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Abstract  

Numerous proposals for extending the relational data model to incorporate the temporal 
dimension of data have appeared in the past several years. These proposals have differed 
considerably in the way that the temporal dimension has been incorporated both into the 
structure of the extended relations of these temporal models, and consequently into the 
extended relational algebra or calculus that they define. Because of these differences it has 
been difficult to compare the proposed models and to make judgments as to which of them 
might in some sense be equivalent or even better. In this paper we define the notions of 
t empora l ly  grouped and temporal ly  ungrouped historical data models and propose 
two notions of historical relational completeness, analogous to Codd's notion of rela- 
tional completeness, one for each type of model. We show that the temporally ungrouped 
models are less powerful than the grouped models, but demonstrate a technique for extend- 
ing the ungrouped models with a grouping mechanism to capture the additional semantic 
power of temporal grouping. For the ungrouped models we define three different languages, 
a temporal logic, a logic with explicit reference to time, and a temporal algebra, and show 
that under certain assumptions all three are equivalent in power. For the grouped models 
we define a many-sorted logic with variables over ordinary values, historical values, and 
times. Finally, we demonstrate the equivalence of this grouped calculus and the ungrouped 
calculus extended with the proposed grouping mechanism. We believe the classification of 
historical data models into grouped and ungrouped provides a useful framework for the 
comparison of models in the literature, and furthermore the exposition of equivalent lan- 
guages for each type provides reasonable standards for common, and minimal, notions of 
historical relational completeness. 
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I Introduction 

Over the course of the past decade various historical relational data models have been 

proposed, including [JM80], [BZ82], [CW83], [Ari86], (Tan861, [CC87], [Lor87], [NA87], 

[Sno87], [Gad%], [SarSO] .' These data models are intended for those situations where there 

is a need for managing data as it changes over time. Generally, these data models extend 

the standard relational data model by including a temporal component. This incorporation 

of the temporal dimension has taken a number of different forms. Chief among these have 

been the addition of an additional attribute, say TIME, to a relation (the equivalence of 

time-stamping) [Sno87], or the inclusion of time as a more intrinsic part of the structure of 

a relation [CC87, Gad861. The latter approach results in what have been called non-first 

normal  f o r m  relations. 

Although the structures of the historical relations defined in each of the proposed histor- 

ical relational data models differ from each other to varying degrees, they it has remained 

a subject for debate whether they have the same modeling capabilities. Moreover, because 

the query languages defined in these data models differ from each other in their formula- 

tions, it has remained unclear whether they provide the same capabilities for extracting 

various subsets of a database. So many different languages have appeared in the literature, 

in fact (e-g., [MS89] refers to no fewer than eleven algebras alone) that it is crucial to have 

some standard measure against which to compare them. 

In this paper we address the issue of completeness for historical relational data models. A 

metric of historical relational completeness can provide a basis for determining the 

expressive power of the query languages that have been defined as part of proposed historical 

relational data models. As such, the notion of historical relational completeness can serve a 

role similar to that of the original notion of relational completeness first proposed by Codd 

[Cod721 and later justified as being reasonable by Bancilhon [Ban781 and [CH8O]. 

In Section 2 we first address the issue of the modeling capability of the various historical 

lThis list is not exhaustive; for an overview of the area of time and databases see [AC86] and [SnoSO]; 
for an ongoing bibliography on the subject see [McK86], [SS88] and [SooSl]. 
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data models that have been proposed. In particular we explicate the different modeling 

capabilities achieved by incorporating the temporal dimension at the tuple level (by time- 

stamping each tuple) or at the attribute-value level (by including time as part of each 

value). We introduce the terms temporally ungrouped and temporaIly grouped to 

distinguish between these two approaches, respectively, and discuss the relative power of 

the two approaches. We then propose two different canonical models to serve as the basis 

for our analysis of the power of query languages for these two approaches. The distinction 

between these two different types of models, temporally ungrouped and temporally grouped, 

serves to structure the remainder of the paper. Essentially, we define two separate notions of 

completeness - one for each of these two types of models - and then discuss the relationship 

between the two notions. 

In Section 3 we examine the temporal ly  ungrouped models, and define three different 

languages for them: a temporal logic, a logic with explicit reference to time, and a temporal 

algebra. We show that under certain assumptions about the temporal universe all three 

are equivalent in power. We propose these languages as a standard for completeness for 

temporally ungrouped models. In Section 4 we examine the temporal ly  grouped mod- 

els, and define a historical relational calculus for them; this calculus is a many-sorted logic 

with variables over ordinary values, historical values, and times. We propose this calculus 

as a standard of completeness for models of this type. We then show in Section 5 how 

the representation power of the ungrouped models and their languages can be extended 

to incorporate the grouping semantics. Finally, in Section 6 we examine the completeness 

of several historical relational languages that have been proposed in the literature with 

respect to these metrics. 

It is worth pointing out that there are a number of additional issues which might reasonably 

be said to be related to the question of completeness of query languages but which are 

necessarily outside of the scope of this paper. We are limiting our attention to models 

which incorporate a single dimension of time (historical, as opposed to temporal models, in 

the terminology of [SA85]), but we believe that these results could be extended to handle 

additional time dimensions. Firrthermore, in the spirit of most of the work on completeness 
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for standard relational languages, we do not address the issue of temporal aggregates (as, 

for example, in [SGM87]). Work in the spirit of [Klu82] could extend the results here in 

that direction if so desired. Finally, we do not incorporate schemaevolution over time (as in 

[CC87]) because this would entail a comprehensive treatment of null values, which is beyond 

the scope of this paper. For the same reason we limit our attention to homogeneous relations 

([Gad88]), i.e., relations whose tuples have attributes all defined over the same period of 

time. In all of these decisions of what to incorporate in our notion of "reasonable" queries, 

we have been motivated by the desire to choose the common denominator of the various 

models proposed. In this way we have been be able to apply our metric of completeness 

fairly against several models in the paper. 

We conclude in Section 7 with a summary of our results and some directions for future 

research. 

2 Temporally Grouped and Temporally Ungrouped 
Data Models 

Two different strategies for incorporating a temporal dimension into the relational model 

have appeared in the literature. In one, the schema of the relation is expanded to include 

one or more distinguished temporal attributes (e.g,, START-TIME and END-TIME) to 

represent the period of time over which the fact represented by the tuple is to be consid- 

ered valid. This approach has been referred to in the literature as tuple time-stamping 

or as a first-normal form (1NF) model. In the other approach, referred to as attribute 

time-stamping or as a non-first-normal form (NINF) model, instead of adding additional 

attributes to the schema, the domain of each attribute is extended from simple values to 

complex values (functions, e.g.) which incorporate the temporal dimension Both [CC87] 

and [SnoSO] contrast these two approaches. 

Consider, as an example, a relation intended to record the changing departmental and 

salary histories of employees in an organization2. Figures 1 and 2 show typical representa- 

2Similar examples have appeared in [CW83], [Gad861 and [Sno87] 
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EMPLOYEE 
NAME I DEPT I SALARY I/ time 

Figure 1: Prototypical INF Historical Employee Relation 

tions in these two approaches. While both relations appear to have the same information 

content, i.e., the same data about three different employees over the same period of time, 

the models represent this information in quite different ways. In the 1NF approach (Fig- 

ure 1) each moment of time relevant to each employee is represented by a separate tuple 

which carries the time stamp. In the NlNF approach (Figure 2), each employee's entire 

history is represented within a single tuple, within which the time stamps are embedded 

as components of the values of each attribute. 

In each of the so-called NlNF models (e.g.,[Tan86, CC87, Gad@]) all of the information 

about each employee is represented in a single tuple; in the 1NF models that have been 

proposed (e.g.,[Ari86, Sno87, Lor87, TC90]), this property does not hold. Also note, with 

respect to the NlNF models, that while in general a key field like NAME would typically 

be constant over time, there is no requirement that this be the case. For example, in the 

E M P L O Y E E  relation in Figure 2 the employee Tom changes his name to Thomas at time 

3. There are many applications where the value of a key need not be constant over time, 

but merely unique in the relation at any given time. 

While NlNF models inherently group related facts into a single tuple, 1NF' models, whether 

historical or temporal (using the distinction in [SA85]) for models with one or two time 

dimensions, respectively) are problematic in this regard, as Figure 1 makes clear. Such 
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Figure 2: Prototypical NlNF Historical Employee Relation 

EMPLOYEE 

models provide no inherent grouping of the tuples that represent the same objecp; for 

instance, they do not group the tuples of the same employee (Jim, e.g.) in Figure 1. As 

we shall see, it is up to the users to know and to maintain that grouping in all of their 

interactions with the database. 

NAM% 

0 -+ Tom 
1 -+ Tom 
2 -+ Tom 
3 -+ Thomas 
1 -+ Jim 
2 -+ Jim 
3 -+ Jim 
1 -+ Scott 
2 -+ Scott 

We point out that another technique for time-stamping tuples (or values) that has appeared 

in the literature (e.g., [Sno87, Lor871) uses a time-interval rather than a time-point as the 

time-stamp. For example, the VALID- TI&% ('om) and (to) attributes in Figure 3 denote 

a time interval.It is well-known that if time is discrete) , then these two approaches are 

equivalent[vB83]. Nearly all of the work on historical or temporal databases has assumed 

a discrete temporal domain (McKenzieSnodgrass89). We will therefore utilize the two 

representation schemes interchangeably. 

Although in this paper we are concerned only with the issue of completeness of query 

languages for historical data models, it is worth pointing out that the same grouping 

DEPT 

0 -+ Sales 
1 --+ Finance 
2 -+ Finance 
3 -+ MIS 
1 -+ Finance 
2 -+ MIS 
3 -+ MIS 
1 -+ Finance 
2 -+ Sales 

problem occurs in temporal models, as the prototypical representation in Figure 3 makes 

clear. In these models the tuples are stamped, not merely with the time period during which 

the fact that they represent held true in reality ( VALID- TIlWE), but also with another time 

SALARY 

0 -+ 20K 
1 -+ 2OK 
2 -+ 20K 
3 4  27K 
1 -+ 20K 
2 --+ 30K 
3 - 40K 
1 -+ 20K 
2-+ 20K 

stamp representing the time period during which the database knows of the fact ( TRANS- 

lifespan 

{0,1,2,3) 

{1,2,3) 

{1,2) 

3?Ve will use the term object occasionally in the paper. We use it  in a completely neutral sense, and not 
as a reference to objects in any object-oriented paradigm with all of the implications thereof 
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Figure 3: Prototypical 1NF Temporal Employee Relation 

EMPLOYEE 

TIME). We do not treat such relations in this paper, but believe that our results could 

(and should) be extended to address them. 

Because the term NlNF has been used elsewhere to refer to various kinds of relaxations of 

the 1NF Property including, among other things, models which allow nested relations or 

set-valued attributes, we prefer to use the terms Temporally Grouped and Temporally 

Ungrouped for these two types of models. In the sequel, therefore, we will use the term 

Temporally Grouped (TG) to refer to models which provide built-in support for the 

grouping of related temporal values, and Temporally Ungrouped (TU) for those which 

do not. 

NAME 
Tom 
Tom 
Tom 
Thomas 

Jim/ 
Jim 
Jim 
Scott 
Scott 

In the rest of this section we will precisely define two canonical models, one ungrouped and 

the other grouped. These models will first be informally contrasted, and then will be used 

in the remainder of the paper to provide the basis for our definitions of temporally grouped 

and temporally ungrouped completeness. 

TRANS- TIiWE 

2.1 A Canonical Temporally Ungrouped Relation Structure 

DEPT 
Sales 
Finance 
Finance 
MIS 
Finance 
MIS 
MIS 
Finance 
Sales 

(start) 

t 1 
t2 
t3 
t 4  

t5  
t6 

t7 
t s 
t9 

The structure for relations in temporally ungrouped data models is essentially a straight- 

forward extension of the standard relational structure. 

(stop) 
00 

00 

co 

00 

CO 

co 
co 
co 

00 
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SALARY 
20K 
20K 
20K 
27K 
20K 

--- 

30K 
40K 
20K 
20K 

n 

VAL ID- TIME 
(from) 
0 
1 
2 
3 
1 
2 
3 
1 
2 

(to) 
1 
2 
3 
4 
2 
3 
4 
2 
3 



Let UD = {Dl, D 2 . .  . , Dnd) be a (universal) set of value domains (i.e., each D; is a set 

of values), where for each i, Di f: 0. D = U:zl Di is the set of all values. 

Associated with each value domain D; is a set of value comparators  ElDi, each element 

of which can be used to compare two elements of the domain. At a minimum each set 

of value comparators contains the comparators "=" and ' L f "  to test for the equality and 

inequality, respectively, of any two elements of the associated value domain. 

Let UA = {A1, A2, . . . , An,) be a (universal) set of a t t r ibutes .  Each attribute names some 

property of interest to the application area. Moreover, there is a distinguished attribute 

TIME, not in UA, which will be used to represent temporal information. 

