization. A methodology and

supporting programming environment that provides for reuse of abstract

programs through refining a single abstract program to a family of
distinct concrete programs are described by [Cheatham 841. It is

concluded that the reuse of abstract programs to do rapid prototyping

and custom tailoring is a viable alternative to the conventional

programming paradigm.

When several programs are to be derived from a single program,

program transformation is economic. Transformation is also good for

achieving portability in systems because porting the system to a new

environment is simply handled. Transformation systems are in the early

stage of development and not widely used at the present time.

The following table briefly summarizes the three generation

methods.

II Approaches

Language-based
Systems

~pplication
Generators

Table 4. Summary of Three Approaches to Generation Methods

Characteristics

A special language is used to express common
functions in a terse and elegant form

A special language is used to generate new
software systems by modifying and reusing
known patterns of software solutions

 rans sf or mat ion
Systems

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

I

Reuse of the logic of existing software
systems by transforming into a new language

Advances in generation methods provide a method of attacking the

problem of software productivity that may seem like an alternative to

traditional reuse of existing resources. In fact, these approaches both

codify reuse and are most effective when used in conjunction with

composition methods of reuse as discussed below.

6.2 composition Methods

software development approaches that emphasize the composition

approach utilize existing reusable resources that are viewed as atomic

building blocks which are organized and combined according to

well-defined rules. The major objective for these approaches is the

creation of software libraries containing generic and reusable software

components which can be combined to produce new target systems. This is

the traditional view of reusability research. There are three areas of

research emphasis: the development of application component libraries,

the classification and retrieval strategies, and composition

principles.

~pplication Component Libraries

In application component libraries, the components to be reused

are largely atomic and are usually unchanged in the course of their

reuse [Biggerstaff and Richter 891. Examples of such components are

subroutines, functions, programs, and Smalltalk-style objects [Lanergan

and Grass0 891 [Cavaliere 891 [Goldberg and Robson 8 3 3 . Component

libraries have been very effective for statistical and mathematical

applications [SPSS 861 [IMSL 841, but they are not sufficient to

achieve high improvement in other areas of software development. There

are two main reasons. First, there is the difficulty of classifying

reusable components in such a way that another person can easily

identify and retrieve them. Second, once retrieved, the reusable

components have to be combined into the target system. Software

components in the library are written in a specific programming

language, so detailed implementation decisions have already been made.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

20

This means that there is little flexibility in reusing the software

components. It is difficult to modify the basic structure of the

components, or to use a part of the components.

software Classification and Retrieval Strategies

Most approaches to the software classification and retrieval

problem have their roots in traditional library systems. These

approaches include full-text retrieval, keyword schemes, enumerative

schemes, and the faceted approach. "

In the full-text retrieval approach, target resources are

retrieved by searching for all documents containing certain words which

the user has specified [Harter 861. STAIRS from IBM [Blair and Maron

8 5 1 is a typical example of full-text retrieval systems for traditional
library applications. In the software reuse domain, the text that is

searched can be either the source code itself or a short English

description of the program or other reusable object as in CATALOG

system from AT&T [Frakes and Nejmeh 871. The full-text retrieval

approach avoids the need for manual indexing which is costly and

inconsistent. However, as the database becomes larger, it becomes

difficult to search and retrieve all the relevant resources and nothing

but the relevant resources.

Kevword approaches allow lists of keywords to be attached to each

item as it is stored in the library. In many systems, these keywords

come from a standard list. They may be listed by the author in any

order. An example software library that uses the keyword approach is

that used by the NASA/Ames Research Center [Jones and Prieto-Diaz 881.

Enumerative classification schemes take a subject area and divide

it into categories hierarchically arranged with each item being

assigned to one of the categories as it is stored in the library. A

prominent example of this approach is the Dewey Decimal Scheme [Dewey

7 9 1 for library retrieval. Software libraries that use this

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

classification scheme include the International Mathematics and

Scientific Library [IMSL 841. An inherent problem with enumerative

schemes is traversing the hierarchical tree to find the appropriate

class [Jones and Prieto-Diaz 881.

