ORDER-SORTED
RIGID E-UNIFICATION

by
Jean H. Gallier

Computer Science Department
Moore School of Engineering
Univeristy of Pennsylvania

Philadelphia, PA 19104

and

Tomas Isakowitz
Information Systems Department
Leonard N. Stern School of Business
New York University
New York, New York 10003

December 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-40



Abstract

Rigid E-Unification is a special type of unification which arises naturally when
extending Andrew’s method of matings to logic with equality. We study the rigid E-
Unification problem in the presence of subsorts. We present an order sorted method
for the computation of order sorted rigid-E-unifiers. The method is based on an un-
sorted one which we refine and extend to handle sort information. Qur approach is to
incorporate the sort information within the method so as to leverage it.We show via
examples how the order sorted method is able to detect failures due to sort conflicts
at an early stage in the construction of potential rigid E Unifiers. The algorithm pre-
sented here is NP-complete, as is the unsorted one. This is significant, specially due to
the complications presented by the sort information.
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1 Introduction

Rigid E-Unification is a special type of unification that occurs when extending Andrews
[And81] method of matings to include equations. It was first introduced by Gallier, Raatz
and Snyder [GRS87]. Gallier, Narendran, Plaisted and Snyder [GNPS90] show that the
problem is NP-complete and they present a method for finding rigid E-unifiers. We extend
their work to order-sorted logic [Gog78, GM87b]. This is of interest because the order-sorted
framework can be utilized to provide a formal framework for the treatment of such important
concepts as inheritance and overloading. The results we present in this paper are significant
from two different perspectives. Firstly, we improve upon the unsorted rigid E-unification
method by simplifying it and secondly, we construct an inherently order-sorted method which
takes sort information into consideration in each one of its phases; and produces order-sorted
unifiers.

The concept of an Order-Sorted Algebra was introduced by Goguen in [Gog78]. Goguen
and Meseguer [GMS87b] present order-sorted algebras as the natural semantics for order-sor-
ted logic. Order-sorted algebras are based on an approach similar to many-sorted algebra
where families of functions are associated with each function symbol. Eqlog [GMS84] is
a programming language with built-in overloading and inheritance that has a clean mathe-
matical semantics based on order-sorted algebra. Inheritance is achieved via subsorts. There
are other similar semantic approaches to subsorts, e.g. Smolka [Smo86], Walther [Smo86]
among others. The principal differences lie in the treatment of overloaded operators in the
underlying algebraic structure.

A significant advantage of the order-sorted approach over the unsorted one lies in the
efficiency of computations. Sort information can be embedded within the algorithms. For
example, there is an order-sorted unification algorithm that is able to trim the search space
by taking sort information into consideration. These order-sorted algorithms are not just
simple extensions of their unsorted counterparts; they require original approaches to the
issues at stalk.

The problem of rigid-E-unification arises when extending Andrews’ method [And81] of

matings to first order logic with equality. = Extending matings to order-sorted matings
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implies an order-sorted version of rigid E-unification. Thus, the work we present here adapts
and extends the unsorted methods to the order-sorted case.

Rigid Unification involves finding a solution f# to a term equation using only a limited
resource of axioms. The number of times the axioms in E are used is not restricted, what is
restricted is the number of variations of such axioms. This is done by freezing the variables
in (E) and treating them as constants as if £ were a set of ground equations. It can be
stated as the following problem.

Problem. Given a finite set £ = {u; = vy,...,u, = v,} of equations and a pair (u,v) of
terms, is there a
equations, 0(u) ég(g} 0(v), that is, 6(u) and 6(v) are congruent modulo 0(E) (by con-

gruence closure)?

The substitution 0 is called a rigid (£, E)-unifier of u and v.

Example 1.1 Let E = {g(f(21)) = f(z1),9(f(22)) = q(z2)} and u = g(za) and v = f(za).

Then any substitution # unifying < zj, 29, 23, 24 > is a rigid-E-unifier of © and v because

0(q(z3)) = q(2) 0(g(f(23))=q(za)) *‘“Q(f(zl)—*s(g(f(z.,})ef(z,,))f(z) =0(v)

where z is the common value of 0'(z) = 0'(z;) = .. ..

Only a single instance of each equation in F can be used, and in fact, these instances
0wy = v1),...,0(u, = v,) must arise from the same substitution #. Also, once these
instances have been created, the remaining variables (if any) are considered rigid, that is,

treated as constants, so that it is not possible to further instantiate these instances.

Example 1.2 Let ¥ = {f(z) = 2}, consider rigid E-unifying u = ¢(f(a), f(b)) and v =
g(a, b). The simple solution of substituting a for = to rewrite g(f(a), f(b)) to g(a, f(b)) and
then using f(z) = z again with b for = does not work out because we are using two different
instances of f(z) = z.

Notice that there is no way f(a) can be rewritten to ¢ without binding  to a. Similarly, in
order for an equality step to be applicable to f(b), 2 has to be bound to b. This is precisely
why the two terms are not rigid E-unifiable. However, if we consider E' = {f(z) = z, f(y) =

y} then 8 = [z/a,y/b] is a rigid E-unifier of v and v.
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Hence rigid (X, E)-unification differs from (X, E)-unification in that in the latter a proof
of (u) = 0(v) from E might involve the use of different instantiations of the same equation
in £. In the rigid case however, only the instances §( £) (regarded as ground) can be used.
It is interesting to observe that the solution to the rigid unification problem involves the
use of the congruence closure, rewriting and term unification. We develop an order-sorted
method for finite signatures which is also in NP. Since this type of unification forms the core
of equational matings, it sets a precedent for the development of an extension to Andrews’
method of Matings to the order-sorted equational case. Gallier, Narendran, Plaisted and
Snyder in [GNPS90] provide an NP procedure to generate complete sets of unsorted rigid
E-unifiers. Our task is to provide a method that produces order-sorted rigid E-unifiers
(rigid (X, E)-unifiers where ¥ is an order-sorted signature.) We could take the following

approach:
1. Run the unsorted algorithm to produce an unsorted rigid E-unifier #, and then

2. using sort information try to produce for each unsorted 6 obtained in step 1, a family

of sort assignments that results in a family of E-substitutions for 6.

The disadvantage of this approach is that it does not make full use of the sort informa-
tion. For example, if v and v have no common subsort, then u and v can not have a
rigid (X, E)-unifier. However, the method described above would first run the N P unsorted
algorithm; then try to compute a family of sort assignments and finally, upon discovering
that the family of sort assignments is empty, return failure.

The approach we take here however, differs in that the method itself is intrinsically or-
der-sorted. We modify the unsorted method for finding rigid £ unifiers to a method that
builds order-sorted substitutions. Since the sort information is used at each and every step
of the order-sorted algorithm, it is more effective than the method described above because
it 1s able to detect failure due to sort conflicts at an earlier stage. Our method uses an
algorithm for finding order-sorted unifiers in triangular form presented in [IéaSQ] based on
work by Meseguer, Goguen and Smolka [MGS89].

Order assignments constitute a significant component of the unsorted rigid E-unification

method presented by Gallier, Narendran, Plaisted and Snyder in [GNPS90]. Without en-
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tering into too much detail, order assignments represent guesses on the ordering a ground
rigid E-unifier will impose on terms. This ordering is used to guess other aspects of the
solution. Although this concept is quite interesting, it complicates the method and its proof.
By extending a procedure by Snyder [Sny89] that finds interreduced sets of rewrite rules
equivalent to a system F of equations, we manage to eliminate order assignments from the
method (this works as well for the unsorted version of rigid E-unification).

Thus, there are significant differences between the unsorted and the order-sorted versions

of the rigid E-unification method such as:

o Use of sort information at each and every step of the algorithm.
e Use of general equations to avoid hitting ill-typed terms.

e At the heart of the method we use an order-sorted unification algorithm which does not
return an mgu, but a member of a complete family of X-unifiers. Since we are restricting
ourselves to finite signatures, this family is finite. The order-sorted unification method
is an extension of the one in [MGS89] as described in section 4. Even though X-
unification with no equations is NP-complete, we manage to obtain an NP algorithm

for rigid (X, F)-unification.

e As described above we avoid using order assignments. This requires a different method

and different proofs which are simpler.

o We show that a rigid E-unifier can be obtained by a sequence of guesses. This is a

consequence of the removal of order assignments.

Thus, our method solves the rigid E-unification problem for order-sorted general equation
systems and also represents substantial improvements over the unsorted method.

This paper is organized as follows. In section 2 we provide some background on order-
sorted algebras. We describe general equations, the particular class of equations to which
our results on rigid (¥, £)-unification do apply, in section 3. The concept of unification for
order-sorted terms is reviewed in section 4 where we also present some interesting results
on triangular forms for both unsorted and order-sorted unifiers. In section 5 we formally

describe the rigid F-unification problem and give some general remarks about the method,
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which is developed in sections 6 through 9. Complete sets of rigid (X, E)-unifications are
explored in section 6, and minimal sets of rigid (¥, E)-unifications are studied in section 7.
An important aspect of our method is that sets of order-sorted equations can be transformed
into reduced sets of rewrite rules in polynomial time. These results are exhibited in section
8. The actual method and its correctness proof are given in section 9. Section 10 proves
that the method given is in fact in NP. In section 11 we summarize our results and discuss

directions for further research.

2 Order-Sorted Algebra

Order-Sorted Algebras are presented by Goguen and Meseguer [GM87b] as the natural se-
mantics for Order-Sorted logic. There are other approaches, e.g. Smolka [Smo86], Walther
[Smo86] among others. The principal difference lies in the treatment of overloaded operators
and the underlying algebraic structure.

Order-Sorted Algebras are based on an approach similar to Many-sorted Algebra where
families of functions are associated with each function symbol. The principal idea is to
interpret the subsort relation as inclusion of domains. That is, if s is a subsort of s’ then the
domain of discourse A; assigned to s is a subset of Ay, the domain of s’. Similarly, function
symbols are interpreted as functions between the domains of discourse, and certain natural

relations hold between the interpretations of an overloaded function symbol.

2.1 Signatures

We shortly review the elements of many-sorted algebra. Given an indez set S, an S-sorted
set Ais just a family (A;)ses of sets, one set A, for each s € S. Similarly, given two S-sorted
sets A and B, an S-sorted function f : A — B is an S-indexed family (fs : As — Bs)ses
of functions f; : A, — B,, and an S-sorted relation R is an S-indexed family (R;)ses of
relations Ry C A; x B. Let us assume a fixed set S called the sort set, with a partial order

<.

Definition 2.1 A many-sorted signature is defined as a triple (S, X, p), where S is a sort

set and p: ¥ — 2% is a rank function assigning a set p(f) of ranks (w,s) to each symbol
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in X. The elements of the sets ¥ are called operators or function symbols. The set ¥ can be

viewed as an indexed family if for every (w,s) € S*x S welet ¥,,, = {f € 2 | (w, s) € p(f)}.

Note that ¥, s and ¥,/ are not necessarily disjoint, since a symbol in ¥ may have sev-

eral ranks. Whenever convenient, we omit the function p, and view ¥ as family of sets

(Ew,s){w,s)GS)(S' .

Definition 2.2 An order-sorted signature is a quadruple (S, <, %, p), such that (S, %, p) is
a many-sorted signature and (5, <) is a partially ordered set.

In addition the following monotonicity condition is imposed to rule out bizarre models :

if f€Xy s NEys, and if w; < w, then s; < 5.

When the sort set S is clear, we write (£, p) or ¥ for (S, X, p). Similarly when the partialy
ordered set is clear, we write (X, p) or ¥ for (5, <, X, p).

For function symbols, we may write [ : w + s when (w,s) € p(f) to emphasize that f
denotes a function with arity w and co-arity s. An important case occurs when w = ), the
empty string; then f denotes a constant of sort s. When (w,s) € p(f) we will also say that

f has arity w and co-arity s.

Example 2.3 Let the set of sorts be S = {zero, Q+,Q}, and let the partial order be:
zero < Q,Q* < Q.

The following is an order-sorted E-signature which we denote by Rationals:

e X\ zero = {0};
* £0.QQ= {+}; and
. Eq_QﬂQ ={/}
Figure 1 graphically depicts this signature. The constant 0 is of sort zero. Notice that

the second argument of / is of sort Q*, which is intended to exclude zero. Hence we are

formalizing the idea of disallowing a division by zero.

Center for Dhgtal Economy Researc

Stern School of Business

Working Paper 18-91-40



Order Sorted Rigid E-Unification ' 8

Figure 1: The Rationals signature

In order for a number of useful properties to hold, restrict our attention to a special
class of signatures called regular. Essentially, regularity asserts that overloaded operations
are consistent under restrictions to subsorts. Note that the ordering < on S extends to
an ordering on strings of equal length in S* as follows: s;...s, < s}... s iff s; < st for
1 < ¢ < n. Similarly, < extends to pairs in S* x S by stating that (w,s) < (w',s") iff w < w'

and s < s'.

Definition 2.4 An order-sorted signature S is regular iff for every f € I, every w° € S*,
and every (w,s) € p(f), if w® < w, then the set {(w',s") € p(f) | w°® < w'} has a least

element.

When the set of sorts is finite (or well founded), regularity is captured by a combinatorial

condition (see the paper by Goguen and Meseguer [GMS8T7b]).

Lemma 2.5 An order-sorted signature X over a finite (or well founded) sort set S is regular
iff for every every f € I, every w® € 5%, and every pair of ranks (w,s), («/,s") € p(f), if
w® < w,w’, then the set {(w,s), (w’,s’)} has a lower bound (wy, s;) such that (wy,s;) € p(f),

and w? < wy.

Let = = (< U <71)* be the least equivalence relation containing the partial order

<. We say that two sorts s and s’ are connected if s = s'. The equivalence classes of =
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are called connected components. The concept of connected sorts is important for defining
quotient algebras. Indeed, in order for the usual construction of the quotient of an algebra

by a congruence to hold, we need a condition on signatures called coherence.

Definition 2.6 A regular order-sorted signature is coherent if every connected component

has a greatest element called the top sort of the connected component.

In this paper we limit our attention to finite coherent signatures.

