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Abstract 

Problems in  Finance, particularly those involving risk as- 
sessment and management, have been slow to yield to 
expert systems technology for two reasons, First, expert 
reasoning in such problems is often based on prin- 
ciples" instead of usittuation-actton" rules that charac- 
terize most expert systems. Secondly, the knowledge in- 
volved, such as that about financial instruments, is con- 
stantly changing. This would make it eztremely difficult 
to keep a rule-base accurate. PVe have developed a rep- 
resentation in  the domain of financial hedging that has 
the following characteristics. First, it allows for reason- 
ing qualitatively based on first principles using the fun- 
damental quantitative valuation models that characterize 
each instrument. Secondly, it uses object oriented con- 
cepts and inheritance to minimize the effort needed to  
set u p  the knowledge base and keep it current. Thirdly, 
it includes a calculus for derivation of qualitative knowl- 
edge of "one-dimensional-order", which allows it to  solve 
problems where optimality constraints are qualitative. 

A1 Topic: Knowledge Representation, Qualitative Rea- 
soning. 
Domain Area:  Financial Hedging, Risk Management. 
Language/Toll :  C++, Common Lisp, IBM-AT. 
S ta tus :  Prototype fully implemented and currently un- 
der testing. 
Effort: 1.2 person years. 

1 Introduction 

hedge vehicles that allow us to control the balance be- 
tween risk and reward. This balance is a function of 
the instruments available in the market, and the trader's 
preferences and beliefs. Accordingly, the problem can be 
characterized by the following features: 
(1) the combinations associated with considering all 
hedging alternatives is explosive. Traders, however: con- 
sider only a subset of alternatives based on their special- 
ization in a few types of instruments. 
(2) instruments are also evaluated along qualitative- 
valued attributes (e.g., liquidity) describing desired char- 
acteristics of hedge vehicles. Conceptually, the prob- 
lem of hedge design can be viewed as a multi-objective 
optimization problem, which can be shown to  be NP- 
complete (and hard to solve to optimality). Good heuris- 
tics are therefore important. 
(3) the experienced trader invariably wants the hedge ve- 
hicle to  take into account his assessments of how certain 
economic factors are likely to behave over a specific time 
period. hlany of these assessments are expressed qualita- 
tively based on current market information or historical 
trends. In order to derive a payoff from such assess- 
ments, the trader must underwrite his own "internal" 
option strategy, one that accounts for what he is will- 
ing to pay and what he is willing to risk under various 
market scenarios. 

These characteristics encourage the use of expert sys- 
tems technology in the design of an intelligent assistant 
for hedging. In particular, the role of such an assistant 
is one of designing hedge vehicles based on the trader's 
specification of an event to  be hedged and of his prefer- 
ences and beliefs. It is also desirable that the system be 
able to  explain its recommendations. 

Today's increasing globalization of markets and sophisti- Secondly, since new instruments are periodically intro- 

cation of financial instruments is increasing the complex- duced into the marketplace and old ones are discarded, 

ity and the number of ways to control risk. T~ detect it is important that the system require minimal effort for 

opportunities, however, what is required is an intelligent knowledge base updating- A representation that  mini- 
interpretation of the metrics that characterize each in- mizes such effort is therefore important- 
strument. This paper describes the knowledge representation we 

Our interest in risk management is on the design of have used to develop a prototype expert system for finan- 
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cia1 hedging. This representation captures the "deep do- 
main knowledge" that experts use to reason about hedg- 
icg decisions. It is flexible enough to reason in terms of 
tlle basic principles of risk assessment - something good 
traders are required to perform in order to make good 
decisions. 

The  paper is organized as follows. Section 2 reviews 
the domain of hedging. Section 3 explains the need for 
reasoning from first principles in hedging and describes 
the representation we use to facilitate such reasoning. 
Section 4 explains how this representation is used to de- 
sign hedge vehicles. Finally, Section 5 presents the cur- 
rent limitations of our prototype. 

2 The Domain 

The objective of hedging is to offset potential losses due 
to possible future uncertain events. The underlying prin- 
ciple of hedging is, given an uncertain event and an asset 
that is sensitive to that event, to match that asset with 
a liability (asset) whose sensitivity to the event is similar 
(opposing). 

Consider for example a firm that plans to issue bonds 
in order to  raise capital. If interest rates rise before the 
date of issuance, the firm will have to offer a higher rate 
on the bond, which raise the cost of issuance. Suppose 
the firm believes that interest rates are likely to  increase 
prior to  the issuance date, but there is a small possibility 
that they will decline. The firm could therefore define 
a "cap issuance rate" protection profile (i.e., the firm 
wants to  protect against an increase, while preserving 
the ability to benefit from a decline, in interest rates). 

