
MANAGING DEVELOPMENT PRODUCTIVITY
OF THE COMPUTER AIDED SOFTWARE
ENGINEERING (CASE) PROCESS WITH

DYNAMIC LIFE CYCLE TRAJECTORY METRICS

by

Rajiv D. Banker

Robert J. Kauffiiian

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

MANAGING DEVELOPMENT PRODUCTIVITY
OF THE COMPUTER AIDED SOFTWARE
ENGINEERING (CASE) PROCESS WITH

DYNAMIC LIFE CYCLE TRAJECTORY METRICS

by

Rajiv D. Banker
Carlson School of Business

University of Minnesota
Minneapolis, Minnesota 55455

Robert 3. Kauff i~la l l
Leonard N. Stern School of Business

New Yorl; Unil-ersi ty
Xew k'ork, New \Ibrli 10003

and

R a c h n a K u m a r
Leonarcl N. Stern School of Business

New Yorl; University
New York, New Yorli 10003

December, 1990 ,

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Workiilg Paper Series

STERX IS-90-23

Center for Digital Economy Research
Stem School of Business
Working Paper IS-90-23

W A G I N G DEVELOPMENT PRODUCTIVITY

OF THE COMPUTER AIDED SOFTWAIiE ENGINEERING (CASE) PROCESS

WITM DYNAMIC LIFE CYCLE TRAJECTORY METRICS

ABSTRACT

This paper proposes a new vision for the measurement and
management of development productivity related to computer aided
software engineering (CASE) technology. We propose that they be
monitored and controlled via the application of d y n a m i c software
development " l i f e cycle t ra jec tory m e t r i c s . " This view develops
out of management accounting approaches for process control and
recent advances in CASE technology that make automated
measurement possible. We suggest that current approaches involve
the use of " s t a t i c m e t r i c s t ' for estimation and evaluation, with
the result that the depth of the insights they can provide to
management is necessarily limited. They only provide "point
estimatesn of output or productivity at the beginning and end of
the project. Yet to manage software development proactively for
improved efficiency and effectiveness, management needs to track
the range of activities and effort across the entire software
development life cycle. This can only be accomplished when
timely and relevant information is obtained about the software
size output, as well as costs, via " d y n a m i c m e t r i c s , I t which
provide a richer phase-by-phase view.

We acknowledge Mark. Baric, Gene Bedell, Tom Lewis and Vivek
Wadhwa for the access they provided us to data on software
development projects and managers1 time throughout our field
study of CASE development at the First Boston corporation and
SEER Technologies. We also thank Jon Turner, Vasant Dhar and the
participants of the Technology and Strategy Roundtable at the
Wharton School of Business, University of Pennsylvania (November
16, 1990). All errors in this paper are the responsibility of
the authors.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

1. INTRODUCTION

The introduction of computer aided software engineering

(CASE) tools in software development has radically changed the

dynamics of software creation. In fact, CASE tools are believed

to represent an industrial revolution in the market for software

products. In light of these changes, it is worthwhile to re-

examine the methods and approaches for managing software

development performance. In this paper, we will argue that CASE

offers new opportunities to improve software development control

by matching software product to software costs across the

development life cycle.

1,1, The Crisis in Software Costs

Cost-effective software development is strategically

important for firms seeking to achieve competitiveness through

the use of information technology (IT) (BENS86, DAVI88, JONE86).

The sheer size of the investments in software indicates the depth

of the commitments made to IT. For example, industry specialists

estimate that by 1990 the total investment in existing, developed

and purchased software will be in the neighborhood of 13% of the

United Statesg gross national product, a staggering $527 billion

(W 8 4) . Other projections reveal an annual increase in

software development budgets at the rate of 9% to 12%, exceeding

$150 billion per year by 1990 (BOEH88, GURB87). The extent of

the hopes that senior managers place in wresting business value

from their software investments parallels the magnitude of the

dollars spent.