2.2 Algebras

For any string w = $1,...,8, (n 2 1), let A, = A,;, X ... X A,,, with Ay = {)} (a one

element set).

Definition 2.7 Let (S, <, X, p) be an order-sorted signature. An order sorted (S, <, X, p)-
algebra A is a pair (A, ) consisting of an S-sorted family A = (A;)ses called the carrier
of A, and a function [ called the interpretation function of A, where I assigns to every
[ € ¥ an indexed family of functions I(f) = (f4° : Aw — As)(w,s)ep(s)- In particular, when
w = A, fj*"s is an element of A;. For each sort s, A, is the carrier of sort s. Note that the

carrier of sort s may be empty. Moreover, the following conditions hold:
1. A, C Ay whenever s < &', and

2. If (w,s) € p(f) and (w',s') € p(f), s < &, and w < W', then f¥~*: A, — A, is equal

to the restriction of fff"_"'*' : Ay +— Ag to A,. That is, for any T € A,, f¥"(Z) =

(@),

By abuse of notation, we may denote an algebra and its carrier by the same name unless
confusions arise. For example in the the previous definition we might use A for both the
carrier (which is A) and for the algebra (which is A). We may also drop some of the
components in (5, <, X, p) when talking about order-sorted algebras, or drop the superscript

W5

(w, s) when referring to a function fj§

Example 2.8 Consider the signature presented of example 2.3, an order-sorted ¥-algebra

A is:
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s Ag = @ ( the set of rational numbers),
. AQ+ = @ — {0} ( the set of non-zero rationals), and

The functions have their natural interpretations:

e +4 is addition of rational numbers;

e /4 is division of rational numbers.

Forany =28 «reSn 2 A 804 8 = (Giyers 50n) € Ay 16E Bol@) =B (1) v ot () )

Definition 2.9 Let (S, <, X, p) be an order-sorted signature, and let A and B be (S, <, 5, p)-
order-sorted algebras. A (S5, <, X, p)-homomorphism A : 4 — B is an S-sorted function such

that
1. for every constant ¢ of sort s, hs(c4) = cg,

2. for every f € X, every (w,s) € p(f), and every @ € A,,,
he(FX72(@) = f57° (hw(@)),

3. w<w' and @ € A, implies hy(@) = hy(@).

When the partialy ordered set is clear, (S, <, ¥, p)-homomorphisms are called order-sor-
ted X-homomorphisms. We may also drop some of the components in (S,<,%,p) when

talking about order-sorted homomorphisms.

2.3 Order-Sorted term algebra

Following [GM87b], we now define the order-sorted E-term algebra T3 as the least family

{7z s|s € S} of sets satisfying the following conditions:

1. ¥)s CTg; for s € S,

Stern School of Business
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2. Ty s C Tz o whenever s < §';

3. if f € Bys, and if t; € Ty, where w = wy, ... ,w; # A, then the string ft;... ¢, is in
TE s

]

In addition, the function symbols are interpreted as string constructors as follows: for f €
Vs fE72(t,. . ytn) = fl1... t,. Regular signatures have a number of desirable properties.
For example, unique sorts can be assigned to terms in 7y as the following theorem form

[GM87b] states.

Theorem 2.10 Let X be a regular order-sorted signature. Then every term ¢t in 7y has a

least sort denoted by LS(t).

For the rest of this paper we assume that all signatures are regular. In order to define non-
ground terms, we enlarge the signature ¥ with variables. The variables form an S-sorted
set X = {X,}ses which is assumed to be disjoint from ¥ such that each variable belongs to
exactly one X, i.e. it has a unique sort. The extended signature is denoted by X(X), it is
regular provided ¥ is regular. The term algebra Ty (x) is denoted also by 7g(X), and it is

the free ¥ order-sorted algebra on X ([GM87al), i.e.

Theorem 2.11 Let A be an order-sorted Y-algebra and let a : X + A be an S-sorted func-
tion (an assignment from X to A). Then there exists a unique order-sorted X-homomorphism

o : Ty (X) — A that extends a.

2.4 Order-Sorted deduction

A fundamental component of deductive systems is the notion of a substitution which provides
a tool for the instantiation of terms. Since order-sorted substitutions have to produce well
typed terms, their definition has to take sort information into account. We follow [MGS89]
in the defining substitutions as homomorphic extensions of well-sorted assignments, thus
departing from Walther [Wal87] who defines them as being endomorphisms of a fixed term

algebra.
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Definition 2.12 Given an S-sorted assignment 0 : X — 73(Y’) such that 0(z) = = almost

everywhere (i.e. the set {z | 0(z) # =} is finite), its homomorphic X-extension 0* : Tg(X)

T=(Y) is an order-sorted substitution.

We will write “X-substitution” for “Order-Sorted substitution” when the signature in con-
sideration is X, even though this is somewhat ambiguous because we are not specifying the
set of variables involved. By allowing a slight abuse of notation, we will denote 6* by 6.
Note that since an assignment is an S-sorted map we have that 0(z) € 7x(Y'), whenever
x € X,. Therefore if the signature is regular, LS(0(z)) < LS(z). We will denote substitu-
tions as association lists of the form [z1/t1,... ,z,/t,]. If we drop the sort information from
a signature ¥, we obtain an unsorted signature |X|. Clearly, every order-sorted substitution
is an unsorted one, i.e. every order-sorted signature is a |X|-substitution. The contrary

however, is false as we show in the next example.

Example 2.13 Consider the signature Rationals, let z,.,¢ be a variable of sort rat and let
Zpat+ De a variable of sort rat*. Consider the mapping 6 such that 6(z.¢+) = 0. Although
f is an unsorted substitution, it is not a X-substitution because the sorts of Zpatt and 0 are
incomparable.

However, the mapping ¢’ such that 0'(zp5¢) = 0 is a E-substitution and LS(0'(zpat)) <
LS(zpat)-

We now turn our attention to order-sorted equational deduction. First, we point out that
in order for an equation to make sense, the terms equated must have a common supersort.
Then, we can think of the two terms as being equal in that sort. Recall that in a coherent
signature each connected component of the sorts poset has a greatest element. Since the
signatures considered here are coherent, it is enough to restrict equations to terms with sorts

in the same connected component

Definition 2.14 Given a coherent order-sorted signature ¥, let u and v be terms in Tg(Y')
such that their least sorts are connected, and let X be a superset of the set of all variables
occurring in u or v (notice X C Y). Then (VY)u = v is an equation. If Y = {y1,... ,¥n},

we might write Vy; ... Yy, u = v instead of (VY )u = v.
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The concept of validity of an equation is defined using the freeness of Tz (X).

Definition 2.15 An equation (VX )u = v is valid in some order-sorted X-algebra A (denoted

A= (VX)u =v) if and only if for every assignment o : X — A, o750 (1) = 50, (V).

A Z-algebra A satisfies a set E of equations if it satisfies every equation in £. A set [ of
equations semantically entails an equation (VX )u = v, written E | (VX)u = v, if (VX)u =v
is valid in every model of E.

We now provide a set of deduction rules for equations involving variables. Given an
order-sorted signature ¥ and a set E of ¥(X)-equations, the following is a complete set of

deduction rules for order-sorted equational logic ([MGS89]):

pa—y

. reflexivity. Each equation (VX)t = ¢ is derivable.
2. Symmetry. If (VX)t = t' is derivable, then so is (VX)t’ = ¢.
3. Transitivity. If (VX)t = t' and (VX)t' = t" are derivable, then so is (VX)t = ¢”.

4. Congruence. Givent € Tg(X) and X-substitutions 8,6’ : X + Tg(Y) such that for each
z € X, the equation (VY')0(x) = 0'(x) is derivable, then the equation (VY)8(t) = 0'(t).

5. Substitutivity. If (VX)t =t' € F, and if 0 : X — Tg(Y) is a S-substitution, then
(VY)O(t) = 0(t') is derivable.

We denote the derivability relation by Fy as usual. When the order-sorted signature is clear

from the context, we might simply write I-.

Theorem 2.16 [Soundness and Completeness Theorem [GM87b]] Given a coherent order-

sorted signature ¥, a set E of X(X)-equations, and terms ¢,t' € Tg(X), the following are
g q

equivalent:
e Fipt=1t.
o I !:g 3 A
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3 General Equations

Given the complexity of E-unification in the case of arbitrary equational theories, it makes
sense to restrict the kind of equations and to study the problem under those restrictions.
We focus our attention to a special class which we call General equations.

The study of rigid (£, E)-unification for equation systems which are not general, although
of interest, is beyond the scope of this paper.

General equations are sort preserving in a very strong sense: not only are both terms
involved of the same sort, but this property is stable under variable renamings.

A variable renaming E-substitution is a X-substitution 8 : X +— Y where Y is a set of
variables, i.e. 0(z) is always a variable. Notice that the sort of #(x) has to be below that of .
Thus, talking about variable renamings is equivalent to talking about the set of sorts below
a given one. If the signature is finite (as in our case), then, module alphabetic variants, there

is only a finite number of possible variable renamings for a term .

Definition 3.1 Given an equation ¢ = (VX)t = t’ over &, we say that e is general provided
1. Var(t) = Var(t'), and
2. for any variable renaming p, LS(p(t)) = LS(p(t")).

In particular, LS(t) = LS(t'). A system E = {t; = t!,7 € I} is said to be general if each

equation is general.

Intuitively, we make sure that every instance of the equation is sort preserving. This will
ensure that no ill-typed terms can be generated when rewriting. We illustrate via an example

what is not general.

Example 3.2 Consider the signature MG; shown in figure 2.

Let e = (Vz : 1) f(x) = g(2). Although LS(f(2)) = LS(g(x)) = s1, there is a problem when
we apply the variable renaming p(z) = z : s4 because LS(f(z)) = s3 but LS(g(z)) = s..
This shows that e is not general. Thus when using e to make deduction special attention to

the sorts has to be drawn. For example, even though f(z) = g(z) is a valid consequence of e,
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Figure 2: The MG, signature

h(f(z)) = h(g(z)) is not only invalid, but h(g(z)) is ill-typed. Hence replacement of equals

by equals cannot be used with equations which are not general.

The previous example shows that some unsorted theorem proving methods are not sound
for order-sorted deduction. However as we will see, congruence closure, can be safely applied
to systems of frozen equations. This will be come a key issue in our algorithm for rigid

(£, E)-unification.

Lemma 3.3 Let [ = r be a general equation and let o be a E-substitution, then o(l) = o(r)

is also general.

Proof:
1. Clearly Var(o(l)) = Var(o(r)).

2. To show that renamings of o(l) = o(r) are sort preserving. Notice that the sort of
such a renaming can be characterized by renamings of the original equation. This is

so because one can define a renaming p s.t.
LS(o(1)) = LS(p(1)) = LS(p(r)) = LS(o(r).

This is done as follows: for z € Var(l) let z,(;) be a variable of sort LS(o(z)). Let
p(z) = Z,z)- The least sort of any renaming of o(z) can then be realized by an

appropriate renaming of z.
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Figure 3: £ = {(V(z1)f(z1) = g(z1)} is not most general.

a

The class of general equations is less restrictive than the class of most general equations
defined by Meseguer, Goguen and Smolka in [MGS89]. They require an equation to be sort
preserving under arbitrary renamings (not just X-substitutions). For example, consider the
signature of figure 3 and the equation E = {(V(z1)f(z1) = g(z1)}. Clearly E is general.
Since f(z2) = g(z2) is not covered by £, the system is not most general.

The focus in [MGS89] is on utilizing unsorted theorem methods which at a second pass are
transformed into order-sorted ones. In that context it is important to preserve the unsorted

deducibility relation. Notice that E Vs (Vz2)f(z2) = g(z2).

4 Order-Sorted Unification

Unification basically amounts to finding values for the variables appearing in terms so as
to make them equal. Given two terms ¢ and #', a substitution # is a unifier of ¢ and ¢’ if
0(t) = 6(¢'). Thus a unifier can be seen as a solution of the equation ¢t = t'. Given a system
T of term equations, we say that a substitution 6 is a unifier of the system T if 6 unifies
every term equation in 7. General unification, commonly called E-unification amounts to

solving a system T of term equations modulo a set E of equations.

4.1 Term unification

The order-sorted unification problem has been addressed by different researchers [Kir88,

MGS89, SS87, Wal87, Wal84]. Order-Sorted Unification differs from its unsorted version. In
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the simple case of unifying two variables z : s; and y : sy the existence of an order-sorted
unifier of  and y depends on the sort structure. If there is no lower bound to the set {s1, s}
there is no unifier. If however, the set LBd({s;,s2}) = {s € S| s < sy and s < s5} is not
empty, any element of it represents a order-sorted unifier. That is, for any s € LBd({s1,s2}),
let z, € X, be a variable of sort s, then the substitution [¢/z;,y/z;] is an order-sorted unifier
of z and .

In the unsorted case Robinson [Rob65] shows the existence of a most general unifier for
a set of unifiable terms. There exist several algorithms to compute a most general unsorted
unifier [Hue76, PW78, MM82]. The Martelli-Montanari approach, by abstracting over the
control structure, provides a good method for proving existence of unifiers in more general
settings [Sny88]. In contrast to the unsorted case, most general unifiers do not exist in the

order-sorted case. Complete families of unifiers can be defined as in the case of E-unification.

Definition 4.1 Given a set T of terms, a set of X-substitutions CSU(T') is a complete set
of Y-unifiers for T iff

(1) each o € CSU(T) satisfies D(o) C Var(T) and D(o) N I(c) = (o is idempotent);
(ii) if 0 € CSU(T) then it is a unifier of S;

(iii) For every X-unifier 0 of T', there exists ¢ € CSU(T') such that o < 0.

Example 4.2 Consider the signature NMGU shown in figure 4.

Let zy,... ,z4 be variables of sort sy, ... , s4 respectively. The Y-substitution 8 = [21/ 23, 22/ 23]
is an order-sorted unifier of z; and 22, and so is ' = [z1/z4,22/24]. Notice however, that
neither does f subsume ', nor does ¢’ subsume 6. Furthermore, it is easy to see that there
does not exist a X-substitution ¢ such that ¢ < § and ¢ < ¢'. Therefore, no mgu exists for

the term pair < z1, z; >. However, {0,0'} is a complete set of E-unifiers for {z1, z2}.