The faceted method synthesizes new classes from a set of

independent, elemental items called facets. ~acets' are defined as the

categories, perspectives, or viewpoints of a particular collection of

concepts or a domain [Vickery 601. For example, in [Jones and Prieto-

Diaz 881, the software is described by five facets (Functional Area,

Action, Object, Language, and Hardware). A standard list of terms for

each facet is stored by the system. For example, terms for functional

area include accounts-payable, accounts-receivable, billing, and

budgeting. The process of classifying a document may create an entirely

new class with a membership of one. Each item stored in the software

resource library is described by the list of values it has in each

facet. Advantages of the faceted method are that it allows multiple

dimensions to be defined for relevant concepts and standardizes the

vocabulary for these concepts. This method has been successfully used

as a technique for software classification by a number of researchers

on software reusability. Two different systems using essentially the

same facets are described in [Ruble 871, and [Prieto-Diaz and Freeman

871, [Jones and Prieto-Diaz 881. [Owen et al. 881 addressed the problem

of providing tools for the storage and retrieval of reusable software

components which consist of Ada packages and procedures. They focused

on a faceted classification scheme method where each softwaremodule is

described by a tuple of classes composed of descriptors from a

controlled vocabulary. They developed prototypes which showed both the

feasibility and the flexibility of the faceted classification scheme

method.

'A different meaning of the term facet occurs in artificial
intelligence. In artificial intelligence, facets mean the mechanism
by which control information (such as permitted values for the slot
and display format for the slot) can be attached to slots in a
frame.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

22

Other approaches to the classification/retrieval problem have been

used in software reusability research. These are based on semantic

representation and retrieval. [Mackellar and Maryanski 891 propose a

retrieval mechanism which retrieves objects that are close to a user's

description of the target data type from an existing library of data

types by using matching and scoring rules. [Wood 883 concentrated .on

the effective storage and retrieval of reusable software components by

developing a representation scheme based on Conceptual Dependency, a

theory used to represent the meaning of natural language [Schank 751.

Software components are represented in terms of the relationships

between functions and objects that occur in the context of functions.

The most comprehensive approach to the classification/retrieval

problem is to build a specialized information system that records

design and structural information about existing software systems.

[Debanbu et al. 911 discuss the problem of complexity and

"invisibility" as inhibitors of software reuse. By invisibility they

mean that the structure of software is hidden and difficult to

understand. They describe a system called LaSSIE (Large Software System

Information Environment). LaSSIE uses frame-based knowledge

representation and reasoning technology to promote reusability of a

large software system. The LaSSIE system simplifies the knowledge

engineer's task, while still providing semantic retrieval as well as a

rich knowledge structure for browsing, navigation, and query

reformulation.

In a test of retrieval effectiveness using the STAIRS (full-text

retrieval) system in a legal application, the average recall ratio

(i e. , the proportion of relevant retrieved- items to the number of
relevant items) was 20 % and the average precision ratio (i.e., the

proportion of relevant retrieved items to the number 'of retrieved

items) was 7 9 % [Blair and Maron 851 . This level of performance

(especially the recall ratio) is disappointing. We are unaware of

similar measures of retrieval effectiveness from experiments in

software reuse. Factors in this domain that might improve performance

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

are as follows. First, the number of relevant objects for a given

software retrieval request should be much lower than in a traditional

library application - often there will only be one relevant resource if
the request is at the concrete level of abstraction. Second, the domain

of software reuse may be more structured with more potential for the

use of standardized terms that would aid retrieval. On the other hand,

there may be a higher probability that there are no relevant items in

the reuse library that can satisfy a given request. This is because of

the limited scope of software reuse libraries when compared with the

diversity of possible software needs. Experiments on the effectiveness

of the various classification-retrieval schemes mentioned above are

needed to guide further development of software reuse methodologies.