One hedge vehicle the firm could use to cap its issuance 
rate is t o  purchase put options on bonds with similar ma- 
turity and price sensitivity to  that of the debt issuance. 
A put buyer has the right, but not the obligation, to  
sell t o  the put seller a bond at a specified exercise price 
a t  some future expiration date. A rise in interest rates 
causes bond prices to decline, giving the put buyer an 
opportunity to gain by exercising his option to sell bonds 
a t  the higher agreed price, such that the gain on the sale 
offsets the extra cost of issuing bonds at a higher yield 
rate. Alternately, a decline in interest rates will cause the 
bond price to decline, rendering the put option worth- 
less; however the gain from issuing bonds a t  a lower rate 
will offset, and more, the cost of buying the put option. 

Hedge design involves thousands of instruments, and 
requires consideration of new instruments that are con- 
stantly introduced to the market (e.g., newly issued 
bonds) and elimination of instruments that can no longer 
be used (e.g., matured bonds). Hedge instruments 
can be generic (e.g., an exchange traded option), com- 
pounded (e.g., strangle - sell a Put option and a Call 

option), or synthetic (e.g., an option replica constructed 
from cash and that option's underlying security). 

In practice, traders will always prefer one hedge ve- 
hicle over others based on both quantitative-valued at- 
tributes such as vehicle-cost and qualitative-valued at- 
tributes such as setup-complexii y. Overall, the design of 
hedge vehicles is influenced by the event to be hedged, 
the current and the projected state of capital markets, 
the hedger objectives and constraints, and the instru- 
ments available on the market. 

3 Knowledge Represent at ion 

While rules may be useful as summary retrospectives of 
expert behavior, they are often not flexible enough to 
generate even simple reasoning in novel situations [2]. 
The following factors suggest why a rule-based repre- 
sentation is unlikely to work, and indicate the type of 
representation that is more appropriate: 
(1) Combinatorial explosion in search space: enumerat- 
ing all possible combinations of values of economic fac- 
tors and associating them with actions would require ex- 
perts to envision all possible situation-action rules, some- 
thing that makes the problem hard to solve, and also in- 
feasible from a knowledge acquisition standpoint. What 
is even more difficult is refining the rules as inadequacies 
in the knowledge-base are recognized. 
(2) Limited applicability of knowledge: rules are usually 
compiled in the context of one specific problem area. 
Since such knowledge is derived using knowledge about 
basic principles that apply across similar problem areas 
(basic relationships between domain entities that are pac 
rameterized differently according to the specific problem 
and situation), it should be usable in reasoning about 
related problems. This essentially requires a representa- 
tion that refers directly to the basic structural entities 
of the domain. 
(3) Closed knowledge base: it is difficult in a rule-based 
system to integrate new knowledge, such as about new 
instruments. To be truly open, a knowledge base must 
be able to relate easily new domain entities to  the ones 
it already knows about. 

We feel that an intelligent assistant for hedging must 
use a representation that is flexible enough to  reason in 
terms of the basic principles of risk assessment (basic 
economic factors and relationships). It  must capture the 
deep domain knowledge that experts use to reason about 
hedging decisions involving both quantitative and quali- 
tative factors. In fact, it should allow for the derivation 
of rules one might elicit from an expert if one were trying 
to develop a rule-based system. 

The rest of this section describes the representation 
underlying our system. This representation consists of 
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Figure 1: Relationships between fundamental factors, 
basic instruments, and derivative instruments 

four architectural components: (1) an ISA hierarchy that 
reflects specialization relationships between instruments; 
(2) a hierarchy that reflects classes of causal relationships 
between instruments and fundamental economic factors; 
(3) a causal reasoning engine for modeling the behav- 
ior of instruments' attributes under different behaviors 
of economic factors; and (4) a calculus for combining 
what is often referred to  as "qualitative knowledge of 
one-dimensional order". 

3.1 The ON and ISA Hierarchies 

Much of the knowledge involved in hedge design cen- 
ters around generic financial instruments and fundamen- 
tal economic factors that determine their behavior (i.e., 
monetary-value, annual-return, risk). Generic instru- 
ments can be classified as basic instruments (e.g., bonds) 
or derivative instruments (e.g., options ON bonds). The 
behavior of basic instruments is determined by the be- 
havior of fundamental factors, while the behavior of 
derivative instruments is, in addition, determined by the 
behavior of lower level derivatives and of basic under- 
lying instruments (see Figure 1). We call the hierarchy 
that reflects this knowledge the ON hierarchy. 