A tempora l ly  ungrouped historical relation scheme RTU is a 4-tuple 

RTU =< A,  T ,  K ,  D O M  > where: 

1. A U { T I M E )  is the set of attributes of scheme RTu, where A 5 UA; the attributes 

in A are called value a t t r ibutes ,  and TIIWE is the tempora l  a t t r ibu te .  

2. T = {to, tl ,  . . . , t i , .  . .) is a non-empty set, the set of t imes,  and < is a total order on 

T .  The cardinality of T is restricted to be at most countably infinite. 

3. The set KU {TIME),  where K C A,  is the key of scheme ItTu, i.e. KU {TIME)  --+ 

A. 

4. D O M  : A U  {TIME)  -+ UD U {T) is a function that assigns to each value attribute of 

scheme RTU a value domain, denoted DOhf(Ai, RTU), and to TIME the temporal 

domain T .  

A temporal ly  ungrouped historical relational database scheme 

DBTu = {R1,,, R2TU,. . . , RnTU) is a finite set of temporally ungrouped historical relation 

schemes. 

A temporal ly  ungrouped historical t up l e  tTu on scheme RTU =< A, T, K ,  D O M  > 

is a function that associates with each attribute A; E A a value in DOIM(A;, RTU) and 

to T I M E  a value in T. 
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A tempora l ly  ungrouped historical relation r on scheme RTU =< A, T, K,  DOM > 
is a finite set of ungrouped historical tuples on scheme RTU that satisfies the key constraint. 

A tempora l ly  ungrouped historical database dTu = {rlTU, r Z T U 7 .  . . , is a set 

of temporally ungrouped historical relations where each riTU is defined on a (not necessarily 

unique) ungrouped historical relation scheme RiTU. 

The EMPLOYEE relation in Figure 1 is a typical relation in the temporally ungrouped 

historical data model, 

2.2 A Canonical Temporally Grouped Relation Structure 

As a basis for the specification of our notion of historical completeness for temporally 

grouped temporal relations, we begin by defining a canonical temporally grouped histori- 

cal relation upon which we will base the calculus that we define in the next section. The 

structure of this relation is specified in such a way as to capture the intent and require- 

ments of a temporally grouped historical relation, and to be general enough to have the 

representational capabilities of other proposed historical relations. 

Let UD, D, ODi, and UA be as for the canonical temporally ungrouped relation structure 

(Section 2.1). 

T will designate the set of t imes  in the model, and any subset L 5 T is called a lifespan. 

(Note, therefore, that a lifespan can consist of several, non-contiguous intervals of time.) 

Corresponding to each value domain D; is a t empora l  domain LIiT of partial ternporal- 

based functions from the set of times T to the value domain D;. Each of these partial 

functions defines an association between each time instance in some lifespan L, and a 

value in a designated domain, and thus provides a means of modeling the changing of an 

attribute's value over time. 

A temporal ly  grouped historical relation scheme RTG is a 4-tuple 

RTG =< A t  T, K, DOM > where: 
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1. A 2 UA is the set of a t t r ibu tes  of scheme RTG 

2. T = {to, t l , .  . . , t i , .  . .) is a non-empty set, the set of t imes,  and < is a total order on 

T. The cardinality of T is restricted to be at most countably infinite. 

3. K 2 A is the key of scheme RTG, i.e., K -+ A 

4. D O M  : A t UD U (7') is a function that assigns to each attribute of scheme RTG 

a value domain, and, by extension, the corresponding temporal domain. We denote 

the domain of attribute A; in scheme RTG by DOM(Ai, RTG). 

A tempora l ly  grouped historical relational database scheme 

DBTG = {RITG, RZTG,. . . , RnTG} is a finite set of temporally grouped historical rela- 

tion schemes. 

A tempora l ly  grouped historical tuple  ~ T G  on scheme RTG =< A ,  T, K,  D O M  > 

is a function that associates iirith each attribute A; E A a temporal-based function from 

the tup le  lifespan (any subset of T) common to the tuple, denoted tTG.l, to the domain 

assigned to attribute A;. That is, tTG(A;) : L -+ DOM(A;). (We note that it is also 

possible to associate lifespans with attributes [CC87]; a treatment of this is beyond the 

scope of this paper. Doing so permits historical relation schemes to accommodate changes 

that may occur to them over time.) 

A temporal ly  grouped historical relation ~ T G  on scheme RTG =< A ,  T, K,  D O M  > 

is a finite set of temporally grouped historical tuples on scheme RTG such that given 

any two tuples tlTG and tzTG in rTG, Vs1 E (tlTG.l n tZTG.l) 3Ai E K such that 

t l ~ ~  (Ai)(sl) # tzTG(Ai)(s1). This notion of a key simply specifies that there can be no 
time in which two different tuples agree on the key. Although in general we would assume 

that the temporal-based function associated with each key attribute of a tuple would be 

constant with respect to the lifespan of that tuple, we do not require it to be so. Note that 

the EMPLOYEE relation in Figure 2, with three tuples, is an example of a temporally 

grouped historical relation. 

A temporal ly  grouped historical database dTG = {rlTG, rzTG,. . . , rnTG} is a set 
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of temporally grouped historical relations where each riTG is defined on a (not necessarily 

unique) temporally grouped historical relation scheme RiTG. 

In the sequel we will generally omit the subscripts TG and TU when no confusion over 

the type of model will result. 

2.3 Comparison of Grouped and Ungrouped Models 

Many researchers have assumed that these two different approaches to incorporating a 

temporal dimension into the relational data model - the temporally grouped and the tern- 

porally ungrouped approaches - were equivaIent in power, the differences simply a matter 

of style4. In exploring the issue of completeness for historical databases, however, we had to 

try to reconcile these two different approaches, and in doing so came to the conclusion that 

they are not equivalent. Gadia in [Gad881 addresses this issue of grouping (without using 

the term), when he discusses the relationship between his homogeneous model, a grouped 

model, and what he calls a snapshot valued function which is essentially a corresponding 

ungrouped model. However, rather than emphasizing the importance of the diflerences 

between these two approaches, he concludes by showing that they are only weakly equiva- 

lent. Essentially he shows that you can (trivially) take a grouped relation and ungroup it, 

but that for an ungrouped relation there is not a unique grouped relation, and hence his 

equivalence is weak. 

What we will argue in the rest of this section is that the differences are important, and the 

modeling capabilities are not the same. In subsequent sections we shall define precisely a 

notion of completeness for each of the two approaches, and then compare them formally. 

Finally, we will show how by adding grouping mechanism to the ungrouped model there is 

a (strong) equivalence between the two models. 

The first problem with the ungrouped historical models is that without knowledge of the key 

of the relation there is no way of knowing how to group appropriately the facts represented 

*For example. Snodgrass (ISno87, pp.264-2661) discusses what he calls the "embedding" of the temporal 
relation into a flat relation, and informally discusses four techniques for doing so, with the implication that 
they are all equivalent. 

Center for Digital Economy Research 
Stern School of Business 
Worhng Paper IS-91-41 



in an arbitrary and unbounded number of tuples. Also, if the key is not required to be 

constant over all times (and there is no reason to require this), there would be no way at all 

to group related (i.e., describing the same object) tuples! Figure 3 is typical of the figures 

provided with these models (e.g. ,[Sno87, Figure 81) in that it "begs the question" somewhat 

by assuming that the key value of an object remains constant over time. Moreover, these 

figures implicitly sort the tuples by the key field(s). However, since relations are sets, the 

implicit grouping of the multiple tuples for a given object in these models is in fact being 

done subIiminally for the reader and is not supported by these models. A simple listing 

of the tuples in such a relation is not guaranteed to present them in such a nicely ordered 

fashion. 

Another, even more serious problem inherent in these ungrouped models can be seen when 

we consider the result of the following two queries. 

Q1: Give me the salary history of each employee. 

Q2: Give me the salary history of each employee, but without identifying the employees 

to whom they belong. 

Q 1 poses no additional problems for any of the three models: provided the user knows that 

NA~ME is the key, the key is constant over time, and the user remembers (or the DBMS is 

nice enough) to sort the resulting tuples by the key, the interpretation of the tuples in the 

answer to Q1 is no more problematic than interpreting the tuples in the base relation. 

Q2, however, is another matter entirely. First, it is worth noting that this is a very 

reasonable query and asks simply that the DBMS treat the salary history (temperature 

history, rainfall history, etc.) as a first-class value that can be queried, manipulated, etc. 

The result of the query in the three models is shown in Figure 4. Note that only a temporally 

grouped model, such as that in Figure 2, respects the integrity of the temporal values of all 

attributes as first-class objects and therefore yields the answer shown in Figure 4(a). The 

result of the query in such a model could, for example, be piped to a graphics program to 
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produce a visual query output such as is shown in Figure 5 .  Temporally ungrouped models 

cannot support this query, because they do not treat temporal objects as first-class values, 

We believe that a model which claims to support the temporal dimension of data should 

support temporal values - i.e., values changing over time. For example, a SALARY should 

be seen as the history of the changing salary values over some time period, and not as a 

simple scalar value whose time reference is somewhere else in the relation. There are two 

issues here, and they lead to the following definition. A temporal DBMS is said to have 

temporal value integrity if: 

I. The integrity of temporal values as first-class objects is inherent in the model, in the 

sense that the language provides a mechanism (generally, variables and quantification) 

for direct reference to value histories as objects of discourse. 

2. Temporal values are considered identical only if they are equal for all points in time 

over which they are defined, and 

We categorize models which do not satisfy these properties, such as the so-called 1 N F  

historical data models, as Temporally Ungrouped. In their answer to Q2 (Figures 4(a and 

b)), Property 1 is violated: instead of showing salary values for three individuals and at 

nine different moments in time as in Figure 4(a), the T U  model incorrectly equates Tom, 

Jim and Scott's salaries between times 1 and 2 and Thomas' and Scott's salaries between 

times 2 and 3, and discards what it considers duplicates, merely because at those particular 

points in time the salaries happen to have the same values. Property 2 is violated since 

the tuples in the answer are presented as though they are completely unrelated - which 

salaries are tied together into which groups? The model does not provide any inherent 

grouping. The user must therefore always know and demand the key in any query, even 

when, perhaps for security reasons, this is not desired. 

In temporally ungrouped models you can never quite take hold of an object like a "salary." 

You can take pieces of it, but if you try to grab the whole thing and look at it and inspect 

it, it falls through your fingers moment by moment. Only in a temporally grouped model 
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lifespan 

I 2 -+ 20K I {I, 2) 

(a) Answer in TG Model 

I SALARY /I time 1 

m 

(b) Answer in Time Point TU Model 

( c )  Answer in Time-Interval TU Model 

Figure 4: Answers to Q2 
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1 2 3 4 5  

TIME 

Figure 5:  Graph of Employees' Salaries from Figure 4(a?) 

is an object Like a salary (or the pricing history of a stock, or the average annual rainfall 

in Boulder over the last fifty years) a first class object that you can interrogate, examine, 

dissect, or compare to another salary (or the rainfall in Spokane.) It is really an ontological 

question of what exists in the model. As Quine put it, "a theory is committed to those 

and only those entities [emphasis ours] to which the bound variables of the theory must 

be capable of referring" IQui53, in On What There Is]; in temporally ungrouped models 

temporal entities (like salary histories) do not exist because the models and their languages 

provide no mechanism for referring to them. 

We note that the same problem occurs in those ungrouped models (like TQuel [Sno87]) 

which use two attributes, rather than one, to incorporate the valid time Figure 4(b). Only 

a Temporally Grouped model, like the one in Figure 2 exhibits t e m p o r a l  value integrity,  

and therefore provides the correct answer to this query, Figure 4(c), 

The issue of completeness of query languages for a historical relational data model is com- 

plicated by the two representation schemes, TG and TU. We are therefore led to define two 

notions of completeness for historical database query languages, one based on TG models 

and the other on TU models. We first define TU-completeness and demonstrate the equiv- 

alence of 3 different types of query languages for TU models: a temporal logic, a first-order 
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MANAGEMENT 1 
f MGR I PROJECT 1 t i m e  1 

Figure 6: Management TU Historical Employee Relation 

Tom 
Tom 
Herb 
Jim 
Jim 
Jim 

logic with explicit temporal variables, and an extended relational algebra ([TCgO]). We 

then define TG-completeness in terms of a calculus which we call Lh. Lh is a natural 

extension to standard first-order calculus, incorporating two domains (ordinary values and 

times) and providing each domain with constants, variables, and quantification. Finally, 

we show how ungrouped models can be extended in a simple way (by adding the group- 

ing mechanism of group IDS), so that the two completeness notions, modulo the grouping 

capacity, are essentially equivalent. 

One additional aspect that we will address is the issue of sa fe ty :  which expressions in 

the language are guaranteed to yield finite answers, and answers that come from data in 

the database (see, e.g., the description of d o m a i n  independence  in [UllSS]). For instance, 

consider an additional historical relation modeling managers and their projects, as shown 

in Figure 6. Without some restrictions on the way that time references can be made 

in a query, it will be possible to ask questions that in effect create  arbitrary temporal 

relationships among data items where such relationships do not exist in the database. 

