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Multilayer Feedforward Networks with 
Non-Polynomial Activation Functions Can 

Approximate Any Function - - _ - 

Abstract 

Several researchers characterized the activation functions under which multilayer feedfor- 

ward networks can act as universal approximators. We show that all the characterizations 

that were reported thus far in the literature ark special cases of the following general re- 

sult: a standard multilayer feedforward network can approximate any continuous function 

to any degree of accuracy if and only if the network's activation functions are not polyno- 

mial. We also emphasize the important role of the threshold, asserting that without it the 

last theorem doesn't hold. 

Keywords: hlult,ilayer feedforward networks, Activation functions, role of threshold, Uni- 

versal approximation ca,pabilities, Lp.(p) approximation. 
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1 Background 

The basic building block of a neural network is a processing-unit which is linked to  n input- 

units through a set of n directed connections. The single unit model is characterized by (1) 

a threshold value, denoted 6, (2) a univariate activation function, denoted : R --+ R, and 

(3) a vector of "weights," denoted w = w l , .  . . , w,. When an input-vector x = XI,. . . ,x, 

is fed into the network through the input-units, the processing-unit computes the function 

+(w x - 61, w - x being the standard inner-product in Rn. The value of this function is 

then taken to  be the network's output. 

A network consisting of a layer of n input-units and a layer of m processing-units can be 

"trained" to  approximate a linzited class of functions f : Rn -+ Rm. When the  network 

is fed with new examples of vectors x E Rn and their correct mappings f (x), a "learning 

algorithm" is applied to  adjust the weights and the thresholds in a direction the minimizes 

the difference between f (x) and the network's output. Similar backpropagation learning 

algorithms exist for multilayer feedforward networks, and the reader is referred to  Hinton 

(1989) for an excellent survey on the subject. This paper, however, does not concern 

learning; Rather, we focus on the following fundamental question: if we are free t o  choose 

any w, 6, and q5 that we desire, which "real life" functions f : Rn -4 Rm can multilayer 

feedforward networks emulate? 

During the last decade, multilayer feedforward networks have been shown to  be quite 
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effective in many different applications, with most papers reporting that they perform 

at least as good as their traditional competitors, e.g. linear discrimination models and 
* 

Bayesian classifiers. This success has recently led several researchers to undertake a rigorous 

analysis of the mathematical properties that enable feedforward networks to perform well 

in the field. The motivation for this line of research was eloquently described by Hornik and 

his colleagues (1989) , as follows: "The apparent ability of sufficiently elaborate feedforward 

networks to approximate quit.e well nearly any function encountered in applications leads 

one to wonder about the ultimate capabilities of such networks. Are the successes observed 

to da.te reflective of some deep and fundamental approximation capabilities, or are they 

merely flukes, resulting from selective reporting and a. fortuitous choice of problems?" 

Previous research on the approximation capabilities of feedforward networks can be found 

in Carroll and Dickinson, le Cun (1987) , Cybenko (1989), Funahashi (1989) , Gallant 

and White (19SS), Hecht-Nielson (1989), Hornik, Stinchcombe, and White (1989) , Irie 

and Miyake (1988), Lapedes and Farber (1988), Stinchcombe and White (1990). These 

studies show that if the network's activa.tion functions obey an explicit set of assumptions 

(which vary from one paper to another), then the network can indeed be shown to be 

a universal approximator. For example, Gallant and White proved that a network with 

"cosine squasher" activation functions possess all the approximations properties of Fourier 

series representations. Hornik et al. (1989) extended this result and proved that a network 

with arbitrary squashing activation functions are capable of approximating any function of 

interest. Most recently, Hornik (1991) has proven two general results, as follows : 
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Hornik theore111 1: \Vhenever the activation function is bounded and nonconstant, then, 

for any finite measure 11, standard multilayer feedforward networks can approximate any 

function in LP(p) ( the space of all functions on R ~ U C ~  that JRk I f(x)IPdp(x) < CO) arbi- 

trarily well, provided that sufficiently Inany hidden units are available. 

Hornik theorelm 2: Mihenever the activation function is continuous, bounded and non- 

constant, then, for arbitrary compact subsets X C R< standard multilayer feedforward 

networks can approximate any ~ont~inuous function on X arbitrarily well with respect t o  

uniform distance, provided that sufficiently many hidden units are available. 

