
AUTOMATING OUTPUT SIZE AND REUSABILITY METRICS

IN AN OB JECT-B ASED COMPUTER AIDED

SOFTWARE ENGINEERING (CASE) ENVIRONMENT

Rajiv D. Banker

Robert J. Kauffman

Charles Wright

Dani Zweig

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 100 12

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-25

AUTOMATING OUTPUT SIZE
AND REUSABILITY METRICS

IN AN OBJECT-BASED COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) ENVIRONMENT

Rajiv D. Banker
Arthur Andersen Chair in Accounting and Information Systems

Carlson School of Management
University of Minnesota

Robert J. KaufTman
Assistant Professor of Information Systems

Leonard N. Stern School of Business
New York University

Charles Wright
Leveraged Systems Development Practice

Seer Technologies

Dani Zweig
Assistant Professor of Information Systems

Naval Post Graduate School

September 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working P a ~ e r Series

STERN IS-91-25

Submitted t o IEEE li.ansactions on Softulare Engineering

Acknowledgements: We wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis and Vivek Wadhwa for the
access they provided us to the software development activities and staff at a large investment bank. We also
appreciated the assistance and advice of Donna Dodson, Len Erlihk, Don Middleton, Norman Shing and Brian
Weisinger. We are also grateful for the research assistance provided by Eric Fisher and Vannevar Yu. Finally, we
wish to thank Hank Lucas for invaluable suggestions about the managerial and technical content of this paper. - -
The ideas presented here enabled the development of the Integral Tool, an automated f~ inr t inn noint and code reuse
analysis facility built at Seer Technologies. Center for Digital Economy Research

Stem School of Business
IVorking Paper IS-91-25

AUTOMATING OUTPUT SIZE AND SOFTWARE REUSABILITY METlUCS

IN AN OBJECT-BASED

COMPUTER AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMENT

ABSTRACT

Measurement of software development productivity is needed in order to control

software costs, but it is discouragingly labor-intensive and expensive. Computer aided

software engineering (CASE) technologies -- especially object-oriented, integrated CASE

-- have the potential to support the automation of this measurement. In this paper, we

discuss the conceptual development of automated analyzers for function point and

software reusability measurement for object-based CASE. Both analyzers take advantage

of the existence of a representation of the application system that is stored within an

object repository, and that contains the necessary information about the application

system. We also propose new metrics for software reusability measurement, including

retlse leverage, reuse value and reuse class@cation. The functionality and analytic

capabilities of state-of-the-art automated software metrics analyzers are illustrated in the

context of an investment banking industry application.

[KEYWORLIS: CASE, code reuse, computer aided sojiware engineering, function point analysis, object-based
development, programming productivity, repositories, reusabil*, reuse, sofnvare costs, software engineering
economics, software merrics.]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

1. INTRODUCTION

1.1. The Incentive and Opportunity to Automate Software Metrics

The recent upsurge in interest concerning computer aided software engineering (CASE)

technologies provides managers with both an incentive and an opportunity to measure

software development performance. The incentive is that documenting the productivity

gains from CASE can help to justify (or, for some products, discourage) the large

investment the technology often requires. One popular press observer of these

developments has recently written:

"Like handcrafted furniture, software has ~aditional& been customized for a
task in a laborious process more akin to artistic work than to engineering.
[But now], software is increasing& being written in the form of pre-fabricated
pieces that can be reused in difSerent combinations, much as plumbing systems
can be tailored for each house yet still be built out of standard pipes, valves
and joints."([39], pp. Dl-2)

Many observers believe this is a "software industrial revolution" in the making. However,

the cost of participating in this revolution may be substantial, while the benefits have

proven hard to verify [12, 361.

The opportunity is that of automating the collection of productivity data. Any firm with

high software expenditures that is attempting to achieve important strategic and

operational goals has a strong incentive to measure its productivity [13, 19, 38, 421. But

in traditional software shops, such measurement requires discouragingly expensive

Center for Digital Economy Research
Stem School of Business
IVolking Paper IS-91-25

manual analysis of the software. CASE technologies, especially object-oriented,

repository-based integrated CASE technologies, provide a means to automate a variety of

software metrics that can help managers to gain control of their software development

We believe that automation of the process of collecting key software metrics is likely to

be one of the next areas to receive attention from CASE tool vendors. Software

Magazine expressed a similar view of the future by showcasing products that "measure

productivity within a CASE environment" from nearly forty vendors [12]. But a cursory

review of the listing of products identified very few which actually automate the process

of collecting software metrics to perform productivity analysis. The majority are project

management tools which require a significant amount of input from the user to make

them useful. The magnitude of this manual burden, however, is precisely what has made

productivity measurement so difficult to cany out in the past.

In this paper we will examine the automation of two important metrics: function points --

a measure of programmer output -- and software reusability -- a major determinant of

programmer productivity. Function point analysis is currently the most popular means of

measuring the output of software development activities, although the analysis is quite

labor intensive, especially for large systems. Software reusability is the extent to which

software is developed by recycling previously written code rather than rewriting it from

'For an introduction to the "repository" concept, see [I61 and [21].

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

3

scratch. Extensive reuse can increase productivity by an order of magnitude and more

[4]. These two measures, which we will discuss in greater depth below, offer useful

indicators of the productivity of software project performance in CASE development

environments.

To automate the computation of these metrics, we require the ability to automate the

analysis of the content of the software being analyzed. We shall see that, in addition to

other benefits claimed for it, object-based development can provide this capability,

primarily by encouraging the division of software into smaller and more easily analyzed

units than the traditional program2

A prerequisite for gauging the strength of any "industrial revolution in the making" is the

ability to measure such basic factors as output and productivity. Yet, despite annual

software costs rising into the hundreds of billions of dollars, and a general agreement that

2A recent article in the New York Times provided a useful and readily understood
definition of object-oriented programming: "In object-oriented programming, the data
and the instructions are combined into a single module of software, or object ... Objects
pass messages to one another requesting information and giving instructions. Yet no
object interferes with the internal working of another. This method makes it easier to
reuse pieces of software and to make changest' ([39], pp. Dl-2). The term object-based
development is used to distinguish development environments like ICE, and should not be
confused with the object-oriented approach. The primary differences are that object-
based development does not allow for instances of object classes to be "classes"
themselves, nor would objects in object-based development have any special "inheritance
properties." (See Booch [Ill for additional details on the distinctions. For additional
information on the object-oriented software construction paradigm, the interested reader
is referred to: Booch [lo], Deutsch [14], Goldberg and Pope [18], Meng [32], Meyer
[33,34], and Shoustrup 1451.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

4

these costs must be controlled, such measurement has generally proven too difficult and

expensive to undertake. We will examine the potential of modern software development

tools to not only increase the productivity of the software development function, but to

finally begin to provide management with an understanding of how to bring it under

control.

1.2. Organization of the Paper

In this paper, we will describe the design and common architecture, and managerial

application of two automated software metrics analyzers made possible using a

repository-based, object-oriented Integrated CASE Environment (ICE). These include a

Function Point Analyzer (FPA) and a Code Reuse Analyzer (CRA).

The remainder of the paper is organized as follows. Section 2 introduces the basic

concepts necessary to understand our strategy for developing the automated software

metrics facilities. It includes: an overview of the function point analysis methodology; a

discussion of why the methodology is useful, but costly and problematic to implement; a

consideration of prior attempts to automate function point analysis; and an examination

of the features of repository-based, object-based CASE development environments that

enable us to automate function point analysis. Section 3 presents the details of the

Function Point Analyzer. We make the argument that much of the necessary

information for a function point analysis is readily available in an application's

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

5

meta-model, and we show how the repository objects and the relationships between them

can be mapped into function point analy~is.~ We present the architecture for FPA and

then illustrate how it navigates the hierarchy of rules to conduct an exhaustive search of

the user functionality built into an application.

Section 4 presents the Code Reuse Analyzer. We define three classes of software

reusability metrics, and discuss the design of CRA, and the manner in which it navigates

the meta-model hierarchy to obtain the relevant information to instantiate the metrics.

The conduding section addresses additional technical and managerial questions that were

raised by our work in this area, and the future research required to resolve them. It also

summarizes the key contributions of this work to practitioners and to research on

software development productivity. The paper also includes a stand-alone example of

how the analyzers and the new metrics that we propose can be applied to an investment

banking application called the Broker Sales Reporting System.

