
TEMPLAR: A KNOWLEDGE-BASED 
LANGUAGE FOR SOFTWARE 

SPECIFICATIONS USING TEMPORAL LOGIC 

Alex Tuzhilin 
Assist ant Professor 

Information Systems Department 
Leonard N. Stern School of Business 

New York University 
New York, New York 10003 

October 1991 

Center for Research on Information Systems 
Information Systems Department 

Leonard N. Stern School of Business 
New York University 

Working Paper Series 

STERN IS-91-27 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



Templar: A Knowledge-Based Language for Software Specifications 
Using Temporal Logic 

Alexander Tuzhilin 

Information Systems Department 
Stern School of Business 

New York University * 

Abstract  

A software specification language Templar is defined. The language is based on temporal 
logic and on the Activity-Event-Condition-Activity model of a rule which is an extension of 
the Event-Condition-Activity model in active databases. The language supports a rich set 
of modeling primitives, including rules, procedures, temporal logic operators, events, activities, 
hierarchical decomposition of activities, and parallelism, combined together in a coherent system. 
The development of the language was guided by the following objectives: specifications written 
in Templar should be easy for the non-computer oriented users to understand, should have 
formal syntax and semantics, and it should be easy to map them into a broad range of design 
specifications. 

1 Introduction 

Since the introduction of the "waterfall" model of software development by Royce [Roy701 (Fig. I), 

the model has been extended by various researchers [DavSO, HSESO, Tur87, You89j. In particular, 

the requirements stage of the model was divided into the substages of problem analysis and external 

behavior definition [DavSO] . 
In the problem analysis stage, a systems analyst builds a conceptual model of the real-world 

system that he or she plans to automate. Since this conceptual model emerges as an outcome 

of discussions with the users, the model must be expressed in the language the users can easily 

understand. Once the real-world system is understood by the system developer, a decision is 

required on which part of it, if any, should be automated, i.e. implemented in software. This 

decision establishes the boundary between the software system and the rest of the non-automated 

real-world system. In the next substage of the requirements stage, an external behavior of the 

'Address: 40 West 4th Street, Room 624, New York, NY 10003; Internet: atuzhilinQstern.nyu.edu. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



Figure 1: The "Waterfall" Model of the Software Development Life Cycle. 

- 
Requirements 

A 

1 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 

. . 

v 

Coding 
A 

Design 



automated system is specified by writing software requirements specifications (SRS) [DavgO], which 

must also be written in a language that can be easily understood by the users. 

In this paper, we propose a software specification language Templarl. We have developed the 

language for use primarily in the requirements specification stage of the life cycle, i.e. for describing 

a conceptual model of a system in the problem analysis substage [DavSO] and for writing software 

requirements specifications (SRS) based on this model. However, the language can also be used in 

the design stage of the life cycle for a certain class of applications that will be described in Section 

The major challenge in designing Templar is to have a language that "fits well" between 

the language of the users and the language of system designers as is shown in Fig. z2. On one 

hand, it should be easy to translate the language of the users into Templar specifications. We 

believe that a natural language is the most convenient language for the non-computer oriented 

users. Therefore, we should make Templar specifications to be "close" to some restricted form 

of a natural language so that the non-computer oriented users could easily understand Templar 

specifications. This will allow to reduce possible misunderstandings between the systems analyst 

writing Templar specifications and the users. 

On the other hand, it should be easy to translate Templar specifications into a broad range of 

existing software design methods3. This can be achieved by making Templar independent of various 

design specification languages. This will allow the systems developer to postpone the decision of 

choosing the data and process modeling paradigm until the design stage. This means that the 

developer has freedom to select those paradigms in the design stage that are the most suitable for 

the requirements specifications produced in the requirements stage. For example, assume that a 

requirements specification language has some elaborate extension of the entity-relationship model 

as part of its data model. Then it might be difficult to map requirements written in this language 

into some object-oriented design language in case it was decided that the object-oriented design is 

the most appropriate design method for the application. 

As was stated before, we want to design Templar so that it is easy to translate Templar 

specifications into design specifications. Since many designers use formal methods to describe their 

designs, Templar should also be a formal specification method. Otherwise, there can be many 

lTempIar stands for Temporal logic as a mquirements specification language. Templar also means, according to 
the American Heritage Dictionary, "A knight of a religious military order founded at Jerusalem in the 12th century 
by the Crusaders." 

2We use the term 'languagen in an extended sense as some method for communicating ideas. For example, we 
will think about diagrams and charts as some type of a language. 

3Here and in the sequel, we mean by tmnslatingspecification Sl written in language L1 to a specification written 
in language L2 the process of producing specification S2 in L2 satisfying the conditions of specification SI .  

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



Restricted 

Language 

Templar 9 
Data-How Diagrams Jackson 

Design 

Users 
(non-technical) 

Systems Analyst 

Designers 
(technical) 

Figure 2: Relationship Between Templar and User and Design Specification Languages. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



translation errors from informal requirements to formal design specifications. 

To summarize, the development of Templar was guided by the following design objectives: 

1. Templar specifications should be easily understood by non-computer oriented people, and the 

requirements specifications stated in some form of a restricted natural language should easily 

be translated into Templar specifications 

2. Templar specifications should be equally easy to translate into a broad range of existing 

software design methods 

3. Templar specifications should be rigorous. 

A Templar specification consists of a set of rules and a set of activity specifications. It explicitly 

supports rules, events and activities, time, hierarchical decomposition of activities, sequential and 

parallel activities, static and dynamic constraints, and data modeling abstractions of aggregation, 

generalization, classification, and association [TL82, HK871. To illustrate the use of Templar, 

consider the following rule: 

If a customer comes to  a branch of a bank after its closing time, and the branch has 

ATM machines then he or she should use an ATM machine. 

It can be stated in Templar as 

when arrives(customer,branch) 
after closing-time (branch) 
if has,atm(branch) 
t hen-do use-atm(customer ,branch) 

This rule is interpreted as follows. When an event arrives(customer,branch) occurs, and if 

it occurs after the event closing-time(branch), and if the condition has,atm(branch) holds 

then perform the activity use~atm(customer ,branch). This rule is based on the Activity-Event- 

Condition-Activity (AECA) model which is an extension of the Event-Condition-Activity (ECA) 

model4 of rules in active databases [dMS88, MD89, WFSO, SJGPSO, sig891. 

The rest of the paper is organized as following. Section 2 overviews the basics of temporal logic. 

Section 3 informally introduces Templar with examples illustrating its various features. Section 4 

formally describes the language. Finally, Section 5 compares it with the existing specification 

languages. 

'Most of the papers in active databases use the term action, and not activity. We will not distinguish between 
these two concepts and will use the terms "activityn and "actionn interchangeably throughout this paper when we 
refer to a process that occurs over a period of time. In contrast to this, an event occurs instantaneously. 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



oA: is true now if A is true at some time in the future 

a4: is true now if A is always true in the future 

o A: is true now if A is true at the next time moment 

A until  B: is true now if B is true at some future time t and A is true for all the 
moments of time from the time interval [now, t )  

Figure 3: Operators of Temporal Logic 

2 Overview of Temporal Logic 

Since Templar is based on temporal logic and since we want the paper to be self-contained, we 

provide a brief overview of temporal logic in this section. The reader is referred to books by Kroger 

[Kro87] and Rescher and Urquhart [RU71] for a good introduction to the subject. 

