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Abstract 

The purpose of this paper is to compare and contrast traditional regression models 

with a neural network model, in order to predict performance in the transportation 

industry. No regression model has emerged as obviously superior in previous work 

conducted on predicting transportation performance. Therefore, a neural network model 

was investigated as an alternative to regression. It was found that a neural net model 

outperformed the corresponding random effects specification, but did not perform as well 

as the fixed effects specification. 
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1. Introduction 

Neural nets have been applied to two different categories of problems: 

recognition problems and generalization problems. Recognition problems include visual 

applications, such as learning to recognize particular words, and speak them [lo]. 

Generalization problems include classification and prediction problems. Dutta and 

Shekhar [4] predct bond ratings using a neural network model, and contrast it with a 

regression model. They found that neural nets outperformed regression analysis. 

However, there are a few issues associated with this comparison that they did not 

investigate. For example, they contrasted a neural net with an additive regression model. 

Yet, if a neural net is capable of extracting nonlinearities from a dataset, perhaps a 

multiplicative regression should have been compared to the neural net. A multiplicative 

regression rnay outperform an additive regression if nonlinearities exist. In addition, it 

appears they used a random effects model for the regression, and not a fixed effects 

model, and compared that to the neural net. An interesting question which arises is 

whether it is possible for a neural net to outperform both types of regressions. These 

issues regardmg the functional forms of models will be investigated. Perhaps it is 

inappropriate to compare a neural net with an addtive model. Is it possible for a neural 

net to capture the fixed effects contained within a dataset? This study investigates these 

issues using a real-world example, that of predicting uansportation performance. 

Transportation performance has been predicted using different models and 

mathematical specifications. For example, some researchers [2] specify multiplicative 

regressions, while others [3] specify additive regressions. In addition, some [2] specify a 

fixed effects model to prehct performance, while others [3] specify a random effects 
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model. All of these models have met with varying degrees of success, that is, they more 

or less accurately predict performance, and the parameters of the model are statistically 

significant. However, from this work it is not clear what is the correct specification of 

the model. Is the transportation data linear, or does it contain nonlinearities? Are there 

fixed effects associated with the data, or is a random effects model applicable? The 

purpose of this paper is to train a neural net using transportation data, and compare it to 

additive, multiplicative, fixed effects, and random effects specifications in a regression 

analysis. To date, it is not clear what kind of data is best modeled by a neural net. 

This study attempts to investigate the conditions under which a neural net model is more 

applicable than a regression model, and vice versa. 

The plan of the paper is as follows. Section 2 outlines some previous work in 

modeling performance in the transportation industry. Section 3 reviews neural network 

models, and compares them to regression models. Section 4 discusses the method used 

to estimate the regression parameters and train the neural net. Section 5 describes the 

results, and Section 6 provides some concludmg thoughts. 

2. Modeling in the Transportation Industry 

This section describes some of the work which has been done regarding modeling 

performance in the transportation industry. First, some measures of performance are 

outlined, followed by a discussion of some factors which might account for the 

differences in performance. The section concludes by reviewing different specifications 

of the models. 
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2.1. Transportation Performance 

Performance in the transportation industry has been measured from a few different 

aspects: financial results, productivity, and output to input ratios. Financial results 

include operating revenue, operating expense, and operating profit or loss. Operating 

revenue consists of revenue obtained from the sale of tickets. Operating expense 

includes primarily variable costs, such as salaries and fuel, but it also includes 

depreciation and amortization of equipment. 

Productivity in the, transportation industry is frequently measured using "Percent 

Capacity Utilized" [3]. This measure indicates how full the particular transport 

equipment is. Take a specific example in the train industry. If there are 400 seats 

available on the train, and 300 are occupied by passengers, the percent capacity utilized 

is 75%. A higher utilization indicates higher productivity. 

Various output to input ratios have been calculated to determine transportation 

productivity. Some of these ratios are simple, some are complex. Simple ratios, for 

example, include available capacityiemployee. An example of a complex output to input 

ratio is total factor productivity. Total factor productivity has been calculated using a 

combination of a few different indexes of input (labor, equipment, fuel, and materials) 

and one index of output (capacity utilized) in order to arrive at a total factor productivity 

index [2]. It is argued that the sophisticated ratio provides a more accurate picture of 

the real productivity than the simple ratios. 

2.2. Analysis of Differences in Performance 

Some studies have examined factors which attempt to account for the differences 

in transportation performance. These factors include average distance and output, defined 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-90-17 



below. 

Average distance has been used as a factor contributing to productivity, measured 

as percent capacity utilized or output to input ratios, in a number of studies [2,3]. 