T h e term "meta-model" builds on the idea of "meta-data," i.e., those elements of a
data dictionary that describe "the keys, attribute order, formats, and rules applied to
individual records and attributes in a database. A repository stores additional meta-data
concerning many other aspects of the total system of which the database is only a part"
(1161, p. 47). In this paper, we focus almost exclusively on the capability of a repository
to store information concerning the relationship among objects which comprise a system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

2. AUTOMATING FUNCTION POINT ANALYSIS: PRELIMINARIES

2.1. Function Point Analysis

The magnitude of a software development project's effort depends upon several factors,

including the amount of information processing accomplished by the system, the quality

and the extent of the input and output interfaces provided to meet the users' needs, and

environmental factors ranging from the quality of the hardware used by the programmers

to the sophistication of the users requesting the software [47l. Allan Albrecht of IBM

originally proposed function points as a metric to capture the intrinsic size of an

application, so that software development activities could be evaluated for the outputs

they create, and so that software development managers would have a tool to estimate

the resources required to build systems of various sizes [I, 21.

Function points are meant to provide a language-independent and implementation-

independent measure of the functionality actually produced and delivered to the user. In

this, they differ from output measures (such as source lines of code) that reward verbose

programming practices. Since its introduction in the late 1970s function point analysis has

evolved, with the help of the International Function Point Users Group (IFPUG), into a

well-accepted and operationally well-defined methodology 115, 44].4

-

4For additional details on the implementation of function points which extends the
approaches presented by Albrecht and Gaffney [2] and Zwanzig [49], see Symons [46],
who discusses function points with entity type complexity rules.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

Function points are computed by measuring the degree of functionality actually delivered

to the user of the system, in terms of reports, inquiry screens, and so on. Function counts

are determined by summing the point scores which are assigned (on the basis of their

complexity) to each External Input, External Output, Logical Internal File, External

Interface and Query that comprise the system. Function counts are further adjusted by a

measure of the environmental complexity when a project is implemented. The

mathematical definition of function points is shown below.

14

F(TNCTI0N POINTS = FUNCTION COUNT'S * (.6 5 + (. 01 * COMPLEXITY~))
f=l

where

F UNCTION-CO UNTS = instances of the five function types, including
External Inputs, External Outputs, Logical
Internal Files, External Interfaces and Queries;

COMPLEXITY-FACT04 = a variable, fl associated with one of fourteen
descriptors of the implementation complmity of a
system.

TWO recent papers provide excellent critiques of function point analysis, alternative

definitions and the issues that arise in calculating and using them [29, 471. (Appendix 1

provides a more in-depth description of the mechanics of function point analysis, and

includes a summary of the fourteen complexity factors.)

One roadblock to collecting function point metrics for software applications is that their

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

8

computation, usually performed manually, is very labor-intensive. In addition, such

computation requires the availability of consistently good system documentation. In

practice, where it exists at all, the available documention usually describes the system that

was designed, not the system that was actually delivered.

A third concern is calibrating the people who carry out the function point analysis. Our

experience in a recent study of the productivity of CASE development suggested that

even when well-trained individuals perform function point analysis for the same set of

software projects there are bound to be discrepancies which have to be resolved [4].

Individual differences in interpretation of documentation, knowledge of an application

and experience in conducting function point analysis can all drive these differences. Low

and Jeffrey [29] examined the reliability of function point analysis in a more structured

manner and found that significant training in the use of the complexity measures is

necessary to ensure that the correct constructs are being measured. More recently

Kemerer [25] found that counts differ no more than about plus or minus 10% across

analysts.

2.2. ICE -- A Repository-Based, Object-Based Integrated CASE Tool

A large New York City investment bank made the initial commitment to design and

develop an object-based, repository-based Integrated U S E Environment (ICE) at a cost

of tens of millions of dollars over the course of three years. ICE was built by the firm as

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

9

a response to the problems it faced in developing and maintaining technically complex

systems. The firm's computer operations are geographically distributed, and are required

to perform effectively on a 24-hour basis.

Similar to others in the investment banking industry, the firm had been experiencing

rapidly mounting software costs, that were expected to rise as its trading activities expand

to provide global coverage. To achieve competitive performance in this environment

required the firm's developers to program applications which ran on each of three

hardware platforms (mainframe, minicomputer and microcomputer) in a different

language -- COBOL, PL/I and C++, respectively. A CASE tool was needed that would

support the programming of systems running simultaneously on all three platforms, and

reduce the firm's reliance on three separate sets of highly skilled programmers.

ICE applications are written in a fourth-generation language (4GL) which buffers

programmers from the complexity of the firm's operating environment. They are later

compiled in the appropriate languages for the relevant hardware platforms, and

communication protocols for cooperative processing across platforms are handled without

programmer intervention.

The object basis of ICE is derived from the entity-relationship model, and ICE was

especially constructed to support cooperative processing. The code is organized

according to objects that play specific roles in the functions delivered by the application,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

and the various software functions can be allocated across hardware platforms in the

most appropriate manner. This organization is also what makes it practical to automate

the analysis of the code for the computation of function points.

A feature of ICE, of special interest for the discussion which follows, is its object

repository. This includes all the definitions of the data and objects that make up the

organization's business, and also all the pieces of software that comprise its systems. In

addition to the additional control it provides, the advantage associated with a single

repository for all such objects is similar to that for having a single database for all data:

a program, or a procedure, or a screen, or a report, need only be written once, no matter

how many times it is used. Such reuse has the potential to decrease software

development costs, and it forces developers to more carefully "engineer" an information

and information systems architecture which will form a solid base for the firm's business.

The repository also makes the automation of software reusability measurement practical,

since it maintains a record of each object and where it is used or reused.

23, Definitions of Basic ICE Objects

The ICE object repository stores information about the different kinds of entities or

objects which form the basic building blocks of ICE-developed applications: BUSINESS

PROCESSES, RULE SETS, 3GL (third generation language) MODULES, SCREEN

DEFINITIONS, FILES, DATA VIEWS, DATA ELEMENTS, DATA DOMAINS,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

11

INSTANCES WITHIN DATA DOMAINS, REPORTS and REPORT SECTIONS. It is

useful to think of these objects as similar to corresponding 3GL constructs. For example,

a RULE SET is analogous to a 3GL procedure, and a SCREEN DEFINITION can be

thought of as a window that provides a user interface. At the same time, it is worthwhile

to keep in mind that the object definitions in the ICE environment are deliberately

precise and rigid, so as to enforce structured programming and design practices. We

next consider each object type in more detail.

A RULE SET contains most of the instructions which observers unfamiliar with CASE

tools would tend to think of as "the program". In particular, most of the "traffic control"

resides there: a RULE SET can use other RULE SETS or 3GL MODULES, create

REPORTS which incl~de REPORT SECTIONS, access FILES and communicate with

SCREEN DEFINITIONS. (Note that the 4GL used by ICE has specialized set of verbs

to describe the various interactions among object types.)

A 3GL MODULE is a pre-compiled procedure, originally written in a specific 3GL

While the 4GL language used by ICE developers is very small and general, it provides

those 10% of the data handling and computational capabilities which constitute over 90%

of the functionality of an information system. It is left to 3GL MODULES to implement

more specialized capabilities. In investment banking operations, highly quantitative

options pricing and other valuation procedures for derivative instruments exist on the

shelf in optimized 3GL code at most firms. Such procedures are used intact, as 3GL

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

MODULES, rather than recoded.

A SCREEN DEFINITION is the logical representation of an on-screen image. A RULE

SET can communicate with a given SCREEN DEFINITION, meaning that data is passed

back and forth between them. The user-interface capabilities of a SCREEN

DEFINITION are built into ICE, and do not have to be considered by the developer.

This tends to speed the development process for screens in ICE. By comparison, the

creation of screens delivered by IBM 3270 terminals using traditional development

methods is more labor-intensive by a full order of magnitude [4].

A DATA VIEW consists of a set of DATA ELEMENTS, data objects that have been

defined in the object repository. A DATA VIEW can be thought of as a logical data

record. The communication of all data between ICE objects is mediated by DATA

VIEWS. For example, data is passed from a RULE SET'S DATA VIEW-to a SCREEN

DEFINITION'S DATA VIEW and back. Data for a 3GL MODULE or a REPORT

must similarly be passed through a DATA VIEW.

A REPORT means much the same thing in ICE as it does in other development

environments. More specifically, a REPORT is the internal logical representation of the

physical report. REPORTS consist of one or more REPORT SECTIONS, each with its

own layout.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

13

Each of these ICE objects is reusable, and good practice in the context of ICE

development is to reuse them as much as possible. Placing all of the objects associated

with an application in the object repository has two intended effects. It prevents a

programmer from circumventing the discipline of database management, and it makes all

the objects of one application available for reuse by any other application which is stored

in the repo~itory.~

2.4. From ICE Repository Objects to ICE Application Meta-Models

An ICE application system consists of ICE repository objects, such as RULE SETS and

SCREEN DEFINITIONS, communicating with each other in a structured manner. This

is shown in Figure 1.