The syntax of a predicate temporal logic is obtained from the first-order logic by adding 

various future temporal operators such as sometimesin-the-future (o), alwaysin-the-future 

(n), next  (o), until and their past Kmirror" images sometimesin-t he-past (+), alwaysin-- 

the-past (m), previous (m), and since to its syntax. The meaning of future operators is defined 

in Fig. 3. The meaning of past "mirror" images of these operators is defined similarly to the future 

operators except time is referenced only in the past. Besides these eight standard operators, other 

temporal operators can be defined, such as before, after, while, when [Kro87], and bounded 

necessity, for-time (T) (m), and possibility, within-time (T)  (oT), operators [TuzSl]. For 

example, A for-time (T)  is true now if A is always true within the next T time units, and A 

within-time (T) is true now if A is true at some time within the next T time units. Kroger 

[Kro87] shows how temporal operators before, after,  while, and when can be expressed in terms 

of the operators until  and since [Kro87]. Furthermore, it easily follows from the completeness of 

temporal logic US [Kam68, Gab891, that the operators of bounded necessity and possibility can 

also be expressed in terms of until and since pair. 

The following example illustrates the use of temporal logic. 

Example 1 The statement 

If an employee has been fired from a company (worked there in the past but not now) 

then he or she cannot be hired by the same company in the future. 

can be expressed in temporal logic as 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



+EMPLOY(company, person) A iEMPLOY(company, person) -+ 

mEMPLOY(company, person) 

or using a different syntax as 

IF sometimesin-the-past EMPLOY(company,person) and not EMPLOY(company,person) 

THEN alwaysin-t h e f u t u r e  not EMPLOY(company,person) 

The semantics of temporal logic formulas is defined with temporal interpretations. A temporal 

interpretation for some temporal logic language defines the domain of discourse, the model of 

time (e.g. discrete or continuous, bounded or unbounded, linear or branching), assigns values 

to constants and function symbols in the language as in classical logic, and specifies a temporal 

structure [Kro87], i.e. the values of all the predicates in the language at all the time instances. We 

assume any arbitrary structure of the domain of discourse and also assume that time is discrete, 

linear, bounded in the past and unbounded in the future (i.e. time can be modeled with natural 

numbers). A temporal structure is defined for each predicate Pi in the language as a sequence of 

its instances Pit for all the moments of time t = 0,1,2 , .  . .. We denote a temporal structure of 

a temporal logic language at time t as Kt. Then Kt(P;) = Pit, since it defines the instance of 

predicate Pi a t  time t. 

Given a temporal structure for temporal logic predicates, we can extend this temporal structure 

to arbitrary temporal logic formulas in the standard inductive way [Kro87]. For example, we can 

define lb (A until B) in terms of Kt(A) and Kt(B) as follows. Kt(A until B) is true if there is 

t' such that t < t', Kt#(B) is true, and for all t", such that t _< t" < t', ICtlt(A) is true. Similarly, 

informal definitions of temporal operators presented in Fig. 3 can be expressed in terms of temporal 

structures. Furthermore, temporal structures can be extended to arbitrary temporal logic formulas 

[Kro87]. For example, Kt(A A B) = Kt(A) A Kt(B). 

3 Overview of Ternplar 

In this section, we introduce the language Templar by providing several examples of specifications 

written in it. In Section 4, we formally define the language. 

Ternplar features will be introduced with examples based on the description of an IFIP Working 

Conference [0ll82, Appendix A]. Organization of a working conference involves several activities: 

sending a call for papers, receiving paper submissions and registering these submissions, sending 

papers to be refereed, receiving reports back from referees, making acceptance/rejection decisions, 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



and so on. 

A Templar specification of such a conference consists of a set of rules and activities that will 

be described in turn below. We start with the most basic features of the language in Section 3.1 

and introduce additional features in the subsequent sections. 

3.1 Basics of Templar Rules 

A Templar rule is based on the Activity-Event-Condition-Activity (AECA) model. AECA is an 

extension of the Event-Condition-Action (ECA) model of rules in active databases [dMS88, MD89, 

WF90, SJGPSO, sig891, and of rule-based design methodologies in Information Systems [MNPf 911. 

The following is an example of a Templar rule. To make an example simple, we consider a rule 

of the ECA type and describe an AECA rule in Example 4. 

Example 2 The user specification 

When a reviewer receives a paper to be refereed, which was sent by the conference 

program chairperson, he/she evaluates the paper and sends it back to the chair. 

is expressed with the Templar rule 

when end.send(paper,chairperson,reviewer) 
if referees(paper,reviewer) 
then next located(paper ,reviewer) 
then-do review(paper,reviewer); send(paper,reviewer,chairperson) 

This rule is interpreted as follows: when an event end. send(paper , chairperson,reviewer) 
occurs (reviewer receives a paper) and if the condition ref erees(paper,reviewer) is true then set 

the post-condition located(paper , reviewer) to be true at the next time moment and start the 

activities review(paper ,reviewer) and send(paper , reviewer, chairperson) sequentially (i.e. 

when the first activity finishes, start the second one). 

This rule illustrates three major modeling primitives in Templar: activities, events, and con- 

ditions. Activity is a process that occurs over time, e.g. a paper is being reviewed by a reviewer for 

some time. An event is a change to the system state that occurs instantaneously, e.g. a reviewer 

receives a paper at some moment in time. Prefix "end" in "end.sendn in Example 2 specifies the 

event "activity send(paper , chairperson ,reviewer) has finished." A condition is a logical for- 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



mula that describes the state of the system, e.g. predicate referees (paper ,reviewer) indicates 

that in the current state of the system, objects paper and reviewer are engaged in relationship 

referees. 

The rule presented above consists of clauses when, if, then, and then-do. We distinguish 

between state, temporal, and action types of clauses. A state clause describes the state of the 

system (the working conference in our case). If and then clauses are examples of a state clause. 

A temporal clause specifies how different events and activities relate to each other in time. When 

and after are examples of a temporal clause. FinalIy, the action clause states imperatively what 

activities will have to be done. Then-do is an example of an action clause. 

Each clause deals with only one type of a modeling primitive: when clause pertains to events, if 

and then clauses to  conditions, and then-do clause to activities5. This means that in the previous 

rule referees and located are predicates, review and send are activities, and end. send is an event 

(the end of an activity). This relationship between types of clauses and types of modeling primitives 

that can appear in them forces the user to think more structurally when writing specifications. 

3.2 Atomic and Composite Activities 

Templar distinguishes between atomic and composite activities. A composite activity consists of 

sub-activities. For instance, the activity review(paper,reviewer) from Example 2 consists of 

reading the paper and then evaluating it. This statement can be expressed in Templar with an 

activity specification as illustrated in the following example. 

Example 3 

A specification for the activity review can be stated in Templar as 

activity review(paper ,reviewer) 

read(paper,reviewer) 

evaluate(paper ,reviewer) 

endactivity 

An activity specification can be compared to a procedure in conventional programming lan- 

guages or to the body of a method in object-oriented programming, except that it is defined in 

terms of temporally oriented modeling primitives (activities). We will describe the structure of an 

'When we define the syntax of Templar formally and introduce all the clauses in Section 4.1, we will explain how 
clauses correspond to modeling primitive in Figure 5. 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



activity specification in detail in Section 4.1. 