P1 
P2 
P2 
P3 
P3 
P3 

For example, in a query language which does not respect t e m p o r a l  value in tegr i t y  the 

following query can be asked: 

4 
4 
5 
4 
5 
6 

This query, here expressed in a temporal calculus (to be described in Section 3.2), could 

also be expressed in other ungrouped languages such as TQuel ([Sno87]). The answer, as 
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I NAME / DEPT / time I 

mi 
Jim MIS 

Figure 7: Answer to Unsafe Query Q3 

shown in Figure 7, relates employees and departments at times which are clearly nonsensical 

because this relationship was created by the query rather than extracted from the data in 

the database. While such a query is clearly expressible in a language for a model which 

treats time as just another attribute, it seems to us questionable whether the model is 

incorporating time into the model in any meaningful way. This issue will be addressed 

by our rules for safe expressions in historical query languages, which incorporate the view 

([AU79]) that query languages should be used for data extraction only. 

Temporally grouped models support temporal values directly - they incorporate the tem- 

poral component into the historical model at the appropriate level, and provide a means 

to refer directly to temporal objects. They also group together into a single tuple all of 

the facts about an object over time. In Sections 3 and Sections 4 we will show that the 

TG representation is more expressive than the TU representation. Thus we can state that 

merely time-stamping tuples in the database, as attractive as its simplicity might make it, 

is not sufficient to adequately incorporate a temporal dimension into the database. 

Because the values of many tuples, or their attributes, frequently do not change over 

long periods of time, it is often convenient to adopt a shorthand notation for temporally 

grouped relations. Figure 8 represents a TG Historical Database using this shorthand 
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EMPLOYEE 

Figure 8: The TG Historical Relations E M P L O Y E E  and D E P A R T M E N T  

NAhilE 
[O, 5) -+ Tom 

[5,6] -+ Thomas 
[2,6] -+ Juni 
[I,  4) -+ Ashley 
[5,6] --+ Ashley 

DEPARTMENT 

notation; we will refer to it in the remainder of the paper. Note that the EMPLOYEE 

relation records historical information on three employees in three historical tuples, and 

the D E P A R T M E N T  relation represents the history of four departments in four historical 

tuples. 
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DEPT 
[O,4) 4 Sales 
[4,6] -+ Mktg 

(2,6/ -+ Acctng 
[I,  3) -+ Engrng 
[3,4) -+ Mktg 
[5,6] -+ Engrng 

Zifespan 

{0,1,2,3,4,5, 6) - 

(0, 1 ,2,3,4,5,6} 

(0: 1 ,2 ,3 ,4 .5 ,6)  
{o , l1213,4 ,516)  

DEPT 
[0,6] -+ Acctng 

[O, 61 -+ Engrng 

[O, 61 -+ Mktg 

[0,6]-+Sales 

MGR 
[O, 2) -+ Paul 
[2,6] -+ Juni 
[O, 5) -+ Wanda 
[5,6/ -+ Ashley 
[O, 5) -+ Tom 
[5,6] -t Thomas 
[0,6]-+Sue 

SALARY 
[O, 3) -+ 20K 
[3,5) -+ 30K 
[5,6] -+ 27K 
[2,6] -+ 28K 
[ l ,  2) -+ 27K 
[2,4) 4 30K 
[5,6] -+ 35K 

lifespan 

{0,1,2,3,4,5,6) 
{2,3,4,5,6} 

{1,2,3,5,6) 



3 Historical Relational Completeness for Ungrouped 
Languages 

In this section, we define the concept of ungrouped temporal  relational completeness. 

It will be based on two temporal calculi and a temporal algebra. We will define all three 

formalisms in this section and show their equivalence. However, to make the paper self- 

contained, we provide a brief overview of temporal logic in the next subsection. 

3.1 Overview of Temporal Logic 

In this section, we review the basics of temporal logic. Both Kroger [Kro87] and Rescher 

and Urquhart [RU71] provide a good introduction to the subject. 

Since temporal logic deals with time, we have to specify the model of time that we will be 

working with. The most general model represents time as an arbitrary set with a partial 

order imposed on it. By specifying additional axioms, we can introduce other models of 

time, e.g. time can be discrete or dense, bounded or unbounded, linear or branching [vB83]. 

Although the temporal calculus can be defined for an arbitrary model of time (since it is 

based on the predicate temporal logic), we consider the discrete linear temporal domain in 

this paper because the algebra TA defined in Section 3.3 is based on that domain. We note 

that this is the model of time generally considered by historical and temporal data models 

([MS90]). 

The syntax of a predicate temporal logic is obtained from the first-order logic by adding 

various temporal operators to it. In this paper, we consider the US logic, i.e., the temporal 

logic with unti l  and since temporal operators, because it is shown in [Kam68] and also in 

[Gab891 that this logic is equivalent to the first-order temporal logic with explicit references 

to time5. There are several different definitions of unti l  and since operators proposed in 

the literature. We will use the definition of these operators from [Kro87] shown in Figure 9. 

5Kamp [Kam68] used the term complete to  describe this property. However, we will use this term in a 
broader sense and abstain from introducing any additional terminology. 
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A until B: is true now if B will be true at  some future time t and A will be 
true for all the moments of time in the time interval (now, t )  

A since B: is true now if B was true at some past time t and A was true for 
all the moments of time in the time interval ( t ,  now) 

Figure 9: Temporal Operators until and since 

The semantics of a temporal logic formula is defined with a temporal structure [I<ro87], 

which comprises the values of all its predicates at all the time instances. Formally, let 

P I , .  . . , Pk be a finite set of predicates considered in the predicate temporal language6. 

Then, a temporal structure is a mapping I< : T -+ Fl x . . . x Fk, where T is a 

set of time instances, and 'Pi is the set of all the possible interpretations of predicate Pj. 

The mapping K assigns to each time instance an interpretation of each of the predicates 

P I , .  . . , Pk at that time. We will use I6 instead of IC(t) to denote the value of temporal 

structure I' at time t ,  We make an assumption, natural in the database context, that the 

domains of predicates do not change over time. 

From a database perspective, a temporal structure I '  is most naturally looked at as map- 

ping of each moment of time t into a state of the database, i.e. into instances of each of the 

database relations at time t. Therefore, each predicate in a temporal structure determines 

a historical relation, i.e. a relation that changes over time. 

A historical database represented in a certain historical data model, such as the (historical 

component of) TQuel data model [Sno87], HRDM [CC87], or the homogeneous data model 

[Gad88], defines a temporal structure, i.e. the mapping I<, although often implicitly. 

Therefore, a temporal structure represents a common base of comparison for different 

historical data models. For instance, the temporal structure of the N l N F  historical relation 

EMPLOYEE presented in Figure 2 is shown in Figure 10. 

Given a temporal structure for temporal logic predicates, we can interpret arbitrary tem- 

poral logic formulas in the standard inductive way [Kro87]. For example, the meaning of 

6Since we are interested in database applications, we consider only a finite number of predicates corre- 
sponding to the set of relations in a database. 
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Figure 10: TemporaI Structure for Relation EMPLOYEE.  

EMPLOYEE 

until and since operators in Figure 9 can be defined inductively in terms of the temporal 

structures for A and B. 

time 

i = 0 

i = 1 

i = 2 

i = 3 

Alternatively, assertions about temporal structures can be expressed in a two-sorted first- 

order logic, where one of the sorts is time. In this logic, arbitrary quantifications are allowed 

over both temporal and non-temporal variables. 

I -  (E7M;PL 0 YEE) 
EMPL(Tom, Sales, 20K) 
EMPL(Tom, Finance, 20K) 
EMPL(Jim, Finance, 20K) 
EMPL(Scott, Finance, 20K) 
EMPL(Tom, Finance, 20K) 
EMPL(Jim, MIS, 30K) 
EMPL(Scott, Sales, 20K) 
EMPL(Thomas, MIS, 27K) 
EMPL(Jim, MIS, 40K) 

It is clear that until and since operators can be expressed in this first-order logic. In fact, 

Figure 9 shows how to do that. Furthermore, Kamp [Kam68] and subsequently Gabbay 

[Gab891 have shown that the two Iogics are equivalent when time is modeled either by the 

real numbers or the integers, 

3.2 Temporal Calculi Tl, and TC 

In Section 3.1 we described the temporal logic US and also considered a two-sorted first- 

order logic with explicit references to time. These two logics give rise to two temporal 

calculi TL and TC. In order to define them precisely, we first introduce the concept of 

temporal safety for the two languages. 

Intuitively, a temporal formula (both a temporal logic and a first-order formula with explicit 
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references to time) is safe if it can produce only bounded relations at  all time instances7 

and if these relations contain only data from the database. We basically define the safety 

of temporal logic formulas as it is done for the snapshot relational case [Ull88], except that, 

in addition, we assume that the temporal operators until and since produce safe formulas 

if operands of these operators constitute safe formulas. It is easy to see that, indeed, these 

temporal operators cannot produce infinite historical relations if they operate on finite 

relations. For the first-order logic with explicit references to time, safety is defined exactly 

as in [U1188]. 

With this definition of safety for the two types of logic, we are ready to define the two 

calculi TL and TC. 

Definition. A temporal calculus query is an expression of the form 

{ x I , x ~ , . - . ~ x ~  14) 

where 4 is a safe temporal logic formula and X I ,  x2,. . . , xn are the free variables in gbs. We 

denote the temporal calculus based on these queries as TL. 

Let T be a temporal domain for the predicates in #. The answer to this query is a historical 

relation defined on T, such that for any t in T, its instance is 

We also define a temporal query expressed in the first-order logic with explicit references 

to time in a similar way as 

where # is a safe formula from the first-order logic with explicit references to time, XI, 2 2 ,  

. . ., xn are the free variables in 4, and t is a temporal variable. The answer to this query is 

defined exactly as in the standard relational case. We denote the temporal calculus based 

on these queries as TC. 

7"~oundedness" refers to  the structural and not to  the temporal domain because we have already 
assumed that the temporal domain is bounded. 

8As in the standard relational case, we assume that other free variables in 4 not appearing among the 
output variables (xl, 2 2 , .  . . , I,) are implicitly existentially quantified. 
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Figure 11: Historical Relation U N E M P L  

U N E M P L  

Note that in both calculi a query operates on historical relations and returns a historical 

relation, i.e. it returns the same type of object as the type of its operands. 

NAM;F 
Tom 
Jim 
Tom 
Scott 
Scott 
8 

Example  1 Assume that time is measured in years. Consider historical relation UN- 

EMPL(NAME) specifying that a person is unemployed for most of the year. Figure 11 

gives an example of such a relation. Historical relation TAXES(NAME, TAX) specifies 

taxes a person paid in a certain year. Figure 12 gives an example of such a relation. We 

say that a person is a "good citizen" if he or she always paid taxes during the period of his 

or her last employment, i.e. since the last time the person was unemployed. The relation 

GOOD-CITIZEN(NAME) can be computed with the following TL query: 

YEAR 
1986 

1987 

1988 
1989 - 1990 

GOOD-CITIZEN = {NAME / TAXES(NAME, TAX) since UNEMPL(NAME))  

The same relation can also be computed with the following TC query: 

GOOD-CITIZEN = {NAME, t I (3t1)(UNEMPL(NAME, t') and 

(Vt")(tl < t" < t + TAXES(NAME,TAX,tM)))]  

The proposal to use TL as a query language for historical databases was made in [Tuz89] 

and in [TCSO]. The proposal to use TC as a query language for historical databases was 

made in [KSWSO]. Since the US temporal logic is equivalent to the first-order logic with 
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explicit references to time for the discrete linear model of time considered in the paper 

[Kam68], it follows that the two calculi TL and TC are also equivalent. 

Scott 
Jim 
Jim 
Tom 
Jim 
Tom 
Jim 
Tom 
Scott 

3.3 Temporal Algebra irA and Its Equivalence to  Calculi TL  and 

In this section, we present a temporal algebra TA that is equivalent to the two calculi 

8400 
10400 
10800 
12000 
11500 
13200 
12800 
13600 
9200 

aennea in me prevlous sec~ion. nis algevra was llrsb lrlLrouuceu 111 1 A b r v j .  

1986 
1987 
1988 

1989 

1990 

Let R = {RtItET, S = {St)tET and Q = {QtItET be historical relations defined over a 

temporal domain (lifespan) T = itl, t,]. Using the standard relational algebra terminology, 

we say that two historical relations are union compatible if their schemas have the same 

sets of attributes. Then we consider the following temporal algebra operators: 

01: Select: S = uF(R) iff St = uF(Rt) for all t in T, where F is the first-order (non- 

temporal) formula defined as for the standard relational case [U1188]. 

02: Project: S = TA ,,..., A,(R) iff St = TA ,,..., A,(Rt) for all t in T, where A1,. . . ,Ak are 

some attributes in R. 