INSERT FIGURE 1 ABOUT HERE

A single application is invoked by a menu item which has a high-level BUSINESS

PROCESS. This high-level BUSINESS PROCESS in turn refines into other RULE SETS

Weryard has noted that considerable effort must still be expended to make code
reuse work effectively. "[Reusable] code may be more dZ£icult to design and test, and
there is always a temptation for the designer to develop something new, rather than take
the trouble to investigate and implement something that already exists" (1481, p. 229).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

14

which may in their own turn use other RULE SETS or 3GL MODULES. A RULE SET

may access a DATA VIEW through which it can communicate with a SCREEN

DEFINITION, or create a REPORT. The DATA VIEW, in turn, will be defined by one

or more DATA ELEMENTS. A RULE SET or 3GL MODULE may also access a

FILEa6

These relationships, like the objects themselves, reside in the object repository. Every

such relationship is represented by a database entry, and collectively, this database of

relationships constitutes the application meta-model -- the abstract structural map of the

application system, as shown in Figure 2.

INSERT FIGURE 2 ABOUT HERE

We can use this general meta-model to identify the objects associated with any

application system. Since the meta-model is hierarchical, following the chain of

relationships will reliably lead us to all the objects which may be accessed or invoked by

a given object. Traversal of the hierarchy of RULE SETS which comprise an

verbs in the ICE 4GL language that we have already mentioned include use,
own, communicate, create, include and access. The reader now should have a feel for
how the nouns and verbs go together, without focusing on details of the syntax that ICE
enforces.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

15

application, or sets of applications, is a very powerful capability that is exploited in the

design and development of automated software metrics facilities for ICE. Clearly, any

attempt to automate the collection of software metrics in ICE begins with a major

advantage over similar efforts in third-generation environments. Much of information

which is needed to calculate a variety of software metrics (software reusability,

complexity, function points, etc.) is already contained in usable form in the meta-model.

This information would have to be deduced from a detailed (and probably manual)

analysis of the source code developed in a third generation environment.

3. FPA: A FUNCTION POINT ANALYZER FOR ICE

ICE satisfies two important prerequisites for the automation of function point analysis.

Filst, the object repository, and its application meta-models, allow us to automate the

identification of all software belonging to a given system. In traditional environments,

this task must be accomplished on the basis of documentation, which is rarely complete

or up-to-date, and software naming conventions which, even when they are followed,

rarely identify the use of code by multiple applications.

Second, the design of ICE'S object-oriented 4GL is such that a precise mapping may be

defined between each object and its associated functionality. In traditional environments,

the only way to perform the mapping between programs and functionality is to manually

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

16

figure out what each program is doing, again with the aid of such documentation as may

exist.

3.1. Mapping Function Point Concepts to ICE Objects

Of the five function types used in the computation of function points, four measure data

flows that either enter or leave the boundary of an application. These include External

Inputs, External Outputs, External Interfaces and Queries. Logical Internal Files

constitute the fifth function type; they measure data stores internal to the application.

ICE decomposes object and entity-relationship definitions into specific functional roles,

and there is a well-defined mapping from ICE objects or relationships to function counts.

This is illustrated in Figure 3, which also provides a conceptual representation of what we

mean by the "application boundary."

INSERT FIGURE 3 ABOUT HERE

3.1.1. External Inputs

A SCREEN with an output DATA VIEW (i.e., a SCREEN which sends data, as well as

receiving it) is an External Input. A FILE access is an input if the FILE is external to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

the system. The complexity of the External Input is determined by examining the

number of DATA VIEWS and ELEMENTS or, in the case of a FILE access, the

number of keys instead of DATA VIEWS.

3.1.2. External Output

A SCREEN with an input DATA VIEW (i.e., a SCREEN which receives data from the

RULE SET which calls it) is an External Output, as is a REPORT or an output to an

external FILE. Again, the complexity of the External Output is determined by examining

the number of DATA VIEWS and ELEMENTS or, in the case of a FILE access, the

number of keys instead of DATA VIEWS.

3.13. Queries

A SCREEN which allows a user to access data, but not to update it (this can be
-

determined by comparing the FIELDS used in its input and output VIEWS) represents a

Query. (Queries have lower function counts than the inputloutput combination of

update-capable screens.) The complexity of a query is determined by examining the

number of DATA VIEWS and ELEMENTS.

3.1.4. Logical Internal Files

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

18

A Logical Internal File is defined in the following manner: A FILE is internal to an

application if some RULE SETS and 3GL MODULES that access the FILE are also

internal to the application. (FPA checks which RULE SETS or 3GL MODULES access

the FILE and examines if they are subordinate to the high-level RULE SET or

BUSINESS PROCESS that defines the application). The complexity of a Logical

Internal File is determined by the number of keys and DATA ELEMENTS it is defined

to possess.

FPA also counts DATA DOMAINS, a special case of FILES with ICE. DATA

DOMAINS are used by an application to validate or verify the values a user inputs.

3.1.5, External Interfaces

A FILE that is not a Logical Internal File is considered to be external. Each occurrence

of an external FILE access constitutes an External Interface, as well as either an Ejrternal

Input or an External Output. The complexity of the interface is determined by the

number of DATA ELEMENTS and keys.

Each function type gives rise to a number of function counts which depend upon its type

and complexity. The function count of a system is the sum of the function counts of its

component function types. See Table 1 below.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

INSERT TABLE 1 ABOUT HERE

In most third-generation languages, a single program may easily give rise to any or all of

the five function types, possibly multiple times. The only way to determine the

functionality which it represents is to read and understand it. Each ICE object, by

contrast, fills a limited role. That role, as we have seen, may be determined by an

examination of the meta-model and of the data definitions associated with the object.

3.2. Computing Function Points in FPA

The Function Point Analyzer (FPA) has three main components that execute the function

point analysis methodology: an Object Identifier, a Function Counter and a Complexity

Factor Counter. These components are shown in Figure 4.

INSERT FIGURE 4 ABOUT HERE

* The Object Identifier traverses the rneta-model in order to identifi all the
objects used in an application that have to be evaluated for functionality. It
starts with a FUNCTION PROCESS or high-level RULE SET chosen by the
project manager that deJiizes the application being analyzed and navigates the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

hierarchy downward until all relevant objects have been found.

* The Function Counter performs the mapping described in the previous section
from objects and their relationships, to function types and complexities, to
function counts.

* The Complexity Factor Counter computes environmental complexity, which is
used in function point analysis as an adj~lstment factor, to allow for the
overall complexity of the task being implemented and the environment within
which it is being implemented. A point score is assigned to each of fourteen
complexity factors, and the total of these scores is the complexity factor.

FPA determines the fourteen complexity factors through a combination of objective,

automated measures and online inputs provided by project managers familiar with the

technical aspects of implementation. In the current implementation of FPA, the

objective measures are computed in parallel with managers' inputs, which only take a few

minutes. When they have been sufficiently validated through use of FPA, the

corresponding manual inputs will be replaced entirely, where possible. Each complexity

factor has a separate input response screen that displays a definition of the complexity

factor. See Figure 5.

INSERT FIGURE 5 ABOUT HERE

This can help a project manager who may not be familiar with function point analysis to

give accurate and consistent responses.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

The sequence of computation, then, is:

(1) The Object Identifier traverses the meta-model in order to identi& the objects
and relations which may represent functionality.

(2) Ilze Function Counter computes and sums the function count scores
associated with those objects and relations.

(3) The Complexity Factor Counter computes the environmental complexily of the
application on the bash of user inputs, and generates an adjustment factor for
the function count. The maximum adjustment, positive or negative, h 35%.

(4) Function points are computed as the product of function counts and the
environmental complexity adjustment factor (Refer to Appendix 1.)

Thus, an automated function point analysis for a given application system would result in

the collection of all data needed to compute function counts and environmental

complexity. This data, along with the total function points and other useful managerial

information can be tracked for completed systems, as well as for systems that are under

construction [5]. (An illustration of how FPA works in the context of the Broker Sales

Reporting System is presented in Sidebar 1, Figures 5 and 6, and Tables 1 to 4 at the

end of this paper.)