Isakowitz [Isa89] presents a non-deterministic algorithm to compute CSU(T).
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Figure 4: The NMGU signature

4.2 FE-Unification

In this section we define the notion of Order-Sorted E-Unification (£ — E Unification), we
briefly review and comment on some of the results presented by Meseguer and Goguen and
Smolka in [MGS89]. The system of equations which are studied there are called most general.
Our notion of general equational system is weaker than the notion of most general equations

which is used in [MGS89]. Hence our results do apply to a larger class of equations.

Definition 4.3 Given aset E of equations and I-terms ¢ and ¢/, we say that a E-substitution

0 is a (X, E) unifier of t-and ¢t iff

E g 6(t) = 6(t).

By considering the unsorted signature |X| obtained by forgetting the sorts from ¥ and
the unsorted system of equations |E| obtained from E, one can compare unsorted and order-
sorted E-unification. In [MGS89], the relationship between these is studied. A number of
characterization theorems are presented which show that for reasonable signatures, families
of order-sorted E-unifiers can be obtained from unsorted E-unifiers. The method consists
in first computing an unsorted E-unifier and then finding sort assignments for the variables
to construct order-sorted unifiers. However, such sort assignments might not always exist,

in which case there is not order-sorted version of the E-unifier. As we shall see later, our
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Figure 5: f(c) = g(¢)

method detects that a potential substitution can not become a L-unifiers earlier and can

therefore present significant efficiency gains over the unsorted method.

Example 4.4 Consider the signature of figure 4.2 and the equation f(c) = g(c). The
S-terms f(z;) and g(z;) are not (I, E)-unifiable. However, the method described above
would first discover the unsorted E-unifier [c/z1]. Any attempt to come up with an order-

sorted version of this unifier is deemed to failure.

4.3 Unifiers in Triangular Form

In order to show that our decision procedure for rigid order-sorted unification is in NP, we
will need the fact that members of CSU(u, v) can be represented concisely in triangular form
(the size of this system is linear in the number of symbols in u and v). We will denote a
complete family of T-unifiers in triangular form by CTU(T). When T consists of a single
pair (u,v), CTU(S) is also denoted by CTU(u,v).

An algorithm for finding a complete family of E-unifiers in triangular form for arbitrary
finite coherent signatures is described by Isakowitz in [Isa89]. This method is obtained from
the fast method using multiequations of Martelli and Montanari [MM82] adapted to the
order-sorted case as presented by Meseguer, Goguen and Smolka in [MGS89] by utilizing a
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non-deterministic version of the I P algorithm ([MGS89]). ! Thus, this method is nondeter-
ministic, and it computes elements of CTU(T') in nondeterministic quasi-linear time.

In addition to the fact that complete families of triangular X-unifiers do exist, we will
use some properties of triangular forms in the proof of the soundness of our method. We

develop an abstract view of triangular forms. First, we define triangular forms.

Definition 4.5 Given an idempotent X-substitution o with domain D(¢) = {z1,..., 2}, a
triangular form for o is a finite set T' of pairs (z,t) where z € D(o) and ¢ is a term, such that
this set T' can be sorted (possibly in more than one way) into a sequence ((z1,%1),..., (zk, tx))

satisfying the following properties: for every i, 1 <i < k,
(1) z1,...,z: N Var(t;) =0, and

(2) o=[t1/z1];- .- ;[te/zx]-

The set of variables {z,...,2;} is called the domain of T. Note that in particular
z; ¢ Var(t;) for every ¢, 1 < 7 < k, but variables in the set {z;41,...,2} may occur in

t1,...,t. It is easily seen that o is an idempotent mgu of the term system 7.

Example 4.6 Consider the E-substitution o = [f(f(23,23), f(z3,23))/21, f(23,23)/22]. The

system T' = {(z1, f(x2,22)), (z2, f(23,23))} is a triangular form of & since it can be ordered

as ((zq, f(a2, 552)), (z9, f(z3,23))) and 0 = [f(z2, x2)/21]; [f (23, 23)/2).

The triangular form T' = {(z1,t1),. .., (zk, )} of a E-substitution o also defines a L-substitution,

namely or = [t1/®1,...,tx/zk]. This E-substitution is usually different from o and not idem-
potent as can be seen from example 4.6.

The method for computing X-unifiers returns triangular forms, i.e. given E-terms ¢ and
t', the method returns either failure or a triangular form 7' = {(z1,%1),..., (x, tx)} for a
E-unifier § of t and t'. The substitution sigmar associated with this triangular form plays a

crucial role in our decision procedure by providing a succinct representation of a X-unifiers.

!In fact, this result can be strengthened: our method works for finitary signatures while the one presented
in [MGS89] works for unitary signatures.
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Figure 6

This reduces the complexity of the algorithm. Notice however that even though or is asso-

ciated to @ (which unifies ¢ and ¢'),

1. as is well known that o7 might not unify ¢ and ¢ ?; and
2. LS(or(t)) and LS(or(t')) might differ.
This last observation presents a problem to our development.

Example 4.7 Consider the signature presented in figure 6. Given Z-terms ¢ = f(z,y, 2)
and t' = f(y,9(2), k(c)), the -substitution § = [g(h(c))/x,g(h(c))/y,h(c)/z] is a T-unifier

of t and #. The following is a Z-substitution associated with a triangular form for :

or = [y/z,9(2)/y, h(c)/2)]. However,

or(f(z,y,2)) = fy,9(2), h(c)) and;
or(f(y,9(2), h(c)) = f(g(2), g(h(c)), h(c)).

2For example, o in example 4.6 is a triangular form of a unifier of t = f(z1,22) and t' =
f(f(z2, z2), f(z3,23)). However, as the reader is invited to check, or(t) # or(t')
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Not only do o7(t) and or(t') differ in structure, but also in sorts: LS(or(t)) = s1 while

LS(oz(t))) = s5.

In order to force or(t) and o7(t’) to have the same sort, we observe that since ¢ and ¢’ are
unifiable, there has to exist a variable renaming p such that LS(p(or(t))) = LS(p(or(t'))) =
LS(0(t)). In fact, by reading a triangular form from right to left, such a variable assignment
can be obtained. New variables are utilized to represent the renaming. In the case of the
previous example, y will get the sort of g(z’) which is s3, and z will also be pushed to have

sort ss.

Definition 4.8 Given a I-substitution 0 with triangular form T = {(z1,t1),..., (@, 1) }.

Let pry1 =2d, and for y =0,... k =2, let

srip—; = LS(Pk—(j—l] (tk—j));

Pr-i = Pr-(i-1) Wer_jk—i/%r-5]

where each y; is a different variable of sort srt; not appearing in the original system (for
E— ) )
The special triangular form T* is defined by T* = {(z1, p2(t1)), - - -, (&, pr4+1(tx)) }. Its asso-

ciated substitution will be denoted by 7.

By construction, we have the following result:

Lemma 4.9 If o} is a special triangular form for a X-substitution o, then for every « €
Dom(o), LS(c%(x)) = LS(o(x)).

From this we have the following important corollary:

Corollary 4.10 Let 0 be a X-unifier of the X-terms ¢ and ¢/, and let o7 be a special triangular
form for @, then LS(o%(t)) = LS(oy(t")).
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Example 4.11 Recall from example 4.7, or = [y/x, g(2)/y, h(¢)/z)]. Then

srty = LS(id(h(c)) = s3

p3(z) = Ys,
srty = LS(pa(g(2))) = LS(9(ys;)) = s2
P2(Y) = Ys,

Thus of = [ys,/%, 9(Yss)/y, h(€)/2)]. Let us compute o3(t) and o3(t'):

J’:"(t) = J’:"(f(r: Y, z)) = f(ySQEQ(yS’a)? h(C)), and;
o7 (t') = o3 (f(y,9(2), h(c)) = f(9(ys:), 9(h(c)), h(c)).

We still have o}.(t) # o}(t'). However, LS(c%(t)) = s2 and LS(c3(t')) = s2!

Special triangular forms play an important role in the algorithm for rigid (£, F)-unification.
In what follows, all triangular forms and associated Y-substitutions are assumed to be in
this special form and will be denoted by T and o7 instead of T* and o%. We now develop
a series of lemmas which will be utilized in the proofs of the soundness and completeness of

our rigid (X, E)-unification method. First, we adapt a technical lemma from [GNPS90].

Lemma 4.12 Given a triangular form 7' = {(@1,%1),. .., (¢k, )} for a E-substitution ¢ and
the associated E-substitution o7 = [t1/21,...,tx/2k], for every Z-unifier 0 of T', 0 = o7 ;0.

Proof: Since 0 is a E-unifier of T', we have 0(z;) = 0(t;) = 0(or(z;)) for every 2,1 <2 < k.

Since or(y) =y for all y ¢ {z1,...,24}, § = o7 ;0 holds. 0

Another important observation about op is that even though it is usually not idempotent,
at least one variable in {z;,...,2;} does not belong to I(o7) (otherwise, condition (1) of
the triangular form fails).

The following results from [[sa89], which also hold in the unsorted case, shed some light

on the relationship between a E-unifier and its triangular form. Interestingly enough, the
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results are developed algebraically, as opposed to concentrating on the methods to obtain
triangular forms. Although o and o7 are different substitutions, the following lemma shows

that composing o with itself enough times yields o.

Lemma 4.13 Given a term system S; o an idempotent E-unifier of S; and T’ = {< z;,1; >
yorr < Tn,t, >} a triangular form for o, let or = [21/t1,... ,2,/t,] be the T-substitution

associated with 7. Then o7™ = o.

The proof is given in appendix A.2.

Based on the previous lemma we can state a result similar to lemma 4.12.

Lemma 4.14 Given T' a triangular form of an idempotent S-unifier o of a system S, if 0
unifies T', then 0 = o3 0.

Proof: By lemma 4.12, § = op;0, and hence for any ¢« > 0, § = o;(,f);ﬂ. By the previous

lemma 05_«") = ¢. Therefore, 8 = o; 0. )

We can now prove the following result:

Lemma 4.15 Given T, a triangular form for an idempotent L-unifier o of a term system
S; every E-unifier of T' is also a X-unifier of S.

Proof: Let 0 be a X-unifier of 7. By lemma 4.14 § = ;0. Since o unifies S, so does 6

because given any < t,t' >€ S, 0(t) = 0(a(t)) = 0(a(t’)) = 0(t"). o

Lemma 4.16 If o is an idempotent X-unifier of S and T is a triangular form for o, then o
unifies 7.

The proof is given in appendix A.3.

5 Rigid-E-Unification

In this section we give the formal definition of rigid (¥, E)-unification and we provide some

intuition for the method we are about to develop. Our approach is based on the method
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given by Gallier, Narendran, Plaisted and Snyder in [GNPS90]. Our accomplishments are
twofold.

Firstly, we significantly simplify the unsorted method and its correctness proofs, thereby
presenting an improved unsorted rigid E-unification method. The major simplification is
the removal of order assignments from the transformation which is an important compinent
of the unsorted method as presented in [GNPS90]. Order assignments represent guesses of
portions of the final solution. Their role in the rigid E-unification method is difficult to
understand and their presence complicates the proofs. We incorporate the guessing within
another component of the method: the reduction procedure. By doing so, we manage to
reduce the number of components of the method, thereby simplifying it. We also modify
the reduction procedure by incorporating a reduction method by Snyder [Sny89]. We then
provide new soundness and completeness proofs which show the correctness of the order-sor-
ted algorithm and also apply to the unsorted method.

Secondly, our method is intrinsically order-sorted. We utilize an order-sorted unification
algorithm to ensure that at each step of our method, the sort information is taken into
account. This makes for an efficient algorithm which is able to discard unfit substitutions as
these are built, by identifying sort conflicts.

We begin with some formal definitions.

Definition 5.1 Let £ C Tx(X) x Tx(X) be a binary relation on terms. We define the
relation «—g over Tx(X) as follows: Given any two terms t;,t, € Tx(X), then t; «—pg t,
iff there is some variant® (s,t) of a pair in E U E~!, some tree address a in t;, and some

substitution &, such that
thi/a=o0(s), and 1y =ta« o(t)].

(In this case, we say that o is a matching substitution of s onto ¢, /a. The term t;/a is called
a reder.) Note that the pair (s,t) is used as a two-way rewrite rule (that is, non-oriented).
In such a case, we denote the pair (s,2) as s =t and call it an equation. When t; «——p t,,

we say that we have an equality step. When we want to fully specify an equality step, we

3A pair (s,1) is a variant of a pair (u,v) € E iff there is some renaming p with domain Var(u)U Var(v)
such that s = p(u) and t = p(v).
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use the notation

1y +—

iy

a,s=t,0

(where some of the arguments may be omitted). A sequence of equality steps
U=Ug U & ... —3F Up_| 4—F Uy =V

is called a proof of u——pgv.

Definition 5.2 Given a finite set E of equations (ground or not), we say that E is treated
as a set of ground equations iff for every pair of terms u, v (ground or not), for every proof of
u«—— g, then for every equality step s «— ;= , t in this proof, o is the identity substitution
and [ =r € EU E~! (no renaming of the equations in £ U E-! is performed). This means
that variables are treated as constants. We use the notation u é}_:; v to express the fact
that v «—pg v, treating F as a set of ground equations. Equivalently, u ég viff wand v
can be shown congruent from E by congruence closure (Kozen [Koz76],[Koz77], Nelson and

Oppen [NO80], Downey, Sethi, and Tarjan [DST80]) again, treating all variables as constants

— they are considered rigid.

The results in [Isa89] on congruence closure show that the method is sound for order-sor-
ted deduction when the equations are general. More formally, if u and v are E-terms and £
is general then u ég v implies £ Fy u = v. This is the reason why we require the equations
to be general!

We give the definition of a rigid (X, F)-unifier.