Average distance is the average length between the origin and destination. It is 

considered to be a leading indicator of structure. Structure refers to whether a particular 

transportation mode consists primarily of long trips or short trips. Structure is important 

because it has been found that increased average distance contributes to higher 

productivity. 

Output has been measured both as available capacity, and as used capacity, and 

has been considered to be a factor leading to productivity. Available capacity is the 

total number of seats available, while used capacity consists of the total number of 

passengers. These output measures are sometimes weighted by the length of the trip. 

For example, if there are 75 passengers travelling 100 miles, the output would be 75 x 

100 = 7500. 

2.3. Previous Model Specifications 

Productivity in the transportation industry has been investigated using a variety of 

mathematical specifications. For example, one study [2] predicts performance from 

output and average distance. It calculated total factor productivity to rneasure 

performance. The authors use a multiplicative, fixed effects specification for their model, 

with a fixed effect (dummy variable) for each year and each firm (See Table 1 for 

coefficients): 
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TFP = Total Factor Productivity 
dl = Dummy variable for time 
d, = Dummy variable for firm 
OP = Output 
AD = Average Distance 
PCU = Percent Capacity Utilized 

In contrast, another study [3] estimates transportation productivity using both 

additive and multiplicative random effects specifications. No dummy variables for either 

firm or year are included in the model. The authors predict percent capacity utilized 

from average distance, the number of passengers, and the number of firms servicing a 

particular market: 

PCU = 0.588 - 2.11"10-5AD + 7.62"10-'N - 7.06"10-'F 

PCU = 0.257 - 0.019lnAD + 0.0731nN - 1.461nF 

PCU = Percent Capacity Utilized 
AD = Average Distance 
N = Average Number of passengers in market 
F = Number of Firms in market 

In sum, different researchers specify different functional forms when modeling 

transportation performance. It is not clear which one, if any, is the right model. The 

next section discusses now neural nets can be used to model transportation performance. 

3. Neural Nets 

This section briefly reviews the neural net model, how learning occurs in a neural 

net, and contrasts it to regression models (and how they can be used as an alternative to 
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regression models.) 

3.1. The Neural Net Model 

A neural net is a model consisting of units, also called neurons, activation levels 

associated with each neuron, and connections between the neurons 

[9]. The neurons are elementary processing elements. There are three possible types of 

neurons: input neurons, output neurons, and hidden layer neurons. The input neurons 

receive input from sources external to the neural net. The output neurons send signals 

outside of the neural net. The hidden layer neurons act as feature detectors, 

corresponding to certain regularities or generalizations in the data. What these 

generalizations are does not have to be known prior to specifying the model; the neural 

net determines them. With the hidden layer, the neural net can perform more powerful 

classifications than it can without the hidden layer. In particular, a three-layer neural net 

(not counting the input layer) can separate arbitrarily complex data, whereas a two-layer 

neural net can separate data existing in a convex open or closed region, and a single- 

layer neural net can separate data which falls on opposite sides of some hyperplane [8]. 

The activation level refers to the strength of the neuron. It is determined by a 

linear or nonlinear function, associated with each neuron, which transforms the inputs to 

that neuron into a single output [9]. 

There are two types of connections between neurons: excitatory connections and 

inhibitory connections. Excitatory connections are positive weights between the neurons, 

while inhibitory connections are negative weights between the neurons. There are two 

different types of networks, based on two different ways of connecting the neurons. 

First, if the neurons in one layer are connected to neurons in the next layer, with no 
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distribution of the data when training a neural net. It is possible that the neural net 

model is general enough to be useful for problems where the assumptions of regression 

are not met. 

4. Method 

4.1. Variables 

This study uses percent capacity utilized to measure transportation performance. 

Percent capacity utilized is widely used within the industry as an indicator of 

performance. This statistic is closely monitored; changes in just a few percentage points 

can cause a firm to move from operating at a profit, to operating at a loss. If percent 

capacity utilized drops below a certain level, the firm can react, such as offering special 

disco nts for a limited time. Financial results, such as operating profits, were not used 

as it is beyond the scope of this study to find all the factors which influence operating 

profits, and include them in the model. Some of the factors would be beyond the firm's 

control, such as increases in the price of fuel, or general economic conditions. Finally, 

total factor productivity was not used because the transportation industry does not appear 

to calculate or monitor this statistic, whereas percent capacity utilized is frequently 

mentioned in trade publications. 

Based on the review of previous work, three variables were selected to predict 

transportation performance: capacity utilized, average distance, and advertising. Capacity 

utilized is a measure of output. It has been used to calculate the output index. One 

previous study [3] used the average number of passengers, N, to measure output. 