INSERT SIDEBAR 1, FIGURES 5 AND 6, AND TABLES 1 TO 4 ABOUT HERE

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

4. CRA: A CODE REUSE ANALYZER FOR ICE

Software reusability is known to be a major source of productivity gains and cost

reduction in software development operations 13, 37, 431. A study conducted at the

Missile Systems Division of the Raytheon Company found that greater than 60% of

procedural code was repeated in multiple applications [9], and reuse levels in

non-manufacturing and non-engineering business applications (where less technical

specificity is required) may even be greater. Considering the high costs of software

development pervasively reported in the popular press, reuse represents a source of

savings that managers are increasingly interested in tapping.

Yet, due to the difficulties associated with identifying reuse in most 3GL and 4GL

environments, efforts to implement and manage successful reusability programs have

been stymied in many organizations [22, 301. Traditionally, assessing the level of software

reuse in a 3GL programming environment has been difficult. While certain types of

explicit reuse (e.g., reuse of data definition files) have been easy to identify, most reuse in

these environments is buried within programs where it is not easily identified without

considerable manual effort.

An integrated, object-based CASE environment provides two major aids to the

implementation and measurement of reuse. First, the code exists at a level of granularity

more conducive to the implementation of code reuse. While it is rare that an entire 3GL

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

23

program will prove reusable, such programs frequently contain routines which could be

reused with little modification, were the programmer aware of their existence. An

object-based system may be designed so that each such routine is a unique object. This

makes reuse opportunities considerably easier to identify and to exploit. Second, the

integrated environment serves to support the control, and in particular the measurement,

of software reusability. With the design of the entire system stored centrally along with

the software itself, an instance of reuse becomes readily identifiable: it is simply the

repeated invocation of an object within the repository.

To provide managers with information on software reusability, we designed and

deveIoped a facility within ICE called the Code Rezlse A~zatyzer (CRA). CRA analyzes an

existing software application, reporting the Ievels of reuse for the various elements

comprising the application. Like FPA, CRA identifies all the relevant objects for a given

analysis by systematically navigating the hierarchy of calling relationships within the

repository. (In fact, it reuses much of the code originally developed for FPA) Once all

the objects within an application have been identified, and the instances of reuse have

been noted, a range of managerially useful software reusability metrics can be computed.

4.1. Prior Research on Reuse

Prior research provides relatively little guidance as to how software reusability metrics

should be defined. The bulk of the research concerning reuse in 3GL and 4GL

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

environments has focused on exploiting the technology available to increase the level of

reuse, rather than upon the impact of reuse on development productivity, and costs have

not been considered. For example, Horowitz and Munson [22] looked at reuse in the

context of compiler technology and subroutine libraries, application generators, and the

development and adaptation of unspecialized systems which may be reused with minimal

incremental development effort.

Other studies have made special efforts to define the range of possible kinds of reuse.

For example, Jones [23] suggested the following kinds of reuse in software development

operations: data, architecture, designs, programs and common subsystems and modules.

Kernighan 1261 examined the same issues in the context of the UNIX operating system

and identified potential reuse at the code library, programming language, program and

system levels. Still other researchers have explored how to promote reuse by suggesting

new development methods, such as the "reusable module design" approach of Lanergan

and Grasso [27l, and "range-of-change requirements specificationtt of Matsumoto [31].

Our focus is limited to reuse of code, although ICE stores information about the

functional and technical design of a system as well.

Two studies we identified made concrete suggestions regarding strategies for the

measurement of reuse: Standish [44] and Neighbors [35]. Standish's proposal -- that

re-use should be measured at the line of code level -- suffers from the disadvantages

endemic to source-line-of-code metrics: they are conceptually simple, but are unlikely to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-9 1-25

convey managerially useful information. Neighbors argued that reuse should be

abstracted from the level of source code into some meta-language which relates to the

problem. This approach is likely to be of practical use in an environment in which a

high-level representation of the system already resides.

Gaffney and Durek [17] modeled the cost impact of reusable software as a function of

the relative costs of new and recycled code (there are costs associated with reuse; they

are just usually lower than the cost of rewriting), and of their relative incidence. The the

authors' analysis suggests a strong rationale for creating software reusability metrics that

support economic modeling of software development productivity and measurement of

the business value of CASE technology. (For discussions of the use and value of

economics-based approaches to the evaluation of software development performance, see

Banker and Kauffman [4], Boehm [8], Kang and Levy [24], and Levy [28].)

In the next section, we build on this discussion of the generally neglected problem of

measuring reuse.

4.2. Basic Definitions of Software Reusability

Since most studies of software reusability have concentrated on the problems of

encouraging it, rather than on those of identifying and measuring it, it is not surprising

that there are few rigorous definitions of reuse in a systems development context [27, 37,

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

26

411. Reuse, as the name implies, is the employment of previously written code as an

alternative to writing new, possibly identical, code to perform the same or similar

function.

The level of reuse may be computed as the number of times a particular piece of code,

data element or object is reused within the context of a program, application or

information system [40]. As Hall 1201 has pointed out, however, this measure does not,

in itself, address many of the managerial questions concerning reuse:

[The] developer needs to ascertain what sort of reuse is meant. Is it the
n~lmber of times the code is incorporated into other code? The number of
times the code is executed? A combination, the number of times the
incorporating code is executed? A figure of merit rej7ecting the value or utility
or saving rather than being a simple count of uses? (p. 41)

In the process of designing CRA, we identified three primary types of issues that its

software reusability metrics would need to address:

* What objects are being reused?

* What is the impact of this reuse on productivity and development costs?

* How effective is a particular system or environment in promoting software
reusability?

As a result, we have developed metrics to address all three kinds of questions: reuse

leverage metrics, reuse value metrics, and reuse classification metrics, respectively. (For a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

fuller presentation of these ideas, see 171.)

4.2.1. Leverage Metries

Reuse leverage metrics measure the number of times objects are used within a system.

We define reuse leverage within an application as:

REUSE LEVERAGE =
TOTAL NUMBER OF OBJECTS USED
NUMBER OF NEW OBJECTS BUILT

For example, if a system consists of 400 objects, of which 100 had to be programmed

from scratch, the reuse leverage would be 400/100 = 4.0, meaning that the average

object is used 4 times. This measure of reuse can be used at several levels of analysis. In

computing separate reuse leverage factors for different object types, for example, we

might find that the summary reuse factor of 4.0 aggregates a reuse leverage factor of 2.5

for RULES and 6.0 for SCREEN DEFINITIONS.

The inverse of reuse leverage is new code percent, a metric which describes the portion of

the software outputs that had to be developed from scratch. Knowing the extent to

which new code must be developed across a firm's applications provides management

with the opportunity to attempt to mandate what levels are desirable and manage

software development activities to achieve them. The formal definition of this metric is

given below.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

NEW CODE PCT = NUMBER OF NEW OBJECTS BUILT
TOTAL NUMBER OF OBJECTS USED

4.2.2. Value Metrics

To measure the actual productivity gains associated with code reuse, we must also

distinguish between the reuse of easily-programmed objects, such as REPORTS, and the

reuse of more costly objects, such as RULE SETS. We can compute reuse value by

weighting the level of reuse by the cost of programming the various types of objects.

Specifically, rather than just counting objects, we add up the cost of each object:

COSTj

REUSE VALUE = 1 - 2'

where

COSlr;, = the standard (or average) cost in penon days of building object
j;

= the total number of occurrences of objects in an application
meta-model hierarchy;

r = the total number of unique objects built for this application.

This metric provides an estimate of the percentage of development costs saved, assuming

the calculation of total costs is made based on the standard costs associated with the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

various object types.

4.23. Classification Metrics

For most purposes we include in our computation of code reuse, any object which is

found in the repository, rather than rewritten from scratch. For some managerial

purposes, however, we will wish to distinguish internal reuse from external reuse. Internal

reuse refers to code reuse within a system or subsystem, as defined by its meta-model

hierarchy. (For example, almost all the reuse displayed in Figures 7 and 8 is of this

type.) External reuse refers to the reuse of objects which are in the repository, but which

currently belong to a different system, and were originally developed for it. While both

kinds of reuse are of equaI value (although, strictly speaking, external reuse guarantees

the developer that the object has been tested elsewhere prior to being made more widely

available in the repository), different managerial policies may be required to encourage

the two kinds of reuse.

INSERT FIGURES 7 AND 8 AI30UT HERE

In particular, the degree of internal reuse will probably depend upon the size of the team

developing a given application, and the quality of the communications within that team.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

The degree of external reuse, on the other hand, may depend more upon the quality of

the indexing system used to help programmers to identify existing objects which they

might be able to reuse [6]. When reuse metrics are being computed for all the code

within the repository, all reuse is internal.