Definition 5.3 Let £ = {(s;y = t1),...,(5m = tm)} be a finite set of equations, and
let Var(E) = Ugzyer Var(s = t) denote the set of variables occurring in E.* Given a
2-substitution 0, we let 0(E) = {0(s; = t;) | s; = t; € E, 0(s;) # 6(t;)}. Given any
two terms u and v,” a Y-substitution 6 is a rigid (2, E)-unifier of uw and v modulo E (for
short, a rigid (X, E)-unifier of u and v) iff 0(u) «—p 0(v), treating 0( E) as a set of ground

equations i.e., O(u) ég{E) O(v).

41t is possible that equations have variables in common.
°It is possible that u and v have variables in common with the equations in E.
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Note that if E is general then a rigid (X, E)-unifier is a (X, E)-unifier. (This follows from
the soundness of congruence closure.) The converse, as shown in example 1.2, is not true.
Our method for rigid (X, E)-unification can be described in terms of a single transformation
on pairs of the form (S, F), where S is a unifiable set of pairs and E is a set of general
equations. Starting with an initial pair (0, Eo) initialized using F and u, v, one considers
sequences of transformations (0, o) =% (S, Ex) consisting of at most k& < m steps where m
is the number of variables in £. It will be shown that v and v have some rigid (¥, £)-unifier
iff there is some sequence of steps as above such that 1) the special equations involving the
markers appear in Ey, and 2) Si is unifiable. Then, any E-unifier of Sy is a rigid (£, E)-unifier

of u and v.

6 Complete Sets of Rigid (3, £)-Unifiers

As in the case of general E-unification, we are interested in complete families of rigid (X, £)-unifiers.
The contents of this section are adapted from [GNPS90] to deal with subsorts. The missing
proofs are essentially the same as in the unsorted case. We need some definitions regarding

complete sets of rigid (X, E)-unifiers. First, we define some preorders on 2-substitutions.

Definition 6.1 Let E be a (finite) set of equations, and W a (finite) set of variables. Ior
any two X-substitutions o and 0, o =g 0[W]iff o(2) ’;‘E O(z) for every x € W. The relation
Cg is defined as follows. For any two X-substitutions o and 8, o Cg 0[W] iff o =4(E) o[W1].
The set W is omitted when W = X (where X is the set of variables), and similarly £ is

omitted when EF = (.

Intuitively speaking, ¢ Cg 0 iff ¢ can be generated from @ using the equations in 0(F).

Clearly, Cg is reflexive. However, it is not symmetric as shown by the following example.

Example 6.2 Let E = {f(z) = 2}, 0 = [f(a)/2] and 8 = [a/z]. Then 6(E) = {f(a) = a}
and o(z) = f(a) ég(g‘) a = 0(z), and so o0 Cg 0. On the other hand o(E) = {f(f(a)) =
f(a)}, but @ and f(a) are not congruent from {f(f(a)) = f(a)}. Thus 0 Cg o does not
hold.




Order Sorted Rigid E-Unification 28

Some positive facts about the relation Cg are shown in the following lemma from [GNPS90].

These results easily adapt to the order-sorted case.

Lemma 6.3 For any two -substitutions o, 6,

(1) if o0 =g 0, then o(u) ég(g) 0(u) for any term u.

(ii) If o =¢(z) 0, then for all terms u, v, if w éa{E] v then u ée(g} V.
(iii) Cg is transitive.

(iv) For any two terms u, v, and any Y-substitution 8, if u ég v then O(u) Z4E) 0(u).

This lemma shows that Cg is special relationship, a preorder as defined below.

Definition 6.4 A preorder < on a set A is a binary relation < C A x A that is reflexive
and transitive. A partial order < on a set A is a preorder that is also antisymmetric. The
converse of a preorder (or partial order) < is denoted as =. A strict ordering (or strict order)
< on a set A is a transitive and irreflexive relation. Given a preorder (or partial order) < on
a set A, the strict ordering < associated with < is defined such that s < ¢ iff s <t and ¢ £ s.
Conversely, given a strict ordering <, the partial ordering < associated with < is defined
such that s < ¢ iff s < ¢ or s = . The converse of a strict ordering < is denoted as >. Given

a preorder (or partial order) <, we say that < is well founded iff > is well founded.

From (i) and (i) it follows that if o Cp 6 and o is a rigid (, E)-unifier of u and v, so is

0. We also need an extension of Cg defined as follows.

Definition 6.5 Let E be a (finite) set of equations, and W a (finite) set of variables. The
relation <g is defined as follows: for any two X-substitutions o and 8, 0 <g 0[W]iff o;n Cg
0[W] for some E-substitution 5 (that is, o ;7 =gz 0[W] for some 5). The conventions for

omitting [W] and E are those of definition 6.1.

Intuitively speaking, o <p 0 iff & is more general than some Y-substitution that can be
generated from @ using O(F). Clearly, <g is reflexive. It can also be shown that it is

transitive.
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Thus, <g is a preorder, and it is clear that it extends Cp. When o <g 0[\W], we say
that o is rigid more general than 0 over W. By the remark following lemma 6.3 and part
(iv) of lemma 6.3, it is immediately verified that if o is a rigid (2, E)-unifier of u and v and

o <g 0, then 0 is a rigid (X, E)-unifier of u and v. However, the converse is false.

In the next definition, the concept of a complete set of (X, E)-unifiers is generalized to

rigid (£, E)-unifiers.

Definition 6.6 Given a (finite) set E of equations, for any two terms u and v, letting V =
Var(u)UVar(v)UVar(E), aset U of E-substitutions is a complete set of rigid (S, E )-unifiers

for u and v iff: For every o € U,
(i) D(o) CV and D(o) N I(o) =0 (idempotence),
(i1) o is a rigid (X, E)-unifier of u and v,

(iii) For every rigid (X, E)-unifier 0 of u and v, there is some o € U, such that, o <g 0[V].

Condition (i) is the purity condition, condition (ii) the consistency condition, and condition

(ii1) the completeness condition.

It should be clear that if U is a complete set of rigid E-S-unifiers for v and v, o € U, and
o <g 0, then 0 is a rigid (X, E)-unifier of u and v.

A rigid E-unification method that only uses the constant and function symbols already
present in E,u and v, is called pure. The substitutions generated by a pure method
do not introduce new symbols. As demonstrated in [GNPS90], pure methods are of in-
terest because their completeness proof can be simplified. Instead of having to consider
arbitrary rigid (X, £)-unifiers, it is enough to show completeness with respect to ground
rigid (X, E)-unifiers whose domains contain V. That is, clause (‘iii) of definition 6.6, is re-

placed by

(1ii’) for every ground rigid (X, E)-unifier  of u and v such that V C D(0), there

is some o € U such that o <g 0[V] (where V = Var(E)U Var(u,v)).
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7 Minimal Rigid (¥, £')-Unifiers

The concepts and results of this section have been adapted to the order-sorted case from
[GNPS90]. Although most results look similar, they involve new techniques and subtleties
related to the sorts. We prove some useful lemmas about general equations that are funda-
mental to our method, and we prove some new results which are interesting in themselves
and do not appear in [GNPS90].

Given a finite or countably infinite order-sorted signature X, it is always possible to define
a total simplification ordering < on 7y (the set of all ground terms). For instance, we can
choose some total well-founded ordering < on ¥ and extend < to 7y as follows: s < ¢ iff

either
1. size(s) < seze(t), or
2. size(s) = size(t) and Root(s) < Root(t), or

3. size(s) = size(t), Root(s) = Root(t), and letting s = fs1...s, and t = ft;...1,,

(815 +vy8n) <iex (t1y...,1n), where <e; is the lexicographic ordering induced by <.

Notice that ¢ < ' does not imply LS(t) < LS(¢'). In the rest of this paper, we assume that
= is a fixed simplification ordering which is total on 7y. Given a set E of equations, for any
ground substitution 6, we let < 8(E), <> denote the set {0(1) = 0(r) | (1) = O(r), | =1 €
E U E~'} of oriented instances of E. Thus, we can also view §(E) as a set of rewrite rules.
When = is clear from concept, we might simply write 8( E) instead of < §(F), <> . Some
ambiguity might arise from not knowing when 8(E) denotes a set of rewrite rules or a set of
equations. In general we mean the former.

Since we restrict ourselves to the case where E is general, the equations are sort-preserving
and we obtain a sort-preserving rewrite system. Thus, we do not have to worry about
generating ill-typed terms when rewriting. That is why the ordering = can disregard sort
information.

We shall use the total simplification ordering < on 7y to define a well-founded partial
order < on ground X-substitutions. For this, it is assumed that the set of variables X is

totally ordered as X = {z1,29,...,Zp,--.)-
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Definition 7.1 The partial order < is defined on ground X-substitutions as follows. Given
any two ground X-substitutions o and @ such that D(¢) = D(0), letting (y1...,ya) be the

sequence obtained by ordering the variables in D(o) according to their order in X, then

o < 0iff
(0(y1)y--20(Yn)) Stex (O(y1)s---,0(yn)),

where =, is the lexicographic ordering on tuples induced by <.

Since < is well-founded and < is induced by the lexicographic ordering <., which is well-
founded, < is also well-founded. In fact, given any finite set V' of variables, note that < is a

total well-founded ordering for the set of ground X-substitutions with domain V.

We utilize a total simplification ordering < on ground terms, to define a notion minimal
rigid (X, E)-unifiers. Following [GNPS90], we define an ordering among ground X-unifiers

in which minimal elements do exist.

Definition 7.2 Let £ be a set of general equations (over 7g(X)) and u,v € Tx(X) any two
terms. For any ground rigid (X, E)-unifier 6 of v and v, let

Seuns = {p | D(p) = D(0), p(u) Zym) p(v), p Cr b, and p ground}.

Obviously, 8 € Sg u.u.6, S0 SEwve 18 not empty. Since < is total and well-founded on ground

L-substitutions with domain D(0), the set Sg .. ¢ contains some least element o (w.r.t. <).

We define the notion of rigid equivalency.

Definition 7.3 Given two sets £ and E’ of equations, we say that [ and E’ are rigid
equivalent iff for every two terms v and v, u =g v iff u =g v (treating £ and E’ as sets

of ground equations).
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Lemma 7.4 If £ and E' are rigid equivalent then Sg .0 = SEu0,06-

Proof: Since E and E' are rigid equivalent, so are p(£) and p(E’) for any X-substitution p.

Hence for any terms u and v, p(u) ép{g} p(v) iff p(u) ’;p(gr) p(v). a

We shall now state a result from [GNPS90], but first we define degenerate equations.

Definition 7.5 A degenerate equation is an equation of the form z = ¢, where z is a variable

and z ¢ Var(t), and a nondegenerate equation is an equation that is not degenerate.

Lemma 7.6 Let E be a set of equations (over 73(X)) and w,v € Tg(X) any two terms.
For any ground rigid (X, E)-unifier § of u and v, if o is the least element of the set Sg .0

of definition 7.2, then the following properties hold:

1. every term of the form o(z) is irreducible by every oriented instance o(l) — o(r) of a

nondegenerate equation | =r € EU E~!, and
2. every proper subterm of a term of the form o(z) is irreducible by every oriented instance

o(l) — o(r) of a degenerate equation | =r € EU E~1.

In view of lemma 7.6, it is convenient to introduce the following definition.

Definition 7.7 Given a set E of equations, a total simplification ordering < on ground

terms, and any two terms u, v, a ground rigid F-unifier 6 of u and v is reduced w.r.t. 0(F)

iff

1. every term of the form 0(a) is irreducible by every oriented instance 0(I) — 0(r) of a

nondegenerate equation l =r € EU E~', and

2. every proper subterm of a term of the form () is irreducible by every oriented instance

0(1) — 0(r) of a degenerate equation | =r € EU E~1

We have the following lemma as a combination of lemmata 7.4, 7.6 and the existence of

minimal elements in Sg ;.-
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Lemma 7.8 Let E be a set of general equations (over 7g(X)) and u,v € Tg(X) any two
terms. For any ground rigid (X, E)-unifier § of v and v, if o is the least element of the
set Sguve of definition 7.2, then o is reduced with respect to o(E’) for any set E’ rigid

equivalent to E.

Given this and the remark on pure methods at the of section 6, we will assume for the rest
of this chapter that
rigid (X, E')-unifiers are ground and reduced. The next lemma shows why reduced substitu-

tions are interesting.

Lemma 7.9 Let t € Ty, [ = r € F, and let € be a ground E-substitution that is reduced
w.r.t. 0(E). Suppose that 0(t)— g gq=rt". Let t' = t[8 « r]. Then

1. B occurs inside t, i.e. f € Dom(t), and
2. t' € Ty and t" = 0(t').
The proof is given in appendix A.4.
This lemma is important because it shows that pieces of a rigid (X, £)-unifier of u and v

can be tracked down to the terms in {E,u,v}. By an inductive argument on the length of

rewrite proofs, we obtain the following corollary.
Corollary 7.10 Consider a rewrite proof of the form
0(uo) «p,,0(8) Ut 2 5,0(F) Uz < 6,6(B) -+ Bub(E) Un-
For 1 <7< nlet v =ui1[Bi — L] = wo[B1 < r1,... Bi « ri]. Then
0(uo) ——py0(8) O(u1) «—p, 08) 0(u2) ——p,0E) - —pn_1,0(8) 0(tn).

Furthermore, for 1 < < n, u! = 0(u;) and §; € Dom(u;).
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8 Finding Reduced Sets of Rewrite Rules

Rewrite systems are like equations except that they clearly specify a left and a right hand
side. Rewriting specifies an operational semantics that can be used for equality steps. As
opposed to equations, rewrite rules specify direction which can be used to define normal
forms. These normal forms are interesting because they state a type of finalizing condition
which we need to ensure progress at each step of the rigid E-unification method we present
in section 9.

We formally define some of these concepts before presenting the results.

Definition 8.1 Let — be a binary relation — C Tx(X) x Ts(X) on terms. The relation
— is monotonic iff for every two terms s,¢ and every function symbol f, if s — ¢ then
flo.oys,...) — f(...,t,...). The relation — is stable (under substitution) if s — ¢

implies o(s) — o(t) for every substitution o.