Composition Principles

A number of researchers have emphasized the importance of software

organization and composition principles by which components are

combined into target programs. The UNIX pipe mechanism [Kernighan 8 4 1

provides a limited form of composition in which one program's outputs

are connected to another program's inputs to construct more complex

programs. Smalltalk uses message passing and inheritance as a

composition principle [Goldberg and Robson 8 3 1 . [Katz et al. 871

developed the PARIS system which maintains a library of programs in

which some parts remain abstract and undefined. They provide an

interactive mechanism to search through the library for a schema that

can be reused. Their approach provides another way to increase the

flexibility of software reuse by replacing nonprogram abstract entities

in the retrieved schemas with concrete programs.

There are several problems in existing approaches to organization

and composition of software components. First, apart from the UNIX pipe

mechanism (and the special case of application generators), the

difficult problem of integrating reusable objects into the target

system is usually left entirely to the users. Second, most existing

software reuse approaches focus only on source code, not on various

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

resources from other stages of software development activity. Third,

relationships among components are not explicitly represented; existing

approaches consider only kdependent components. Fourth, they use

detailed implementation criteria for classification and organization.

Research and development of mechanisms that facilitate the combination

of heterogeneous software resources is needed if the reuse potential of

existing software resources is to be fully realized.

6.3 object-Oriented Methods

object-oriented programming languages provide another approach to

reusability. A good discussion is contained in [CACM 901. The

properties of object oriented languages that help reusability include

information hiding, property inheritance, and polymorphism. Information

hiding is a reusability mechanism, since those parts of a system which

cannot see information that must change can be reused to (re)build the

system when that information does change. Property inheritance allows

new subclasses to be built on top of superclasses by inheriting

variables and methods of the superclass. The process of inheritance

encourages reuse of previously defined data attributes and procedures

in a more specific manner. Polymorphism means that operations have

multiple meanings depending on the types of their arguments [Micallef

881 . polymorphism can make reuse more flexible. [Tarumi et al. 881 have

developed a programming environment for object-oriented programming

which supports reuse of classes through the use of an expert system.

object-oriented programming languages provide flexibility in using

reusable objects. However, it is sometimes difficult to combine

operations defined by different reusable objects. Even in an object-

oriented environment, a major problem is that it is still difficult for

users, especially those who were not involved in the development of the

existing software resources, to know whether there are reusable

software resources to match their needs. Moreover, organizations will

continue to use traditional software development approaches for reasons

of inertia and efficiency as well as because of the large installed

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

base of software that has to be maintained.

6 . 4 CASE Tools and Reuse

[Banker and Kauffman 901 report that the level of code reuse is

the major factor that deserves attention in software projects developed

using CASE (Computer-Aided Software Engineering) tools because

extensive code reuse can increase productivity by an order of magnitude

or more, and thus yield significant cost reductions in software

development operations.

The central idea of CASE tools for reuse is the availability of a

software base containing software and software-related constructs such

as domain knowledge and methodological knowledge [Karakostas 891,

[Czuchry and Harris 8 8 1 . The availability of a software base makes

application-oriented software reuse from early phases of the software

development cycle (such as analysis and design) feasible with CASE

tools. In contrast, most other current reuse approaches support only

independent single component reuse at the coding phase.

Two different aspects of the CASE approach, integrated data

dictionaries and code generators, are reported to promote software

reusability by [Oman 903. The data dictionary integrates all reusable

software resources from various tasks into the central data dictionary

and facilitates access to these resources for reuse purposes. CASE

tools such as Excelerator and Prosa provide an integrated data

dictionary. Code generators associated with a number of CASE tools

automatically generate target source code from graphical software

system models. CASE tools such as Cradle, HPS, IEF, IEW, and Prosa have

one or more code generators for programming languages such as Ada, C,

Cobol, Pascal, and SQL.

While CASE tools facilitate software reuse, several aspects of

these systems can be improved. These include the

classification/retrieval method, the explicit representation of design

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

26

constraints, and assistance in the composition phase of reuse. If these

capabilities can be added to CASE tools, software reuse can be extended

to include reuse of customized application systems, and reuse of design

objects from early phases of the software cycle.