03: Cartesian product: S = R x Q iff St = Rt x Qt for all t in T. 
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04: Set diflerence: S = R - Q iff S and R are union compatible and St = Rt - Qt for all 

t in T. 

05: Union: S = R U Q iff S and R are union compatible and St = Rt U Qt for all t in 2'. 

06a: Future linear recursive operator: S = LF(R7 Q) iff St+l = (Rt T) St)  U Qt, St, = 0. 

06b: Past linear recursive operator: S = Lp(R7 Q) iff st-1 = (Rt n St)  U Qt,  St, = 0. 

A temporal join operation W can be defined exactly as for the snapshot case in terms of 

the Cartesian product, select and project operators. 

Denote the temporal algebra defined by operators 01 - 0 6  as TA. Note that the operators 

01 - 0 5  correspond to the standard relational operators of the snapshot relational algebra 

and are reduced to these operators in the degenerate case when tl = t,. 

Example 2 The relation GOOD-CITIZEN(NAIC'lE), defined in Example 1, can be 

computed in TA as follows. Set TAXES1 = T N A M E  (TAXES). Then 

GOOD-CITIZEN = LF(TAXES1,UNEMPL) 

The resulting relation GOOD-CITIZEN is shown in Figure 13. The last row constitutes 

a prediction of who will be a good citizen in 1991. 

It is shown in [TC90] that the algebra TA is equivalent to the calculus TL and, therefore, 

to TC for the discrete linear model of time. This means that the three languages, i.e. TL, 

TC, and TA are equivalent in terms of the expressive power. 
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GOOD-CITIZEN 
NAME I YEAR 

Figure 13: Historical Relation GOOD-CITIZEN 

3.4 Ungrouped Historical Relational Completeness 

We propose to use the three languages considered in this section, the historical relational 

algebra ( TA) and the two temporal calculi ( TC and TL), as a basis for ungrouped historical 

relational completeness because of the following reasons. First, the temporal calculi have 

a sound and well-studied theoretical basis since they are based on first-order logic and on 

temporal logic. Second, both the calculi and the algebra are very simple. Essentially, one 

temporal calculus is based on the first-order logic and another one is obtained from the 

first-order logic by adding to it the temporal operators until and since. The temporal 

algebra is obtained from the relational algebra by a straightforward extension to its five 

basic operators and by the addition of a single additional temporal operator. Third, the 

two calculi and the algebra are equivalent for certain models of time, i.e. besides being 

simple and "natural," the two approaches have the same expressive power. This suggests 

that they capture an important class of temporal queries. Fourth, the temporal algebra 

and the two calculi are reduced to the relational algebra and calculus in the degenerate 

case when the time set consists of only one instance. Therefore, the notion of historical 

ungrouped completeness is compatible with standard relational completeness when the 
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temporal dimension is so reduced. Fifth, the temporal calculi are independent of a specific 

historical relational data model, and the temporal algebra is independent of any data model 

based on the discrete bounded model of time, Some of the query languages and algebras 

proposed in the literature are tailored to a specific historical data model. That is, operators 

of these languages take into account specific constructs of the underlying historical data 

model. For example, the constructs overlap, begin of and end of of TQuel jSno871 

assume that the temporal data are grouped into intervals. There are no model-specific 

operators in the temporal calculus and in the algebra considered in this paper. This means 

that the temporal calculus can be applied to any historical relational data model and the 

temporal algebra to any historical relational data model supporting discrete bounded time. 

For all these reasons, we propose to use the two calculi and the algebra presented in 

this section as a basis of ungrouped historical completeness. We note that our notion of 

ungrouped historical completeness subsumes the notion proposed in [Sno87, p.2871, "the 

temporal query language, when applied to a snapshot of the database, is at  least as powerful 

as ... Codd's definition." Our notion meets this criterion, but also allows queries (e.g., 

comparing values across different times) that cannot be reduced to operations on a snapshot 

of the database. We will return to this issue in Section 6 when we examine the completeness 

of a number of models proposed in the literature. 

4 Historical Relational Completeness for Grouped 
Languages 

In this section we define a concept of grouped historical relational completeness. 

The basis for this concept of completeness is a (grouped) tuple-based historical relational 

calculus, Lh . 

4.1 A Grouped Historical Calculus 

To begin our development of grouped historical relational completeness we define a tuple- 

based historical relational calculus, the language Lh. This language is intended for grouped 
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historical relations that conform to the canonical grouped relations defined in Section 2.2. 

It is a many-sorted logic with variables over ordinary values, historical values, and times 

admitting quantification over all three sorts of variables. This distinguishes Lh from, among 

other languages, Gadia's calculus [Gad88], which does not have temporal variables or quan- 

tification over them. To simplify the discussion we will assume that we are defining this 

calculus relative to a particular relational database dTG = {rl, 7-2,. . . , r,), with universe of 

values I>, universe of times T and universe of attributes UA.  

The Syntax of Lh 

1. The Basic Expressions of lib are of three categories: 

(a) Constant Symbols 

i. CD = {S1, 62, . . .) is a set of individual constants, at most denumerably 

infinite, one for each value S in D 

ii. CT = {TI, TZ,.  . .) is a set of temporal constants, at most denumerably infi- 

nite, one for each time T in T 

iii. CA = {A1, A2,. . .A,,) is a finite set of attribute name constants, one for 

each attribute A in UA. 

(b) Variable Symbols 

i. VT = {tl, tz, . . .) is a denumerably infinite set of temporal variables 

ii. VD = {xl, x2,. . .) is a denumerably infinite set of domain variables 

iii. VTv = {el, ea, . . .) is a denumerably infinite set of tuple variables 

(c) Predicate Symbols 

i. 0 = {01, 02,. . . , On,) is a set of binary predicates, one corresponding to each 

value comparator defined on objects of type y (e.g., values from a common 

value domain). The predicate symbol < must be included for the domain 

. . 
11. r = {rl, r2, . . . , r,) is a set of relation predicates, one corresponding to each 

relation r in the database d. 
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2. The Terms of Lh are as follows: 

(a) Every individual constant S is a value t e r m  

(b) Every domain variable x is a value t e r m  

(c) If e is a tuple variable, A is an attribute name constant, and t is a temporal 

variable, then e.A(t) is a value t e r m  

(d) Every temporal constant T and temporal variable t is a t empora l  t e r m  

(a) If e is a tuple variable, then e.1 is a lifespan t e rm,  where I is a distinguished 

symbol of Lh 

3. The Formulae of Lh are the following: 

(a) If a and ,8 are both value terms, and 0 is a dyadic predicate, then aB,8 is a 

formula. 

(b) If a is a lifespan term and t is a temporal variable, then t E a is a formula. 

(c) If tl and t2 are temporal variables and T is a temporal constant, then 

i. tl < t2 is a formula, 

ii. T < tl and t l  < T are formulae, and 

iii. T = tl and tl = T are formulae. 

(d) If r is a relation predicate and e is a tuple variable, then r(e) is a formula. 

(e) If # and $ are formulas, then so are (#), 14,  (4 A $), (4  V $), (# + $), and 

(4 ++ $9. 

(f) If # is a formula and t r  is a tuple, temporal, or domain variable, then Vu(4)  and 

3 4 4 )  are both formulae. 

4. The Query Expressions of Lh are all expressions of the form: 

[el .Al, . . . , en.An : t] 4 where: 

(a) [el.Al, . . . , en.An : t] is called a target list, and consists of 

i. A list of terms e;.A; where each e; is a free tuple variable, and 

ii. The free temporal variable t 
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(b) 4 is a formula. 

As a convenience, for a set of attributes A = {Al, Az, . . . , A,} we use the notation e.A 

to denote the list e.Al, e.A2, . . . , e.A, in a target list. Similarly, given a tuple variable e 

that ranges over a set of tuples on a common scheme that consists of the set of attributes 

A = {A1, A2,.. . , A , } ,  we use the notation e.* to denote e.A. 

The Semantics of Lh Here we give the intended interpretation of the tuple relational 

calculus. For convenience the numbering used here correlates directly with that used in 

the specification of the syntax. 

1. The Basic Expressions of Lh denote as follows: 

(a) Constant Symbols 

i. An individual constant S denotes an object in some vaIue domain D; 

ii. A temporal constant T denotes a time in the universe of times T 

iii. An attribute name constant A denotes an attribute in UA. 

(b) Variable Symbols 

i. A temporal variable t denotes a time in the universe of times T 

ii. A domain variable x denotes a value in the universe of domain vaIues D 

iii. A tuple variable e denotes a tuple in some grouped historical relation r in 

the database d 

(c) Predicate Symbols 

i. A binary predicate symbol 0 denotes some value comparator (e.g., =, fi, <) 

over objects in some domain. 

ii. A relation predicate r denotes a relation (set of tuples) in the database 

2. The Terms of Lh denote as follows: 

(a) An individual constant 6 denotes an object in some value domain Di 
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(b) A domain variable x denotes an object in some value domain Di 

(c) A value term e.A(t) denotes an object in some value domain. In particular, it 

denotes the value in the tuple denoted by e of the attribute denoted by A at  the 

time denoted by t. 

(d) A temporal constant T denotes a time in the universe of times T 

(e) A lifespan term e.E denotes a set of times, in particular, the set of times which 

is the lifespan of the tuple denoted by e. 

3. The Formulae of Lh denote as follows: 

(a) crBP is true just in case the denotation of CY stands in the relation 8 with the 

denotation of ,f?, and false otherwise 

(b) t E a is true just in case the time denoted by t is in the lifespan denoted by cr, 

and false otherwise. 

(c) tl  < t:, is true just in case the time denoted by t l  occurs before the time denoted 

by t2, and false otherwise; similarly for T < t l  , tl < T, and T = tl. 

(d) r(e) is true just in case the tuple denoted by e is in the grouped historical relation 

denoted by r, and false otherwise. 

(4 (417 7 4  (4 A $)1 (4 v $1, (4 -+ $ 1 1  and (4 ++ +) . are true just in case the 

obvious conditions on 4 and + hold. 

( f )  Vu(4) and 3u(4) are true just in case the obvious conditions on 4 and u hold. 

4. A Query Expression [el.Al, . . . , e,.A, : t]# of Lh denotes a historical relation, each n- 

tuple of which is derived from a satisfying assignment to  the variables of the formula 

4. The components of the n-tuples are denoted by the value terms e;.A;. The Iifespan 

of each tuple in the result is the set of values of the temporal variable t ,  for which all 

of the ei.A;(t) values satisfy the formula 4. 
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4.2 Safety 

In order to ensure that the relations denoted by expressions of the calculus are well-defined, 

we include along with the syntax given earlier several additional restrictions. Without these 

restrictions it is possible to specify formulae that define historical relations that contain an 

infinite number of tuples, e.g., [e.* : t]-lr(e) At = 12. It is also possible to specify relations, 

some of whose tuples have unbounded Iifespans or undefined values for certain times within 

their lifespans, e.g., [e.* : t]r(e) A ~ ( t  E e.1). 

To avoid such situations we restrict the allowable formulae of Lh to a subset of safe formulae. 

Our the definition of safety derives from [U1188], and is extended to the temporal domain. 

For a formula q5 of Lh to be safe it must satisfy the following conditions: 

1. It does not contain any use of the universal quantifier (V). 

2. It contains exactly one free temporal variable, no free domain variables, and for each 

free tuple variable e, 4 is of the form F, At E e.1 where t is the free temporal variable. 

3. For each disjunction Fl V F2 in 4, Fl and F2 must include the same set of atoms 

ti E ej. 

4. In each maximal conjunct fi A . . . A Fn of 4 the following conditions hold: 

(a) for each F; of the form e.A(t) = cx or cx = e.A(t), there is an Fj of the form 

t E e.1, where cx is a term of category value. 

(b) for each F; of the form t E e.1, there is an Fj of the form R(e); 

(c) for each Pi of the form lF;/ the following condition must hold: for all the free 

temporal variables t in F;' there is an Fj of the form t E e.1 and for all the free 

historical variables e in F;' there is an Fj of the form R(e). 

5. The application of the not operator 1 is limited to  those terms Fi defined in the rule 

above for maximal conjuncts 

An Lh query 
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is safe if the corresponding Lh formula 4 is safe. We restrict our attention to safe Lh queries 

in the sequel. 

4.3 Examples of Lh Queries 

In the following we give several examples of queries expressed in the language Lh for the 

database consisting of the EMPLOYEE and DEPARTMENT relations shown in Figure 

8. 

Example 3 This first query performs a selection of historical tuples from EMPLOYEE, 

and projects the results onto the attributes NAIIJE and SALARY. 

What are the names and salaries of those employees in the marketing department at time 

6? 

Example 4 This second query returns a set of historical tuples that are derived from the 

joining of two historical relations. 

Who are the managers for whom Tom has worked? 

 NAME(^;) = Torn A e2.DEPT(t2) = d.DEPT(t2) A 

d.MGR(t2) = el .NAME(t2))  
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Example  5 Finally, we give an example of a query that, although semantically safe in 

that it returns a historical relation having a finite number tuples whose values are extracted 

from the base relations, is syntactically unsafe. 