An atomic activity cannot be divided into subactivities. It is defined with a temporal predicate 

describing how one of the relational predicates changes over time6. For example, consider the 

activity specification 

activity read(paier ,reviewer) 

T = reading-time(paper ,reviewer) 

reading (paper, reviewer) for-time T 

endactivity 

where reading-time(paper,reviewer) is a function that specifies how much time it takes a re- 

viewer to read a paper, and reading is a temporal predicate. Then "reading(paper,reviewer) 

for-tirne T" is an example of an atomic activity. It states that the predicate 

reading(paper,reviewer) will be true for the next T time units. 

Templar allows the mixture of composite and atomic activities inside an activity specification. 

For example, the composite activity review(paper ,reviewer) can be rewritten as 

activity review(paper ,reviewer) 

T = reading-time(paper,reviewer) 

reading(paper ,reviewer) for-time T 

evaluate(paper,reviewer) 

endactivity 

Since subactivities in an activity specification can also be composite activities, Templar sup- 

ports the process of hierarchical decomposition of a complex activity into progressively more and 

more simple subactivities. 

Templar also allows multiple subactivities in the then-do clause of a rule. For in- 

stance, the then-do clause in Example 2 has two subactivities review(paper,reviewer) and 

send(paper ,reviewer, chairperson). Alternatively, these two subactivities could be combined 

into one composite activity, and the then-do clause would refer only to this single activity. 

The combination of activity specifications and rules makes Templar a powerful specification 

method. If Templar specifications had only rules then they could contain hundreds of rules, and 

it would be difficult for the user (and often for the developer) to understand clearly how the 

rules interact. On the other hand, if Templar specifications consisted only of activities, then it 

could be difficult to describe the control logic with only the if-then-else statements for certain 

6Temporal predicates will be described in full in Section 3.5. 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



applications, With Templar specifications, the user has the flexibility of combining rules and 

activities in such a way that there are much fewer rules than for the strictly rule-based methods, 

and activity specifications tend to be small, simple and easy to understand, as the case study in 

Section 4.2 will demonstrate it. 

3.3 Activity-Event-Condition-Activity Rules 

The rule from Example 2 has the Event-Condition-Activity (ECA) structure. This structure is 

extended to the Activity-Event-Condition- Activity (AECA) structure in Templar by supporting 

while, before, and after  temporal clauses as the following example shows. 

Example 4 Assume the organizers of the conference have a rule: 

While the paper is being reviewed, any request to withdraw the paper will be granted 

by the program chairperson. 

This requirement can be expressed in Templar as 

while doxeviewing(chairperson ,paper) 
when withdrawalrequest (paper) 
if submission(paper , author, st a tus)  
then-do withdraw (paper, author) 

where doreviewing(chairperson,paper) is the activity of sending a paper by the program chair- 

person for reviewing, submission(paper,author,status) is a condition stating that an author 

submitted a paper to  the conference, withdrawalxequest(paper) is an event indicating that 

the request to withdraw the paper was received, and withdraw(paper,author) is an activity of 

withdrawing a paper from the conference. 

This rule says that while a certain activity lasts, and when an event occurs, and if a condition 

holds, then do a new activity. In this rule, unlike the rule from Example 2, the activities in the 

then-do clause depend not only on some conditions and events but also on some other activities. 

Therefore, we call this type of a rule the Activity-Event-Condition-Activity (AECA) rule because it 

generalizes the Event-Condition-Activity (ECA) rule as defined in [dMS88, MD89, WF90, SJGPSO, 

MNPf 911 by 

allowing activities in the antecedent part of the rule; 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



supporting not only when, if, and then  clauses of the ECA model but several additional 

clauses, such as while, before, after,  and various other user-defined clauses; 

providing a comprehensive support for time based on temporal logic. 

It is argued in [SJGPSO] that an ECA model of a rule is a powerful model because it can support 

such diverse database concepts as views, special semantics for updating views, materialized views, 

partial views, procedures, special procedures, and cashing of procedures. Since ECA is a special 

type of the AECA model, this means that AECA is a very powerful model of a rule. 

The general structure of a Templar rule will be defined in Section 4. 

3.4 Procedural Specifications in Templar 

In Section 3.3, we considered a rule of an AECA type and in Section 3.1 its restricted ECA version. 

In general, only the action part of the rule (then-do clause) is mandatory in a rule, and all other 

clauses are optional. For example, the "topmost" activity specifying that a conference has to be 

organized may not require any preconditions and can be expressed in Templar as 

t hen-do organize-conf erence 

or, using then-do operator implicitly, as 

organize-conf erence 

If only the action part of a rule is specified then it is reduced to a procedure. Therefore, in the 

extreme case, Templar specifications may contain no rules at all, and only procedures. This provides 

the user with the range of options and gives him/her extra flexibility for writing specifications based 

on rules, procedures and the combination of rules and procedures. 

3.5 Temporal Predicates 

As was explained in Section 2, Templar predicates change over time. For example, the predicate 

submission(paper , author, s t a t u s )  can have different truth values at different moments of time 

depending on the value of s t a t u s  at those moments. 

Therefore, temporal operators, described in Section 2, can be applied to  these predicates in if 

and t h e n  clauses. Examples of these temporal operators are next, somet imesinfhe-fu ture ,  

and alwaysin-t h e f u t  ure. 

Example 5 The rule 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



Only the original papers are accepted for the conference, i.e. if a paper has been 

published in some journal in the past, it cannot be submitted to the conference. 

can be expressed in Templar as  

if submission(paper,author,status) and 
sometimesin-the-past published(paper , author, j ournal) 

then-do reject (paper, author) 

where sometimesin-the-past is the temporal possibility operator defined in Section 2 and reject 

is the paper rejection activity. 

3.6 Static and Dynamic Constraints 

Templar supports static [Nic82] and dynamic [CF84, LS87, HS911 constraints by specifying rules 

only with if and then clauses. The static constraint does not have any temporal operators in either 

the head nor the body of a rule. For example, the following static constraint 

A paper can have only one specific status at a time. 

can be expressed in Templar as 

if submission(paper,author,status) and submission(paper,author,statusy) 
then status = statusy 

Note that this constraint specifies that paper and author functionally determine status in 

predicate submission. 

To simplify the notation, some widely used static constraints can be expressed as macros by 

the system developer. For example, the last rule can be written as a macro 

paper, author -+ status 

for the predicate submission. 

Other examples of macros the system developer may find useful are one-to-one, one-to-many, 

and many-to-many relationships, multivalued and inclusion dependencies [Ull88]. 

A dynamic constraint is defined as an if-then rule where some predicates take temporal 

operators. For example, the following dynamic constraint 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



If a paper is accepted to a conference, it cannot be published elsewhere in the future. 

can be expressed in Templar as 

if submission(paper ,author ,s tatus)  and s ta tus  = accepted and 
publication # this-conf erence 

then alwaysin-the-future not published(publication,paper , author) 

where this-conf erence is a constant representing the conference being modeled. 

3.7 Support for Data Modeling Abstractions and Data Model Independence 

The data model in Templar is defined with a set of predicates. For instance, predicates referees 

and located from Example 2 constitute a part of the data model. These predicates appear in 

conditions, i.e. inside the if and then clauses, and also in atomic activities as was described in 

Section 3.2. 