Definition 8.2 When a pair (s,1) € E is used as an oriented equation (from left to right),
we call it a rule and denote it as s—¢. The reduction relation —p 1s the smallest stable
and monotonic relation that contains E. We can define t; — g 1, explicitly as above the
only difference being that (s,%) is a variant of a pair in £ (and not in £ U E~'). When
t1 — g t2, we say that t; rewrites to ts, or that we have a rewrite step. When we want to

fully specify a rewrite step, we use the following notation.

Some of the arguments a,s 1 or ¢ may be omitted. This notation means that tree ¢, is

rewritten at address o using rewrite rule s — ¢ and substitution o to obtain tree t,.

When Var(r) C Var(l), then a rule [ = r is called a rewrite rule; a set of such rules is

called a rewrite system.

Definition 8.3 Consider a ground term rewriting system R. R is noetherian iff there exists
no infinite sequence of terms ¢y,15,13,... such that ¢{;—grts—gts—g..., and it is confluent

iff whenever t; «——p t,, there exists a term t5 such that ¢; ——p t3 pe— t5. R is canonical
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iff it is noetherian and confluent.

A term t is irreducible by R (or in normal form) if there exists no ¢’ such that t—prt’.

A system R is left-reduced iff for every [ r € R, lis irreducible by R — {l 5 r}; R is right-
reduced iff for every [ r € R, r is irreducible by R. R is called reduced iff it is left-reduced
and right-reduced.

8.1 Ground Equations

Snyder [Sny89] presents an O(n logn) method for compiling ground equa,ltions into reduced
sets of rewrite rules. For example, if E = {f3(a) = «a, f*(a) = a,9(c) = f(a),g9(h(a)) =
gle),e = h(a),b = m(f(a))} then R = {f(a) — a, g(¢) — a, m(a) — b, h(a) — c} is
reduced equivalent to E.

Snyder’s method computes R by first computing the congruence closure of E, rewriting
some terms using congruent subterms and selecting representatives for each congruence class.

Since general equations are sort preserving, term rewriting modulo F is sound since
it does not violate sort constraints. Similarly rewriting must preserve the set of variables
and satisfy the variable renaming property hence given a set E of general equations, any
equivalent set R of rewrite rules produced by Snyder’s algorithm is also general.

We expand the method to systems which contain variables when we regard these as frozen.
Hence if the equations are order-sorted and general, so is the resulting reduced set of rewrite
rules. This justifies the use of an unsorted algorithm to interreduce sets of L-equations. The
complexity of Snyder’s algorithm is O(nlogn) where n is the size of the system of equations
in DAG format. The method is nondeterministic in that it produces some reduced set of
ground rewrite rules. If we denote the reduction procedure by =% we can state the following

results.

Lemma 8.4 If E is a set of general equations and E =% R, then R’ is also general. In

particular all terms in R’ are E-terms.
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Theorem 8.5 [Soundness (Snyder)] For any set of ground equations E, if E =% R’, then

Theorem 8.6 [Completeness (Snyder)] For any set E and for any reduced ground term

rewriting system R’ equivalent to F, F =x R’

8.2 Non-ground Equations

Snyder’s method handles only the ground case. We are interested in extending the reduction
procedure to systems of equations containing variables, but we regard those variables as
frozen, i.e. as constants over an extended signature. The method and all the results adapt
themselves without difficulty to this case. We restate some of the results in these terms.

Let us recall the notion of rigid equivalence given in definition 7.3 on page 31.

Given two sets £/ and E’ of equations, we say that E and E’ are rigid equivalent iff
for every two terms u and v, u =p viffu ég-‘ v (treating F and E’ as sets of ground
equations).

It is clear that if £ and £’ are rigid equivalent, then for every S-substitution 0, (£) and

O(E') are rigid equivalent. The soundness result now reads as follows.

Theorem 8.7 If £ = R’ then viewing R’ as an equation system, E and R’ are rigid

equivalent.

Definition 8.8 A strict ordering < has the subterm property iff s < f(...,s,...) for every
term f(...,s,...) (since we are considering symbols having a fixed rank, the deletion property
is superfluous, as noted in Dershowitz [Der87]). A simplification ordering < is a strict
ordering that is monotonic and has the subterm property. A reduction ordering < is a strict
ordering that is monotonic, stable, and such that = is well founded. With a slight abuse of
language, we will also say that the converse > of a strict ordering < is a simplification ordering
(or a reduction ordering). It is shown in Dershowitz [Der87] that there are simplification

orderings that are total on ground terms.
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We are interested in obtaining a reduced system which is compatible with respect to a
given ordering. That is, where the rules are oriented such that if  — r € R, then r < [. We
develop this now. First we notice that although we do not know exactly how to produce a

reduced system compatible with a given ordering, such a reduction does exist.

Theorem 8.9 [Completeness with respect to <] Let E be a set of X(X)-equations (i.e. the
terms in the equations are in 7g (X)), and let < be a total simplification ordering on 7x(X).
Then there exists a reduced set R’ of ¥-rewrite rules compatible with < such that £ = R'.

Proof: Gallier, Narendran, Plaisted, Raatz and Snyder [GNP192] present the desired rigid

equivalent set of rewrite rules R'. By theorem 8.6 £ = R'. o

We now show how to obtain total simplification orderings on terms with variables. The
following definition is an extension of one appearing in [GNPS90]. There, a total simplifi-
cation ordering is defined on the set of subterms of an equation system. We extend this by
defining a total simplification ordering on the whole term algebra 75 (.X'). This ordering be-
comes crucial when showing the completeness of the method for finding rigid (X, F)-unifiers.
In [GNPS90], portions of this ordering are guessed and then extended. Although our ap-
proach deals with an infinite ordering, our method never has to guess any portion of it. We

simply need to know its existence.

Definition 8.10 Given a ground Z-substitution # and a total simplification ordering < on
ground X-terms, the total simplification ordering <y on Tx(X) is defined as follows.
First, arbitrarily define a total ordering on the set of variables X. For example pick some

enumeration of the variables, if X = {z,...,2;,...} define
2 2wy ifd < i
Extend =<’ by stating that a variable is less than any non-variable term:
x <"t whenever z € X and t ¢ X.

Now, we define <j recursively as follows: given Y-terms u and v, u <} v iff either

(1) 6(u) < 0(v), or
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(2) 0(u) = 6(v), and either

(2a) wu is a variable and u <’ v, or

(2b) u= f(ury...  un), v = f(v1,...,0,), and (uy,... ,u,)(=5)"(vy,... ,v,), where

(%‘;)I“ is the lexicographic extension of <j.

Consider the reflexive transitive closure of < and denote it by =,.

We claim that =<y is a total ordering on 7g(X) that is monotonic and has the subterm
property. The only problem is in showing that <, is total, as the other conditions are then
easily verified. The proof is given in the appendix A.5.

In view of theorem 8.9 we have the following corollary:

Corollary 8.11 Let E be a set of equations and # a ground X-substitution. There exists a
rigid reduced Rewrite System R’ compatible with <4 such that £ =% R’. Furthermore, R’

can be computed in non-deterministic nlog(n) time.

9 Finding Complete Sets of Rigid (X, F)-Unifiers

In this section we develop an order-sorted method to find rigid (X, E)-unifiers for systems £
of general equations. The method is intrinsically order-sorted in that each of its components
is order-sorted and the central component of the method, namely the reduction of peaks, is
performed in such a way that a piece of an order-sorted rigid (X, E)-unifier is created. We
compare our approach to the one taken by Meseguer, Goguen and Smolka in [MGS89] where
an unsorted algorithm is used to come up with a complete set of unsorted E-unifiers. Then
a complete set of order-sorted (X, E) unifiers is produced by using the sort information. We
could take a similar approach here by using the algorithm presented by Gallier, Narendran,
Plaisted and Snyder in [GNPS90]. They present an NP procedure to generate complete sets
of unsorted Rigid F-Unifiers. We could first run the unsorted algorithm and then use the sort
information to produce a complete family of order-sorted rigid E-unifiers. The disadvantage
of this approach is that it does not make full use of the sort information. If u and v are rigid

(X, E)-unifiable then 0(E) Fy 0(u) = 0(v). Since E is general, so are 0(E),0(u) and 0(v).
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Hence LS(0(u)) = LS(0(v)). Since 0 is a X-substitution, LS(0(v)) < LS(u) and LS(0(v)) <
LS(v). Therefore, unless u and v have a common subsort, they have no rigid (X, E)-unifier.
The method described above would first run the NP unsorted algorithm and then, upon
discovering that the family of sort assignments is empty, return failure.

Our method is intrinsically order-sorted. We modify the unsorted method for finding rigid
E unifiers to a method that builds order-sorted substitutions. Since the sort information
is used at each and every step of the order-sorted algorithm, it detects failure due to sort
conflicts at an earlier stage. At the heart of our method is the algorithm for finding families
of order-sorted unifiers in triangular form described in section 4 which produces complete
families of order-sorted unifiers in triangular form. Those S-unifiers have two properties that
are needed for our method to work: they are idempotent and variable decreasing.

We have also improved upon the unsorted algorithm of [GNPS90] by providing an al-
ternative way of dealing with the problem of orienting the equations. We show that it is
possible to simply guess an orientation. Thus we manage to remove order assignments from
the unsorted method. This improvement also applies to the unsorted case, it substantially
clarifies the method and places the role of the orientation of rewrite rules in its proper place.
Without entering into too much detail, order assignments are guesses of finite portions of
a simplification ordering on £(X)-terms. They provide an orientation to the equations in
E so that by looking at them as rewrite rules one can, via overlaps, discover pieces of a
rigid (X, E)-unifier. By using the procedure to find reduced sets of rewrite rules equivalent
to E presented in section 8 and by imposing a total simplification ordering on the algebra
Tz(X) we manage to do without guessing any portion of the ordering. We simply use the
fact that such an ordering exists and that the reduction procedure is complete (corollary
8.11). Our method uses the reduction procedure of section 8 and a single transformation on
certain systems defined next. Recall that we are assuming E to be a set of general equations.

The following definition is needed.

Definition 9.1 Given a set E of general equations and some equation [ = r, the set of
equations obtained from E by deleting [ = r and r = [ from F is denoted by (E — {I/ = 'r})T.
Formally, we let (E'—{Iﬁnr*})]L ={u=v|u=veB uv#l=r, andu=v#£r=l}L
Notice that if E is general so is (E — {l = r})J[
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Intuitively, the method we present works on three different issues simultaneously. First one
tries to find a peak-free proof of 0(u) «—m) 0(v) by applying some transformations to
E in order to obtain an equivalent system E’ which is reduced in which there is a valley
proof 0(u) ——ggn w gy 0(v). Then one tries to reduce u in the guessed system E’, or
alternatively, one tries to reduce v in E’. If a common element is obtained as a reduction
from v and v we are done, otherwise the system E’ is transformed by guessing a piece of
the rigid (X, E)-unifier of © and v into another equivalent system E” with fewer variables.
However, the proof 0(u) «—g(z» 0(v) might not be a valley proof, hence the process restarts.
The reason it terminates is because in each iteration the number of variables in the system
decreases. There is an NP procedure [Koz76, Koz77] for the base case with no variables, i.e.
9(E) = E.

In order to avoid having three different types of transformations (on E, on u and on v) the
method combines all these into one single apparatus by adding special equations involving
u and v. These allow for the reductions of v and v to be done as part of the transformations
on the system E and they also act as markers to determine when the method has been
successful. We extend the signature £ of E to include function names for these markers and
the new equations. The markers are the function symbols eq, T' and F. The equations are
eq(u,v) = F(u,v) and eq(z,2) = T(z). ® The idea is that at some point eq(u,v) and eg(z, 2)
will unify and this will result in a rigid (¥, E)-unifier of v and v. We face the question of
assigning sorts to the new symbols.

We explained previously that if v and v have no common subsort there can be no
rigid (X, E)-unifier for v and v. If we denote by LBd(S) the set of lower bounds for the
elements of a poset S, the last sentence states that LBd({LS(u), LS(v)}) cannot be empty.
The first step of the order-sorted method is to determine whether LBd({LS(u), LS(v)}) is
empty. If it is then it returns failure, otherwise a member s of LBd({LS(u),LS(v)}) is
guessed. This sort s is a guess of the solution’s sort, i.e. LS(f(u)) = LS(#(v)). Notice that

7

failure can be detected due to sorts conflict at this early stage . Given s one defines the

order-sorted signature £° by adding to ¥ the following

SWe use F(u,v) and T(z) instead of F' and T as in [GNPS90] in order to keep the set of equations general.
"This can be strengthened by replacing u by IP(u,s)(u) and v by IP(v,s)(v).




Order Sorted Rigid E-Unification 41

1. a new sort FQ,

2. a new function symbol T : s — EQ,

3. a new function symbol F': LS(u) - LS(v) — EQ, and
4. a new function symbol eq : LS(u) - LS(v) — EQ.

Given E, a set of equations over Tg(X) , let z € X, be a variable not occurring in £. We

consider finite sets of equations of the form
E..,=E U {eq(u,v) = F(u,v),eq(z,z) = T(2)}

where u,v € 7Tg(X). Notice that eq(u,v) = F(u,v) and eq(z,z) = T(z) are general. tcom-

ment because (for eq(u,v) = F(u,v)),
1. LS(eq(u,v)) = BQ = LS(F(u,v)),
2. Var(eq(u,v)) = Var(F(u,v)), and
3. for any variable renaming p, LS(p(eq(u,v))) = EQ = LS(p(F(u,v))).

Similarly, eq(z,z) = T(z) is general. Hence, if E is general, so is F,,. Notice that the
choice of ¥* is nondeterministic because s is not uniquely specified. As long as every member
of LBd(LS(u),LS(v)) can be picked in polynomial time, our algorithm will remain in NP.
For ¥ finite this is, of course, the case.

The next lemma shows that one can use the system E,, to find rigid (X, £)-unifier of u

and v provided no extraneous terms are introduced in the process.