A comparison of attributes of instruments that experts 

use to reason about hedging decisions shows many simi- 
larities among instruments. In fact, instruments are also 
related via specialization relationships. For example, fu- 
ture sales and forward sales are both types of future con- 
tracts. Figure 1 shows the ISA hierarchy reflecting this 
knowledge. 

The sensitivity of an instrument to a specific funda- 
mental factor is considered as a causal relationship (e.g., 
an increase in interest rates causes bond prices to  de- 
cline). I t  is modeled using a structural equation. The 
analytical solution of a set of structural equations de- 
scribing the major causal relationships between an in- 
strument and fundamental factors is called the valua- 
tion model of that instrument [3]. It is the mathematical 
model used to  price that instrument. Instruments of the 
same class have the same valuation model. 

We have implemented these two hierarchies as an 
object-oriented network to whffiich we shall refer t o  as 
the OiV-ISA network. Each node in the network rep- 
resents a generic instrument or a class of generic in- 
struments. It stores knowledge about attributes of the 
individual or class represented (e.g., maturity-date and 
trading-volume), The knowledge stored in each node is 
determined by the kind of reasoning required with that 
node in the hedge design process. The ON and ISA re- 
lationships are represented using physical links between 
nodes. The relationships between every class of instru- 
ments and fundamental factors are represented using the 
set of structural equations whose solution is the valua- 
tion model of that class. 

3.2 The Qualitative Causal Reasoning 
Engine 

An analysis of guides to hedging (e.g., [I], [4], [7]) re- 
veals one type of "compiled rule" experts use to  identify 
instruments that provide the trader's protection profile 
(payoff profile the hedger wants to derive). For exam- 
ple, "If the firm's objective is to  cap debt issuance rates 
and the firm's issuance plan is highly uncertain, then 
consider buying a Caput (Call on Put)." 

Experts justify such rules by doing a qualitative causal 
analysis using know 'ledge about structural relationships 
between fundamental factors and instruments. For ex- 
ample, "If interest rates rise, the Put will increase in 
value, causing the Caput to  becomes more valuable. 
Thus, the gain on the Caput offsets the extra cost of 
issuing a t  higher rates. If interest rates decline slightly, 
the Pu t  will become valueless, causing the Caput t o  be- 
come valueless. Thus, the reduced cost of issuing a t  lower 
yield rates offsets the loss on the Caput. If interest rates 
decline sharply, the firm will gain from issuing a t  signif- 
icantly lower yield rates." 
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Rather than encode thousands of explicit rules for each 
possible behavior of every possible subset of fundamental 
factors. we use a causal reasoning engine to derive rules 
and justifications similar to  the ones above whenever 
needed. This engine uses structural equations stored in 
a class node in a simulation that generates the behavior 
of each class of instrument for the event being hedged, 
and compares this against the trader's protection prc- 
file. Since traders most often express both protection 
profiles and predictions of fundamental factors' behavior 
in qualitative terms, we use a qualitative causal reason- 
ing engine similar to  Kuipers' QSIM [6] system to work 
off such input. 

3.3 A Calculus to Combine Knowledge 
of One-Dimensional Order 

Experts appear to use another type of compiled rule to  
rank hedge vehicles along various attributes. For exam- 
ple, consider the rule "If fluctuations in the firm's credit 
spread1 are small then buy exchange traded options on 
Treasury rates rather than over the counter options on 
corporate bond rates." 

Experts justify such rules based on knowledge of rank- 
i n g ~  of vehicles along attributes such as customzzation 
and unwind-cost, and of dependency relationships be- 
tween attributes such as "the less customized an instru- 
ment the cheaper it  is to unwind." For example, "An ex- 
change traded option is preferable on an over the counter 
option since it is less customized and thus less costly to  
unwind before expiration, and since there is no need to 
hedge the credit spread." 

Experts rank vehicles along qualitative-valued at- 
tributes using what (51 refers to as commonsense knowl- 
edge of one-dimensional order. Such knowledge is equiv- 
alent to  the state of knowledge of a total order holding 
between vehicles along a specific attribute in the real 
world. I t  is a partial knowledge of that total order, and 
thus corresponds to a partial order. For example, a rank- 
ing of A ,  B , C , D along liquidity can be ( A > ( B  C)>D), 
where ( B  C) means it  is unknown whether B is more or 
less liquid than C. The state of knowledge of the order 
relation of vehicles along quantitative-valued attributes 
usually corresponds to  a total order. 