However, N does not take into account the different distances that different passengers 
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travel. Therefore, capacity utilized weighted by the distance traveled is used to measure 

output. This measure includes more information relating to output than simply the 

number of passengers. Capacity utilized is related to percent capacity utilized in that, if 

everything else remained constant, the more capacity utilized associated with a 

transportation firm, the greater the percent capacity utilized. 

Average distance has been used in previous work to predict performance [2,3]. 

One of the first studies [3] found that as the average distance increased, the percent 

capacity utilized decreased. The authors explain this result by noting that the break-even 

percent capacity utilized is lower on long distances than short distances, and therefore 

long distance trips can provide a profit even though they have fewer passengers than 

short distance tips. However, later studies [1,3] have found a positive relationship 

between average distance and percent capacity utilized. The later studies explain that the 

difference in the results may be due to data from a peculiar year, 1969, which was used 

to estimate the initial model. That particular year was a recession year in which percent 

capacity utilized averaged about 50%. Since then, it has averaged between 55% and 

62%. The later study [1] estimates their model twice, using two different years of data 

(1976 and 1981), and obtains a positive relationship between average distance and 

percent capacity utilized each time. A different study [2] estimates a similar model 

using a total of five years of data (1972 to 1976), and obtains a positive relationship as 

well. Therefore, the result obtained by the initial study may be due to an anomaly in 

the data. It is hypothesized that average distance will be positively related to percent 

capacity utilized. 

Advertising is hypothesized to affect performance. If a particular firm in the 
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transportation industry advertises more effectively than another firm, it is hypothesized 

that more people will use that firm, resulting in a higher load factor. 

In addition to these three variables, a dummy variable for strikes was added. 

Operations during strikes are substantially different from nonstrike operations: percent 

capacity utilized often remains reasonable, but the capacity utilized drops by at least 

50%. 

4.2. Data 

The data for these variables were obtained from a highly proprietary transportation 

database. One segment of the transportation industry was chosen, with data collected on 

all of the firms competing in that particular segment. As a result, ten firms were 

selected. Each firm consists of quarterly observations between 1973 and 1987, resulting 

in 60 observations per firm, resulting in a total of 600 observations. Some of the 

firms have undergone mergers. Mergers were dealt with by dropping the observations 

from the point at which the merger occurred. Consequently, 26 observations were 

omitted, leaving a total of 573. Out of this 573, 73 were randomly selected to form the 

test sample. Both the neural net and the regression were empirically tested using the test 

sample, in order to increase the comparability between them. The remaining 500 

observations formed the training sample, used to train the neural net and estimate the 

regression parameters. 

4.3. Regression Model 

The regression was estimated using LIMDEP, a software package developed at 

New York University, capable of estimating many types of regression models. It can 

generate coefficients for both fixed effects and random effects models. Four regressions 
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were specified: an additive model and a multiplicative model, with fixed and random 

effects specified for each of them. Capacity utilized, average distance, advertising and 

strikes were used to predict percent capacity utilized. 

4.4. Neural Net Model 

The neural net was trained using Neuralworks Explorer, b j ~  Neuralware, Inc. 

This package allows the user to specify the number of neurons, the number of layers, the 

training algorithm, and the sequence in which the data is selected to train the net. The 

four input neurons consist of capacity utilized, average distance, advertising, and strikes, 

the same variables as the independent variables in the regression. The one output neuron 

is percent capacity utilized. The single hidden layer consists of ten neurons (See Figure 

1). Ten neurons were chosen to determine if the neural net could distinguish each of the 

ten firms, picking up a fixed effect in the data. Each of the neurons in the input layer 

was connected to the ten neurons in the hidden layer, and to the output neuron. The ten 

neurons in the hidden layer were connected to the single output neuron. The rationale 

for this connection design is to investigate whether the neurons in the hidden layer are 

capable of picking up any fixed effects in the data. No feedback connections were built 

in the neural net. The net was trained using the cumulative delta rule. 

5, Results 

This section describes the results of the study. The results of the regression are 

presented first, followed by the neural net results. Table 2 summarizes the performance 

of the regression and the neural net. 
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In general, ignoring the additive/multiplicative specification for the moment, the 

fixed effects specifications (R2 = 3 1.9%, 23.8%) performed subs tantially better than the 

random effects specifications (R2 = -25.096, -36.6%). These estimates of R2 were 

obtained empirically from the test sample consisting of 73 observations. The R2 being 

less than zero indicates that the random effects specification accounts for none of the 

variance in the dependent variable; it would be more accurate simply to predict the 

average of the dependent variable's observations. It is possible to obtain an R2 less than 

zero because the R2 was calculated empirically using the test sample. As a result, zero 

is no longer the lower bound, as it would be when calculating the R2 from the training 

sample which was used to estimate the regression parameters. The R2 was calculated 

empirically to increase the comparability between the regressions and the neural net. 