7. NON-TECHNICAL ISSUES

~ o s t research on software reusability deals with technical issues.

such research concentrates on the "WHAT and HOWw of the reuse issue,

but rarely explains ItWHYtt. Non-technical issues explain the

difficulties that have been experienced in promoting widespread reuse

in industry. They can be classified into two categories: psychological

issues and organizational issues.

7.1 Psychological issues

By understanding the merits of existing software paradigms from

the perspective of cognitive psychology, researchers [Tracz 7 9 1 [Curtis

8 3 1 try to provide insights into dealing with complex problem solving.
A discussion of the psychological inhibitors identified with software

reuse provides answers to the question "What makes reusing software

artifacts difficult?" [Tracz 871. Major inhibitors to software reuse

include: the "Not Invented Herett syndrome, lack of trust in programming

products, no clearly defined standards for developing reusable

software, software complexity and the invisibility problem, few large

repositories of reusable software, and few tools to help users

understand and access the resources that might be available in those

repositories.

[Soloway and Ehrlich 8 4 1 study empirically the differences

between expert programmers and novices. They suggest 'that expert

programmers have at least two types of knowledge: programming plans and

rules of programming discourse. When experts develop applications, they

try to match pieces of the problem with solution segments with which

they are familiar [Soloway and Ehrlich 831. This implies that portions

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

of designs are reused when applications are developed. Maintaining a

database of such previous designs should facilitate performance and

learning by software developers at all levels of proficiency.

The size limit of short term memory [Miller 561 is one of the

chief factors in the problem of ~in~isibility~~, which is seen as an

important deterrent to software reuse [Debanbu et al. 911. The

perceived complexity of software can be reduced by chunking or

modularization of components. This argument is directly related to

information hiding or abstraction and to the object-oriented approach

[Parnas et al. 8 3 1 .

Finally, conceptual differences that cause different people to

describe the same thing in different ways [Bhargava and Beyer 911 are

at the heart of the classification/retrieval problem in software reuse.

The above observations support the need for tools to reduce the

complexity of expressing user requirements, and to assist users in

finding reusable components and understanding the software systems they

are attempting to build.

7.2 Organizational issues

Research based on an organizational view provides an understanding

of why managers often do not adopt a reusable software engineering

approach for software projects. First, there is the lack of a corporate

infrastructure which encourages and rewards reuse [Barnes et al. 871.

Some organizations rely on incentive programs to stimulate programmer

interest in reusability: the Hartford Insurance Group pays $300 for the

best productivity suggestion of the month, while GTE pays authors a

cash bonus of $25 each time a component is reused [Joyce 881. Second,

there is a lack of user training in reuse techniques [Horowitz and

Munson 841. Third, costs to create the tools and methodologies are

generally not within the budget of a single project [Jones 861. Fourth,

higher degrees of reuse may lead to fewer experts. Any reduction in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

headcount might be perceived as reducing the empire a manager commands

[Rauch-Hindin 831.

[Karimi 903 proposed an asset-based systems development strategy

that plans for software reuse at the organizational level through an

integrated approach to systems development. He claimed that the

traditional application-oriented approach to system development is

inappropriate for developing reusable software parts. The asset-based

systems development strategy requires that top management understands

the critical role of software reuse, and project management and that

software experts participate in strategic information systems planning.

Because the asset-based method is based on data and process modeling,

it can be integrated with the structured analysis and data modeling

techniques of systems analysis and design. The method also supports

both the functional and object-oriented systems development approaches.

Software reuse also implies security and legal problems.

Increasing the reuse potential of software resources could facilitate

access by competitors and decrease the competitive advantage of the

original developers. Existing copy right and patent protections have

proved to be of limited use in preventing unethical use of software.

Research is needed on how to reconcile the conflicting objectives of

easier access to reusable resources and protection from unauthorized

use.