Furthermore, Templar has two interpreted predicates isa and member-of that define 

generalization and association data modeling abstractions [HK87]. For example, we can 

say isa(invited-paper,paper), meaning that invited-paper is a special type of a paper. 

Also, member-of(reviewer,Paperrevieuers) means that reviewer belongs to the set of 

Paperseviewers. These two predicates satisfy the following axiom: 

if member-of(B ,A)  and isa(C,B) then member-of (C , A )  

We decided to define generalization and association data modeling abstractions with predicates 

and not make it an integral part of the data model, as is done, for example, in [LMP+SO], because 

it makes Templar data model to be independent of any existing data models, such as the entity- 

relationship model [Che76] and its extensions and various semantic data models [HK87]. This data 

model independence will allow the designers to map Templar specifications into a broad range 

of existing design data models, such as ER, semantic, and object-oriented data models. This 

means that the systems designer can postpone the decision about which data model to choose for 

an application until the subsequent design stage, and that he or she can select any  design data 

model and easily map Templar specifications into that data model. For example, if we choose 

some semantic data model that supports hierarchies and, in particular, hierarchical paths, then the 

condition 

member-of(paper ,Session) and submission(paper , author, s t a tus )  and 

author='Jim' and s ta tus  = 'accepted' 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



can easily be mapped into 

Session.paper.author = 'Jim' and Session.paper.status = 'accepted' 

Furthermore, if an object-oriented model is selected as a design model, then the same condition 

can be expressed in that model with methods simulating predicates. We will address this issue in 

Section 6 further. 

This shows that the two predicates isa and member-of enhance data modeling capabilities 

of Templar and a t  the same time allow Templar specifications to be independent of any particular 

design data models. 

3.8 Other Properties of Templar 

In this section, we consider several additional features of Templar, such as parallel activities, exter- 

nal events, events defined by explicit specifications of time, periodic events and temporal precedence 

operators before and after. 

Example 6 Consider the following rule: 

When the program committee chair receives a paper before the submission deadline, 

the chair registers the paper, sends it to the reviewers and sends the acknowledgment 

Ietter to the author (at the same time as sending it to the reviewers). 

It is expressed in Templar as 

when receives(chairperson,paper,author) 
before submiss ion-deadline 
then next located(paper,chairperson) 
then-do register-paper(paper , author) ; 

(distributeqaper-toreviewers (paper, chairperson) 
11 send;icknowledgement (chairperson,paper , author) ) 

The rule from Example 6 illustrates several important features of Templar. First, it provides an 

example of the parallel operator (11). This operator specifies that the corresponding activities occur 

simultaneously. For instance, activities distribute-paper-torevieviewers (paper, chairperson) 

and send-acknowledgement (chairperson ,paper, author) occur in parallel in Example 6 .  Sec- 

ond, the rule illustrates the use of temporal precedence operators before and after. The clause 

Center for Digital Economy Rerearch 
Stern School of Business 
Working Paper IS-91-27 



before specifies that the reviewing process can start only if the paper is received by the program 

chair before the submission deadline (determined by the temporal constant submission-deadline). 

Third, the rule shows how time can be referenced explicitly in Templar rules, The temporal con- 

stant submiss iondeadline (e.g. 6/22/98) defines the temporal event "the submission deadline is 

reached," and the rule can be fired only before this event occurs. Fourth, the rule provides an ex- 

ample of an external event, receives (chairperson ,paper, author). This event did not occur as 

a result of starting or ending of any internal activity but occurred because of some activity external 

to the system. Finally, the then clause provides an example of using temporal logic operators in 

post-conditions (e.g. next): it says that the predicate located(paper, chairperson) will be true 

at the time moment immediately following the execution time of the rule. In other words, the paper 

is "physically" located with the chairperson at the next time moment after he or she receives it. 

The next example shows how Templar supports periodic temporal events. 

Example 7 The rule 

Every Monday, the program chair examines review reports sent to him/her by the 

referees. 

can be expressed in Templar as 

when every Monday 
then-do examinex,eports (chairperson) 

Finally, Templar supports namings of the events associated with beginning and ends of activ- 

ities. For example, the event end. send from Example 2 can be called arrive by the user. 

3.9 Templar as a Design Language 

We described Templar as a requirements specification language so far. However, Templar can also 

be used in the design stage of the software life cycle for certain applications because it has a formally 

defined semantics (to be defined in Section 4.3) and because it supports decomposition of activities 

into subactivities which is the primary activity during the design stage of an information system. 

Templar is especially useful as a design language for those applications in which data is stored 

in an active database [dMS88, MD89, WF90, SJGP90, sig891 in the implemented system. For 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



example, McCarthy and Dayal [MD89] describe how a stock trading application can be modeled 

with active databases. Since the rule structure of Templar subsumes the ECA rule structure of 

active databases, it is clear that Templar is suitable for the design of the applications that have 

data to be stored in an active database. 

In this section, we provided an informal overview of the language Templar. In the next section, 

we formally introduce the syntax of the language and define its semantics. 

4 Formal Description of Templar 

In this section, we formally define the specification language Templar. Section 4.1 presents the 

syntax of the language, Section 4.2 describes a small case study illustrating the usage of Templar 

specifications and Section 4.3 presents its semantics. 

4.1 Syntax of Ternplar 

Templar specifications consist of a set of rules and a set of activity specifications. The syntax of 

a Templar rule is defined with the BNF grammar presented in Fig. 4 (we assume that name and 

string are sequences of characters in the figure). 

As Fig. 4 shows, a Templar rule consists of a collection of clauses that are divided into body 

and rule clauses. Each clause deals only with an entity of one type: either with an activity, or an 

event, or a condition. Therefore, clauses provide a natural way to separate activities from events 

and from conditions and force the user of Templar language to think in these terms. Fig. 5 shows 

the relationship between clauses and activities, events, and conditions. 

Furthermore, a user can define his or her own clause operators as long as the semantics of 

these operators is defined precisely. These operators are denoted as "user-defined-operator" in 

Fig. 4. For example, the user can define operators until, since, unless, a tnext  [Kro87] or any 

other temporal operator he or she needs. This provides an extra flexibility in describing real-world 

systems in more natural terms. 

The syntax of activity specifications is defined with the BNF rules presented in Fig. 6. As 

Fig. 6 shows, an activity specification consists of a list of statements. The for-statement is needed 

for iterations (to be able to express statements of the form "for each element ... perform some 

activity"). Examples of the for-statement will be presented in Section 4.2. If-statement is not 

strictly necessary because the activity containing this statement can be expressed in terms of rules 

and activities without if-statement. However, it was added as a convenience for the user. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



rule 
head-of-rule 
then-clause 
do-clause 
next-activity , 

body-of-rule 
body-clause 

user-defined-operator 
activities 
conditions 
events 
activity 
condition 
temporal-predicate 

predicate 
event 
begin-activity 
end-activity 
ext ernal-event 
temporal-event 
periodic-event 
period 
day-of- week 

temporal-constant 
logical-op 
relop 
unary-temp-operator 

binary- t emp-operator 
arguments 
var 

[body-of-rule] head-of-rule 
then-clause I do-clause I then-clause do-clause 
then  conditions 
then-do activity { next-activity } 
; activity I 11 activity 
{ body-clause ) 
if conditions 
while activities 
when events 
before activities 
before events 
af ter  activities 
af ter  events 
user-defined-operator activities 
user-defined-operator events 
string 
activity { logical-op activity ) 
condition { logical-op condition ) 
event { logical-op event ) 
name ( arguments ) 
[not] temporal-predicate 
[unary-temp-operator] predicate 
predicate binary-temp-operator predicate 
name ( arguments ) I isa I member-of I var relop var 
begin-activity I end-activity I temporal-event / external-event 
begin.activity 
end.activity 
name ( arguments ) 
temporal-constant I periodic-event 
every period 
hour I day I week I month I year I day-of-week 
Monday I Tuesday I Wednesday I Thursday 
Friday I Saturday ] Sunday 
name 
a n d  I or 