Lemma 9.2 A E-substitution 0 is a rigid (X, E)-unifier of u and v iff there is some sort s

and some Y*-substitution #’ such that
1. 0" is over Tg(X), i.e. none of the new symbols are used in ¢,
2. 0 = 0| pgr)—¢=} and
3. 0’ is a rigid (¥°, E,,)-unifier of T'(z) and F'(u,v).

The proof is given in appendix A.6.
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We are now ready to present the method. It is based upon a single transformation which
is similar to the one presented in [GNPS90] but does without the order assignment and uses

a different reduction procedure.

Definition 9.3 We define a nondeterministic transformation on systems of the form (S5, E),

where S is a term system and E is a set of equations as above:
(S“' E) ;l‘ilﬁf‘l,llgifz‘ﬁ,o‘jﬂ (S;, Et)'!

where I} = ry, l; = rp € EU E™!, either [;/8 is not a variable or I, = ry is degenerate,
Li/B # Iy, TU(l1/B,13) represents a member of CSUx:(l1/f3,12), which is a X*-substitution
over T3(X), in special triangular form, ® o7 = [t1/21,...,1,/2,] where TU(L/B,13) =

= {{z1,t1),- -+, (zpatp) )
E"=op((E - {lh = TI})J‘ U {L[B « r2] = m}),

S'=SUTU(L/B,1,), and E"=rE'.

The triangular form TU(l;/3,1,) is obtained by running the non-deterministic quasi-linear
algorithm CTU described in section 4.3 which returns either a triangular form or fails. If
it fails, the transformation fails. Notice that, due to the nature of the equations, one can
restrict CSUs:(11/53,12) to a set of substitutions over 7g(X) instead of 7z:(.X), and obtain
a set which is complete for all £*-unifiers over Ty (X). Therefore, o7 satisfies condition 1 of
lemma 9.2.

Also note that the rigid reduced system E’ is obtained nondeterministically from E”. The
non-determinism is introduced by the CTU procedure as explained above and by the non-
deterministic nature of reduction procedure R. The idea is that some E’ will be compatible
with the orientation imposed by 6. In essence, this is a guess of the orientation =<4 imposed
by & on E.

Notice that we do not apply a unifier o in the transformation, but its associated X-substitution
o — T'. This guarantees that the size of the system being transformed does not grow too

much. As a matter of fact, since o1 only uses terms already appearing in the system, it can

8Note that we are requiring that {; /3 and I, have a nontrivial S-unifier. The triangular form of Z-unifiers
is important for the NP-completeness of this method.
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be implemented by moving pointers in a DAG, hence the system which results from applying
ot is at worst as large as the original one. This plays a significant role in placing our method

in NP.

Although or(li[8 < r3] = 1) looks like a critical pair of equations in £ U E-1, it is
not. This is because a critical pair is formed by applying the order-sorted unifier of ,/3
and Iy to L[ « r3] = rq, but [t1/z1,...,t,/2,)] is usually not a unifier of [;/3 and . It is
the composition [t;/z1];... ;[t,/z,] that is a unifier of [;/8 and I,. In addition note that in
general, a / T associated with the triangular form of a unifier of /;/8 and I, does not have
to preserve sorts, i.e. LS(7(ly/B) and LS(7(l2) do not necessarily have to agree. The reason

for using special triangular forms is to take care of this problem.

Lemma 9.4 Let E be a system of general Y-equations and S a set of pairs of the form
< z,t > with t € Tg(X) and LS(t) < LS(z).
Suppose that (S, F)=(5’, £'), then

1. all pairs in .S are of the form < z,t > with z a variable, ¢ € Tx(X) and LS(t) < LS(z).
2. E'is a set of general equations, in particular its terms are well sorted, and
3. for any X-unifier ¢ of S’, ¢(F) and ¢(E') are rigid equivalent.
See the proof in appendix A.7.
By iterating lemma 9.4 we can prove by induction the following.

Lemma 9.5 Suppose that (0, £) =% (S’, E'), then,

1. S’ consists of pairs of the form < z,% > with z a variable, t € Tx(X) and LS(t) < LS(z)

(in particular S’ consists of L-terms).
2. E'is a set of general equations, in particular of order-sorted equations, and
3. for any E-unifier ¢ of S’, ¢(F) and @(E') are rigid equivalent.

For the previous lemma to hold it is fundamental that the evolving equation system re-
mains general, because that guarantees that all terms are order-sorted hence the substitution

being built in S is a ¥-substitution.
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Figure 7: The signature X.

Given a finite coherent order-sorted signature ¥, a set.E of general X-equations and two

S-terms v and v, the method to find rigid (¥, E)-unifier for u and v is the following.

Method

If Lbd(LS(u), LS(v)) is empty announce failure. Otherwise non-deterministically pick
s € Lbd(LS(u), LS(v)). Construct the signature X° and the set E,, of general I*-equations.
Find a reduced set E o of general rewrite rules equivalent to E,, by running the nonde-
terministic procedure R, i.e. E=grFEy. Let m the total number of variables in Ej, and
V = Var(E) U Var(u,v). For any sequence (@, Eo) =7 (Si,Ei) consisting of at most
m transformation steps, where & < m, if the non-deterministic algorithm for CSUs+(Sk)
(over T5(.X)) produces a T-unifier fs,, and k is the first integer in the sequence such that

F(w,w) = T'(w’) € E) for some w,w’ € Ts(X) of sort s, return the Z-substitution fs, |v.

We shall prove that the finite set of all £-substitutions returned by our method forms a
complete set of rigid (£, E)-unifiers v and v. In particular, the method provides a decision
procedure that is in NP. But first let us show how the method works via an example.

Consider the coherent signature X of figure 7.

In order to facilitate the notation we will denote the variables by the letter z with a

Center tor Digital Economy Research

Stermn School of Business
‘aper [8-91-40
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subscript to indicate its sort. For example z3 is a variable of sort ss.

Let E = {g(f(27)) = f(27),9(f(22)) = q(z2)}. Consider the question of finding a
rigid (X, E)-unifier of the E-terms u = ¢(z6) and v = f(z1).

First we guess a sort below the least sorts of u and v. Let s3 be our guess. We construct

the set of general equations E, , over ¥* as follows:

E.., = EU {eq(zs, 23) = T(23), eq(q(2s), f(z1)) = F(q(2e), f(21))}-

1) The reduction procedure does not change the set, it just orients it as the equations

are written above. We obtain Ejy:

Ey ={ g(f(zﬂ) = f(27),
9(f(z2)) = 4(z2),
eq(z3, 23) — T'(23),

eq(q(z6), f(21)) = F(q(26), [(21))}

2) There is an overlap between the first two rules at the root. Let o1 = [27/2], then
TU(g(f(27)),9(f(z2))) = [< 21,22 >] and 07,1 = 01. By applying o7, to the system resulting

from the overlap we obtain:

E, ={ q(z)= f(=),
9(f(2z2) = q(22),

eq(z3,23) = T'(z3),

eq(q(ze), f(21)) = F(q(z6), f(21))}-

3) We reduce the second equation to obtain

Ey ={ f(z2)— q(22),
9(q(z2) = q(22),
eq(z3,z3) = T'(z3),

eq(q(ze), f(21)) = F(q(2e), f(21))}
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and S; = {< 27,22 >}.

4) There is an overlap between the fourth and the first rules. A unifier of f(z;) and f(z;)
is chosen: oy = [z1/z5, 22/25]. The resulting set of equations is already reduced:
E, ={ f(zs)— q(2s),
9(q(zs) — q(z5),
eq(zs, z3) — T'(z3),
eq(q(26), 9(25)) — F(q(z6),9(25))}
and S; = {< 23,25 >, < 21,25 >, < 27,22 >}.
5) We overlap the last two rewrite rules using the unifier o2 = [23/q(25), 25/ 25, 26/ 25). We
need to compute a triangular form T'U(eq(zs, z3), €q(q(2s), ¢(25))). One such triangular form
is given by {< z3,¢(z}) >, < 25,25 >, < z¢,24 >} where z} is a new variable of sort s3. We
obtain
Ey ={ [f(z3)=q(z)
9(alz5) = q(z3)
F(q(23),q(z3)) = T(q(23)),
eq(q(z3), a(23)) = Fa(z3), q(23))}.

This system is already reduced, thus we have
Es ={ f(23)— q(z3)

9(a(z3) — q(z3)

F(q(z3), ¢(23)) — T(q(23)),

eq(q(z3), a(23)) — F(q(z3), 9(23))}-
We have S3 = {< z3,q(2}) >, < 25,25 >, < 26,25 >, < 22,25 >, < 721,25 >, < 27,22 > }.

Now, we managed to obtain an equation of the form T'(w') = F(w,w), thus the method

stops. We can find a Z-unifier 0y of Sz, 01 = [21/25, 22/ 25, 23/ q(25), 25/ 25, z6/ 25, 27/ 25). Re-

stricted to the variables in F,, we obtain:

§ = [21/2:;1 32/253 2'6/2:;, ET/ZZ;]'
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And indeed:

0'(w) = 0'(q(26)) = 4(23) r((s(ea))zatz2)) I (23) =10 (s )= (23) = O'(v)

shows that 0 is a rigid (X, E)-unifier of u and v.
If instead of choosing s = s3 at the very first step, when constructing £, ,, had we chosen

s = 85, we would have obtained a different rigid (£, E)-unifier, for example:
9 = [2‘1/2;, 22/225 ZG/z;s 27/221-

There is also choice in the selection of o7 and o3, all of which lead to different rigid unifiers.

We now show the soundness of the method.

Theorem 9.6 [Soundness] Let Ey be a reduced form of E, ., i.e. E,,=%rEo; So = 0; m the

total number of variables in Fy; and V = Var(E)U Var(u,v). If
(So, Eo) =& (Sk, Ey),

if fs, is a L*-unifier in CSUg:(Sk) over Tg(X), F(w,w) = T(w') € Ey, for w,w’' € Tg(X) of
sort s and F(t,t") = T(t") ¢ E; for all z, 0 <7 < k < m, then 0g,|v is a rigid E-unifier of u
and v.

Proof: We shall prove the following claim by induction on &.

Claim. Given any set of the form F,, = F U {eq(u,v) = F(u,v), eq(z,2z) =T(z)}, with F
a set of general L(X)-equations and u,v € Tx(X), for any pair (So, Eg) where Sy is any set
of pairs of the form < z,t > with ¢t € 7g(X) and LS(t) < LS(z), and Fy is rigid reduced
and rigid equivalent to E, ,, if

(So, Eo) =T (Sk, Ex),

if O, is a Y’-unifier in CSUs:(S) over Tg(X), F(w,w) = T(w') € E} for some t € Ty (X),
and F(t,t") = T(t") ¢ E; for any X°-terms t,¢',t", for all 7, 0 < ¢ < k < m, then 05, is a
rigid (X°, Ey)-unifier of T'(z) and F(u,v), where 05, € CSUs:(S)) and s, is over Tx(X).

Proof of claim.
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In the base case, we must have k = 1 because F(w,w) = T(w') ¢ Eo U Eg'. In order

that F(w,w) = T'(w') be in E;, the transformation step must be
(So, Eo) = (SoUTU(eq(z,2),eq(u,v)), Er),

where Ef = o((Eo — {eq(z,2) = T(2)}) U {F(u,v) =T(z)}), Ei==rEn,

TU(eq(z,z), eq(u,v))is a triangular form of a ¥*-unifier of eq(z, z) and eq(u, v) (over Tx (X)),
o is the X%-substitution (over Ts(X)), associated with T'U(eq(z, z),eq(u,v)) and 8" = Og, is
in CSUsg:(S) over Tx(X).

By lemma 4.12 0;0' = ', hence 0'(F(u,v)) = ¢/(T(z)) € 0'(E;). Since by lemma 9.4,
0'(Ey) and 0'(E,) are rigid equivalent, 8'(F'(u,v)) égr(p;o) 0'(T(z)). This shows that §" is a
rigid (¢, Ep)-unifier of F'(u,v) and T'(z). The soundness of the reduction procedure R (see
theorem 8.7) implies that ¢ is a rigid (£°, E,,)-unifier of F'(u,v) and T'(2).

For the induction step, assume that
(So, Eo) = (S1, E1) =7 (Sk, Ex),
where S; = SoUTU(l,/8,12), Ej=rE; with
Bj = o((Bo— {ly =)V U {L[8 = ra] = 1)),

if 0/ = 0g, is a L*-unifier in CSUss(Sk) over Tx(X), F(w,w) = T(w') € Ei, F(t,t') =
T(t") ¢ E; for all i, 0 <1 < k < m, TU(lL/B, 5) represents a E*-unifier over Tx(X) of ;//3
and l; in triangular form, o = [ti/1,...,t,/x,] where TU(l1 /B, 1) = {{(z1,t1), ..., (zp, 1)}
Thus the induction hypothesis applies to (S, F1), and the Y*-unifier 8’ of Sy (over Tx(X))
is a rigid (£°, Ey)-unifier of T'(z) and F(u,v) (over Tg(X)). Since S; € Sy and &' unifies
Sk, by lemma 9.5, 0'(Ey) and 0'(E,) are rigid equivalent. Hence ¢’ is a rigid (¥°, Ep)-unifier
of T(z) and F(u,v) (over Tg(X)). This concludes the induction step and the proof of the

claim. O

Applying the claim to Sy = 0 and an Ey such that E,,=xEy, we have that §" is a
rigid (2%, B, )-unifier of T'(z) and F(u,v) over Tg(X), where 8’ = 0g, is in CSUsg:(Sk) and

is over 75(X), and by lemma 9.2, 0s, |y is a rigid (£, E)-unifier of v and v. O
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The main technique in the proof of the completeness part is the removal of peaks by
the use of critical pairs (Bachmair [Bac89], Bachmair, Dershowitz, and Plaisted [BDP8T],
Bachmair, Dershowitz, and Hsiang [BDHS6]).