The papers on organizational issues stress that software

reusability should be broadly defined to include any kind of

reusability which achieves the desired benefits, i.e., reduced cost and

time for software development and maintenance. They also point to the

need for research on the social and organizational impacts of programs

that promote reuse of software resources.

8. conclusions an% Research Directions

In the above, general, technical, and non-technical issues of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

software reuse were broadly addressed. Software reuse is regarded as a

key to improving software development productivity and quality [Tracz

871 [Gruman 8 8 1 [Biggerstaff and Richter 891. As outlined above,

researchers and practitioners have proposed many approaches to increase

the potential of software reusability. The definition of widespread

software reuse developed in this paper places equal emphasis on data

and process resources, abstract and concrete resources, specific

application-oriented and generic function-oriented resources. It also

emphasizes a wide range of tasks from maintenance of existing systems

to development of new systems.

The field of software reuse is at a formative stage. Major

research opportunities exist in all of the areas of software

reusability research that are depicted in Figure 1. These research

questions have been suggested in the body of the paper. Briefly, we

need better tools for modeling the productivity gains from reuse to

help motivate its adoption and guide research into fruitfuldirections.

We need to understand better how to build reusability into our software

development methodologies. In the technical area, we need to understand

the role of reusability in the generation, composition, object-

oriented, and CASE approaches to software development. A key will be to

develop improved methods for classifying, organizing, and retrieving

software resources. Finally, to make the technical solutions work, we

need to know how to build a supportive organizational environment and

to solve the psychological problems of motivation and bounded

rationality.

In our opinion, the key conclusion that can be drawn from this

review is that reuse needs to be viewed in the context of a total

systems approach. Thus, we do not envisage only libraries of useful

data definitions, software routines, or objects that can be reused by

a motivated user. Rather, we also envision a software system or reuse

support system(RSS) that helps document and elucidate existing

application systems so that the ideas and design decisions involved in

their creation can be reused either in the context of maintenance or

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

30

when building new systems. In the latter case, the reuse support system

should encourage the use of standard data definitions, and software

design approaches both through the organization and also between

organizations. The LaSSIE system [Debanbu et al. 911 and Telos

[Mylopoulos et al. 901 are two approaches to building such an

 information system about an information systemw.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

References

[Banker et al. 901
Banker, R.D., Kauffman, R.J., and Zweig, D.
Metrics for the Code Reuse in Software Development.
Working Paper, 1990.

[Banker and Kauffman 901
Banker, R.D. and Kauffman, R.J.
An Empirical Assessment of CASE Technonology: A Study of
productivity, Reuse, and Functionality.
Working Paper, 1990.

[Balda and Gustafson 901
Balda, D. and Gustafson, D.
Cost ~stimation Models for the Reuse and Prototype Software
Development Life-cycles.
ACM SIGSOFT Software Engineering Notes Vol. 15, No. 3,
Pages 42-50, July, 1990.

[Barnes et al. 871
Barnes, B. et al.
A Framework and Economic Foundation for Software Reuse,
Tutorial: Software Reuse: Emerging Technology,
IEEE Computer Society, EH0278-2, pages 77-88.

[Bhargava and Beyer 911
Bhargava, H. and Beyer, R.
Automated Detection of Naming Conflicts in Schema
~ntegration: Experiments and Quiddities.
Technical Report, Naval Postgraduate School, NPS-AS-91-011.

[Biggerstaff and Richter 891
Biggerstaff, T.J., and Richter, C.
~eusability Framework, Assessment, and Directions.
Software Reusability Vol I Concepts and Models.
Addison Wesley, 1989.

[Blair and Maron 851
Blair, D. and Maron, M.
An valuation of Retrieval Effectiveness for a Full-text
~ocument-retrieval System.
Comm. of the ACM Vol. 28, No. 3, pages 289-299, March 1985.

[Boldyreff 891
Boldyref f , C.
Reuse, Software Concepts, Descriptive Methods, and the
practitioner Project.
ACM SIGSOFT Software Engineering Notes Vol. 14, No. 2,
pages 25-31, April, 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

32

[Boyle and Muralidharan 841
Boyle, J.M., and Muralidharan, M.N.
Program Reusability through Program Transformation.
IEEE Transactions on Software Engineering SE-10(5):574-588,
September, 1984.