Who are the employees who have only worked in the accounting department? 

[e.* : t]EMPLOYEE(e) A t E e.lA 

1(3t l ( t l  E e.1 A l (e .DEPT( t l )  = Acctng))) 

The query is not safe because the quantified subformula, which is a maximal conjunct, 

does not include the conjunct EMPLOYEE(e) .  If this conjunct were added into the 

subformula the entire formula would be safe. 

4.4 Grouped Historical Relational Completeness 

We propose to use the language considered in this section, the many-sorted calculus Lh, 

as the basis for grouped historical relational completeness. The reasons that support the 

choice of this language as an appropriate metric for completeness are essentially similar to 

those that motivated out choice of the metric(s) for ungrouped historical relational com- 

pleteness (Section 3.4). Lh has a sound and well-studied theoretical basis since it is based 

on a many-sorted first-order logic, The sorts that it uses are the "natural" ones for the task 

at hand: ordinary values, temporal values, and historical or time-series values. The need 

for historical values has already been motivated: they provide the linguistic mechanism 

for direct reference to temporally changing values, and provide for the grouping of these 

values with the object that they describe. As with our metric for historical ungrouped 

completeness, Lh reduces to the relational calculus in the degenerate case when the time 
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set consists of only one instance. It is therefore compatible with standard relational com- 

pleteness when the temporal dimension is so reduced. Furthermore, in Section 5 we shall 

see that Lh differs from T C  and the other ungrouped languages only in this respect, so that 

it is an extension of the concept of ungrouped historical completeness that is minimal: it 

adds only what is necessary for providing temporal value integrity. 

5 Relationship Between Historically Grouped and 
Historically Ungrouped Completeness 

We defined grouped historical completeness based on the calculus Lh in Section 4 and 

ungrouped historical completeness based on calculi TC,  TC, and on algebra TA in Section 3. 

In this section, we study the relationship between these two concepts, 

Since the query languages and algebras for the two types of completeness are based on 

different data models, they are unrelated to each other. This means that the data model 

for one of the types of completeness must be adjusted to make a comparison possible. In 

this section, we adjust the language T C  so that it can also support grouping. Then we show 

that the adjusted language, TC,, is "equivalent" in some sense to the grouped language 

Lh. 

5.1 TC,: Extending TC to Support Grouping 

To support grouping in the temporal calculus TC, we introduce an additional group 

identifier attribute for each relation in TC,. For example, a T C  relation R(A, B, T) is 

extended with an additional attribute 0 and becomes R ( 0 ,  A, B, T) ,  where 0 is a group 

identifier attribute. The grouping attribute serves a role similar to that of object identifiers 

in ob ject-oriented databases. 

To define the grouping process, we introduce a temporal logic with grouping, TCS, as a 

3-sorted first-order logic, where the first sort is the domain sort, the second sort is the 

temporal sort, and the third sort is the grouping sort. The domain and the temporal 
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EMPLOYEE 
gid 1 NAME / DEPT / SALARY / /  time 

Figure 14: Relation EMPLOYEE in the Grouped TC, Model 

sorts are defined exactly as for TC in Section 3.  Intuitively, the grouping sort divides a TCg 

relation into groups, each group having the same group identifier. Furthermore, tuples are 

parameterized by time within each group, i.e. the combination of the group-id and time 

uniquely determines the tuple. Figure 14 shows the E M P L O Y E E  relation of Figure 8 as 

it would be represented in the TC, model. 

Formally, the grouping sort 0 has countably many constants and variables, and a set of 

function symbols newk for k = 1,2 , .  . . that will be defined later. Relational predicates 

have one and only one attribute with the grouping and temporal sorts, and relational 

operators (=, >, 2 )  are not defined for the grouping sort. Finally, the grouping sort 

admits quantifiers. 

The semantics of grouping is captured with the following grouping axioms that specify 

how TCg tuples are grouped into "temporal objects." 
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1. A group-id and time uniquely determine the rest of the tuple no matter which relation 

it belongs to, i.e. if R(o, XI , .  . . , x,,t) and Q(o, y l , .  . . , y,,t) are true then rn = n (i.e., 

the relations must be union-compatible) and x; = y; for i = 1,.  . . , n. In other words, 

OT functionally determines a31 the attributes in all the relations in which 0 and T 

appear. 

2. A group-id uniquely determines the group of tuples independently of which rela- 

tion they belong to, i.e., if o appears in relations R and Q, meaning that if both 

( 3 ~ 1 ) .  . . (3un)(3t1)R(o, ul, . . . , u,, t') and (3yl). . . (3y,)(3tM)Q(o, yl, . . . , y,, t") hold, 

then, for all XI, .  . . , x,, t, if R(o, XI, .  . . , x,, t) is true then Q(o, $1,. . . , x,, t )  is also 

true, and vice versa. 

3. A group of tuples uniquely determines the group-id, i.e. there cannot be two identical 

groups of tuples with different group-id's. Formally, if there are R, Q, o, and o' 

such that for all 21,. . . , x,, t ,  if R(o, XI , .  . . , x,,t) implies &(ol,xl,.  . . , x,,t) and 

Q(ol, X I , .  . . , x,, t )  implies R(o, 21,. . . , x,, t), then o = or. 

The first axiom ensures that a group-id always refers to the groups of tuples of the same 

arity, and that elements in the same group, defined by a group-id, are parameterized by 

time. The second and third axioms ensure that a group-id uniquely defines a group of 

tuples and that a group of tuples is assigned a unique group-id. These axioms ensure that 

group-ids uniquely identify a group of tuples and vice versa, so that the notion of a group of 

tuples in the ungrouped model can be made (below) consistent with the notion of a single 

tuple in the grouped model. 

A TC, query is defined as 

where 4 is a TC, formula and o;, x; and t, for i = 1,. . . , n, are the only free group, domain 

and temporal variables, respectively, appearing in it. 

Example 6 Consider the query of Example 3 in Section 4 
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What are the names and salaries of those employees in the marketing department at time 

6? 

It can be expressed in TC, as 

{< o, x >, < 0, z >, t I EMPLOYEE(o, x, y, z ,  t )  A y = Mlctng A t = 6) 

However, the definition of a TC, query, as defined above, has one important drawback. 

A query does not return an object of the same type as the objects it operates on, i.e. it 

does not return historically grouped relations. To fix this problem, we slightly change the 

definition of a TC, query by "encoding" the tuple of pairs < 01, xl >, . . . , < on, x, > with 

a new group-id. 

To do this, we divide the set of tuples S = {< 01~x1 >, . . . , < on,xn > , t )  into groups of 

tuples 

G(ol,. . . , o n , S )  = {XI,. . . xn, t I (< 01~x1 >, . . . , < on1xn > , t )  E S) 

i.e. put attributes of tuples with the same group-id's into the same group. Then we encode 

the group of tuples G(ol, . . . , on) with an encoding function 

where I1 is the universe of all possible values (Section 2.1), 0 is a set of group-id's, and 

T is the set of times. An encoding function is a bijection between sets 2DXT and 0. It is 

well-known that such encoding functions are definable ([End72]). 

Then the definition of a TC, query is changed to 

This definition says that, first, the query is computed according to the previous definition, 

then tuples in the answer are grouped into sets G(ol,. . . , on, Q(4)) and, finally, each set is 

given a unique group-id. 
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Although this definition of a TC, query is technically better than the first one, because it 

evaluates to objects of the same type, the first definition is easier to use. Therefore, we will 

often use the first definition of a query in the paper, because it could always be modified 

to the second form. 

Semantics of TC, Queries. Since TC, is a 3-sorted first-order logic, the semantics of 

its formulae is defined as in the standard case of many-sorted logics [End72]. Based on this 

semantics, a TC, query 

returns the set of tuples << 01, x1 >, . . . , < on, x, >, t > for which the formula qi is true. 

Safety for TC, Queries. As is the case with Lh formulae and the standard first-order 

relational calculus, we have to define safe TCg formulae that return finite answers over a 

finite time horizon. 

A TC, formula 4 is safe if it satisfies the following conditions. 

1. It does not contain any universal quantifiers (V). 

2. There is exactly one free temporal variable t ,  and for every free group-id variable o;, 

i = 1,. . . , n,  there is a range expression gCI; = (3xij,). . . ( 3 ~ ~ j , ) R ~ ( o ~ ,  xil, .  . . , xi,, , t) 

such that 4 = $1 A . .  . A $, A 4' for some TC, formula #', and such that all the 

free domain variables of # and only they appear among the free variables of range 

expressions $;. 

3. If a group-id variable o and a temporal variable t in a TC, formula qi appear in the 

same predicate R(o, . . . , t), then we say that there is a pair < o, t > of variables in 

4 * 

Then the two disjuncts Fl and F2 of each disjunction operator in 4, Fl V F2, must 

have the same set of pairs < o;, t j  >. 
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4. Every maximal conjunct Fl A . . . A Fn in 4 must satisfy the following conditions: 

(a) If some F; has the form x = a or cr = x, where cr is either a constant or a variable, 

then there is a conjunct Fj of the form R(o, . . . , x, . . . , t )  for some variables o 

and t .  

(b) If some F; has the form 7F;' then for each free temporal variable t in F '  there 

must be a conjunct Fj either of the form Q(o', xy7 . . . , x',', t )  or of the form t = c, 

and for each free group-id variable o in F: there is a conjunct Fj of the form 

Q(0, xi , .  . . , x;, t'). 

5 .  The application of the not operator 1 is limited to those terms F; defined in the rule 

above for maximal conjuncts. 

This definition of safety mirrors the definition of safety of Lh formulae as defined in Sec- 

tion 4. In particular, Condition 2 ensures that only data from the database can appear in 

the answer to a TC, query. This definition is also an extension of the definition of safety 

from [U1188] to the temporal domain. 

A TC, query 

{<< 0 1 , X l  >,...,< on,xn >7t > I d )  

is safe if the corresponding TC, formula 4 is safe. We restrict our attention to safe TC, 

queries in the sequel. 

5.2 Equivalence of Languages Lh and TC, 

In this section, we show that the two languages Lh and TC, are "equivalent" in a sense 

to be defined precisely below. Since TC, differs from TC only by supporting the grouping 

attribute in its relations, we in fact show that the languages Lh and T C  are "close enough" 

to each other and that the concepts of grouped and ungrouped historical completeness are 

essentially the same "modulo grouping." 

The first step in defining and proving equivalences of Lh and TC, should be establishing the 

relationship between data models for these two languages. TC, is based on the relational 
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data model with group identifiers and Lh on the H R D M  data model. In the next section, 

we explain how one data model can be mapped into another and vice versa. 

5.2.1 Relationship Between Lh and TC, Data Models 

In this section, we define mappings between the structures of the ungrouped and grouped 

historical models. .RUG maps TC, relations into Lh relations; intuitively, it groups TC, 

tuples with the same group-id into a single group that becomes a historical tuple. i - 2 ~ ~  

maps Lh relations to TC, relations; intuitively, it ungroups a historical tuple into a set of 

tuples with the same group-id. 

Formally, the mapping QuG from TC, to Lh relations is defined as follows. Let R and R' be 

TC, and Lh relations, respectively, with the same number of domain attributes Al, . . . , Ak. 

Then fluG(R) = R' if and only if the following conditions hold: 

1. Each tuple in R appears in some historical tuple in R', i.e. for all the tuples < 

o, a l ,  . . . , ak, t > belonging to relation R there is a historical tuple e such that Rt(e) 

is true, t E e.1, and e.Al(t) = al ,  . . . , e.Ak(t) = ak. 

2. Each historical tuple e in R' contains all ungrouped tuples from R with the same 

group-id. Formally, if Rf(e) and R(o, a l l  . . . , ak, t )  are true for some historical tuple 

e, group-id o, domain values a l l  . . . , ak and time t ,  and if t E e.l and e.Al(t) = 

a l l  . . . , e.Ak(t) = ak, then for all a:, . . . , a i l  t', if R ( o , a ~ ,  . . . ,a;,tf) is true then 

t' E e.1 and e.Al(t1) = a:, . . . , e.Ak(t1) = a:. 

The mapping OGU is defined similarly. It ungroups all the historical tuples into relational 

tuples with the same group-id. We omit the formal definition of QGu because it is very 

close to the definition of fluG. 

Clearly, the two mappings QGv and QUG are inverses of each other, i.e. QGu 0 QUG = I 

and QUG o flGU = I because grouping followed by ungrouping and ungrouping followed by 

grouping always produce the same relation. This property holds because we introduced 
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group-id's. Without group-id's, we cannot reconstruct a relation if we first group and then 

ungroup it and vice versa. (The same problem occurs in all NlNF models ([FVG85, RKS881. 

(RKSS8, p.4091 points out that "in order to avoid problems where [grouping an ungrouped 

relation is impossible] we assume each database relation, . . . their nested relations, and 

relations created by collecting const ants into a limited domain, have an implicit [italics 

ours] keying attribute (or set of attributes) whose value uniquely determines the values 

of all the other attributes." Our group-ids make explicit the need for such a "keying 

attribute".) 