In this paper we generalize Hornik's results by establishing necessary and sufficient con- 

ditions for universal approximation. In particular, we show that a standard multilayer 

feedforward network can approximate any continuous function to  any degree of accuracy if 

and only if the network's activation function is not polynomial. In addition, we emphasize 

and illustrate the role of the threshold value (a  parameter of the activation function), with- 

out which the theorel~l does not hold. The theorem is intriguing because (a) the conditions 

that it in~poses on the activation function are minimal; and (b) it embeds, as special cases, 

all the activation functions that were reported thus far in the literature. 
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2. Multilayer feedforward networks 

The general architecture of a multilayer feedforward network consists of an input layer with n 

input-units, an output layer with m output-units, and one or more hidden layers consisting of 

intermediate processing-units. Since a mapping f: R n - R m  can be computed by m mappings 

f i :Rn-R,  it is (theoretically) sufficient to focus on networks with one output-unit only. In 
- .  

addition, since our findings require only a single hidden layer, we will assume hereafter that the 

network consists of three layers only: input, hidden, and output. One such network is depicted in 

the following figure: 

units 

input units 

Figure 1: A feedforward neural network with one hidden layer 
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In the  figure, the weights-vector and the threshold value associa.ted with the j- th processing- 

unit are denoted w,,. and 0,. respectively. The weights-vector associated with the single 

output-unit is denoted P ,  and the input,-vector is denoted x. With this notation, we see 

that  the function that a multilayer feedforward network computes is: 

k being the number of processing-units in the hidden layer. Hence, the famiry of func- 

tions that can be computed by multilayer feedforward networks is characterized by four 

parameters, as follows: 

1. The number of processing-units, denoted I;; 

2. The set of weights {w,,,), one for each pair of connected units; 

3. The set of threshold values id,), one for each processing-unit; 

4. An activation function $ : R 4 R, same for each processing-unit. 

In what follows, we denote the space of these parameters 52 =< k, {w,,,) , {6,), y!~ >, and a 

particular tuple of parameters is denoted w E 52. The network with n input-units which is 

characterized by UJ is denoted ,k',(?7), but for brevity we'll drop the 12 and use the  notation 

AT,. Finally, the function that A[, computes is denoted f, : R t Rn,  and the family of all 

such functions is denoted F={ fWIu E 52). 
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Our objective is thus to find all the functions that may be approximated by multilayer 

feedforward networks of the form hi,. In order to do so, we will characterize the closure 
- 
F=cEosure{f,)w E R). This closure is based on some metric defined over the set of 

functions from Rn to R, described in the next section. 

3 Definitions 

Definition 1: A metric on a set S is a function d  : S x S --t R such that: 

- l . d ( x , y ) > O  

2. x  = y  if and only if d ( x ,  y )  = 0 

3. ~ ( X , Y )  = d ( y , x )  

4. d ( x ,  Z )  L d ( x , y )  + d ( y ,  2) 

If we take S to be a set of functions, the metric d ( f , g )  will enable us to measure the 

difference between functions f ,  g  E S .  

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-26 



Definition 2: 1. A subset S of a metric space (X, d)  is d-dense in a subset T if for every 

E > 0 and t  E 7" t,here is an s E S such that d( s ,  t )  < E .  

2. Let M ( R n )  be the set of all n-variate real-valued functions a ~ d  let C(Rn) 5 M(Rn)  

be the set of all continuous real-valued functions. A subset F E M(Rn)  is said to  be 

uniformally dense on compacta in C(Rn)  or fundamental if for every compact subset Ii' C 

Rn, F is d-dense in C(I<) where d is the uniform distance metric, as follows: 

3. The closure of a subset S of a metric space (X, d) is defined as follo~vs: 

Hence, if we can show that a given set of functions F is uniformally dense on compacta in 

C(Rn) ,  we can conclude that for every continuous function g E C(Rn)  there is a function 

.f E F such that f is a good approximation of, y. In this paper we take C(Rn)  t o  be 

the  family of "real world" functions that one may wish to  approximate with feedforward 

network architectures of the form Ag. F is taken to  be the family of all functions implied 

by the network's architecture, nanlely the family ( I ) ,  when w runs over all its possible 

values. The key question is this: under which necessary and sufficient conditions on qh will 

the family of networks Af be capable to approximate to  any desired accuracy any given 

continuous function? 
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I11 order to  answer this question, we use the following two metrics: 

1. In the set of continuous functions C(Rn), we use the metric given by (2); 

2. For p, a finite measure on Rn,  denote by Lp(p), 1 5 p < CO, the  set of all measurable 

functions f such that: 

111 the set of functions LP(p), we use the following metric: 

Definition 3: 1. For x, w E Rn let w . x  = C x;w, denote the standard inner-product in Rn. 

Given any univariate function f : R -+ R. we call the n-variate function fw(x) = f (w - x )  

a ridge function. 

2. For a given function f : R 4 II we denote ( f  ), = span{ fw lw E Rn) - the vectorial 

space of n-variate f~inctions spanned by the set of all ridge functions of f. 

We see that a ridge function is essentially an n-ary activation function without a threshold. 

With that in mind, ( f ) ,  is the set of all functions obtained by multiplying (inner-product) 

all ridge functions by all numbers P I , . .  . , Pk If we refer to  the figure, we see that the 
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ridge functions correspond to the activation functions (without a threshold). applied by 

the hidden units, and (f), corresponds to all the functions that might be applied by the 

output-unit. 

4 Results 

We begin this section by citing two lemmas by Dahlnen and Michhelli (1987). We then use 

these lemmas to prove our main results. 

Le111111a 1: If .f : R -4 R is a nleasurable function and dim(f),  < oo for n > 1, then f  is 

a pol j-nci& a!. 