=1~1<1<1>12 
alwaysin-the-future 1 somet imesin- thefuture  
alwaysin-the-past I sometimesin-the-past I next 
for-time name I within-time name I user-defined-operator 
user-defined-operator 
name {, name ) 
name 

Figure 4: Syntactic Definition of a Rule. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



events when, before, after 

Figure 5: Types of Clauses 

activity-spec ::= activity name (parameters) statement-list endac t iv i ty  
statement-list ..- . statement { ; statement ) 
statement ..- . composite-activity 

I atomic-activity 
I if-statement 
I for-statement 
I parallel-statement 

if-statement ..- . if condition then  statement-list else statement-list e n d i f  
for-statement ..- . foreach argument suchthat condition d o  statement-list end-for 
parallel-statement ::= statement-list 11 statement-list 
composite-activity ::= name (parameters) 
atomic-activity ..- . condition 
condition ..- same as condition in Fig. 4 
argument ..- . name 
parameters ..- . . - [ name {, name ) ] 

Figure 6: Syntactic Definition of Activity Specification . 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



Activities occur either sequentially or in parallel. Semicolon (;) is the operator delineating 

sequential activities, and parallel bars (11) is the operator delineating parallel activities. 

As was pointed out in Section 3.2, we distinguish between atomic and composite activi- 

ties. An atomic activity is defined as a condition, i.e. as a temporal predicate. For example, 

del iver(paper , ref  eree) for-time T, where del iver  is a predicate indicating that the paper is 

being delivered to  the referee for T time units, is an atomic activity. A composite activity consists 

of several subactivities and requires an activity specification that describes the decomposition of 

the composite activity into several subactivities. 

4.2 Case Study 

In this section, we describe a fragment of a Conference information system modeling an IFIP 

Working Conference using Templar specification language. Specifically, we describe the activities of 

the program committee from the time papers are submitted to the program committee chairperson 

until the time the acceptance/rejection decisions are made and the conference program is formed. 

We will use both English and Templar to describe these activities. 

The state of the conference system is described with temporal predicates: 

located(paper,person): 

a paper is located with a person 

submission(paper , author, s t a t u s )  : 

an author submitted a paper to the conference, and the status of the paper is determined 

by the attribute "statusn 

referees(paper,reviewer): 

a reviewer referees a paper 

In addition, the conference system supports the following activities: 

register-paper (paper, author) : 

a paper submitted by an author is registered for the conference 

distribute-paper-toreviewers (paper, chairperson): 

a paper is distributed to  reviewers by the chairperson 

s end-acknowledgement (chairperson, paper, author) : 

an acknowledgment letter is sent by the chairperson to the author that the paper was received 

Center for Digital Ecol lol~~y Research 
Stern School o f  Business 
W o r h g  Paper IS-91-27 



selectreviewers (paper, chairperson) : 

the chairperson selects reviewers for a paper 

send(paper,personi,personZ): 

a paper is sent from person1 to person2 

review(paper,reviewer): 

a reviewer reviews a paper; 

record-evaluat ions (paper, ref eree) : 

the chairperson records the evaluation of a paper by a referee 

make-acceptancedecisions: 

decide which papers should be accepted and which rejected 

send-acceptanceletter(author ,paper) : 

send a letter to an author stating that the paper was accepted 

sendrej ectionletter(auth0r ,paper) : 

send a letter to an author stating that the paper was rejected 

f om-conf erenceqrogram: 

group selected papers into sessions for presentation and select the chairperson for each session 

Each activity gives rise to  events "the activity begins" and "the activity ends." Besides that, 

the conference system has an external event 

receives (chairperson,paper , author): 
the chairperson receives a paper submitted by an author to the conference. 

Furthermore, we define two temporal constants 

submissiondeadline: 

the paper submission deadline (e.g. 1/1/2000) 

p c ~ e e t  ingdate: 

the date of the program committee meeting (e.g. 3/23/2000) 

In the next section, we present rules specifying a fragment of the conference information system 

informally described at the beginning of this section. In Section 4.2.2, we provide specifications of 

some of the activities described above. 

Center for Digital Ecollol~~y Research 
Stern School of Business 
W o r h g  Paper IS-91-27 



4.2.1 Rules: 

R1: When the program committee chair receives a paper before the submission deadline, the chair 

registers the paper, sends it to the referees and sends the acknowledgment letter to the author. 

when receives (chairperson ,paper, author) 
before submission,deadline 
then next located(paper,chairperson) 
t hen-do registerqaper (paper, author) ; 

(distributeqaper-to_reviewers (paper ,chairperson) 11 
send~acknowledgement(chairperson,paper,author)) 

This rule says that the chairperson first registers the paper and then distributes it among 

the referees and simultaneously sends the acknowledgment to the author. Regist erpaper is 

defined as activity A3 and distributeqaper-torevieviewers as activity A1 below. 

R2: When a reviewer receives a paper, which he/she is supposed to referee, the reviewer evaluates 

it and sends the results back to the chairperson. 

when end.send(paper,chairperson,reviewer) 
if referees (paper ,reviewer) 
then next located(paper ,reviewer) 
then-do review(paper ,reviewer) ; send(paper ,reviewer, chairperson) 

R3: When the program committee chair receives the evaluation of a paper from a referee he/she 

records the evaluations. 

when end. send(paper ,reviewer ,chairperson) 
then-do record-evaluation(paper , reviewer) 

R4: On the date when the program committee meets, it decides which papers should be accepted 

for the conference. 

when pclneeting-date 
then-do makeacceptance-decisions 

R5: After the program committee meeting, the acceptance/rejection letters are sent to the authors. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



after pclneet ingdat e 
if submission(paper,author,status) and status = accepted 
then-do send-acceptanceletter (author ,paper) 

after pclneet ing-dat e 
if submission(paper , author, status) and status = rejected 
then-do sendrej ectionletter(author ,paper) 

R6: After the program committee meeting, the conference program is formed (selected papers are 

grouped into sessions for presentation, and session chairs are selected for each session). 

after pclneet ing-date 
t hen-do f om-conf erenceqrogram 

4.2.2 Activities 

In this section, we provide specifications only for several most interesting activities in order to keep 

the example manageable. 

Al:  activity distributeqaper-toreviewers (paper, chairperson) 

selectxeviewers(paper,chairperson); 

foreach reviewer suchthat referees(paper,reviewer) do 

send(paper,chairperson,reviewer) 

end for  

endactivity 

where predicate referees determines which reviewers review which papers and is determined 

a s  part of the activity selectreviewers. 