5.2.2 Mapping TC, ForrnuIae to Lh 

In this section, we define the mapping TUG that maps safe TC, formulae into equivalent 

safe Lh formulae. 

To define equivalence, let 4 be a TC, formula and d' be an Lh formula, with a set of 

"similar" relational predicates. That is, there is a bijection between predicates in 4 and $' 

such that the corresponding predicates R in 4 and S in # have schemas R ( 0 ,  A1,. . . , A,, T) 

and S(Al,  . . . , A,) respectively. We say that such formulae 4 and qS are equivalent if and 

only if for any instances R1,. . . , Rn of TC, predicates appearing in gi 

and for any instances of Lh predicates Sl, . . . , S, appearing in 4' 

It follows from this definition that two formulae 4 and # are equivalent if both diagrams 

in Figure 15 are commutative, i.e. it does not matter if .RUG is applied first and then 4', 
or q+ and then .RUG. Also, it does not matter if .RGu is applied first and then 4, or qS and 

then fluG. 

It remains for us to  define the mapping TUG from TC, to Lh formulae. Let 4 be a safe TCg 

formula. The formula ruG(4)  is obtained from 4 by replacing all the atomic formulae in 
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Figure 15: Definition of equivalence of TC, formula # and Lh formula 4'. 

Center for Digital Economy Rerearch 
Stern School of Business 
Working Paper IS-91-41 



4 together with quantified variables in the manner described below, and leaving all other 

connectives (e.g. A,  V, 1) intact. The replacement of atomic formulae and quantified 

variables in (5 is done as follows: 

1. Replace TC, predicate R(o,  x l ,  . . . , x,, t )  with 

where A; is the attribute in R corresponding to variable xi9. A group-id variable o 

defines a unique historic variable across different relations, i.e. if several predicates 

in 4 have the same group-id variable o then this variable o is replaced with the same 

historic variable e. 

2. Replace each quantifier (30) in 4 with the quantifier ( 3e )  in rUG(d), where o is a 

group-id variable appearing in some TCg relation Ri(o,  xl, . . . , x,, t ) ,  and e is the 

corresponding historic variable defined in Step 1 that replaces o. 

3. If a domain variable x is bound in 4 then do not change its quantifier (32) in rUG((5). 
If x is unbound in 4 then ruG($) is of the form ( I s ) $ ,  where $ E Lh. 

4. Each range expression $; = (3x i j , ) .  . . (3xij , )Ri(oi ,  x;1,. . . , xini, t ) 1 °  is replaced with 

the expression Ri(ei)  A t E e;.l, 

We defined the mapping rUG on the set of safe TC, formulae. This mapping can be 

extended to TC, queries as follows. If Q is a TCg query 

where 4 is a safe TCS formula of the form: 

gActually, there is no need to add expressions e .Ai ( t )  = xi for all i = 1, . . . , n as some examples below 
will show, but only for those xi's that appear in other expressions. However, it is acceptable to do it for 
all terms, i.e. it simplifies the presentation, and the transformation is still correct. 

l0Range expressions were introduced in Section 5.1 when safe TCg queries were introduced. 
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then r U G ( Q )  is 

where historic variables e; correspond to the group-id variables oi appearing in predicates 

Ri in 4, and attributes Aj correspond to variables x j  in these predicates. 

Examples illustrating the mapping PUG follow. In these examples we assume that the 

schemas of TC, relations R and Q are R(O, A, T) and Q ( 0 ,  A, T) respectively, where 0 is 

a group-id, A is an attribute, and T is a temporal attribute. 

Example 7 Consider the TC, query Q 

The first step of the conversion algorithm replaces R(o, x, t )  with R(e) At E e.lAe.A(t) = x, 

and Q(ol, a', t )  with Q(el) At E el.l A el.A(t) = XI. The second step is not applicable in this 

case. The third step results in 

(3x)(3x1)((R(e) A t E e.1 A e.A(t) = x) A (Q(el) A t E el.l A e1.A(t) = x')) 

Finally, the query ruc (Q)  is 

[e.A, el.A' : t] (3x)(3x1)((R(e) A t E e.1 A e.A(t) = x) A (Q(et) A t  E el.l A el.A(t) = x')) 

A R ( ~ )  A t E e.1 A Q(el) A t' E el.l 

This expression for rUG(Q)  could be simplified (using standard techniques of logical trans- 

formation) to  

[e.A, el.A' : t] R(e) A t E e.b A Q(et) A t E e'.E 

However, this simplification is not always possible as the following example shows. 

Example 8 The TC, query 

{< 0,x >, t I R(o, x, t )  A (301)Q(01, x, t ) )  

44 
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is mapped into 

Note that in this case the variable x serves to equate the terms e.A(t) and el.A(t), via 

transitivity. In certain cases, the two values e.A(t) and el.A(t) cannot be equated directly 

because one of the terms e.A(t) or el.A(t) is ill-defined. In this case, this use of an interme- 

diate, such as x above, solves the problem. Also note that the quantified group-id variable 

(30') was replaced with the historic variable (3e') in the Lh formula. 

Example 9 The TC, query 

{< 0, x >, t  I R(o, x ,  t )  A (3x')(3t1)Q(o, x', t ' ))  

is mapped with some additional simplifications into 

[e.A : t ]  (3x')(3t1)(Q(e) A t' E e.1 A e.A(tl) = x') A R(e) A t  E e.1 

Note that there is the same historic variable in both R(e) and &(e)  because there is the 

same group-id variable o in the corresponding TC, formula. Also note that the domain 

variable X I  in the TC, formula remained unchanged in the Lh formula. 

Example 10 The TC, query 

{< o, x >, t I R(o, x ,  t )  A (3xr)(3t')(R(o, x, t )  A Q(o, x', t') A x = x')) 

is replaced with 

[e.A : t ]  (3x)((R(e)  A t E e.l A e.A(t) = x )  A (3x1)(3t')((R(e) A t E e.1 A e.A(t) = x)A 

(Q(e) A t f  E e.l A e.A(tf) = x') x = X I ) )  A R(e) A t  E e.l 

This expression can be simplified to 

45 
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[e.A : t ]  ( 3 x ) ( 3 x r ) ( 3 t ' ) ( ( R ( e )  A t E e.1 A e .A ( t )  = x )  A ( Q ( e )  At' E e.1 A e.A(tt)  = x') 

A x = x') A R ( e )  A t E e.1 

Note that the equality x = x' did not change in the conversion process. However, it follows 

from the facts that e.A(t)  = x ,  e .A(t t )  = x' and x = x1 that the terms e .A( t )  and e.A(tJ)  

are equal. 

Example 11 The TC, formuIa 

is converted to 

[e.A : t ]  ( 3 x ) ( R ( e )  A t E e.1 A e .A ( t )  = x A l ( Q ( e )  A t E e.1 A e .A ( t )  = x ) )  A R ( e )  A t E e.1 

Note that in the previous examples, rUG maps safe TCg formulae into safe Lh formulae. 

We generalize these observations in the following proposition. 

Proposition 1 TUG maps safe TCg formulae into safe Lh formulae. 

Sketch of Proof: Let gl be a safe TCg formula. We will prove that ruG(#) is safe b y  

verifying all the conditions in the definition of safety for Lh formulae, First, r u ~ ( 4 )  does 

not have universal quantifiers since 4 does not have them. 

Second, the range expression $; = ( 3 x i j 1 ) .  . . (3x i j , )Ri (o; ,  x i l , .  . . , x;,,, t )  is mapped into 

the expression (3x i j , )  . . . (3x i j l ) (R i ( e i )  A t E ei.EA ei.Aijl ( t )  = x;l A .  . . A  e;.Aih ( t )  = xij ,)  and 

also the expression R;(e; )  A t E ei.l is added at the "outermost" level of rvG(4) because 

of condition 4 in the definition of the mapping ruG. Clearly, the two expressions are 

semantically equivalent. But the second condition was added to make rUG(gl) syntactically 

safe. Since rUG($b) has the formula R;(e;)  A t E e;.l for each range expression at the 

outermost level, the second condition of safety for Lh formulae is satisfied. 
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Third, subformula Fl V F2 in # is mapped into ruG(Fl) V ruG(F2) so that rUG(Fl) and 

rUG(F2)  have the same set of atoms ti E ej because the formulae Fl and F2 have the 

same set of pairs < oj, ti > and because the mapping rUG translates them into expressions 

ti E ej. 

Finally, the mapping rUG is defined so that all the three items in the definition of safety 

related to maximal conjuncts are satisfied. E l  

Theorem 2 For any sclfe TC, formula #, # and PUG(#) are equivalent. 

Sketch of Proof: Intuitively, the two formulae are equivalent because the predicate 

R(o, xl , . . . , x,, t) is mapped into the expression R(e) A t E e. 1, so that the historical vari- 

able e corresponds to the group-id o and t is in the lifespan of e. Furthermore, group-id's 

are defined so that the variables XI , .  . . , x, are uniquely determined by values of o and t 

and are irrelevant in the translation process. Also, the expressions R(o, X I , .  . . , x,,t) and 

R(e) A t E e.1 are equivalent. In addition, the mapping rUG preserves the structure of the 

formula 4, i.e. it leaves conjunctions, disjunctions and negations of 4 in their places in 

~ u G ( # ) .  

5.2.3 Mapping Lh Formulae to  TC, 

In this section, we define the mapping rGu that maps safe Lh formulae into equivalent safe 

?"G formulae. Let # be a safe Lh formula. As for the ruG mapping, the formula rGu(4) 

is obtained from d, by replacing all the atomic formulae in 4 together with quantified 

variables and leaving the structure of # intact (operators A, V ,  1 remain unchanged). The 

replacement of atomic formulae and quantified variables is done in the following manner: 

1. Replace quantified variables in Lh as follows. 

(a) Do not change any quantified domain and temporal variables, i.e. (3s )  and ( 3 )  

in Lh will remain in I'Gu(#). 
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(b) Replace quantified historic variables (3e;) with (go;), where o; is a unique group- 

id variable. 

(c) Consider all pairs of historic and temporal variables e and t such that contains 

an expression t E e.2. Depending on the relationship between the scopes of these 

variables, we add the expression (3xl) ,  . . (32,) to rGv(4), where x; is a domain 

variable associated with historic variable e of arity n, as follows. 

i. if t is afree and e is a bound variable, then place the expression (3x1). . . (32,) 

before the expression (go) obtained in Step lb;  

ii. if t and e are bound variables, and the scope of e is contained within the 

scope of t then also place (3x1). . . (32,) before (30); 

iii. if t and e are bound and the scope of t is contained within the scope of e 

then place (3x1). . , (32,) before ( 3 ) ;  

iv. in all other cases, do not add anything to the formula. 

2. Replace each occurrence of Lh expression R(e) with (3x1). . . (3xn)(3t)R(o, XI , .  . . , x,, t) 

If e is a bound variable in $, then the group-id variable o is the same as the one that 

replaced e in the expression (3e) in Step lb .  If e is free, then all the occurrences of e 

are replaced with the same group-id variable o. 

3. Replace each occurrence of expression t E e.2 with R(o, 21,. . . , x,, t ) ,  where predicate 

R is one ofthe predicates occurring positively in the maximal conjunct containing t E 

e.ll1. If e is a bound variable in 6, then the group-id variable o is the same as the one 

that replaced e in the expression (3e) in Step 1, and the domain variables XI ,  . . . , x, 
are the same as the quantified variables introduced in Step 1 for the combination of 

(3e) and ( 3 )  expressions. If e is a free variable in 4, then the group-id variable o and 

the domain variables XI,. . . , x, are free and are different from all other variables in 

~ G U  (4)- 

4. Replace each term e.A;(t) in $ with xi, where x; is defined as follows. Since # is 

safe, the maximal conjunct containing e.A;(t) must also contain expressions t E e.l 

It follows from the grouping axioms in Section 5.1 that it does not matter which positively occurring 
predicate R is selected. Any seiected predicate will produce the same results. In fact, all the qualifying 
predicates can be selected as well, for a longer but logically equivalent formula. 
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and R ( e )  (for some R). In Step 3,  t  E e.1 is replaced with R(o ,  X I , .  . . , x,, t ) .  Then 

x; corresponds to the variable in this expression that corresponds to attribute A; in 

R.12 

Examples illustrating the mapping rcu follow. In these examples we assume that the 

schemas of relations R and Q from Lh are R ( A ,  B )  and & ( A )  respectively. 

Example 12 The Lh query 

is mapped into the TC, query as follows. R ( e )  is replaced with (33') (3y') (3t1)R(o,  x', y l ,  t ') ,  

t  E e.1 with R(o,  x ,  y, t ) ,  and e .B( t )  = 5 with y = 5. 