Reuse class@catiotl metrics allow us to assess and compare system reuse by classifying a

system's objects by source. Some examples are shown below:

EXTERNAL REUSE PCT = NUMBER OF OBJECTS OWNER BY OTHER S Y S T E X
TOTAL NUMBER OF OBJECTS USER

1NTERItA.L REUSE PCT = 10 0% - NEW CODE PCT - EXTERItAL REUSE PCT

Internal reuse percentage, here, is interpreted as the proportion of occurrences of objects

written for an application (not counting the first occurrence of each object) compared to

the total number of objects used in the application. These metrics can be modified as in

the preceding section to reflect differences in the relative costs of developing the objects.

43. CRA Architecture

The Code Reuse Analyzer identifies the objects used by a given application the same way

that the Function Point Analyzer does. The repository contains a complete meta-model

describing the relationships between application objects, and CRA uses it to trace all the

objects which are called, directly or indirectly, by the application under analysis. As for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

31

FPA, the scope of the analysis is determined by the user at the time of execution. It can

include the entire contents of the repository, a small or large set of application systems,

or even a subset of a single system. The ability to start anywhere in the hierarchy

provides CRA with a great deal of power for addressing managerial concerns about

reuse. For example, reuse may be analyzed for a specific type of application, for a given

project team, for a given manager, etc. It also facilitates research into what factors

contribute to increased reuse.

Once the set of objects has been identified, the objects can be classified, and multiple

reuse metrics can be computed. The repository contains information to not only identify

the objects called by a given object, but also to identify the source of each object. If a

given object was originally written for a different system (i.e., one beyond the scope of

the current analysis) then it is an instance of external reuse. If it was written for the

system being analyzed, then the first time it is encountered by the analyzer it is classified

as newly-written code, while subsequent encounters are classified as instances of internal

reuse. (An illustration of how CRA calculates the code reuse metrics in the context of

the Broker Sales Reporting System is presented in Sidebar 2, Figures 7 and 8, and Tables

5 and 6 at the end of this paper.)

INSERT SIDEBAR 2, FIGURES 5 AND 6, AND TABLES 5 AND 6 ABOUT HERE?,

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

5. CONCLIJSION

We have described two automated software development productivity analyzers: a

Function Point Analyzer (FPA) and a Code Reuse Analyzer (CFU). In the process of

thinking through the conceptual design problems and testing the analyzers, we were able

to come to an improved understanding of the nature of the productivity gains attributable

to CASE tools. Such productivity gains are typically thought of as the result of being

able to produce the desired software more quickly and cheaply. In fact, our analysis

reveals that much of the gain is represented by the production of functionality which,

without the improved tools, might well not exist 143.

The Integrated CASE Environment (ICE), for example, automatically provides many

capabilities that would require considerable programmer resources in a traditional

programming environment, such as the automation of inter-platform communications, the

automatic generation of "HELP" messages for every field on a screen, and the automatic

translation of any table to graphical format (an especially useful capability for traders

that use on-line, real-time trader workstations in investment banking firms).

In many cases, designers in a 3GL environment would probably choose to do without

these capabilities, rather than expend the cost and effort needed to implement them

without the appropriate CASE support. Thus, the comparisons which are frequently

cited between the cost of producing a system using a given CASE technology and the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

cost which traditionally would have been incurred may be misleading in the productivity

advantage they appear to indicate for the CASE tools. At the same time, they may tend

to overlook the superior functionality and user-friendliness which may be expected to

accompany CASE de~elopment.~

5.1. Future Research on Productivity and Software Metries

Our research raises questions about the continued usefulness of function points -- a

measure designed and calibrated for use in traditional 3GL environments. Are they still

useful as predictors of programming costs within an integrated CASE environment? Are

they useful as a means of exercising managerial control in such an environment? Can

they be used to predict staffing requirements or future maintenance requirements?

Could they be made more useful by recalibrating and fine-tuning them for new

conditions?

In a similar vein, our development of the Code Reuse Analyzer gave us an improved

understanding of code reuse. In particular, our tests of CRA confinned that commercial

This raises a related issue. The function types which are assigned the highest
weights in function point analysis are those which are most difficult to implement in a
3GL. But often these are not difficult at all, with CASE support. Function points may
be useful, then, in answering the question "What would this system have cost to develop
without CASE?" But a recalibrated measure may be required in order to estimate costs
within a given CASE environment. See Banker, Kauffman and Kumar [S] for a
discussion of a new approach called object point analyszk that addresses this issue for an
object-based CASE environment.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

34

application systems built using ICE offer tremendous scope for code reuse. If the

average object is used five times, this can mean an 80% reduction in the cost of

programming and unit testing, and such reuse levels are attainable within ICE. However,

initial analysis suggests that, even here, only a fraction of the potential for reuse is being

tapped. In particular, programmers tend to only reuse code with which they are

personally familiar, so that relatively low levels of external reuse are observed.

We are now in the process of formulating research to deal with the questions raised by

these observations. How can code reuse be supported, encouraged and motivated?

What aspects of the code are conducive to reuse? What programming practices and

what managerial practices provide the proper incentives for code reuse?

One of the major benefits of the development of the automated analyzers to our

research efforts is the outputs they will create. The automated report generation

capabilities of the FPA and CRA enable us to pursue research questions that were'

simply beyond the scope of prior research in terms of cost and availability of data. The

basic questions are: What can we learn about software development productivity in this

environment? Do productivity gains change with CASE or application-specific

experience? With the passage of time and the accretion of maintenance changes? What

are the features of CASE tools that best encourage productivity? Which slow it down?

The questions raised here are the basic questions the software development managers

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

will have to answer: What works? What doesn't work? How well does a given software

solution work? How can I make it work better? In the absence of the right metrics

made available to managers at the right time, it will be impossible to match the "art" of

software management to the new "science" of software development.

5.2. Contributions

This paper had multiple objectives. We wished to report on our automation of function

point and code reuse metrics -- automation which has not been possible in traditional

programming environments. We wished to generalize from our experience, to identify

the features of the CASE environment that make this automation possible. And we

wished to report on the implications that this research has for our understanding of

software productivity in an integrated CASE environment.

The Function Point Analyzer and the Code Reuse Analyzer described in this papei

represent the state-of-the-art in designing and developing automated software metrics

facilities in an integrated CASE tool environment. Their implementation was made

possible by two key features of the object-based, repository-based integrated CASE

environment called ICE.

The first of these features is the repository, which contains not only all the code and data

used by the applications, but also an indexing system (in this case, the meta-model) which

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

allows us to identify the software and files belonging to each application, as well as the

key relationships between them which result in application functionality. It is

conceptually possible for this information to be maintained (within a repository or

otherwise) by a non-integrated CASE tool, but we consider it improbable that the

integrity of the information would or could be maintained in such circumstances.

The second feature is the object-based CASE environment and its 4GL. The

organization of the software into objects of limited and clearly defined functionality has

enabled us to compute function points and to identify reuse without having to actually

analyze and understand the code itself.

We proposed metrics three classes of metrics for assessing code reuse: leverage metrics,

value metrics and classification metrics. The first two of these metrics match the

efficiency and effectiveness dimensions of standard performance evaluation approaches.

These measures help managers to distinguish between aggregate reuse, as well as reuse

of individual objects that may not be equally easy to build. Moreover, we have suggested

that a variety of metrics that triangulate on the key management problems are of interest

here: a unitary measure of software reusability lacks the power to answer the questions

that we found to be important to managers.

We also showed how traversing a hierarchical meta-model of an object-based system

enables the analyst to identify objects, and define reuse which is internal to the hierarchy

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

37

(for example, code reused within a program or an application) or which is external to it.

Initial analysis suggests that this classification is important to managers wishing to

encourage code reuse [7]. It appears that internal reuse will proliferate where the

technology supports it: ICE programmers routinely reuse code from one part of an

application in another. Code external to the system, however, tends to be code written

by other programmers, and different technical support and organizational incentives are

needed in order to motivate programmers to seek out external reuse opportunities.

Clearly, these questions are only the starting point for a rich, new management agenda to

better understand and control CASE-based development. Yet, we are also left with

some answers we did not have before we began this research. We have learned that the

data collection and analysis needed in order to control software costs can be automated.

We have identified features of CASE systems which support such automation. And we

have begun to understand the issues involved in measuring output and reuse in such

environments.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

REFERENCES

Albrecht, A. J., Measuring Application Development Productivity. In Proceedings
of the Joint SHARE, GUIDE, and IBM Application Development Symposium, IBM
(October 1979), pp. 83-92.