[CACM 901
~ommunications of the ACM.
Series of Articles on Object-oriented Programming,
Sept., 1990.

[Cavaliere 891
~avaliere, M. J.
Reusable Code at the Hartford Insurance Group.
In Software Reusability. Vol." 2. Applicatins and
~xperience.
Addison-Wesley, 1989.

[Cheatham 841
Cheatham, T.E.
~eusability Through Program Transformation.
IEEE ~ransactions on Software Engineering SE-10(5):589-594,
September, 1984.

[Conte 883
Conte, P.
Recycling Your Software.
Computer Language Vol. 5, No. 6, page 43,
June, 1988.

[Coome et al. 901
Coome, T.N., Comer, J.R., and Rodjak, D.J.
 evel loping Reusable Software for Military Systems - Why It
is Needed and Why It isn't Working.
ACM SIGSOFT Software Engineering Notes Vol 15, No. 3,
pages 33-38, July, 1990.

[Curtis 831
Curtis, B.
Cognitive Issues in Reusability.
In Proceedings of ITT Workshop on Reusability in
Programming, 1983.

[Czuchry and Harris 881
Czuchry, A. and Harris, D.
KBRA:A New Paradigm for Requirement Engineering.
IEEE EXPERT, Winter 1988.

[Devanbu et al. 911
Devanbu, P., Brachman, R., Selfridge, P, and Bsllsrd, B.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

LaSSIE: a Knowledge-based Software Information System.
Comm. of ACM, May 1991.

[Dewey 793
Dewey, M.
Decimal Classification and Retrieval Index.
Forest Press Inc., 19th Edition, 1979.

[DOD 86)
Office of Secretary of Defence.
Software Technology for Adaptable Reliable Systems - STARS.
Technical Program Plan.
Washington D.C., August 1986.

[Dubinsky et al. 891
Dubinsky, E., Freudenberger, S., Schonberg, E., and
Schwartz, J.T.
~eusability of Design for Large Software Systems:An
Experiment with the SETL Optimizer.
Software Reusability Vol I Concepts and Models.
Addison Wesley, 1989. pages 275-293.

[Frakes and Nejmeh 871
Frakes, W. and Nejmeh, B.
Software Reuse Through Information Retrieval
proceedings of the Twentieth Annual Hawaii International
Conference on System Science, pages 530-535. Jan. 1987.

[Frank 811
Frank, W.L.
Software Productivity:Any Breakthrough?
Computer World, July, 1981.

[Freeman 871
Freeman, P.
Tutorial: Software Reusability
IEEE Computer Society Press, 1987.

[Freeman 87a]
Freeman, P.
A Conceptual Analysis of the Draco Approach to Constructing
Software Systems,
IEEE Tutorial: Software Reusability,
IEEE Computer Society Press, 1987.

[Fylstra and Gill 801
Fylstra, D. and Gill, M.
VISICALC, Personal Software, Inc.
Part V, pages 1-13, 1980.

[Gaffney and Durek 891
Gaffney, J.E. Jr, and Durek, T.A.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

Software reuse - key to enhanced productivity:some
quantitative models.
Information Software Technology Vol. 31, No. 5,
pages 258-267, June, 1989.

[Goldberg and Robson 831
Goldberg, A., and Robson, D.
Smalltalk 80:The language and Its Implementation.
Addison-Wesley, 1983.

[Gruman 881
Gruman, G.
Early Reuse Practice Lives up to Its Promise.
IEEE Software pages 87-91, November, 1988.

[Hall 891
Hall, P.
A Metamodel for Software Components and Reuse,
practitioner Project Working Paper,
P1094-BrU-PH-WPBI-WORKING PAPER-0027, January 1989.

[Harter 861
Harter, S.
Online Information Retrieval Concepts, Principles, and
Techniques
Academic Press, Inc., 1986.