Putting the pieces together, we get the answer: 

{< o, x >, < o, y >, t  I (3xf ) (3y ' ) (3 t ' )R(o,  x', y', t') A R(o,  x ,  y ,  t )  A y = 5 )  

Since (3xt)(3y')(3t ' )R(o,  x', y', t') A R(o,  x ,  y ,  t )  is equivalent to R(o,  x ,  y ,  t )  we can rewrite 

the previous query as 

Example 13 The Lh query 

is mapped into the TC, query 

{< o, x >, < o, y >, t 1 R(o,  x ,  y, t )  A ( 3 ~ " ) ( 3 ~ " ) ( 3 t ' ) ( R ( o ,  xu, y", t ' ) ~  

(30') (3x')  (Q(ol ,  x', t ')  A R(o,  x ,  y , t )  A y = X I ) )  } 

''Remark in the footnote 11 is also applicable here. 
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Note that the domain variable x' in the previous example is quantified in the same part 

of the rGU(#) formula as the group-id variable 0'. Also note that the variables x", y" are 

quantified together with temporal variable t'. In general, the domain variables appearing 

in the same predicate as group-id variable o and temporal variable t are quantified together 

with the innermost scope of variables o and t. The following example illustrates this point 

further. 

Example 14 The Lh query 

is mapped into the TC, query 

Note that the variable x' is quantified together with t' and not with o', as was done in 

Example 13. 

The next two examples show how rGU handles negations. 

Example 15 The Lh query 

is mapped into the TC, query 

{< o, x >, < o, y >, t I R(o, x, y ,  t )  A -(3x')(3y')(3tt)R(o, x', y', t')} 
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Example 16 The Lh query 

[el.* : t ]  ( 3e ) (Q(e )  A ~ ( t  E e.1 A Q ( e ) )  A R(et)  A t E el.l) A R(et)  A t E et.l 

is converted to 

{< o', x' >, < o', y' >, t ( ~ o ) ( ~ x ) ( ( ~ x " ) ( ~ ~ " ) & ( o ,  x", t") A i Q ( o ,  x, t ) A  

R(ot, x', yl, t ) )  A R(o', 2 ' 1  y t ,  t ) )  

The next example shows that rGU does not affect domain variables in #. 

Example 17 The Lh query 

[e.* : t ]  R (e )  A t E e.1 A ( 3 z ) ( R ( e )  A t E e.1 A e.A(t)  = z )  

is translated into 

{< 0, x >, < 0, y >, t I R(0, x ,  y ,  t )  A ( 3 s ) (R (o ,  2 ,  Y ,  t )  A x = z ) }  

Proposition 3 rGV maps safe Lh formulae into safe TCg formulae. 

Sketch of Proof: The proof proceeds along the lines of the proof of Proposition 1. 

Theorem 4 For any safe Lh formula 4, # and F G U ( ~ )  are equivalent. 

Sketch of Proof: The proof is done by induction on maximal conjuncts in (6. At any 

inductive step the Lh formula #(e l , .  . . , en, x l ,  . . . , x,, t l ,  . . . , t k )  is mapped into the TCg for- 

mula rGU(#)(ol , .  . . , on, 5 1 , .  . . , x,, y l , .  . . , yl, t l , .  . . , t k ) ,  where yl, . . . , Yr are extra variables 
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introduced in the translation process (i.e. when R(e) A t E e.l becomes R(o, yl, . . . , y,, t ) ) .  

Notice that variables yl, . . . , yl are uniquely determined (i.e. functionally depend) by val- 

ues of variables 01, . . . , on, XI,  . . . , x,, tl, . . . , t k .  Therefore, these variables are "superfluous" 

and do not affect the translation process. With this observation in mind, the proof proceeds 

along the lines of Theorem 2. CI 

5.2.4 Conclusion 

Theorems 2 and 4 show that the languages Lh and TC, are equivalent. Since TC, differs 

from TC only by supporting the grouping attribute in its relations, it shows that the 

languages Lh and TC are "close" to each other. In fact, it is precisely and only the 

inherent grouping mechanism of temporal values in Lh that makes it more powerful than 

TC.  

6 Historical Models and Completeness 

All of the historical relational data models and languages that have been proposed differ 

from one another in the set of query operators that they provide. In addition, they often 

differ in the structure of the historical relations that they specify, that is, the way in which 

the temporal component is incorporated into the structure. In this section we describe four 

of these models and discuss the completeness of their languages. Two of the data models 

we discuss are ungrouped, one with an algebra ([Lor87]) and the other with a calculus 

([Sno87]); the other two data models discussed are grouped, one with an algebra ([CC87]), 

the other with both an algebra and a calculus ([Gad88]). 

For each of the data models discussed in the following, we are interested in two aspects of 

its query language: its expressiveness, that is, its ability to express every relation that 

can be denoted by expressions of the languages Lh or TC defined in the earlier sections, 

and its boundedness, its ability to express only those relations that can be expressed by 

these languages. It is well known that the standard relational calculus is as expressive as, 

bounded by, and hence equivalent to the standard relational algebra ([Cod72]). 
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The completeness of a language can be viewed solely in terms of its relative expressiveness. 

We have earlier motivated our choice of Lh and TC as appropriate metrics for our notions 

of completeness. Therefore, in this section a language will be said to be complete with 

respect to either Lh or 7°C if it is as expressive as that language. We also consider the 

boundedness of each of the four query languages discussed in this section. If our metric 

of completeness is reasonable, then it must be the case that each language considered 

here is bounded by either Lh or TC. For each of the historical query languages discussed 

in the following we consider first its boundedness, translating various of its operators into 

equivalent expression in one of the previously defined languages, and then its expressiveness. 

We shall see that all of the languages we consider are bounded by either Lh or TC,  but not 

all are as expressive. 

We begin with a discussion of the completeness of the historical relational algebra specified 

by the historical relational data model H R D M  ICCS71. We discuss this language first both 

because the canonical historical relation defined in Section 2 is derived directly from the 

structure of the historical relations in H R D M ,  and because the set of operators specified 

by this model were intended initially to provide all the functionality thought useful and 

desirable. 

6.1 HRDM 

The historical relational data model H R D M  presented in [CC87] is a temporally grouped 

model with an algebraic query language which is presented as an extension to the standard 

relational algebra. 

We can categorize the operators of H R D M  as follows: 

Set-Theoret ic These operators are defined in terms of the set characteristics of relations, 

and include the standard set operators union (u), intersection (n), set difference (-), and 

Cartesian product (x ) .  Because these operators do not exploit the historical aspects of 

H R D M  relations, the standard mappings from these operators in relational algebra to 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-41 



their counterpart in relational calculus also applies to these operators here. For example, 

 US = { X ~ X E ~ V X E S )  

E [e. * It]r(e) A t E e.1 V s(e) A t E e.E 

Attribute-Based This category includes those operators that are defined in terms of 

the attributes (or their values) of a relation. Some of these operators, as suggested by their 

names, are derived from similar operators that exist in the standard relational algebra. As 

shown below, often the original definition of these operators has been modified to exploit 

the temporal component of the historical model. For each of these operators we give both 

its set-theoretic definition, and then an equivalent Lh-based expression. 

1. Project (n): This operator is equivalent in definition to its standard relational 

counterpart, and has the affect of reducing the set of attributes over which each of 

the tuples x in its operand, a relation r, is defined, to those attributes contained in 

a set of attributes X. 

2. Select-If (a - IF): This variant of the select operator selects from a relation r those 

tuples x each of which for some period within its lifespan has a value for a specified 

attribute A that satisfies a specified selection criterion. The period of time within the 

lifespan is specified by a lifespan parameter L. The selection criterion is specified as 

ABa, where 8 is a comparator and a is a constant. (It is also possible to compare one 

attribute with another in the same tuple.) A parameter, Q, of the select-if operator 

is used to denote a quantifier that specifies whether the selection criterion must be 

satisfied for all (V) times in the specified subset of the tuple's lifespan, or that there 

exists (3) at least one such time. 
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(if Q is 3) E [e.* : t]r(e) A t E e.1 A 

3tl(tl E L A tl E e.1 A e.A(tl)Oa) 

(if Q is V) [e.* : t]r(e) A t E e.1 A 

-.3tl(tl E L A tl E e.1 A l ( t l  A e.A(t)Ba)) 

3. Select-When ( a  - W H E N ) :  This operator is similar to the 3-quantified select-if 

operator. However, the lifespan of each selected tuple is restricted to those times 

when the selection criterion is satisfied. 

4. 0-Join: Like its counterpart in the standard relational data model this operator 

combines tuples from its two operand relations. With 0-join two tuples are combined 

when two attributes, one from each tuple, have values at some time in the intersection 

of the tuples' lifespans that stand in a 6 relationship with each other. The lifespan 

of the resulting tuple is exactly those times when this relationship is satisfied. 

Let rl and 7-2 be relations on schemes R1 and R2, respectively, where A f R1 and 

B E R2 are attributes. 

5 .  Sta t ic  Time-Slice (TQL): This operator reduces a historical relation in the temporal 

dimension by restricting the lifespan of each tuple e of the operand relation r to those 

times in the set of times L. 
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Other Operators In addition to the above categories of operators, the HRDM alge- 

bra includes several grouping operators that are used to restructure a relation without 

changing the information content of that relation. These operators, union-merge (u,), 

intersection-merge (no), and diRerence-merge (-,), first computes the set-theoretic 

union, intersection, and difference, respectively, and then regroups the tuples in the result- 

ing relation. 

The HRDM algebra also includes the operators WHEN and Dynamic Time-Slice. 

We categorize the WHEN operator as an extra-relational operator in that it computes 

a result that is not contained in a database relation, nor given as a constant. Applied 

to a historical relation, this operator returns a value defined as the union of the lifespans 

of the tuples in that relation. This operator can be viewed as a type of temporal-based 

aggregate operator. The dynamic time-slice is only applicable to relations that include in 

their scheme an attribute A whose domain consists of partial functions from the set T I M E S  

into itself. We do not treat such attributes in this paper since most of the models considered 

distinguish between ordinary values and the times at which they hold, and do not allow 

comparisons between them. Therefore it would be unfair to include such an operator in our 

comparison. We omit the other operators from our discussion of completeness of HRDM 

and the remaining languages that tve will examine. The grouping operators are not treated 

because they are not intended for querying, and the aggregate operators, because they are 

outside of the scope of standard relational-based notions of completeness. 

The translations that we have provided for each of the relation-defining operators of the 

HRDM algebra shotvs that this algebra is bounded by the language Lh. However, this 

historical algebra is n o t  complete in that there are queries that are expressible in Lh for 

which no equivalent algebraic expression (i.e., sequence of algebraic operations) exists. One 

example is the query on the database in Figure 8 for the name and department of each 

employee that has at some time received a change in salary, expressible in Lh as 
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The lack of an equivalent algebraic expression is due to the specification of those operators 

in N R D M  that include the comparison of two values as part of their definition: the join, 

and the various select operators. In each case only attribute values that occur at the same 

point in time can be compared. Thus, as required by the above query, it is not possible 

to compare the salary of an employee at some time tl with that employee's salary at some 

other point in time, t2. 

6.2 The Historical Homogeneous Model of Gadia 

The next historical rnodel that we discuss is one that was proposed by Gadia [Gad88]; it is 

a model that includes a query language and an algebra. This data model, which we shall 

label T D M G ,  is the same as that of H R D M ,  and thus of the canonical historical relation 

defined in Section 2. 

In T D M G  the value of a tuple attribute is a function from a set of times to the value domain 

of the attribute, and the lifespan is the same for all the attributes (Gadia's homogeneity 

assumption). Therefore the T D M G  model is temporally grouped. 

In addition to the data modei, Gadia defines a historical algebra and calculus. Although his 

data model is temporally grouped, the semantics of the algebra is defined in terms of the 

ungrouped model obtained by ungrouping temporal relations. Gadia calls this a snapshot 

interpretation semantics. The semantics of the historical algebra is defined by ungrouping 

temporal relations because Gadia considers grouped and ungrouped models "weakly equal" 

and does not distinguish between them when he proves equivalence of the algebra and the 

calculus. 

Gadia's algebra is defined as follows. Re starts with the five standard relational operators of 

selection, projection, difference, Cartesian product, and union as TL does. He also defines 

derived temporaI operators such as join, intersection, negation, and renaming. In addition, 

he defines temporal expressions for the temporal domain. Finally, he combines relational 

and temporal expressions by considering relational expressions of the form e(v) where e 

and v are relational and temporal expressions respectively. 
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Gadia7s algebra is bounded by the temporal calculus TC defined in Section 3 for the fol- 

lowing reasons. The five standard temporal operators are defined as for TL and, there- 

fore, can be expressed in TC. Temporal expressions are defined as a closure of a time 

intervals over the operations of union, intersection, difference and negation. Each of 

these operators can be expressed in the first-order logic with explicit references to time. 

For example, the expression tdom(r(A, B)) V tdom(s(A, B)) can be defined in TC as 

{t (3x)(3y)r(x1 y, t )  V s(x, y, t)). This means that T D M G  is bounded by TC. 