Activity A1 provides an example of for-statement. The main purpose of this statement is to 

execute a group of activities within the body of the statement in parallel. In our example, 

the paper is sent by the chairperson to  each of the reviewers simultaneously. 

ALso, notice the relationship between rules R1, R2 and activity Al: rule R1 initiates activity 

A l ,  and then the end of activity send within A1 initiates rule R2. 

Center for Digital Economy Research 
Stern School of  Business 
W o r h g  Paper IS-91-27 



A2: activity send(what ,from,to) 

T = transf er,time(what ,from, to )  

(next not located(uhat ,from) 11 t ransfer  (what, t o )  f o r f i m e  T) 

endact ivi ty  

Activity send makes predicate located false at the next time moment, determines time it 

takes to transfer what from from to to ,  and does the transfer during that time (predicate 

t rans fe r  is set to be true during that time). Note that the transfer is initiated immediately 

when the activity send starts. Therefore, the two atomic activities happen in parallel in send. 

A3: activity registerqaper(paper , author) 

next submission(paper,author,status) and s ta tus  = beingxevieued 

endactivity 

A4: activity f om-conf erenceqrogram(accepted-qapers) 

decide-uhichsessions-to-have (Sessions) 

group-papersinsessions (accepted-papers ,Sessions) 

foreach session suchthat member-of(session, Sessions) do  

selectsession~chair(session) 

endactivity 

Sessions is the list of sessions to be held at the conference; it is an output parameter for the 

activity decideshichsessions-to-have. 

4.3 Semantics of Templar 

The meaning of a Templar specification will be based on the concept of a Discrete Event System 

[VK87, KT891 and will be associated with all the possible sequences of events consistent with the 

specification7. 

To illustrate the notion of consistency of a sequence of events, consider the specification of a 

working conference as defined in Section 4.2. The sequence of events in Fig. 7 is consistent with 

the specification presented in Section 4.2. To the contrary, the sequence of events in Fig. 8 is not 

7Traditionally in temporal logic programming, the meaning of a program is associated with a sequence of predicates 
consistent with that program, i.e. a sequence of predicates that makes all the rules to be true at all the moments of 
time [AM89, Gab891. However, we will associate the meaning of a Templar specification with sequences of events and 
not predicates because we believe that users are more interested in =what is happeningn with a real-world system (i.e. 
interested in the events that occur in such system) rather than interested in the states the system takes over time. 
We believe that the two approaches are Yequivalent" in the sense that knowing a sequence of events, it is p~ssible 
to construct sequences of states "correspondingn to these events and vice versa. However, the study of this issue is 
beyond the scope of this paper. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



1) a paper is submitted to the conference; 
2) the conference program chair registers the paper; 
3) the paper is sent to reviewers for evaluations and simultaneously an acknowledgment 

letter is sent to the author; 
4) a reviewer receives a paper; 
5) a reviewer finishes the evaluation of a paper; 
6) a reviewed paper is sent back to the program chair; 
7) the program chair records the reviewer's evaluation; 
8) the program committee meets to make acceptance/rejection decisions; 
9) acceptance/rejection letters are sent; 
10) conference program is formed. 

Figure 7: Sequence of Events Consistent with the Specification. 

1) a paper is submitted to the conference; 
2) the conference program chair registers the paper; 
3) a reviewer finishes the evaluation of a paper; 
4) the paper is sent to reviewers for evaluations and simultaneously an acknowledgment 

letter is sent to the author; 
5) a reviewer receives a paper; 
6) a reviewed paper is sent back to the program chair; 
7) the program chair records the reviewer's evaluation; 
8) the program committee meets to make acceptance/rejection decisions; 
9) acceptance/rejection letters are sent; 
10) conference program is formed. 

Figure 8: Sequence of Events Inconsistent with the Specification. 

consistent with the specification: according to the specification, the reviewer has to receive the 

paper to be refereed (Step 5) before he or she finishes the evaluation of the paper (Step 3), whereas 

Fig. 8 states the opposite. 

To define consistency, we have to determine if a rule is true a t  time t for a given sequence 

of events. If all the rules in a specification are true at all the times t for a certain sequence of 

events, then such a sequence of events is consistent with the given specification. To determine 

if a rule is true at time t for some sequence of events, the body of the rule is matched against 

the sequence of events. As a result of this matching process, the activities in the then-do clause 

must be true and must occur in a certain sequence. If the events marking beginnings and ends 

of these activities do not contradict the events in the sequence then such a rule is true at time 

t. For example, if rule R1 matches the given sequence of events (a  paper is received before the 

submission deadline), then the activity register-paper(paper, author) must begin immediately, 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



Figure 9: Definition of Beginnings and Ends of Activities in Terms of Beginnings and Ends of 
Subactivities. 

Act ivi ty  A 

A1; A2 

A1 11 A2 

foreach x such tha t  member-oqx, S) 
do B(x) e n d f o r  

if c t h e n  A1 else A2 e n d i f  

and when i t  is finished, the two activities distributeqaper-to~eviewers (paper, chairperson) 

and send-acknowledgement (chairperson ,paper, author) must begin immediately after that in 

parallel. Since each activity defines events corresponding to the beginning and the end of the 

activity, rule R1 asserts that six new events (two for each of the three activities) must occur in a 

certain order. If these six events do not contradict the existing sequence of events then rule R1 is 

true at  the time its evaluation takes place. As another example, rule R 2  says that Event 3 must 

occur after Event 5 in Fig. 8. Since a paper can be reviewed only once, the sequence of events in 

Fig. 8 is not consistent with the specification. 

Relationship Between Events  

begin.A = begin.Al; end.A = end.A2; 
end.A1 = begin.A2 
begin.A = begin.A1 = begin.Az; 

end.A = max { end.A1, end.A2 ) 
begin.A = begin.B(x); 

end.A = max { end.B(x) I S(x) ) 
if c is true then begin.A = begin.A1 and end.A = 
end.Al; otherwise, begin.A = begin.Az and end.A = 
end.Az 

The notion of consistency, as defined above, resembles the concept of satisfiability of dynamic 

integrity constraints [CF84, LS87, HS911 by a sequence of database states and satisfiability of a set 

of temporal logic formulas by a temporal structure [Kro87]. 

Since activities consist of subactivities, we have to  relate beginnings and ends of activities 

with its subactivities. For example, it is im- 

portant to  know how the events begin. distributeqaper-toreviewers (paper, chairperson) 

and end. distributeqaper-to-revieuers (paper, chairperson) are related to  various subactivi- 

ties of the activity distribute-paper-tolevieviewers. This relationship can be defined recursively 

as follows. If activity A consists of subactivities A1 and A2 then relationships between events 

begin.A, end.A and events begin.Al, end.A1, begin.A2, end.A2 is defined for different statements 

as in Fig. 9: 

The definition of begin.A and end.A for the foreach statement, as presented in the table 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



above, is motivated by the fact that activities B(z )  in that statement occur in parallel for all values 

of x. Therefore, the definition of end.A for the foreach statement follows from the definition of 

end.A for the.paralle1 operator (I]). 

5 Related Work 

There have been many IS specification methods proposed in the literature. Books by Davis [DavSO], 

Yourdon [You89], Olle et al [OHM+88], Rumbaugh et al [RBPESl] describe some of these methods. 

A variety of different specification methods exists because different applications, or even different 

parts of the skne  application, can best be specified with different methods [DavSO]. 