The various attributes along which experts rank vehi- 
cles can be organized in a hierarchy based on dependency 
relationships holding between them. We shall refer to  
the lowest level attributes in that hierarchy as atomic 
attributes2. While rankings of vehicles along atomic at- 
tributes can be obtained directly from the knowledge 

'Yields on corporate bonds are often expressed as a spread over 
the yield of corresponding maturity Treasury securities. 

2Experts rank vehicles along over 45 attributes, of which about 
30 are atomic. 

L i q u i d i t y  
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Figure 2: Derivation of rankings by propagation of par- 
tial orders 

stored in each node in the network, rankings along non- 
atomic attributes can be derived from rankings along 
lower level attributes. Thus, comparing two vehicles 
along a non-atomic attribute requires propagation of the 
effects of the rankings along lower level attributes for 
the two vehicles. For example, consider the four ve- 
hicles A ,  B, C ,  D that need to be ranked along cus- 
tomization and liquidity. Assume that customizatzon is 
equally determined by the atomic attributes - strike- 
flexibility, number-of-dealers, and trading-volume - and 
that liquidity is equally determined by the atomic at- 
tribute time-to-maturity and the non-atomic attribute 
customization (see Figure 2). A propagation of known 
rankings along atomic attributes up in the hierarchy in 
Figure 2 determines the rankings along customization 
and liquidity. 

The ranking of vehicles along non-atomic attributes 
depends on rankings along atomic attributes and on the 
weights assigned to them in the propagation of rank- 
ings. These weights can change from one case t o  an- 
other. In fact, they are determined based on how the 
individual trader prioritizes desired characteristics of the 
hedge vehicle and on the relative importance he assigns 
t o  each atomic attribute under the predicted state of cap- 
ital markets3. Thus, derived rankings of vehicles along 
non-atomic attributes is also determined by the way the 
hierarchy of attributes is parameterized. 

4 Designing Hedge Vehicles 

The way experts apply rules while designing hedge vehi- 
cles suggests that hedge design can be seen as a screen-  
ing process. Starting with a set of candidate vehicles, 
a sequential application of constraints is used to elirni- 
nate inferior candidates. In this scenario, constraints are 

3~ change in the state of capital markets is predicted from the 
change in the state of fundamental factors (e.g., inflation) and of 
market indicators (e.g., the Dow-Jones Index). 
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used as justifications for rejecting hedge candidates. To 
implement that screening process we have identified the 
constraints and the knowledge about attributes of in- 
struments that is used to  reason about each constraint. 

4.1 The Input 

The input to  the hedge design process is a description 
about the event to  be hedged, the hedging environment, 
and the hedger. Knowledge about the event includes a 
qualitative description of the potential future behaviors 
of fundamental factors associated with the event (i.e., 
direction of change over a time period), the timing of the 
event, and the hedger's degree of belief in its occurrence. 
For example, "interest rates are very likely to  increase 
during the next six months." 

Knowledge about the environment includes a qualita- 
tive description of the predicted behavior of other rele- 
vant fundamental factors over the hedge period. 

Knowledge about the hedger includes design con- 
straints of two types - feasibility constraints and op- 
timality constraints. Feasibility constraints always in- 
clude the trader's protection profile and the hedge period 
length. Other feasibility constraints are situation depen- 
dent and are used to specify policies and preferences of 
the hedger. These can be monetary constraints such as 
"use vehicles that require no up-front cash," regulatory 
constraints such as  "use vehicles that maintain the value 
of the hedger's non-liquid assets under a certain percent- 
age of his capital," position limits such as "do not buy 
May-91 Treasury bonds if their price exceeds $100," and 
miscellaneous constraints such as "do not write options." 

Optimality constraints are used to describe desired 
properties of hedge vehicles. These constraints apply 
to every situation, but their priorities change from one 
situation to another. For example, in case of a firm 
whose plan to  issue debt is uncertain, the optimality 
constraints "maximize liquidity" and "minimize unwind- 
cosf' are likely t o  be assigned high priorities. 

4.2 The Representation in Action 

Suppose we are given a set of candidate instruments each 
represented by an instance node in an ON-ISA network. 
The idea is to  ask every node that is not yet rejected if 
it can satisfy certain feasibility constraints. A node that 
cannot satisfy any one constraint, rejects itself and keeps 
a reference to that  constraint as the justification. 