Albrecht, A. J. and Gaffney, J. E. Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering 9, 6 (November 1983), pp. 639-647.

Apte, U., Sankar, C. S., Thakur, M, and Turner, J. Reusability Strategy for
Development of Information Systems: Implementation Experience of a Bank.
MIS Quarterly, December 1990, pp. 421-431.

Banker, R. D., and Kauffman, R. J. Reuse and Productivity in an Integrated
Computer Aided Software Engineering (ICASE) Environment: An Empirical
Study at the First Boston Corporation. Forthcoming in MIS Quarterly, September
1991.

Banker, R. D., Kauffman, R. J., and Kumar, R. An Empirical Assessment of
Object-Based Output Measurement Metrics in Computer Aided Software
Engineering (CASE). Forthcoming in Jotrrnal of Management Information Systems,
Fall 1991.

Banker, R. D., Kauffman, R. J. and Zweig, D. Factors Affecting Code Reuse:
Implications for a Model of Computer Aided Software Engineering (CASE)
Development Performance. Working Paper, Stern School of Business, New York
University (December 1990).

Banker, R. D., Kauffman, R. J. and Zweig, D. Metrics for Software Reusability in
Computer Aided Software Engineering (CASE) Development. Working paper,
1991.

Boe hm, B. W. Software Engineering Ecoizornics. Prentice-Hall, Englewood CEs ,
NJ, 1981.

Boehm, B. W., and Papaccio, P. N. Understanding and Controlling Software
Costs. IEEE Traizsactions on Software Engineering 13, 10 (October 1988), pp.
1462-1477.

Booch, G. Object-Oriented Development. IEEE Transactions on Software
Engineerilzg 12, 2 (February 1986), pp. 211-221.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

1 . Booch, G. What Is and What Isn't Object-Oriented Design. Ed Yourdon's
SofhYare Jounzal, 2, 7-8 (Summer 1989), pp. 14-21.

12. Bouldin, Barbara M. CASE: Measuring Productivity -- What Are You
Measuring? Why Are You Measuring It? Software Magazine 9, 10 (August 1989),
pp. -30-39.

13. Davis, G. B. Commentary on Infomation Systems: Productivity Gains from
Computer Aided Software Engineering. Accounting Horizons 2, 2 (June 1988), pp.
90-93.

14. Deutsch, L. P. Reusability in the Smalltalk-80 Programming System. In ITT
Proceedings on Reusability in Programming, ITT (1983), pp. 72-76.

15. Dreger, J. B. Function Point Anafysis. Prentice-Hall, Englewood Cliffs, NJ, 1989.

16. Fisher, J. T. IBM's Repository: Can Big Blue Establish OS12 EE As the
Professional Programmer's Front End? DBMS (January 1990), pp. 42-49.

17. Gaffney, J. E., Jr., and Durek, T. A. Software Reuse -- Key to Enhanced
Productivity: Some Quantitative Models. lilfomation and Software Technology 31,
5 (June 1989), pp. 258-267.

18. Goldberg, A, and Pope S. T. Object Oriented Programming is Not Enough.
American Programmer: Special Issue on Object-Oriented Observations 2, 7-8
(Summer 1989).

19. Grammas, G. W., and Klein, J. R. Software Productivity as a Strategic Variable.
InterJaces 15, 3 (May-June 1985), pp. 116-126.

20. Hall, P. A. V. Software Components and Reuse -- Getting More Out of Your
Code. Information and SofnYare Technology 29, 1 (January-February 1987), pp.
38-43.

21. Hazzah, A. Making Ends Meet: Repository Manager. Software Magazine
(December 1989), pp. 59-72.

22. Horowitz, E. and Munson, John. An Expansive View of Reusable Software.
IEEE Transactions on Software Engineering SE-10, 5 (September 1985), pp.
477-487.

23. Jones, T. C. Reusability in Programming: A Survey of the State of the Art. IEEE
Transactioizs on SofhYare Engineering SE-10, 5 (September 1984), pp. 484-494.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

Kang, K. C., and L. S. Levy. Software Methodology in the Harsh Light of
Economics. Iizfomation and Sofmare Technology 31, 5 (June 1989), pp. 239-249.

Kemerer, C. F. Reliability of Function Points Measurement: A Field Experiment.
Working Paper, Sloan School of Management, MIT, December 1990.

Kernighan, B. W. The UNIX System and Software Reusability. IEEE
Transactions on Software Engineering SE-10, 5 (September 1984), pp. 513-518.

hnergan, R. G. and Grasso, C. A. Software Engineering with Reusable Designs
and Code. IEEE Transactions on Software Engineering SE-10, 5 (September 1984),
pp. 498-501,

Levy, L S. Taming the Tiger: Software Engineering and Software Economics.
Springer Verlag, New York, 1987.

Low, G. C., and Jeffrey, D. R. Function Points in the Estimation and Evaluation
of the Software Process. IEEE Transactions on Software Engineering 16, 1
(January 1, 1990), pp. 64-71.

Mathis, R. F. The Last 10 Percent. IEEE Transactions on Sofnyare Engineering,
SE-12, 6 (June 1986), pp. 705-712.

Matsumoto, Y. Some Experiences in Promoting Reusable Software: Presentation
in Higher Abstract Levels. IEEE Transactions on Sofhyare Engineering, SE-10, 5
(September 1984), pp. 502-512.

Meng, B. Object-Oriented Programming. Mac Wbrld (January 1990), pp. 174-180.

Meyer, B. Reuse: The Case for Object-Oriented Design. IEEE Software (March
1987), pp. 50-64.

Meyer, B. Object Oriented Software Construction. Prentice Hall, New York, 1988.

Neighbors, J. M. The DRACO Approach to Constructing Software from
ReusabIe Components. IEEE Transactiorls on Software Engineering SE-10, 5
(September 1984), pp. 564-574.

Norman, R. J., and Nunamaker, J. F. Jr. CASE Productivity Perceptions of
Software Engineering Professionals. Communications of the ACM 32, 9
(September 1989), pp. 1102-1 108.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

Nunamaker, J. F. Jr., and Chen, M. Software Productivity: A Framework of Study
and an Approach to Reusable Components. In Proceedings of the 22nd Hawaii
International Conference System Sciences, Hawaii, IEEE (January 1989), pp.
959-968.

Nunamaker, J. F. Jr., and Chen, M. Software Productivity: Gaining Competitive
Edges in an Information Society. In Proceedings of the 22nd Hawaii Internatiorzal
Conference on System Sciences, Hawaii, IEEE (January 1989), pp. 957-958.

Pollack, A. The Move to Modular Software. New York Times (Monday, April 23,
1990), pp. Dl-2.

Polster, F. J. Reuse of Software Through Generation of Partial Systems. IEEE
Transactions on Sofnyare Engineering SE-10, 5 (September 1984), pp. 402-416.

Raj, R. K. and Levy, H. M. A Compositional Model for Software Reuse. The
Computer Journal 32, 4 (April 1989), pp. 3 12-323.

Senn, J. A. and Wynekoop, J. L. Computer Aided Software Engineering (CASE)
in Perspective. Working Paper, Information Technology Management Center,
College of Business Administration, Georgia State University, 1990.

Seppanen, V. Reusability in Software Engineering. In P. Freeman (ed.), Tutorial:
Software Reusability, Computer Society of the IEEE, 1987, pp. 286-297.

Standish, T. A. An Essay on Software Reuse. IEEE Transactions on Sofnyare
Engineering SE-10, 5 (September 1984), pp. 494-497.

Stroustrup, B. What is Object-Oriented Programming? IEEE Software (May
1988), pp. 10-20.

Syrnons, C. R. Extended Function Points with Entity n p e Complexity Rules. Nolan,
Norton, and Company, London, 1984.

Syrnons, C. R. Function Point Analysis: Difficulties and Improvements. IEEE
Transactions on SofhYare Engineering 14, 1 (January 1988), pp. 2-10.

Veryard, R. Information and Software Economics. Information and Software
Technology 31, 5 (June 1989), 226-230.

Zwanzig, K Handbook for Estimating F~mctwn Points. GUIDE Project --
DP-1234, November 1984, GUIDE International.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

APPENDIX 1. THE FUNCTION POINT ANALYSIS PROCEDURE

STEP 1: Identification of Function Types.

Identify each functionality unit and classif) it into five user function types:

* External Outputs are items of business information processed by the computer for
the end user.

* External Inputs are data items sent by the user to the computer for processing, or
to make additions, changes or deletions.

* Queries are simple outputs; they are direct inquiries into a database or master file
that look for specific data, use simple keys, require immediate response, and
perform no update functions.