The fixed effects specification is chosen as the correct one on the following basis. 

The ten firms which were selected form an exhaustive set of the firms competing in that 

particular market. In other words, the population is being sampled 100%. Therefore, a 

fixed effects model is appropriate for the regression, because the firms were not chosen 

at random (Hays, 1988). 

In addition to choosing between a fixed effects specification and a random effects 

specification, the choice must also be made whether to choose an additive or a 

multiplicative model. To help in choosing between them, a j-test is performed [5] as 

follows. First, the additive model is estimated. The percent capacity utilized values 

predicted from this model are used as an independent variable in the multiplicative 

model. If this term is significant, the data is then displaying additive effects. Next, the 

multiplicative model is estimated. The values predicted from this model are used as an 
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independent variable in the additive model, If this term is significant, then the data is 

displaying multiplicative effects. It is possible for none, one, or both of these terms to 

be significant. In this particular dataset, both the additive and multiplicative terms are 

significant. This implies that the data has both additive and multiplicative components. 

The j-test is inconclusive as to which specification is superior. Therefore, the resulting 

equations predicting percent capacity utilized (PCU) are: 

PCU = 0.0025"CU + 0.013*Avg-Dist - 0.00026*Adv 
+ 6.25"Strike + 37.58*Firml + 45.48*Firm2 
+ 38.52*Firm3 + 42.98*Firm4 + 35.20*Firm5 
+ 49.13*Firm6 + 41.22*Firm7 + 33.87*Firm8 
+ 51.15*Firm9 + 47.13*Firm10 

PCU = 0.19*ln(CU) - O.lO*ln(Avg-Dist) 
- 0.024*ln(Adv) + 0.19*ln(Strike) 
+ 3.35"Firml + 3.43*Firrn2 + 3.24*Firm3 
+ 3.33*Firm4 + 3.30*Firm5 + 3.48*Firm6 
+ 3.39*Firm7 + 3.30*Firm8 + 3.46*Firm 9 
+ 3.49*Firm10 

The results of these models are consistent with the earlier models. Capacity 

utilized (CU) is positively related to percent capacity utilized, having coefficients of 

0.0025 and 0.19. Average distance is positively related to percent capacity utilized, 

confirming the results obtained by the later studies. 

These regression models are compared to the neural net on the basis of R-Square, 

R-Square is calculated, in general, as R2=1 - var ejvar dvt [lo]. The R2 of the neural 

net is calculated to be 19%. The neural net performs better than the random effects 
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specifications, but poorer than the fixed effects ones. The fixed effects regression may 

outperform the neural net because the additional knowledge associated with each firm is 

explicitly incorporated into the regression. Future research could examine the possibility 

of storing explicit knowledge in a neural net. 

In addtion to examining overall performance, the net was examined in more 

detail (See Figure 2). The weights connecting the input neurons to the output neuron are 

larger than the weights connecting the hidden layer neurons to the output neuron. In 

addition, the variabili'ty of the weights connecting the input neurons to the output neuron 

is substantially larger than the variability of the weights connecting the hidden layer 

neurons to the output neuron. It appears that the input neurons have the greatest effect 

in predicting the output neuron, with the hidden layer neurons modifying the output to a 

small degree. It is possible that the input-output connection is capturing the random 

effects of the model, and that the input-hidden-output connection is capturing the fixed 

effects of the model. Neural nets seem to have the potential to incorporate both a 

random effects component and a fixed effects component into a single model, unlike 

regression, whch requires that one specification or the other is chosen. 

6. Conclusion 

In summary, it appears that this transportation dataset provides an example in 

which a neural net model outperforms a random effects specification, but not a fixed 

effects one. A neural net may be more applicable in modeling data consisting of 

random effects than data consisting of fixed effects. This should be investigated further 

to determine if this result can be generalized. In addition, further research could be 
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conducted to determine if it is possible for a neural net to legitimately incorporate fixed 

effects in the hidden layer, with the random effects corresponding to the connection 

between the input layer and the output layer. 
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TabIe I : Regression Coefficients 

a 
P O P  

P A D  

P P C U  

dl972 

d l973  

d l974 

d l975 

d l976 
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Table 2: Performance Comparison (R2) 

Specification Additive Mu1 tiplicative 

Fixed Effects 3 1.9% 23.8% 
Random Effects -25.0% -36.6% 

Neural Net -- 19.0% 

- 
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PCU 
('7 

Cap-Util Avg-Dist Adv Strikes 

F i r e  1: Neural Net Design 
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Figure 2: Neural Net 
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