The first two feasibility constraints are applied only to  
class nodes. One constraint enforces the underlying prin- 
ciple of hedging according to which assets with similar 
or opposing sensitivities must be matched. In effect, ev- 
ery class node whose valuation model is not sensitive to 

Ths si!uo+.on 
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Figure 3: Construction of a compounded vehicle 

the fundamental factor associated with the event rejects 
itself and its instances. 

The other feasibility constraint is applied to every non- 
rejected class node to identify classes of instruments that  
provide the desired protection profile. The causal reason- 
ing engine is used to do a qualitative simulation for each 
class node, and the result - a description of the qualita- 
tive behavior of instruments in that class under the event 
to  be hedged - is stored in each class node. A quali- 
tative simulation is performed twice for each class, one 
for a sell position and one for a buy position (i.e., two 
vehicles that can be constructed from an instrument). 
Every class node whose behaviors do not match the de- 
sired protection profile rejects itself and its instances. If 
all candidate nodes are rejected, compounded vehicles 
(new feasible solutions) are created. That is, vehicles 
that provide protection profiles that partially match the 
desired protection profile are used to construct new ve- 
hicles that provide the desired protection profile. For 
example, a compounded vehicle called short strangle can 
be constructed from a "sell Puts" vellicle and a "sell 
Calls" vehicle (see Figure 3). The newly created com- 
pounded vehicles are added as instances of the class node 
compounded-vehicles and marked as candidates. 

Additional feasibility constraints can be related to  the 
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amount of up-front cash or the type of collateral required 
to set up the necessary vehicle. Some of these are ap- 
plied only to every remaining class node, while others 
are applied to  every remaining instance node. 

Last, we apply optimalily constraints such as "min- 
imize unwind-completi2y." The remaining candidates 
are ranked along each attribute describing an optimaI- 
ity constraint. First, a ranking along every atomic at- 
tribute is constructed using knowledge stored in each 
node about that  attribute. Then, the hierarchy of at- 
tributes is parameterized. That  is, weights for each rank- 
ing are derived from the trader input regarding the pre- 
dicted change in the state of fundamental factors and 
based on his prioritization of optimality constraints. Fi- 
nally, rankings along atomic attributes are propagated 
up in the hierarchy of attributes to  derive rankings along 
non-atomic attributes. 

If one candidate dominates all others on all optimality 
constraints, a best hedge vehicle was found. Otherwise, a 
small subset of vehicles that rank high on most optimal- 
ity constraints is selected. In such case, the trader can do 
two things. One is request the system to construct one 
vehicle in the subset synthetically. For instance, if one 
vehicle is an exchange traded future that ranks low only 
on maturity-match due to an early maturity, the system 
uses two similar futures, one with an earlier and one with 
a later maturity, such that when combined they create a 
synthetic future whose maturity matches the end of the 
hedge period. The  other thing the trader can do is find a 
counter party with whom he can trade over the counter 
a customized version of one of the vehicles in the subset. 

5 Current Status 

An appropriate technology for the implementation of an 
expert system for hedging must primarily provide tools 
that support the object-oriented nature underlying our 
representation. After considering various object-oriented 
tools (e.g., SMALLTALK, FLAVORS, C++) we have 
decided t o  use the Zortech C++ package for three rea- 
sons. First, it provides several object-oriented capabili- 
ties that  other tools do not provide (e.g., multiple inheri- 
tance). Second, i t  alIows for portability across platforms 
- something that  is important for the integration of our 
system with other systems dealing with different aspects 
of risk management. Finally, it supports integration of 
system modules that were developed using other tools. 

So far we have implemented all of the architectural 
components, the causal reasoning engine in CObiIvlON 
LISP and the other components in C++. We are cur- 
rently setting up a small knowledge base to run the 
model and compare its behavior with that of experts. 

The prototype is to be tested to determine the appro- 

priateness of the representation and reasoning techniques 
we are using. We propose to describe several real-world 
hedging situations to several traders. Each trader will 
be requested to verbalize his thoughts in the course of 
deciding what vehicles to use in each situation. Then, 
for each case, traders' behavior will be recoded using 
protocol analysis. The same situations will be given to 
the system, and the system's behavior consisting of ex- 
planations of decisions it makes while applying differ- 
ent constraints will be recoded. The system's behavior 
will be compared to that of traders along three dimen- 
sions: (1) the constraints applied in each situation (i.e., 
search-scope correspondence); (2) the degree of match 
of generic reasoning activities used with each constraint 
(i.e., operational correspondence); and (3) the degree of 
match between domain entities, relationships, attributes, 
and values that appear in esplanations of traders versus 
those of the system. 