* Logical Internal Files are data stored for an application, as logically viewed by the
user.

* External Interface Files are data stored elsewhere by another application, but used
by the one under evaluation.

This step yields a count for each of the five different function types.

STEP 2: Classification of Simple, Average and Complex Function Types.

The individual counts by function type are further classified into three complexity levels
(Simple, Average, Complex) depending on the number of data elements contained in
each function type instance and the number of files referenced. Each function
complexity subtype is weighted with numbers reflecting the relative effort required to
construct the function. For example, according to Albrecht's weighting scheme, a Simple
Input Type would be weighted by 3, while a Complex Input Type would be weighted by
4. Additional details about the FUNCTION-COMPLEXITY-SCORES follow:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

APPENDIX 1. TFIE FUNCTION POINT ANALYSIS PROCEDURE (continued)

Inputs
outputs
Interfaces
Queries
Files

FUNCTION
TYPE (f)

FUNCTION-COUNTS (FC) summarizes the weighted counts for the five function types
as follows:

FUNCTION-COMPLEXITY-SCORES (c)

Simple Average Complex

2 2 FWCTION- TYPE, * FUNCTION- COMPLEXITY-SCORECC
t=l c=1

STEP 3: Adjusting FUNCTION-COUNTS by TECHNICAL-COMPLEXITY-FACTOR.

The adjustment factor reflects application and environmental complexity, expressed as
the degree of influence of fourteen characteristics (f) listed below. Each characteristic is
rated on a scale of 0 to 5 (COMPLEXITY-FACTOR), and then all scores are summed.
The TECHNICAL-COMPLmIP-FACTOR (TCF) = .65 +
(.01 * COMPLEXITY-FACTORS. The fourteen factors are shown below.

Finally, FUNCTION-POINTS (FP) are calculated as FC * TCF.

-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

1. Data Communications
2. Distributed Functions
3. Performance
4. Heavily-used Config.
5. Transaction Rate
6. On-line Data Entry
7. End-User Efficiency

8. On-line Update
9. Complex processing
10. Reusability
11. Installation Ease
12. Operational Ease
13. Multiple Sites
14. Facilitate Change

SIDEBAR 1. THE BROKER SALES REPORTING SYSTEM: INTRODUCTION

The Broker Sales Reporting System is a small (simplified) ICE application system that
illustrates the concepts presented in this article. The system tracks and reports the sales
activity of brokers in a small investment firm. The application has both online and batch
capabilities designed to meet the needs of middle and senior management. Senior
management is provided with summarized reports and inquiries. Middle management is
provided with detailed reports and inquiries concerning the performance of individual
brokers.

SIDEBAR 2. THE CODE REUSE ANALYZER

The operation of the Code Reuse Analyzer will be illustrated for a subset of the Broker
Sales Reporting System. Code reuse is a measure of the savings which may be realized
by coding each object once and reusing it as necessary (Figure 7), instead of having to
rewrite the code every time it is needed (Figure 8). A simple ratio of object counts
yields the Reuse Leverage. The Reuse Value metric estimates the savings attributable to
reuse, by considering not only the number of objects, but also the cost of the objects.

In principle, an integrated CASE system could be designed to capture actual costs for
each object, as it is produced. This has not yet been implemented for ICE. Rather, a
set of heuristics was developed, on the basis of interviews with software managers, for
estimating the cost of an object (in days) based on its type and its complexity. The
complexity is measured on a three-point scale (Simple, Average or Complex -- but not
the same scale that is used for function point analysis) which is simple enough to
automate,*

The Code Reuse Analyzer distinguishes between internal reuse -- the reuse of objects
written for the current task -- and external reuse -- the reuse of objects previously written
for different applications. We have observed relatively little reuse of code written by
other programming teams, for other application systems. This suggests that special
support may be required to encourage programmers to seek out opportunities for
external reuse. Without that support, much of the potential code reuse goes unexploited.

8These heuristics are in actual use by managers for project cost estimation. See
Banker, Kauffman and Kumar [5] for a preliminary indication of their robustness.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

FIGURE 1. A REPOSITORY-BASED APPLICATION META-MODEL

Business
Function

Business
Process #1
(Subsystem

Business
Process #2
(Subsystem

Business
Process #3
(Subsystem

- 1 ~ 1 - 1 -1
I
I Set A Set B Set C
I
I I

A BUSINESS FUNCTION is represented in ICE by a menu of BUSINESS
PROCESSES. An application consists of all the objects called (directly or indirectly) by
a given BUSINESS PROCESS. The first step in analyzing a system is to identify these
objects, by iteratively tracing the calling relationships stored in the meta-model. A
BUSINESS PROCESS will call one or more RULE SETS. Each RULE SET, in turn,
may call other RULE SETS, 3GL MODULES or other ICE objects (Figure 2). Note
that the use of an object by an application system does not preclude its reuse by another
application.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

FIGURE 2. ICE REPOSITORY OBJECTS

------------------- I" --I-------------------------
! 3GL Modules ((no object structure)

(Repository Objects (significant object structure) (I
I i
I Create Access Communicate I I

I

Access I

Defini- I
I

I t ions I

Require
I

I
t Include Consist of .
I it ions I I

I I
I I
I Defined by Defined by I

I I

Built from Domains

I
I ...

This figure is an expansion of RULE SET A, from Figure 1. There is a well-defined set
of relationships allowed. Each object resides in the repository, and has a descriptive
entry in a database table which also resides there. In addition, the repository contains
other tables with entries for each relationship between two objects. A RULE SET may
also use pre-existing 3GL MODULES. The repository contains no information about the
processing performed by these modules. However, any functionality they provide the
user, via REPORTS, FILES or SCREENS, must be mediated by an ICE object.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

FIGURE 3. MAPPING FROM ICE OBJECTS TO FUNCTION COUNTS

APPLICATION BOUNDARY

Function
tenns of
Queries,

point analysis measures the functionality that a system delivers to the user in
data transfers into or out of that system (External Inputs, External Outputs,
External Interfaces), and in terms of the data stores (Logical Internal Files)

used. A 3GL program can contain functionality of all five classes. An ICE object,
however, is severely constrained in the functionality it can represent, to the point where a
system's function count can be computed by identlfylng and classifying its objects. See
Table 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

48

FIGURE 4. TEIE AUTOMATED FUNCTION POINT ANALYZER: A SCHEMATIC

I I
I

I Repos i tory Query I
I I

USER

i t
) Manager I n p u t s I
I I
I

---------,------------,--------

Determine
Complexity . Table

Scores

O D C T IDENTIFIER
-------------,-----------------

I

The Function Point Analyzer consists of three subsystems. One uses the meta-model to
identify the objects in the application under analysis. The second uses it to assign
Function Count scores to those objects. The third obtains task complexity measures
(Table 3). This requires programmer or manager input in parallel with the automated
analysis (Figure 5).

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-25

I d e n t i f y
R e l a t i o n s h i p Objec ts t o

Object
Repos i tory

I

I

Table Analyze -.=: ' I I M e t a-Model

-,,,,,,,,,,,,,,,-,,, ,,,,,-,,, . ,,,,,,,,, . ,,,,,,-,--,---------

B FUNCTION COUNTER
--,-,,,,,,,,,,,--,--------- ,, . ,,

I

Determine Funct ion
Funct ion . Function Type D i f f i c u l t y

Table In s t ances

rn I

I
I
I

. I

I
t

count
Table

Determine
Function

Scores
- Weighting

Tab1 e

,,,,-,,,,,,,,,,-,-,----------- . ,,,,,,,-,-,,-,-,,,,----------- . Customized
Reports

Database
f o r FPs . .

¤ CUWLEXITP PACTOR COUNTER
,,,,-,,,,,,,--,--,------------ ,-,,,,,,,,,,,-,-,,,------,----

Calcu la t e
Function

Po in t s (FPs)

P r o j e c t Manager
. VP, I S Development
. Chief Informat ion O f f i c e r

FIGURE: 5. FUNCTION POINT ANALYSIS COMPLEXITY MEASURES: AN INPUT
SCREEN

DISTRIBUTED FUNCTIONS Complexity Factor 2

This complexity factor measures the degree an application
stores data in a distributed manner or distributes the
processing among CPUs. Applications which involve multiple
platforms (mainframe, minicomputer and microcomputer) would
receive a higher complexity score than for a mainframe-based
application.

Please select the complexity factor score which most closely
approximates the extent of cooperative processing:

rn 0: Data is stored and processing occurs on a single
machine only.

1: Data is stored on a single platform, but processing
occurs on two platforms.