[Horowitz and Munson 841
Horowitz, E. and Munson, J.B.
An Expansive View of Reusable Software.
IEEE Transaction on Software Engineering SE-10(5):477-487,
September, 1984.

[IMSL 841
International Mathematics and Scientific Library
10th Edition, IMSL Inc., 1984.

[Jones 841
Jones, T.C.
Reusability in Programming:A Survey of the State of the Art.
IEEE Transaction on Software Engineering SE-10(5):488-493,
September, 1984.

[Jones 861
Jones, T.C.
programming Productivity.
~c~raw-Hill, 1986.

[Jones and Prieto-Diaz 881
Jones, G. and Prieto-Diaz, R.
Building and Managing Software Libraries.
In proceedings of IEEE COMPSAC, pages 228-236, 1988.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

[Joyce 881
Joyce, E. J.
Reusable Software:Passage to Productivity?
Datamation pages 97-102, Sep., 15, 1988.

[Karakostas 891
Karakostas, V.
Requirements for CASE Tools in Early Software Reuse.
ACM SIGSOFT Software Engineering Notes Vol. 14 No. 2 ,
Pages 39-41, April, 1989.

[Karimi 901
Karimi , J.
An Asset-based Systems Development Approach to Software
~eusability.
MIS Quarterly:179-198, June, 1990.

[Katz and et al. 871
Katz, S., Richter, C.H., and The, K.
PAR1S:A System for Reusing Partially Interpreted Schemas.
In Proceedings of IEEE 9th International Conference on
Software Engineering, pages 377-385, 1987.

[Kernighan 841
Kernighan, B.W.
The Unix System and Software Reusability.
IEEE Transaction on Software Engineering SE-10(5):513-518,
September, 1984.

[Lanergan and Grasso 891
Lanergan, R.G. and Grasso, C. A.
Software Engineering with Reusable Designs and Code
In Software Reusability. Vol. 2, Applications and
Experience.
Addison-Wesley, 1989.

[Lee 863
Lee, J.S.
ALESA:A Language for Equation Structure Abstraction.
Technical Report, Dept. of Decision Sciences,
The Wharton School, Univ. of PA, 1986.

[Love 881
Love, Tom.
The Economics of Reuse.
In proceedings of IEEE COMPCON, pages 238-241, 1988.

[Lubars 861
Lubars, M.
Affording Higher Reliability Through Software Reusability
ACM SIGSOFT Software Engineering Notes, Vol 11, No 5,
Oct. 1986

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

[Mackellar and Maryanski 891
Mackellar, B.K. and Maryanski, F.
A Knowledge Base for Code Reuse by Similarity.
In proceedings of IEEE COMPSAC, pages 634-641, 1989.

[Matsumoto 871
Matsumoto, Y.
A Software Factory:An Overall Approach to Software
production.
Tutorial: Software Reusability
IEEE Computer Society Press, 1987.

[Micallef 881
Micallef, J.
~ncapsulation, Reusability and Extensibility in
Object-Oriented Programming.
Journal of Object Oriented Programming:12-34,
April/May, 1988.

[Miller 561
Miller, G.A.
The Magical Number Seven Plus or Minus Two:Some Limits on
Our Capacity to Process Information.
Psychological Review 63:81-97, 1956.

[Myers 871
Myers, W.
ADA: First Users Pleased: Perspective Users Still Hesitate,
IEEE Computer Magazine, Vol 20, No. 3, March 1987.

[Mylopoulos et al. 901
Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M.
~e1os:Representing Knowledge About Information Systems.
ACM Tr. on Information Systems, Vol 8, No. 4, October 1990,
Pages 325-362

[Oman 901
Oman, P. W.
CASE Analysis and Design Tools.
IEEE Software: 37-44, May 1990.

[Owen et al. 881
Owen, G.S., Gagliano, R., and Honkanen, P.
Tools for the Storage and Retrieval of Reusable MIS Software
in ADA.
In Proceedings of ACM 16th Computer Science conference,
pages 535-539, 1988.