Initially, the emphasis will be on the system's ability 
to  demonstrate reasoning capabilities that traders use in 
hedge design, rather than on the quality of its recom- 
mendations. 

There might be two possible reasons for discrepancies - 
between the system's behavior and that of a trader. One 
is simply the lack of relevant knowledge, which can be 
elicited from experts and added to the knowledge base 
without affecting its usability and without a need to 
modify the representation. The other reason is inability 
of the representation to handle other types of knowledge 
that were not identified prior to the testing. 

6 Open Questions 

There are a number of problems that the system may 
encounter in the real-world. One is the potentially ex- 
plosive number of ways to construct compounded vehi- 
cles. It can occur in two situations. One involves multi- 
ple constructions of a certain compounded vehicle. For 
example, in principle a vehicle called Straddle can be 
constructed in two ways - "sell one Put and one Call on 
stock S" and "sell two Calls on S and buy 100 shares of S" 
(see Figure 4). In effect the number of ways t o  construct 
a Straddle can be explosive if one considers every instru- 
ment whose sensitivity to the hedged factor is similar to 
that  of S. The other situation involves the construction 
of non-generic derivatives. For example, in a case where 
the vehicle "buy a Put" provides the desired protection 
profile, traders may prefer the derivative vehicle "buy a 
Call on Put  (Caput)" since it  requires less up-front cash. 
Clearly, the number of compounded derivatives can be- 
come explosive if one creates derivatives of several higher 
levels (e.g., "Put on a Caput", etc.). 

So far we have not identified what heuristics good 
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Figure 4: Two ways to construct a Straddle 

traders use to  control the number of ways to  construct 
compounded vehicles. Currently the system is set to  cre- 
ate in the first situation one new vehicle for every one of 
the possible ways, and to create in the second situation 
only derivatives that are one level higher. 

A related problem is the system's inability to  con- 
struct compounded vehicles which are often referred to  
a s  calendar vehicles. So far we have discussed only the 
construction of vehicles that protect against events that 
conform to traders projections over one particular time 
horizon. There are cases, however, where traders make 
short, medium, and long terms projections (e.g., "inter- 
est rates will increase in the next month and decrease 
in the five months that follow"). To benefit from such 
projections traders can use option-based vehicles that 
exploit the time decay effects on the value of options of 
different maturities. That  is, the time decay is large on 
a day-to-day basis in options of under one month's ma- 
turity, but is negligible for options of over three months' 
maturity. For example, the calendar vehicle "sell a near 
option" and "buy a far option" can be used to  benefit 
from the disproportional change in the value of the two 
options under specific projected market conditions. We, 
however, are under the impression that traders use such 
vehicles very infrequently, mainly due the inherent com- 
plexity involved in  making projections that conform to 
multiple time horizons [7]. 

Another problem is the extensive need for user input 
for the parameterization of the hierarchy of attributes 
we use to  rank vehicles along optimality constraints. 
Currently, the weights that specify the importance of 
every dependency in that hierarchy are derived from 
the trader's prioritization of optimality constraints and 

from input describing the current and predicted state of 
fundamental factors. ?ire suspect, however, that  these 
weights do not change significantly from one case to an- 
other. TS'hiIe considering the trade-off between the payoff 
from using better hedge vehicles and the costs involved 
in the design of better vehicles, the costs of gathering 
and analyzing market information about a large number 
of economic factors that traders use to make predictions, 
it is possible that good traders concentrate on a small 
number of key factors, based on which they make cer- 
tain assumptions about other factors. ?Ve believe that a 
study of how traders identify a different set of key fac- 
tors in each case might reveal what of default reasoning 
scheme can enable the system to derive these weights 
with less user input. 

One other problem involves the relaxation of feasibility 
constraints. In some cases it is possible that due to  a 
constraint such as "use only vehicles that require no up- 
front cash" the system will conclude that there are no 
feasible hedge vehicles. It may be possible, however, 
that the relaxation of certain feasibility constraints can 
resolve such situations. Currently, the system cannot 
determine which constraints must be relaxed in every 
case to allow it to  recommend at least one hedge vehicle. 
Rather, the user must first determine which constraints 
to relax, and then rerun the system. 
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