11 2: Data is stored and processing occurs on two platforms.
11 3: Data is stored on one platform, but processing occurs

on three platforms.

11 4: Data is stored on two platforms, but processing occurs
on three platforms.

111 5: Data is stored and processing occurs on three
platforms.

Each of the fourteen complexity factors has its own input screen. Specific, objective
descriptions are given to anchor the scoring of the programmer or manager entering the
data. Since some of the factors require human judgment, user input is still used in some
cases. However, other complexity factors, such as the one above which measures the
extent of cooperative (distributed) processing, can be automated entirely, once the
operational definition for this complexity factor has been implemented in terms of multi-
platform processing and data flows using ICE, and validated by managers.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

5 0

FIGURE 6. TEIE BROJSER SALES REPORTING SYS'IXM: SYSTEM LAYOUT

The Broker Sales Reporting System consists of those repository objects which are
invoked by the Broker Sales Reporting Process, and of the relationships between those
objects. The PROCESS refines into two RULE SETS, one for online processing and one
for batch processing. Since the two RULE SETS generate similar outputs, they have a
number of other repository objects in common. Each such object is only stored once in
the repository, and reused as necessary. Each use will be instantiated in the meta-model
as an entry in the table of relationships.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

FIGURE 7. A SUBSET OF W E BROKER SALES REPORTING SYSmM

Onl ine
I n q u i r y

Rule 8 e t
U...

imaalo8te. w l t h Rule S e t

8err.a

Figure 7 displays a subset of the Broker Sales Reporting System.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

FIGURE 8. EXPANDED HIERARCHY FOR A SUBSET OF THE BROKER SALES
REPORTING SYSTEM

Figure 8 displays the same subset, as it would appear in the absence of code reuse.
Several of the objects would have to be rewritten many times. Code Reuse Leverage is
the ratio of the number of objects used (Figure 8) to the number of unique objects
actually written for this application (Figure 7). The 3GL MODULE (Calculate Broker
Comission) is external to this application; it was originally written for a different
application, and reused by the programmers of this one. Therefore, the Code Reuse
Analyzer will not include it in the count of unique objects written for this application.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

53

TABLE 1. FUNCTION POINT ANALYSIS FUNCTION COMPLEXITY MATRIX

The Function Point Analyzer can access a table of function count complexity measures
which enable it to compute a function count score, once it has identified the mapping
between ICE objects and the function types for a given application. The entries to the
matrix above are the "standard" complexity measures of the function point analysis
methodology, rather than calibrated measures relating to a specific CASE-development
environment [ll, 441.

FUNCTION FUNCTION COMPLEXITY SCORES

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

Complex

6

7

10

6 or 7

15

Average

4

5

7

5

10

Simple

External
Inputs

External
outputs

External
Interfaces

External
Queries

Internal
Files

3

4

5

4

7

TABLE 2. REPOSITORY OBJECTS AND TEIE COMPUTATION OF FUNCTION
COUNTS

Note: For every screen which displays tabular data, ICE automatical& generates a
graphic-display screen and a HELP screen as well.

The Function Point Analyzer identifies all the repository objects in the application
system, and determines how many times each is used. The Detail Sales Screen, for
example, is used twice: in response to an Online Inquiry and in response to an Online
Update. In the latter case, the Online Update RULE SET reuses the Online Inquiry
RULlE SET and all the objects (including the Detail Sales Screen) which it uses.

The Analyzer then determines the function types associated with each object. An
application's functionality depends upon its data stores and upon the flows of data
(reports, queries, or updates) across its boundary. Thus almost all its function counts will
be associated with REPORT SECTIONS, SCREENS or FILES. In this example, there is
also some functionality associated with a RULE SET which has accessed a FILE
belonging to a different application system.

Times
Used

1
1
1
1
2
3
3

3

1
1

1
2
1

2
2
1
1
2

1

4
4
4

Function
Count

3
7

5
4
5

5
5
4
5
5

7

10
4
7

Center for Digital Economy Research
Sterri School o f Business
IVorking Paper 19-91-25

Total
Count

3
7

5
8
5

30
30
4
5
10

7

4 0
16
2 8

198

Functionality

Simple INPUT
Simple EXTERNAL INTERFACE

Average OUTPUT
Simple OUTPUT
Average OUTPUT

3 Average QUERIES (*)
3 Average QUERIES
Average INPUT
Average QUERY
Average OUTPUTS

Simple INTERNAL FILE

Average INTERNAL FILE
Average INPUT
Average EXTERNAL INTERFACE

Total Function Count

Object
TYPe

RULE
SETS

3GL
MODULES

REPORTS

REPORT
SECTIONS

SCREEN
DEFINI-
TIONS

DOMAINS

FILES

Broker Sales
Object Name

Online Reporting
Batch Reporting

Online Update
Online Inquiry
Sales Retrieval
Sales Summary

Calculate
Commission

Individual Sales
Summary Sales

Transaction Detail
Exception Reporting
summary

Detail Sales
Summary Sales
Inquiry and Update

Transaction Types

Transaction Detail

TABLE 3. COMPLEXITY MEASURES FOR THE BROKER SALES REPORTING
SYSTEM

The difficulty of developing an application depends not only on its magnitude (Function
Counts) but also on the complexity of the tasks it performs. To adjust for this
complexity, scores from 0 (no influence) to 5 (difficult) are assigned for each of fourteen
factors. The resulting adjustment factor can modiSy the Function Count by up to 35%
(plus or minus).

COMPLEXITY FACTOR

Data Communications Requirements
Distributed Processing Requirements
Response Time or Performance Required
Heavily Used Configuration
High Transaction Rates
On-line Data Entry
End-User Efficiency
On-line Update
Complex Processing or Computations
Application Designed for Software Reuse
Application Designed for Ease of Installation
Application Designed for Ease of Operation
Application Designed for Multiple Sites
Application Designed to Facilitate Changes

TOTAL SCORE (Maximum possible is 70)

Adjustment Factor (65 + TOTAL SCORE)/100 =

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

COMPLEXITY SCORE

1
2
1
1
2
2
3
3
1
3
3
4
2
5

29

0.94

56

TABLE 4. BROKER SALES REPORTING SYSTEM FUNCTION POINT SUMMARY

Function Points are computed as the product of the Function Counts and the Complexity
Adjustment Factor.

Number of Objects
Number of Function Types

Total Function Counts
Complexity Adjustment Factor

Total Function Points

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

17
32

198
x .94

186

TABLE 5. INSTANCES OF lU2USE

The repository contains enough information for the automated Code Reuse Analyzer to
classify each object as Simple, Average or Complex, on the basis of estimation heuristics
used by ICE developers. (This is not the same classification used by the Function Point
Analyzer.) These heuristics also enable the Analyzer to assign a programming-time
estimate to each object, based on its type and complexity. Thus we can estimate the
programming time required, and the programming time that would have been required in
the absence of code reuse.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-25

-

Total
Man-Days

2
2
2
4
4

12
6

12
1

2 1

66
-

Required
Man-Days

2
2
2
4
2
4
2
3
1
(7)

2 2

Broker Sales
Repository Object Name

Reporting Process
Online Reporting Rule
Batch Reporting Rule
Online Update Rule
Online Inquiry Rule
Sales Retrieval Rule
Sales Summary Rule
Transaction Detail File
Transaction Type Domain
Compute Commission

TOTALS

Objects
Written

1
1
1
1
1
1
1
1
1

EXT

9

Total
Used

1
1
1
1
2
3
3
4
1
3

2 0

Estimated
Complexity

Simple
Simple
Simple
Average
Simple
Average
Simple
Simple
Simple
Complex

TABLE 6. SOFTWARE REUSABILITY METRICS

On the average, each object is used 2.2 times. However, we see from the reuse value
metric that without reuse the project would have taken approximately three times as long
to write. The simple leverage metric underestimates the benefits of reuse in this case,
because it does not distinguish that the more expensive objects are receiving a
disproportionate amount of reuse.

Center for Digital Economy Research
Stem School of Business
IVolking Paper IS-91-25

20
9

2.2

66
22
67%

MAN-DAY S

22 33%
23 35%
2 1 32%

66 100%

r

REUSE LEVERAGE
Total number of objects used
Number of unique objects written
Code Reuse Leverage (20 /9)

REUSE VALUE
Total Man-Days of objects used
Man-Days required for objects written
Code Reuse Value (1 - (22166))

REUSE CLASSIFICATION

Unique objects written
Reuse of internal objects
Reuse of external objects

Total number of objects used

OBJECTS

9 45%
8 40%
3 15%

20 100%