Theorem 9.7 [Completeness] Let F be a set of general £-equations over 7y (X)) and u, v two
terms in 75(X). Let 0 be a rigid (¥, E)-unifier of v and v and let s = LS(0(u)) = LS(0(v)).
Consider the order-sorted signature £ and the set of general axiom E, , as described above.
Then, there is a reduced set Ey of general axioms rigid equivalent to E, , and letting So = 0,
m the number of variables in Ey, and V = Var(E) U Var(u,v), there is a sequence of
transformations
(So, Eo) =T (Sk, Ei),

and there exists 0s, € CSU(Sy) over Tg(X), where k < m, F(w,w) = T(w') € Ey, F(t,t") =
T(t") ¢ E; for all 7, 0 < i < k. Furthermore, 0, |v is a rigid (£, E)-unifier of v and v.
Proof: First, since it is clear that the method is pure, thus it can be assumed that 0

is a ground substitution and that V' C D(#). By lemma 9.2, 0 can be extended to a
L*-substitution §' over 7Ty (X) such that 6 = 0'|p(gy—¢z} and &' is a rigid (¥°, I, ,)-unifier of
T(z) and F(u,v) over Tg(X). By lemma 7.6, there is a minimal element 6, € Sg, , 7,F¢ that

is a ground Y°-substitution satisfying
1. , Cg,, ¢,
2. 0, is a rigid (5°, E.,)-unifier of T(z) and F(u,v),
3. 0, is reduced w.r.t. 6,(F,,),
4. since D(0) = D(6,) and V C D(0), we also have V C D(6;) and
5. since 0 is over Tx(X), so is 0;.

Let <4, be the total simplification ordering on 7x(X) induced by ; and =< as in definition
8.10. By theorem 8.9 there exists Eg reduced with respect to <4, such that E,, =z FEo.
Since Ey and FE,, are rigid equivalent, by lemma 7.8 ; must be reduced w.r.t. 0;(F,). We

shall prove the following claim.

Claim. Given a ground Y*-substitution 6; such that V' C D(#,), letting Ej be a set of general
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axioms such that E,, = Fy and Ey is reduced with respect to <g,, if #; is reduced with
respect to 0;(Ep), is a L*-unifier over Tg(X) of Sp and is a rigid (°, Ep)-unifier of T'(z) and

F(u,v), then there is a sequence of transformations
(So, Eo) = {Sk, Ek)

where k < m, S is unifiable, F(t,t') =T (t") € Ey, F(t,t') =T(t") ¢ E; for all 7,0 < < k,
and 0, unifies Sk (over Tg(X)).
Proof of claim. Let

T(w') = uo +—6,(Bo) W1 “—6,(Fo) - -+ +—61(Eo) Un—1 “—6;(Fo) Un = F'(w,w)

be a proof that 6,(7'(z)) égl{go} 0,(F (u,v)). We proceed by induction on the pair (m, {uo,...,un}),
where m is the number of variables in Ey and {ug,...,u,} is the multiset of terms occurring
in the proof. We use the well-founded ordering on pairs where the ordering on the first com-
ponent is the ordering on the natural numbers, and the ordering on the second component is
the multiset ordering <,, extending <. First, observe that since T' < F' < r < eq(s, 1) for all
r,s,t € Ty, the above proof must have some peak because oriented instances of the equations
eq(u,v) = F(u,v) and eq(z,z) = T(z) are of the form eq(s,t) — F(s,t) and eq(s,s) — T'(s).
Thus, in the base case, we have m = 1, n = 2, and u; = 6;(eq(u,v)) = 01(eq(z,z)). Hence,
0; is a unifier of eq(z,z) and eq(u,v). Let o be an idempotent and variable decreasing
Y*-unifier over 7g(X) such that o < §; (guaranteed to exist by completeness of the CSU
procedure), and let TU(eq(z, z), eq(u,v)) be a triangular form of o. By lemma 4.16, since 6,
unifies eq(z, z) and eq(u,v), it unifies TU(eq(z, z), eq(u,v)). Let E{ = or((Eo — {eq(z,2) =
T(z)}) U{F(u,v)=T(z)}) where o7 is associated with TU(eq(z, z), eq(u,v)). We have

(S(], Eu) = (S],E;),

with 51 = So UTU(eq(z,2),eq(u,v)) and E] =¢ E;.

Since 0y unifies Sg and T'U(eq(z, z), eq(u,v)), it unifies S; and the claim holds.

For the induction step, consider a peak wui_1 «—¢,(5,) %i —e, () ui41- Note that

u; = wi—1 and u; > u;y;. Assume that

Ui =6,,0,(lh=ry) Wi-1
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and

Ui 85,01 (la=rp) Wi+l
where l; = 1y, ls = ry € EgU E5' and B, and f3; are addresses in u;. By lemma 7.9, we have
that u; = 6;(u;) for j =i —1,4,¢+ 1 and By, € Dom(u}). We need to examine overlaps

carefully. There are two cases.

Case 1. B; and B, are independent. Then, letting v = w;[B; « 01(r1), B2 « 01(r2)], we have
Uiyl —(By) U “—6,(B,) Wi+1, and u; = v. We obtain a proof with associated sequence

(R < ooy Wiy Dy Wity o way Mg o SIS 35 % B
{10y yUn} =m {Uoye sy Uic1, VyUig1ye-vyUn),

and we conclude by applying the induction hypothesis.

Case 2. f3; is an ancestor of 3, (the case where (35 is an ancestor of f; is similar), and

letting B, = 13, we see that

01(h)/B = (01(w;)/B1) /B = 02(w)/ B2 = 0 (L2) (1)

Hence 01(l1)—=p,6,(1=r,)) 01(11)[B « 01(r2)]. Since 0, is reduced with respect to Eo we have
again by lemma 7.9 that § € Dom(l;) hence by (1) 0,(1;/8) = 6(lz). Therefore, [,/ and
l; are unifiable. Since l; — r; and [, — r, are in Ey with that orientation because FEj is
reduced with respect to <y, it must be the case that [;/8 # [,. Not only is it important
that Ey is interreduced, but that the orientation of the rules is as in 8(E,,,).

Let o < 0; be an idempotent and variable decreasing L*-unifier (over Tx (X)) in CSUs:(L /8, l2),
let TU(l1/B,1) be a triangular form of o and let o be the associated £°-substitution. Notice

that or is over Tg(X). Thus we have
(S{},Eﬂ) =< Sl,El =

Since 6, is ground, it is idempotent, and since it unifies [; /3 and [, by lemma 4.16, #; unifies
TU(l/B,1;) as well. Hence 0; unifies S;. Since 6;(Fy) and 6,(E;) are rigid equivalent, 6,

is also a rigid (£¢, Ey)-unifier of T'(z) and F(u,v). Since 6, is is minimal in Sg,, 1,Fre,
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0y(E..), 01(Eo), and 0,(E;) are rigid equivalent, and 6; Cg, , ', as argued previously, 0, is
also reduced w.r.t. 0;(E;). Also note that since o is variable decreasing, so is o7, hence at
least one variable in the set {z1,...,z,} does not occur in I(or). Thus, this variable does
not occur in Ey, and m’ < m where m’ is the number of variables in E;. Therefore, we can

apply the induction hypothesis to 6, S; and E;, and obtain a sequence
(S1, Br) =% (Sk, Ex),

where k < m/, Si is unifiable, F(w,w) = T(w’) € Ey, F(t,t') = T(t") ¢ E; for all ¢,
0 <7<k, and 0 is a E°-unifier of Sy over Tg(X). This concludes the induction step and

the proof of the claim. O

Let us apply this claim to prove the theorem. Let Sy = @) and Ey be a rigid reduced set
with respect to =<y, such that E,, = Es. By the claim, there is a sequence of at most
m transformations as stated in the theorem, and 0, is a £°-unifier of Sy over Tg(X). Since
the set C'SUsx:(Sk) restricted to substitutions over 75 (X) is a complete set of X*-unifier over
Tx(X), there exists some 0s, € C'SUs:«(Sk) such that 0s, < 6,[V]. We know that 6; Cg, , ¢',
so we have 05, <g,, 0'[V]. Therefore, 05, |v <g 0[V]. Finally, by theorem 9.6, we see that

Os,|v is a rigid (X, E)-unifier of u and v. O

Theorem 9.7 also shows that order-sorted rigid-unification is decidable for general axioms.

Corollary 9.8 For ¥ a finite coherent order-sorted signature, E a set of general axioms,
Rigid (¥, E)-unification is decidable.

Proof: By theorem 9.7, a (ground) rigid (X, F)-unifier 8 of v and v exists iff there is some
sort s € ¥, a set F,, of general over ¥* obtained as described above, a rigid reduced form

Eo of E,1.e. E =5 Ey and some sequence of transformations

(@3 EU) :>+ (Ska EL)
of at most £ < m steps where m is the number of variables in Ey, and such that Si 1s £°
unifiable (over 7g(X)), F(w,w) = T(w') € E, for some w € Ty(X); and F(¢,t") = T(1") ¢
E; for all i, 0 <i < k, all t,#',#" € T5(X). Clearly, all these conditions are finitary and can

be tested. Thus, order-sorted rigid E-unification is decidable. o
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Figure 8: f(c) = g(c¢)

Combining the results of theorem 9.6 and 9.7 we also obtain the fact that for any set £ of

general axioms, any S-terms u, v, there is always a finite complete set of rigid (I, E)-unifiers.

Theorem 9.9 Let E be a set of general equations over 75(X), u, v two terms in 7z(X),
m the number of variables in £ U {u,v}, and V = Var(E) U Var(u,v). There is a finite

complete set of rigid (¥, E)-unifiers for u and v given by the set
{0s.|v | Os, € CSUgs(Sy) is over T(X), and (0, Eo) =% (Sk, Ei), k < m},

with E,, == Eo, and where Sj is unifiable, F(w,w) = T(v') € E;, F(t,t') = T(t") ¢ E;

forallz, 0 <z < k.
Let us now illustrate via two examples how the method takes advantage of sort information.

Example 9.10 Consider the problem presented at the end of section 4.2. The signature is
shown in figure 9.10. Consider the equation system E = {f(c) = g(c)}, and let us try to
find a rigid (I, E)-unifier for v = f(21) and v = g(z1). In this case LS(u) = LS(v) = s2.
Let us pick s € LBd({s2}). The choices are s; and s,. Clearly, no solution can have sort s,
because for any -substitution 8, LS(0(u)) = s;. Let us therefore pick s = s. We construct

the system E, , as follows:

fle) =g(e)
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eq(f(z1),9(21)) = F(f(21),9(x1))
eq(z,z) = T(2)

By interreducing we obtain the system FEq:

fe) = g(c)
eq(f(z1), 9(z1)) = F(f(21),9(21))
eq(z,z) = T(2)

There is no overlap possible between the last two equations because f(z;) and g(z1) are not
unifiable. An overlap between the first and the last equations leads to a dead end. Therefore,
the only possibility involves overlapping the first and second equations. This entails finding
TU(f(z1), f(c)). However, [¢/x;] which is not well sorted! Therefore the algorithm returns
failure. Hence u = f(z;) and v = g(z;) are not rigid (2, E)-unifiable.

This is indeed correct. Notice that an unsorted algorithm would return the substitution
[c/x1] as a solution. A further attempt to obtain a X-substitution from it would fail. Thus,

the order-sorted is more efficient because it detects failure at an earlier stage.

Example 9.11 AC (Adapted from [MGS89].)
Let the set of sorts be § = {Elt, Mult}with Elt < Mult, and let ¥ consist of a binary oper-
ator - : Mult Mult — Mult with the syntax of juxtaposition. The equations are associativity

and commutativity:

1 23 =222

1{}1 % (102 . 103) = (‘u’)l . 102) S 1[’3

Consider the terms u = 2 - s and v = y - t, with 2, s,y and t variables of sort Flt.

The system has the following covering of unsorted F-unifiers:
L. [t/=,y/t]
2. [y/=,t/s]

3. [(y-q)/s,(z-q)/1]
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4. [(y-q)/= (s q)/t]
5. [(t-q)/s:(z-q)/y]
6. [(t-q)/,(s-q)/y]

7. [(g-p)/z,(q"- D) /s, (- P') ]y, (q-q')/1]

However only the first two are well sorted. Also, the first two are rigid unsorted E-unifiers.
The third one is not, because its proof requires two instances of associativity. However, by
expanding the system E to a system E’ which includes an additional instance of associativity,
the third substitution represents an unsorted rigid E’-unifier.

Let us see how our method computes the first rigid (£, E')-unifier. The system of equations

By, 18

wy - (we - ws) = (w; - wy) - w3
eq(a:.s,yt):F('rs,yt)
eq(z,z) = T(2)

After reducing, we obtain Fj:

Z1+29 > 2Za -2

wy - (wz - ws3) — (wq - wy) - w3

eq(z-s,y-t) > F(z-s,y-1)

eq(z,2) = T(z)
There is an overlap between the first and third rewrite rules, with o7 = TU(x - 5,2, - 23) =
[z1/2,5/z). After rewriting and applying o7 we obtain E!:

18 =82

wy - (wg - w3) = (wy - wy) - w3

eq(s- 21,y 1) = F(z1- 5,y 1)

Center for Digital Economy Researc
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After reducing we obtain £:

218 8-
wy - (wg - w3) — (wy - wy) - w3
eq(s-z1,y-t) = F(s- 21,y 1)

eq(z,2) = T(z)

Next, the last two rules are overlapped. One can then obtain TU(eq(s-z1,y-t),eq(z,2)) = [s-
21/2,8/y,t/z1]. The system E, is obtained by applying the transformation and interreducing:

t-s —s5-t
wy - (ws - w3) — (wy - wa) - w3
T(s-t)— F(s-t,s-t)

eq(s-t,s-1) = T(s-1)

Thus the method terminates and produces the rigid (X, E)-unifier [t/z,s/y,t/z1,5/22).

It is interesting to see how the sort information can be used to discard a substitution at an
early stage. For example, the substitution [(y - q)/s,(z - ¢)/t] is not well sorted because s
and t are of sort Elt while the co-arity of a term containing - has to be Mult. Let us see
how this is witnessed by our method. First, the system E,, now contains an extra instance

of the associativity equation:

2129 = 2921
wy - (ws - wz) = (wy - wy) - w3
wy - (why - wh) = (w] - wh) - wh
eq(z-s,y-t)=F(z-s,y-t)
eq(z,2) = T(2)

On attempting to overlap the second and fourth rule (as a matter of fact any of the two
associativity rules with the fourth one), we have to compute TU(z - s,z - (22 - z3)). There is
no such X-unifier since s and (z; - z3) do not unify (by virtue of s being a variable of type

Elt.) As a matter of fact, due to this reason, none of the other E-unifiers is well sorted.
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Again, out method stops before computing an ill-typed unsorted unifier. This explains the

sense in which the order-sorted method is more efficient than the unsorted one.