As was stated in the introduction, the major design objectives for the development of Tem- 

plar were 1) its closeness to  natural language specifications, 2) independence of specific design 

data models and 3) existence of a formal semantics. Since in this paper we are interested in the 

knowledge-based methods describing evolution of information systems in time, we will compare our 

work to the existing specification methods dealing with rules and with time, such as RML [BGM85], 

Telos [MBJKSO], Tempora [LMP+SO], ERAE [DHL+86], and RDL [GHH91I8. In particular, we are 

interested to  know how well each of these languages satisfies the design objectives stated above. 

RML [BGM85] is a requirements specification language based on the ob ject-oriented framework 

with some support for time. Telos [MBJKSO] is an extension of RML that supports deductive rules 

and data modeling abstractions of aggregation, classification and generalization in addition to 

the object-oriented framework and time. All these features make Telos a powerful requirements 

specification language. However, Telos does not satisfy our second objective: it depends heavily on 

the object-oriented framework, and the data modeling abstractions (aggregation, classification and 

generalization) constitute an integral part of Telos data model. This means that software designers 

would find it difficult not to use these paradigms in the life cycle stages following the software 

requirements specifications stage. For example, it may be difficult to map Telos specifications into 

some conventional programming language (e.g. Pascal or C) coupled with a relational database in 

case there is a need to do so. 

Furthermore, Telos and Templar rules have a different structure. The rules in Telos have the 

if-then structure and are based on many-sorted first-order logic. Since Templar rules are based on 

temporal logic and since temporal logic with until and since operators has the same expressive 

power as first-order logic with explicit references to time for the discrete bounded model of time 

[Kam68, Gab891, this means that Templar rules are as expressive as Telos rules. Furthermore, 

'We do not make any claims about the completeness of this list. 

Center for Digital Economy Research 
Stern School of  Business 
Working Paper IS-91-27 



Templar rules support various temporal clauses in addition to if and then  clauses of Telos and 

have a richer rule structure based on a powerful AECA model. 

Tempora [LMP+9O] is another specification language supporting time, complex objects, an 

extended entity-relationship data model, and deductive rules. As Telos, it also represents a rich 

modeling language. However, it does not satisfy our second objective for the same reason as Telos 

does not: i t  depends on the specific design specification methods, i.e. complex objects and entity- 

relationship diagrams. 

The rule structure of Tempora is based on ECA model [MNP+91] and on temporal logic and 

is closer to  the rule structure of Templar than that of Telos. However, Tempora distinguishes only 

between events and conditions, and does not treat activities on the equal footing with events. For 

example, it does not allow activities in the antecedent part of the rule (e.g. in the while clause). 

ERAE is still another specification language supporting time, entities and relationships among 

them, events, deductive reasoning system based on first-order logic, and some data modeling ab- 

stractions, such as association (is-in predicate) [DHL+86]. It can support a broader range of design 

methods than Telos and Tempora because it is less dependent on specific modeling constructs, 

such as complex objects and ERT diagrams of Tempora and object-oriented features of Telos. For 

example, association is modeled with predicate is-in, and is not built into the data model, as is 

done in Telos. However, the rule structure of ERAE is based on the if-then model, as in Telos, 

and does not support the AECA rule model and temporal logic operators in rules. 

Finally, RDL [GHHSl] is a specification language for the requirements and design of time- 

dependent systems based on the intuitionistic temporal logic. RDL specifications consists of a set 

of rules of the form 

antecedent about the  p a s t  consequent about the  fu tu re  

RDL satisfies our second and third language design objectives: it is a rigorous and very general 

specification language and, as a result of this, its specifications can be easily mapped into most of 

the design specification languages and also can be formally verified. However, it may be difficult 

to map user requirements specifications, written in natural language, into RDL specifications; or 

alternatively, it may be difficult for a non-computer oriented user to understand RDL specifications. 

The reason for that is that RDL does not support some of the features that make a specification 

language "closen to a natural language, such as an explicit support for events and activities, hier- 

archical decomposition of activities, and the support for the parallel and sequential composition of 

activities in the sense defined in this paper (although the authors consider some of these issues as 

a topic of future research). 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



Templar is also related to the work in the database community on active databases [dMS88, 

MD89, WF90, SJGPSO, sig89j. As was stated before, active databases integrate rules and databases 

by providing an ECA model of a rule. However, active databases do not incorporate time in the 

rules. Furthermore, they do not fully distinguish between events and activities (because they do 

not support time), and their clause structure is limited only to three clauses if, then, and when. 

As a conclusion, none of the software specification methods considered in this section satisfies 

all the three design goals: closeness to natural language specifications, independence of specific 

design data models and existence of a formal semantics. Furthermore, the rule structures of these 

methods are not as universal and powerful as the AECA rule model of Templar. 

6 Conclusion and Future Wbrk 

In this paper, we defined the syntax and the semantics of a software specification language Templar. 

The language is based on the Activity-Event-Condition-Activity (AECA) model that supports rules, 

temporal logic, and such modeling primitives as events, conditions, and activities, Furthermore, 

Templar supports procedures, hierarchical decomposition of activities, and parallelism. 

Templar has the following properties desirable in a software requirements specification lan- 

guage. First, Templar specifications follow closely user requirements specifications written in nat- 

ural language. As was illustrated in the case study in Section 4.2, user requirements specifications 

are translated sentence by sentence into Templar specifications. Since Templar is so close to the 

language of the users, developers can translate informal user specifications into formal software 

specifications with the minimal amount of errors. 

Second, Templar requirements specifications can easily be translated into a broad range of 

design specifications. This allows the software developers to not have to be concerned about appro- 

priateness of different data and process modeling paradigms for an application in the requirements 

specification stage. The decision which modeling paradigm to choose can be postponed until the 

design stage and can be based on the specifications produced in the requirements stage. 

Third, Templar has a formally defined syntax and semantics. Therefore, Templar specifications 

can be mapped into design specifications so that it may even be possible to verify formally that 

the design specifications satisfy the requirements specifications. 

Since Templar satisfies the three properties described above and since these properties are 

desirable in a software requirements specification language, Templar will primarily be used as a 

requirements specification language. However, Templar can also be used as a design specification 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



language because it has formal semantics and because it supports the process of decomposition of 

activities into subactivities. 

As a future work, we plan to study how Templar specifications can be mapped into differ- 

ent design specifications including object-oriented design specifications and active databases. In 

mapping Templar specifications into object-oriented specifications, activities can be converted into 

methods, events into some boolean flags (modeled as objects) indicating whether or not activities 

have begun or finished, and temporal predicates into special types of methods simulating these 

predicates (i.e. such a method should specify when a predicate is true and when it is false). Fur- 

thermore, such a mapping can support time by some object "time manager" that can schedule 

various activities and events. However, this mapping has the following problem requiring some 

additional considerations. If a certain activity is based on several objects, it is not dear with which 

object it has to be associated. For example, the activity send(paper, chairperson,reviewer) can 

be mapped into the method sendl(chairperson,reviewer) associated with the object paper, or 

into the method send2(paper,chairperson) associated with the object reviewer, or into the 

method send3(paper,reviewer) associated with the object chairperson, or into all. three meth- 

ods. Alternatively, a new class can be created that has paper, reviewer and chairperson as its 

subclasses, and the method send can be associated with this class. 