[Parnas et al. 831
Parnas, D.L., Clements, P.C., and Weiss, D.M.
Enhance Reusability with ~nfbrmation idi in^.
In Proceedings of ITT Workshop on Reusability in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

Programming, 1983.

[~rieto-Diaz and Freeman 871
Prieto-Diaz, R. and Freeman, P.
classifying Software for Reusability.
IEEE Software, Vol. 4, No.1, pp. 6-16, January, 1987.

[~auch-Hindin 831
Rauch-Hindin, W.B.
Reusable Software.
Electronic Design 31(3):176-193, Feb., 1983.

[Redwine and Riddle 891
Redwine, S. T. jr. and Riddle, W. E.
Software Reuse Processes
In proceedings of ACM Software Process Workshop,
pages 133-135, 1989

[Rubin 901
Rubin, K.
Reuse in Software Engineering:An Object-Oriented
perspective.
In Proceedings of IEEE COMPCON, pages 340-346, 1990.

[Ruble 871
Ruble, D. L.
A ~lassification Methodology and Retrieval Model to Support
Software Reuse.
PhD Dissertation, 1987.

[Schank 751
Schank, R. C.
Conceptual Information Processing.
North-Holland, Amsterdam, 1975.

[Seppanen 871
Seppanen, V.
Reusability in Software Engineering.
Tutorial: Software Reusability
IEEE Computer Society Press, 1987.

[Soloway and Ehrlich 831
Soloway, E. and Ehrlich, K.
What Do Programmers Reuse? Theory and Experiment.
In Proceedings of ITT Workshop on Reusability in
programming, 1983.

[Soloway and Ehrlich 841
Soloway, E. and Ehrlich, K.
Empirical Studies of Programming Knowledge.
IEEE Transactions on Software Engineering SE 10(5):595-609,
September, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

[SPSS 86)
SPSSX User's Guide
McGraw Hill, 1986.

[Standish 841
standish, A.
An Essay on Software Reuse.
IEEE Transactions on Software Engineering SE 10(5):494-497,
September, 1984.

[Sundfor 831
Sundfor, S.
Reusable Software Engineering: A Survey of Concepts and
Approaches.
Univ. of California, Irvine," Dept. of Information and
Computer Science, RTP017, 1983.

[Tarumi et al. 8 8 1
Tarumi, H.m Agusa, K., and Ohno, Y.
A Programming Environment Supporting Reuse of
object-Oriented Software.
In proceedings of IEEE 10th International Conference on
Software engineering, pages 265-273, 1988.

[Todd 901
Todd, D.
Code recyc1ing:Reuse of Software can Save on Development.
~nformation Week, pages 50-51, May 14, 1990.

[Tracz 791
Tracz, 19. J.
Computer Programming and Human Thought Process.
Software-Practice and Experience 9():127-137, 1979.

[Tracz 871
Tracz, W. J.
Software Reuse:Motivators and Inhibitors.
In Proceedings of IEEE COMPCON, pages 358-363, 1987.

[Tracz 901
Tracz, W. J.
Where Does Reuse Start?
ACM SIGSOFT Software Engineering Notes,
Vol. 15, No. 2, pages 42-46, April 1990.

[Vickery 603
Vickery, B.
Faceted C1assification:A Guide to Construction and Use of
Special Schemes.
~slib, London, 1960.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

[Wegner 901
Wegner, P.
Concepts and Paradigms of Object-Oriented Programming
OOPS Messenger, Vol. 1, No. 1, August 1990.

[Wirfs-Brock and Wilkerson 891
Wirfs-Brock, R. and Wilkerson, B.
object-Oriented Design: A Responsibility-Driven Approach.
OOPSLA '89 Conference Proceedings,
Special Issue of SIGPLAN Notices, Vol. 24, No. 10, Oct. 1989

[Wood 881
Wood, M.1.
Component Descriptor Frames: A Representation to Support
the Storage and Retrieval of Reusable Software Components.
PhD Dissertation, 1988.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1- 15