10 NP-Completeness of Rigid (X, E)-unification

First, recall that rigid E-unification is NP-hard. This holds even for sets of ground unsorted
equations, as shown by Kozen [Koz76, Koz77].

Theorem 10.1 Rigid (X, E)-unification is NP-complete.

Proof: By corollary 9.8, the problem is decidable. It remains to show that it is in NP. From

corollary 9.8, u and v have some rigid E-unifier iff there is some sequence of transformations
(So, &) =1 (Sk, &) of at most k < m steps where m is the number of variables in &, and
a there is a Y-unifier 05, of S such that F(w,w) = T'(w') € & and F(t,t') = T(t") ¢ & for
all 2, 0 <7 < k. We need to verify that it is possible to check these conditions in polynomial
time.

We first show that each = step takes time polynomial on its input. Let n; = size(<
Si, & >) = |Si| + |&] where |S;] is the size of the DAG representing all terms in S; and
|€;| is defined similarly. The first part of = consists of picking the equations /; = r; and
la = r3; choosing an address 3 in l; checking that either [;/8 is not a variable or I, = ry
is degenerate; and finally making sure that I;/8 # l;. These steps can all be done in time
linear on n;. Next, TU(ly/B,1,) is obtained by running the CTU algorithm which is quasi-
linear on its input. The next two steps involve a) adding TU(l,/f,1,) to S; which takes
at most time O(n;) and then finding a reduced set via the reduction procedure =% which
runs in time O(|E;|log(|Ei]) < O(nilog(n;)). Thus it. takes at most time O(n;log(n;)) to
do the transformation (S;, ;) = (Siy1,&iq1). After applying the transformation we run the
non-deterministic unification algorithm to compute elements of C'SU(S;). This procedure
runs in quasi-linear time. Provided we obtain 0s, € CSU(S;), we still have to check whether
F(w,w) = T(w') € &. This is linear on the size of &. Therefore, the transformation
together with the guessing of a E-unifier for §; and checking for the halting condition still

takes O(n;log(n;)) time.
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Since the transformations are applied in sequence, in order to guarantee polynomial time
for k transformation steps, we should make sure that the size of the system does not grow too
much. Since TU(l;/8,1;) is constructed using elements of &; exclusively, its size is at most
|&:], and since Sy is obtained by adding TU(l;/f,l2) to S;, it follows that |Si| < |Si| + |&l.
Since Sy = 0, we see that |S;] < ¢ x |&| = ¢ X ng. The equational part of the system,
&; is obtained in three steps. First rewriting an equation, which does not increase the size
of € since it involves changing pointers in a DAG. Then, o7 is applied, which again can
be implemented by rearranging pointers. Finally the =% is applied which as explained in
section 8 does not increase the size of &;. Thus for 0 < ¢, |&| = |&| and n; < (24 1) X no.

Therefore, the total time for &k transformation steps is bounded by
O(EiZsn: x log(ny)) <
O(BizE (i x ng) x log(i x ng)) =
O(no x B=ki x log(i) + no x log(no) x BiZei) <
O(no x k* + ng x log(ng) x k*) = O(ng x k*).

Since k < ng we have that the total time for £ transformations along with the checks for

the halting condition is at most O(n}), hence polynomial on the size of E. Thus we have an

NP-algorithm.

11 Conclusion and Further Research

The contribution of this paper is the presentation of an Order-Sorted method for Rigid
(I, E)-unification. We show that the problem is decidable, furthermore that it is in NP.
The method is intrinsically order-sorted and uses the triangular forms produced by a non-
deterministic order-sorted unification algorithm presented in [Isa89]. The fact that order-sor-
ted rigid unification remains in NP is quite impressive given the intricacy of the procedures
involved. Not only do we present an order-sorted method, but we propose improvements
to the original unsorted algorithm [GNPS90] which substantially simplify it. A significant
improvement of our method over the unsorted rigid E-unification one is that we do not use

order assignments to guess the right orientation of the rewrite rules. We have managed to
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include the guessing into the reduction procedure.

It is important to note that the order-sorted method is more efficient than the unsorted
one because it is able to weed out unfit substitutions as these are built, as oposed to doing
this after the fact, when the substitution has already been generated.

The method presented only works for general axioms. In the future, we plan to extend
our results to larger classes of axioms. Let us point out that the main difficulty lies in the use
of congruence closure to build up E-unifiers. If the equations are not general, ill-typed terms
might be formed thereby infecting the method. An alternative is to refine the reduction

procedure of section 8, so as to keep the systems order-sorted.
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A Appendix of Proofs

A.1 Proof of lemma 4.12
Since 0 is a L-unifier of T', we have 0(z;) = 0(t;) = 0(or(z;)) for every 7, 1 < ¢ < k. Since

or(y) =y forall y & {z1,...,2}, 0 = or;0 holds.

A.2 Proof of lemma 4.13
By the definition of triangular forms we have that o = [z1/t1];... ; [®n/tn]. The proof relies
upon the following claim:
For 1 <1 <n,
o (@i) = o(zi). (2)

Suppose the claim has been proven then
o (@) = of o (i) = o7 (0 (22)). ®)

Since o is idempotent, the variables zy,... ,z, do not appear in o(z;), therefore

or(o(z;))=0(z;), hence ovﬁ.f_l)(or(:.-:g)) = o(z;). Therefore from 3 we obtain for 1 <z < n:

G"E'?](l'i) = o(2;). (4)

Since zy,... ,a, are all the variables in D(o) and D(or), we have a}n}

= o as wanted.
The proof of the claim proceeds by descending induction. First, it is clear that or(z,) =

t, = o(z,). Suppose the claim is true for ¢ 4+ 1 then

ot (@) = of N or(zi))
= Ugtﬂ_(ﬁln(o‘;r‘(:rg))

O_(T‘n+} _(l+l))(t1).

By the definition of a triangular form, the only variables in ¢; that can be affected by op are
Tit1,... s Tn. By the inductive hypothesis, we have that for i + 1 < k < n,

g,(r"“‘(m”(xk) = o(x1). Therefore

o= gy = 4(2). (5)

This completes the proof of the claim and of the lemma.
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A.3 Proof of lemma 4.16
By lemma 4.13, o = J}n). Since o is idempotent, none of the variables in the domain or

appear in Jg-n}(:c,-). Therefore org?}(:v,-) = J’Er-n-'-l)(:tg). Thus,

o(z:) = o) (2:) = o (ki) = o (&) = o (t).

A.4 Proof of lemma 7.9

By hypothesis 8(t)/3 = 0(1), and t" = 0(t)[3 < 0(r)].

Suppose that g is an address not in Dom(t), since § € Dom(0(t)), it has to be below the
address f; of a variable z in t. That is, 8 = $,8' with t/8; = 2. We therefore have

0()/B' = 0(t)/B = 0(1).

This means that 0(x)— 4 gz, 0(x)[8" « 0(r)] which contradicts the assumption that 6 is
reduced with respect to < 6(E), <>. Therefore it must be the case that 2 € Dom(t). This

proves part 1. As a consequence we have that 6(t)/3 = 0(t//3) hence
' = 0B — 0(r)] = 0[S — r]) = O(F).

That ¢’ € 7 follows from the fact that E is general, hence LS(I) = LS(r), thus LS(t) =
LS(t"). This proves part 2.

A.5 Proof that <, is a total ordering

We claim that <, is a total ordering on 7g(X) that is monotonic and has the subterm
property. The only problem is in showing that <, is total, as the other conditions are then
easily verified. The proof is similar to one given in [GNPS90].

Notice that # defines an equivalence relation =y on Tg(X) as follows:
u =g v if and only if 0(u) = 0(v).

Due to clause (1) of the definition of <j, it is enough to show that for any two distinct
elements u,v in some nontrivial class C' modulo =y, either u <5 v or v =<y u, but not

both. Note that the set of classes modulo =4 is totally ordered: C' < C" iff 0(C) < 0(C"),
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where §(C') denotes the common value of all terms 0(t) where t € C. We proceed by
induction on this well-ordering of the classes. Consider the least class C. It cannot contain a
composite term ¢ = f(uy,... ,u,) because by the subterm property of <, 8(u;) < 6(t) hence
[u;] < [t] = C contradicts the minimality of C'. Therefore C' contains some variable and at
most one constant. But then, it is already totally ordered by <’. Given any other nontrivial
class C, if u and v are both variables, we already know by (2a) that either u <" v or v <" u,
but not both. If u is a variable and v is not, by (2a) we can only have u <’ v. If both v and
v are not variables, then they must be of the form u = f(uy,... ,u,) and v = f(vy,... ,v,),
since C is unified by 0. Since u # v, there is a least 7 such that u; # v;, and since 0 unifies
u and v, 0 unifies u; and v;. But then, because < has the subterm property, u;, v; belong to
some class C; such that C; < C. Therefore, either u; <4 v; or v; <4 u;, but not both, and
thus by (2b), either u <4 v or v <4 u, but not both.

Denote by <4 the irreflexive portion of =<y, i.e. <g==4 \{(¢,1)|t € Tx(X)}. Clearly, <y is
a simplification ordering on 75(X). We will be somewhat ambiguous in not differentiating
between <y and =y, and we will say that <4 is a total simplification ordering on 7z (X).

(The nuance is that a simplification ordering is strict, hence irreflexive, hence it cannot be

total.)

A.6 Proof of lemma 9.2

If a ¥-substitution @ is a rigid E-unifier of u and v then 0(u) ég(ﬁ‘} 0(v), let s = LS(0(u))?,
construct ¥* and E, , as described above, with z : s. Extend 0’ such that ¢'(z) = 0(w). Since
LS(0'(z)) = LS(0(u)) = s = LS(z), ¢ is order-sorted. Since 0(eq(u,v)) ég(E) eq(0(u),0(u)),

clearly

0'(F(u,v)) égr(gwl 0 (eq(u,v))
Spng.,) 9(eq(z,2))

*

gﬂ’(ﬁ'u,u) 9'(T(2))

9Since E is general LS(0(v)) = s as well.
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Conversely, if there is some Y*-substitution 8’ over 7x(X) such that

0'(T(z)) égl(gu_ﬂ) 0'(F(u,v)), because eq, T, F' are not in X, from the way congruence closure
works, it must be the case that 6'(eq(z, z)) égt{}_:;ulu) 0'(eq(u,v)). Letting 0 = 0'|p(ery—{3
since the terms in the range of 0" are in 7x(X) and eq, T, F' are not in ¥, we must also
have 0'(z) ég(E} 0(u) and 0'(2) ég(E] 6(v). Thus 0(u) ég{g) 0(v), showing that 0 is a
rigid (X, E)-unifier of u and v.

A.7 Proof of lemma 9.4
Let I; = ry and l; = r, be the equations in E involved in the transformation, 8 the address
in Dom(ly) such that /8 and l; are T-unifiable via a X-unifier o. Let TU(l;/f3,1,) be the

triangular form used in the transformation with associated ¥-substitution or.

Point 1. This follows from the fact that TU(l;/3,l2) and S are of the desired form; and
= SWUTU(LB,l).

Point 2. Recall that E’ is obtained as follows:
o E" = o7((E —{l =} U{li[B — 2] =7}), and

o =gl

By lemma 3.3, o7((E — {l; = m})]L is general. To show that or(Li[3 « ra] = 1) is
a general equation we first realize that, by the way or was chosen (a special triangu-
lar form), op(l1[B « 7] is a E-term. Indeed, LS(or(l1/8)) = LS(or(lz)), and since
l, = ry is general, LS(o7(ly)) = LS(o7(rz)). Therefore the result of replacing or(l2)
by or(r;) does not violate sort constraints hence ar(l1[3 « 73]) is a E-term'®. Clearly
Var(or(h[8 « ral)) = Var(or(n)). Similarly, LS(p(or(L[8 — ra]))) = LS(p(or(r1)) for
any variable renaming. Hence or(li[3 < rs] = r1) is a general equation. Therefore, £ is

general. Since the reduction procedure preserves general axioms (see lemma 8.4), L' is also

general.

10 Actually the reason why we push the terms or(ly/B3) and or(l2) to be of the same sort is preciselly to
guarrantee that the term resulting from rewriting one by the other be well typed.
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3) We only use the fact that ¢ unifies TU(l;/8,l2), which is true because TU(l1/3,13) C 5"
First, notice that since ¢ unifies TU(ly/8,l2) and o7 is the E-substitution associated with

TU(l4/B,13), by lemma 4.12, or; ¢ = ¢, hence

P(E") = olor((E—{h=m})TU{l[8 = r)=r})
= o((E—{h=r}) U{L[B — ri] = m}).

We now show that ¢(F) and ¢(E") are rigid equivalent. By the above, it is enough to show
that

(a) ¢(li = r1) can be deduced from @(l1[f « r2] = r1) and ¢(lz = r3); and vice versa, that
(b) @(lh[B < rs) = r1) can be deduced from ¢(l; = ry) and p(ly = r3).

By lemma 4.15, since ¢ unifies TU(ly/3,12), it unifies {1/ and l;. To show (a), notice that
e(h) = o(h)[B — p(l2)] = @(L[B — L])—p(lL[B « ra2])—p(r1).
To see that (b) holds, notice that

P(Lh[B — 12]) pta—=r) —P(L[B « b]) = (L) =, 2r)P(T1)-

By the soundness of the reduction procedure (theorem 8.7) E” and E’ are also rigid equiv-
alent, hence for any X-substitution ¢, @o(E"”) and ¢(E’) are rigid equivalent. Since we just
showed that ¢(E) and ¢(E") are rigid equivalent, we have that ¢(F) and ¢(E’) are rigid

equivalent.
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