Gadia also defines a historical calculus and shows its equivalence to the algebra (modulo 

temporal grouping). This calculus is expressible in Lh for the same reasons that the un- 

grouped algebra is expressible in TC. A lifespan of a temporal tuple x in T D M G  can be 

captured with expression t E 2.1 in Lh. Also, the operators of union, intersection, difference 

and negation for temporal expressions can be expressed in Lh with the same methods that 

are used to express algebraic expressions in TC since Lh explicitly supports time. 

However, both Gadia's algebra and calculus are not complete for the same reason that the 

HRDM algebra is not complete: it is not possible to compare the value of one attribute at 

time tl with the value of another or the same attribute at some other time t2. For example, 

the query that finds the name and department of each employee that has at  some time 

received a cut in salary, i.e. 

cannot be expressed in T D M G .  

To summarize, the temporally grouped language Lh has strictly more expressive power 

than Gadia's calculus, i.e. this calculus is bounded by Lh but not complete. Also, the 

temporally ungrouped language TC is strictly more powerful than Gadia's algebra , i.e. 

the algebra is bounded by TC but not complete. 
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6.3 TQuel 

TQuel is the query language component of a historical relational data model proposed by 

Snodgrass [Sno87]. We shall call this model TRDM. 

TRDM provides for two types of historical relations. One, called an interval relation, is 

derived from a standard relation through the addition of two temporal attributes, valid- 

from and valid-to, both of whose domains are the set of times T. (An example of such a 

relation has already been given in Figure 3). As before, we will ignore the two TRANS- 

TIME temporal attributes since we are only considering historical data models. The values 

of the non-temporal attributes of a tuple in such a relation are considered to be valid during 

the beginning of the interval of time starting at the valid-from value and ending at, but 

not including, the valid-to value. (This interval thus denotes the lifespan of the tuple.) 

The second type of relation, an event relation is, defined by extending a standard relation 

by a single temporal attribute valid-at. Since both interval relations and event relations are 

derived from first normal form relations through the addition of attributes whose values 

are atomic, they are also in first normal form. 

The query language TQuel is an extended relational calculus derived from and defined as a 

superset of Quel, the query language of the Ingres relational database management system 

[SWKH76]. TQuel extends Quel by adding temporal-based clauses that accommodate 

the valid-from and valid-to attributes. (These attributes are not visible to the existing 

components of the Quel language.) 

A WHEN clause is added to define an additional temporal-based selection constraint that 

must be satisfied in conjunction with the constraint defined by the TQuel (and Quel) 

WHERE clause. This constraint, specified as a temporal predicate over a set of tuple valid- 

from-valid-to intervals (lifespans) defines a restricted set of relationships that must hold 

among them. 

A VALID clause is used to define, in terms of temporal expressions, valid-from and valid-to 

values for tuples in the relation resulting from the TQuel statement. 
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As Snodgrass shows [SnoS7], both temporal predicates and temporal expressions have a 

semantics that is expressible in terms of the standard tuple calculus.13 Since standard 

tuple calculus is bounded by TC,  this implies that TQuel is bounded by Lh. 

TQuel is bounded by the language TC since the semantics of TQuel like that of Quel [UIISS] 

can be expressed in terms of, and is thus bounded by, the standard relational calculus which 

in turn is bounded by TC. In particular, Snodgrass shows how any TQuel query can be 

expressed as a formula of the form Q A I' A Q! where Q, I', and Q! are the calculus formulae of 

the underlying Quel statement, the TQuel WHEN clause and VALID clause, respectively, 

and I' and contain no quantifiers. Additionally, I' and Q! are defined only over the 

temporal attributes valid-from and valid-to, neither of which may be included in Q. The 

structure of this formula means that, as with Quel, not all algebraic expressions can be 

expressed as a single TQuel statement (for example, algebraic expressions containing the 

union operator). 

If none of the non-temporal attributes over which a TRDM database is defined has a 

domain whose values are comparable to those in the set of times T ,  then in no algebraic 

expression over the relations in this database can such an attribute be compared to either 

valid-from or valid-to. For such a database, TQuel statements, as represented by a defining 

tuple calculus formula, are no more restrictive than Quel statements. Therefore (as with 

Quel) a sequence of TQuel statements, can express any algebraic expression, perhaps by 

creating temporary relations, and using operators such as APPEND and DELETE, 

Although interval relations and event relations are distinguished by TQuel, they are stan- 

dard first normal form relations that provide a fixed way of encoding temporal data using 

the temporal attributes. TQuel differs from Quel only in the distinction accorded these at- 

tributes. Thus, like Quel - with the addition of such operators as APPEND - it is complete 

in the sense defined by Codd. By extension, as a result of the use of the temporal attributes, 

it has temporally  ungrouped completeness. Therefore we conclude that TRDM is complete 

in the temporally  ungrouped sense, but does not exhibit t emporal  value integrity.  

I3This specification also includes the use of several auxiliary functions that  are used to  compare times 
in order to determine which of two times occurs first or last. 
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6.4 The Temporal Relational Algebra of Lorentzos 

The final historical data model that we discuss is one that was proposed by Lorentzos 

in [Lor87]. The data model in [Lor87], which is called T R A ,  is essentially the same as 

that in [Sno87], except that as an historical model it is restricted to only one temporal 

dimension. One of the stated goals of T R A  is that "no new elementary relational algebra 

operations are introduced and first normal form is maintained" [Lor87, p. 991. Typical 

relations in this model appear basically as in Figure 3 (with the columns valid-from and 

valid-to called Sfrom and Sto, respectively). Although the structures of relations in this 

model are essentially the same as in the historical version of T R D M ,  we discuss this model 

here because, unlike [Sno87], the language it proposes is an algebra rather than a calculus. 

It is difficult to discuss formally the algebra of T R A  because it is not specified formally. 

Rather, it is presented via a series of example queries and discussion. Nevertheless, enough 

of a picture of the algebra emerges clearly through these examples to make a discussion 

possible. 

Two new operators, FOLD and UNFOLD are defined. These operators essentially convert 

between the time interval representation (as in Figure 3) and a time point representation 

(as in Figure 1). The FOLD and UNFOLD are clearly expressible in terms of operators in 

the standard relational algebra, as [Lor871 points out. 

The previous sections demonstrated that two other algebras, that of H R D M  and that of 

T D M G  were incomplete because they were not able to compare the value of one attribute 

at a time tl with the value of another (or the same) attribute at  some other time t2. In 

T R A  such comparisons are possible. Consider again the query that finds the name and 

department of each employee that has at some time received a cut in salary: 

This query can be expressed in T R A  as follows. First UNFOLD the interval relation 
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EMPLOYEE into all of its time points: 

EMPLOYEEU, = UNFOLL)[Time, Start,  Stop](TIME, E M P L )  

Then, @-Join this relation with itself, joining tuples with the same name and with a pay 

cut, and then Select just the names of the employees from the result (here NAMEl and 

NAME2, etc., refer to the NAME attributes in the first and second operands to the Join): 

N A M E l  = NAME2, 
T E M P 1  = EMPLOYEEU, T I M E 1  < TIME2,  EMPLOYEEU, [ SALl > SAL2 1 
T E M P 2  = c ~ N ~ M ~ ~  (TEMPI)  

Finally, Join the result with the original relation and Project onto the desired fields: 

Because TRA is equivalent to standard relational algebra, the question of its completeness, 

as in the case of TRDM, is reduced to the question of the completeness of relational 

algebra. Therefore we conclude that TRA is complete in the temporally ungrouped sense 

but, like all ungrouped languages, it does not exhibit temporal value integrity. 

The results of our explorations into the completeness of these five languages is summarized 

in the table in Figure 16. 

7 Summary and Conclusions 

In this paper we have explored the question of completeness of languages for historical 

database models. In this exploration we were led to characterize such models as being of 
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Figure 16: Summary of Completeness Results 

.. 

one of two different types, either temporally grouped or temporally ungrouped. We 

first discussed these notions informally by means of example databases and queries, and 

showed that the two models were not equivalent. The difference between the two models is 

that in temporally grouped models, historical values are treated as first class objects which 

can be referred to directly in the query language. In the temporally ungrouped models, no 

such direct reference is permitted. We characterized this property of the grouped models 

as tempora l  value integrity. 

We then proceeded to propose a notion of historical relational completeness, analogous 

to Codd7s notion of relational completeness, for both types of models. We showed that the 

temporally ungrouped languages are less powerful than the grouped models, because they 

do not allow for direct reference to temporal objects like salary histories, However, we also 

demonstrated a technique for extending the ungrouped models, by incorporating a grouping 

 mechanism, to capture the additional semantic power of temporal grouping. 

Language 
Lh 
TL 

T R A  algebra 
T R D M  calculus 
H R D M  algebra 
T D M G  calculus 
T D M G  algebra 

Specifically, for the ungrouped models we defined three different languages, TL, TC, and TA: 

a temporal logic, a logic with explicit reference to time, and a temporal algebra, and showed 

that under certain assumptions about the model of time employed all three are equivalent 

in power. For the grouped models we defined the calculus Lh, a many-sorted logic with 

variables over ordinary values, historical values, and times. We demonstrated a technique 

for extending the ungrouped model with a grouping mechanism, a group identifier. With 

this mechanism we showed how the ungrouped language TC could be extended to TC, in 
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Proposed Basis 
Proposed Basis 

complete 
complete 
incomplete 
incomplete 
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[Lor871 
[Sno87] 
[CC87] 
[Gad881 
[Gad881 

Type  
grouped 
ungrouped 

ungrouped 
ungrouped 
grouped 
grouped 
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such a way as to make it equivalent to Lh. In this way we demonstrated that the languages 

are nearly equivalent; that is, it is precisely the grouping capability which distinguishes 

them. 

Finally, we examined several historical relational proposals in light of these metrics: Lh as 

the standard for grouped historical relational completeness and TC as the standard 

for ungrouped  historical relational completeness. We looked at four historical mod- 

els, two grouped and two ungrouped, offering five different languages. In the ungrouped 

models we found both a complete algebra (TRA)  and calculus (TQuel from TRDM) ,  

while in the grouped models we found (in addition to our metric, the complete calculus Lh) 

an incomplete algebra (HRDM)  and an incomplete calculus ( T D M G )  as well as an in- 

complete ungrouped algebra (TDMG).  We believe that this classification scheme, and our 

examination of the completeness of several historical models, should help to explicate the 

differences and the commonalities between the various models proposed in the literature. 

One point bears emphasizing. It has on occasion been said that the issue of adding time to  

relational databases is an uninteresting one, since the user can always just add whatever 

extra attributes are desired (e.g., Start-Tirne and End-Time) and then use standard 

SQL (or relational algebra) as the query language. In our discussion of the completeness 

of the ungrouped temporal languages we, to some extent, relied on the underlying point 

of this argument. For example, this point underlay our argument that T R A  (which is 

equivalent to  standard relational algebra) is complete in the ungrouped sense. Two points 

need to be made in reply to this comment. First, there is a difference between the formal 

notion of completeness and the informal, but no less important, notion of ease of use. Even 

though the programming language Cis formally equivalent to a Turing Machine, it is a lot 

more convenient to use Cif you are writing an operating system because of its built-in high 

level features. The built-in temporal features of the historical and temporal data models 

make them easier to use for managing temporal data; without these features a greater 

burden is placed upon the user. Secondly, this paper has shown that the grouped models 

and languages are more expressive than the ungrouped systems, unless these models add a 

surrogate grouping mechanism. This grouping mechanism, itself, is a higher-level construct 
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that is implicit in the grouped systems (and this, we argue, makes them more convenient), 

but needs to be made explicit in the ungrouped systems for them to be equivalent in 

expressive power. 

There are a few interesting areas for future research that this work has clarified. First of 

all, it is interesting to note that we did not find here, nor are we aware of, any complete 

algebra for grouped historical data models. This is clearly an interesting open question. 

Another area in which there continues to be interest is in the support of evolving schemas. 

Our decision not to treat this interesting area here was based largely on the fact that 

hardly any of the models except [CC87] incorporate this feature, and we wanted to choose 

the common denominator of all the models in order to make our comparisons fairly. The 

model in [CC87j addressed this issue, and other work (e.g. [BKKKS7, MS901) continues to 

be done in this area. 

Finally, we would like to address the question of completeness for temporal as opposed to 

historical relational models (in the terminology of [SA85]). We believe that our results 

on grouped and ungrouped historical relational completeness can be extended in 

a straightforward way to temporal data models and languages. The extension would in- 

volve the addition of another sort (for transaction times). In ungrouped temporal models, 

relations would be extended with an additional column to stamp every tuple with its trans- 

action time, and the language would have constants, as well as variables, and quantification 

for this sort. In grouped temporal models, values would be extended to be doubly indexed; 

they would most likely be better modeled as functions from a transaction time into func- 

tions from a data time to a scalar value, but the order of the two temporal indices could 

be reversed. Preliminary work that we have done on Indexical Databases holds promise for 

a unified treatment, not only of these two temporal dimensions, but of spatial, or other, 

dimensions as well. 
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