Lemina 2: f has the property that ( f ) ,  is dense in C ( K )  for any cornpacta K C Rn for 

some n > 1 if and only if f  has the same property for n. = 1. 

Theorem I: Let f be a ~lleasurable function. spa7~{ f , , ~ ( x )  = f (w . x +  0)lw E Rn, 0 E R) 

is fundamental in C ( R n )  if and only if f is not a polynomial. 

Theorem 2: Let ,LL be any finite measure on Rn.  If f  E L P ( p ) ,  then ~ p a n { f , , ~ ( z )  = 

f ( w  . x + d)(w E Rn ,  8 E R)  is fundamental in LP(p), 1 < p  < m, if and only if f  is not a 

1101jjnonli "1. 
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5 I~iscussion and Conclusion 

First, we wish to illustrate why the threshold element is essential in the above theorems. 

Consider the activation function (without a threshold) f ( r )  = sin(x). This function is 

not a polynomial; Iq addition, it is continuous, bounded, and non-constant. Now, the set 

{si17(w. r ) / 2 ( 1  E R)  consists of only antisynvnetric functions with f (x )  = - f (-2). Thus, a 

symmetric function like cos(n.) callnot be approximated using this family in [- 1,1], implying 

that {sin(tc - x)lw E R} is not dense in C([ - l , l ] ) .  This could be corrected by adding to  

the family s in( - )  functions with a threshold (offset) element (e.g. s i ~ z ( x  + ;) = cos(x)). 

However, if f is an entire function, there exist sufficient and necessary conditions on f 

under which theorem 1 itrill hold without a t,hreshold (for a more general discussion see 

Dahnlell and hfichhelli (1937)). 

The essential role of the threshold in our analysis is interesting in light of the biological 

ba.ckdrop of artificial neural networks. Since most types of biological neurons are known 

to  fire only when their processed inputs exceed a certain threshod value, i t  is intriguing to  

note that the same mechanisnl must be present in their artifical counterparts as well. In a 

similar vein, our finding that activation functions need not be continuos or smooth also has 

an important biological interpretation, since the activation functions of real neurons may 

\\re11 be  discontious, or even non-elementary. These restrictio~ls on the activation functions 

have no bearing on our results, which merely require "non-plynomiality." 
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As Hornik (1991) pointed out, "whether or not the continuity assumption can entirely be 

dropped is still an open a,nd quitne challenging problem." LVe feel tha,t our results solve this 

problem in a satisfactory wa?.; giving what seems to be the most minimal conditions for 

universal a.pproximation by multilayer feedforward networks. 

6 Proofs 

Proof of theorell1 1: 

If f is a polynomial then ~ p a n { f ~ , ~ ( x )  = f ( w  - x + 0)lw E Rn, 0 E R) is the set of 

polynomials of degree less than or equal to  the degree of f .  Thus, span{ fWre(x) = f ( w  - 
x + 0)lw E Rn,  0 E R)  is not dense in C ( K )  (see for example Muntz closure theorem in 

Davis (1975)) 

Assume that f is not a polynomial. By lenlma 1, dim( f ) ,  = oc, thus there are infinite 

many natural numbers 172 such that a m  is in the closure of ( f ) ,  . Let n2; be the set of integers 

such that zy E closure( f), .  We claim that for every n 2 ,  xm E closure span { fw,@(5) = 

.f (w -x+O)lw E Rn,  0 E R). This proposition implies that span { fWte(x) = f (w.x+d) lw E 

Denote Ail = closz~re span {fw,e(x) = f ( w  . x + 0)lw E Rn, 0 E R). A4 is invariant under 

translation. To prove the proposition, i.e. that for every n~ xm E &il, it, is sufficient t o  show 
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* 

that for every nz,, xJ E closure spa72 {x + 0)"110 E R}, j = 0,1,2, .  . . m,. By the binomial 

we have that  I 

Since ( r  + 0)" 111, b = m,, for every 0 E R we have 

Consider now the deteremina.nte: 

This det.erminante is a polynomial in O1 . . . Ok which is not idenf.ica1 zero. Therefore, we 

can find O1 . . . Ok such that. 
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spans the k dimensional vector space of polynomials of degree less than or equal to k - 1. 

Because rJ E hl ,  j = 0,. . . , k  holds for an infinite number of k's, we have that M is 

fundamental. This completes the proof of the theorem. D 

Proof of theorelm 2: 

Let Co(Rn) be the space of all continuous functions on Rn which have compact support in 

Rn (i.e. closure {x E Rn I f  (x)  # 0) is compact). For every finite measure p on Rn, Co(Rn) 

is dense in LP(p) if 1 < p < (see for example Adams (1975)). Let h E LP(p) thus we 

can find g E Co(Rn) such that 

Since f E LP(p), we can choose a conipact set I< for which JRn\Ii I f(x)lPdp(x) < t and 

support(g) C K. By theorem 1 we can find f* E closure spa12 {f,,s(x) = f ( w  a x +  8)lw E 

Rn , 8 E R)  such that 

Thus we get that 

Thus we have dp(h, .f*) < 36.  
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