Another topic of interest is the mapping of Templar specifications into active databases that 

also support user-defined procedures. Examples of such systems include HiPAC [MD89], STAR- 

BURST [HCL+9O], POSTGRES [SJGP9O], and Ode [GJ91]. Since active databases are based 

on the Event-Condition-Action model and Templar specifications on the Action-Event-Condition- 

Action model, the two models are sufficiently similar. The main problem in this mapping would 

be to determine how to incorporate time in active databases. 

Acknowledgments 

The author wishes to thank Jon Turner and P.R. Balasubramanian for several valuable comments 

on earlier drafts of the paper and Al Zimmerman for the discussions of some of the issues in this 

paper. 

References 

[AM891 M. Abadi and Z. Manna, Temporal logic programming. Journal of Symbolic Compu- 

tation, 8:277-295, 1989. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



[BGM85] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge representation as the basis 

for requirements specifications. IEEE Computer, pages 82 - 91, April 1985. 

[CF84] M. A. Casanova and A. L. Furtado. On the description of database transition constraints 

using temporal languages. In Advances in Database Theory, pages 211-236. Plenum 

Press, 1984. vol. 2. 

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. TODS, 

1(1):9-36,1976. 

[DavSO] A. M. Davis. Software Requirements: Analysis and Specification. Prentice Hall, 1990. 

[DHL+86] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, and A. Rifaut. A knowledge representa- 

tion language for requirements engineering. Proceedings of the IEEE, 74(10): 143 1-1444, 

1986. 

[dMS88] C. de Maindreville and E. Simon. Modelling non deterministic queries and updates 

in deductive databases. In International Conference on Very Large Databases, pages 

395406,1988. 

[Gab891 D. Gabbay. The declarative past and imperative future: Executable temporal logic for 

interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proceedings 

of Colloquium on Temporal Logic in Specification, pages 402-450. Springer-Verlag, 1989. 

LNCS 398. 

[GHH91] D. Gabbay, I. Hodkinson, and A. Hunter. Using the temporal logic RDL for design 

specifications. In Concurrency: Theory, Language, and Architecture, pages 64 - 78. 

Springer-Verlag, 1991. LNCS 491. 

[GJ91] N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers. 

In International Conference on Very Large Databases, 1991. 

[HCL+9O] L. Haas, W. Chang, G.M. Lohman, J. McPherson, P.F. Wilms, G. Lapis, B. Lindsay, 

H. Pirahesh, M. Carey, and E. Shekita. Starburst mid-flight: As the dust clears. IEEE 

Transactions on Knowledge and Data Engineering, 2(1):143-160,1990. 

[HK87] R. Hull and R. King. Semantic database modeling: Survey, applications and research 

issues. ACM Computing Surveys, 19(3):201-260,1987. 

[HS91] K. Hulsmann and G. Saake. Theoretical foundations of handling large substitution sets 

in temporal integrity monitoring. Acta Informatics, 28(4), 1991. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



[HSESO] B. Henderson-Sellers and J. M. Edwards. The object-oriented systems life cycle. Com- 

munications of the ACM, 33(9):143 - 159, 1990. 

[Kam68] Hans Kamp. On the Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968. 

[Kro87] F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987. EATCS Monographs 

on Theoretical Computer Science. 

[KT891 2. M. Kedem and A. Tuzhilin. Relational database behavior: Utilizing relational dis- 

crete event systems and models. In Proceedings of PODS Symposium, 1989. 

[LMPf 901 P. Loucopoulos, P. McBrien, U. Persson, F. Schumacker, and P. Vasey. TEMPORA - 
integrating database technology, rule based systems and temporal reasoning for effective 

software. In Espn't'9O Conference Proceedings. Kluwer Academic Publishers, 1990. 

[LS87] U. W. Lipeck and G. Saake. Monitoring dynamic integrity constraints based on tem- 

poral logic. Information Systems, 12(3):255-269, 1987. 

[MBJKSO] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, Telos: Representing knowl- 

edge about information systems. ACM Transactions on Information Systems, 8(4):325 

- 362, 1990. 

[MD89] D. McCarthy and U. Dayal. The architecture of an active, object-oriented database 

system. In Proceedings of ACM SIGMOD Conference, 1989. 

[MNP+91] P. McBrien, M. Niezette, D. Pantazis, A. H. Seltveit, U. Sundin, B. Theodoulidis, 

G .  Tziallas, and R. Wohed. A rule language to  capture and model business policy 

specifications. In Proceedings of the Third Conference on Advanced Information Systems 

Engineering, Trondheim, Norway, May 1991. 

[Nic82] J.-M. Nicolas. Logic for impoving integrity checking in relational data bases. Acta 

Informatica, 18:227-253,1982. 

[OHMf88] T. W. Olle, J. Hagelstein, I. G. MacDonald, C. Rolland, H. G. Sol, F. J. M. Van Ass- 

che, and A. A. Verrijn-Stuart. Information Systems Methodologies: A Framework for 

Understanding. Addison-Wesley, 1988. 

[0ll82] T. W. Olle. Comparative review of information systems design methodologies, stage 1: 

Taking stock. In T. W. Olle, H. G. Sol, and A. A. Verrijn-Stuart, editors, Information 

Systems Design Methodologies: A Comparative Review, pages 1 - 14. North-Holland, 

1982. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-27 



[RBPESl] J. Rumbaugh, M. Blaha, W. Premerlani, and F. Eddy. Object-Oriented Modeling and 

Design. Prentice-Hall, 1991. 

[Roy701 W. Royce. Managing the development of large software systems: Concepts and tech- 

niques. In IEEE WESCON, pages 1-9, 1970. Reprinted in Nineth IEEE International 

Conference on Software Engineering, 1987. 

[RU71] N. Rescher and A. Urquhart . Temporal Logic. Springer-Verlag , 1971. 

[sig89] SIGMOD Record, September 1989. Special issue on rule management and processing 

in expert database systems. 

[S JGPSO] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures, cashing 

and views in database systems. In Proceedings of ACM SIGMOD Conference, pages 

281 - 290,1990. 

[TL82] D. C. Tsichritzis and F. H. Lochovsky. Data Models. Prentice-Hall, 1982. 

[Tur87] J. Turner. Understanding the elements of system design. In R. J. Boland and R. A. 

Hirschheim, editors, Critical Issues in Infirmation Systems Research, pages 97-1 11. 

John Wiley, 1987. 

[Tuzgl] A. Tuzhilin. Temporal logic as a simulation language. In Proceedings of the International 

Conference on Artificial Intelligence and Simulation, New Orleans, Louisiana, April 

1991. 

[Ull88] J. Ulhan.  Principles of Database and Knowledge-Base Systems, volume 1. Computer 

Science Press, 1988. 

[VK87] P. Varaiya and A.B. Kurzhanski, editors. Discrete Event Systems: Models and Ap- 

plications. Springer-Verlag, 1987. Lecture Notes in Control and Information Sciences, 

103. 

[WF90] J. Widom and S. J. Finkelstein, Set-oriented production rules in relational database 

systems. In Proceedings of ACM SIGMOD Conference, pages 259 - 270, 1990. 

[You891 E. Yourdon. Modern Structured Analysis. Yourdon Press, 1989. 

Center for Digital Economy Research 
Stern School of Business 
Worhng Paper IS-91-27 