Despite their expenditures, senior managers still regard

software development as the major bottleneck in exploiting the

potential of IT (GRAM85, BOUL89). Substantial backlogs of

software development exist in organizations of all sizes and in

many different industries, and they are reported to be increasing

at a rapid rate (SPRA86, YOUR86). One study even reported the

existence of Ithidden backlogs," consisting of user needs that

were not formally requested or commissioned; these hidden

backlogs were estimated at 535% of known backlogs (ALL083).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

Reports of software projects months behind schedule and far over

budget are also quite common, and, in fact, up to 15% of ongoing

software projects are thought to be abandoned due to gross

underestimation of required resources (JONE86, MAXT83). If

senior management finds no way to better manage the production of

software, their commitment to IT could end up becoming a

liability, rather than an asset, for the firm.

This software crisis is attributable to multiple factors

(ALAV85, BOEH88, KANG89, SENN90). The most often cited ones

include :
* customized application development practices which redevelop

from scratch the fundamental procedures and processes that
are common across applications or business units in an
organization;

* outdated and error-prone development methodologies that
postpone effort to the back end of software development life
cycle when the software is coded and implemented; this
results in significant additional hidden costs of
maintenance;

* increased complexity, size and scope of the functionality to
be incorporated into software for meeting user needs in the
competitive environment of a firm's business;

* the labor-intensive nature of software development, which
renders software quality and productivity very vulnerable to
the skills of the personnel used for development;

* a growth rate in user needs for IT applications that exceeds
the growth rate of the supply of experienced and well-
trained development staff.

With the increasing emphasis placed on the role information

systems play in obtaining the strategic goals of an organization

(CASH88, IVES84, PORT87), the management and control of the

software development process represents an increasingly difficult

problem that must be solved. A common intermediate goal for

senior software development managers is to improve the

productivity and quality of software operations. They aim to

achieve this by streamlining the life cycle of software creation

through the introduction of new development techniques. As a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

result, in recent years we have witnessed the introduction and

adoption of many new software development tools and techniques.

These include: structured programming; rapid prototyping; fourth

generation languages (4GLs); object-oriented and graphical

analysis, design and development techniques and data-oriented

methodologies.

The most recent addition to this list is integrated computer

aided software engineering (CASE), a technology that provides new

options for managing and controlling the productivity and costs

of software development. Input Inc., a California-based research

firm, figures that about 6% of annual software expenditures by

American firms in 1989 were attributable to application

development tools in general. In terms of dollars, this puts the

total expenditure in the range of $6 billion or more, and

spending on such off-the-shelf application development tools is

conservatively estimated to be growing at a 19% annual rate

(MOAD90) .
1.2. CASE -- An Industrial Revolution in Software Development

CASE is often touted as the most promising of all the new

tools, and certainly it is the fastest growing segment. Two

different surveys have indicated that between 55% to 75% of

organizations have adopted CASE tools for various development

projects including pilot projects, departmental projects, and

corporate wide applications (BURK89, SENT90). And, analysts

predict that the CASE market will grow at 35% to 45% per year, to

something on the order of $1 billion in the early 1990s (MCCL89).

CASE technologies and the methodologies that they promote

aim to transform the process of software development. Up to the

present, software development has essentially been a manual,

craft work-like process, but CASE is at the heart of an

industrial revolution in the making. It is rapidly transforming

the creation of software into a more automated, rigorous and

standardized engineering discipline. Paralleling the structure

of production in other industries such as automobile

manufacturing, home-construction, and even computer hardware

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

manufacturing, CASE is enabling a move of the software enterprise

from an assembly industry to a process industry. This means that

each product is no longer custom built, one at a time. Instead,

production occurs through the use of pre-fabricated components

from reusable templates, plans and procedures (POLL90). This

"modular softwareN approach offers considerable promise to

alleviate the major problems causing the software crisis cited

above. CASE advocates and firms investing heavily in CASE argue

that software automation is the key to increasing productivity,

controlling quality, and introducing predictability into the

software development process. Thus, CASE is increasingly

classified as a "strategic techn~logy,~ especially among those

firms which have moved to implement it early to control longer

term software development costs.

Reports on CASE claim a myriad of benefits ranging from 300%

productivity increases to lzero-maintenancel program code, But

only a few of these benefits have been rigorously substantiated

(KEME89, NUNA89). Studies describing successful implementation

of CASE methods and surveys reporting on usage proportions and

profiles of CASE tools abound (BURK89, MCCL89, MCNU89).

Norman and Nunamaker (NORM89) investigated the functional

and behavioral aspects of CASE technology that contribute most

favorably towards increasing the productivity of software

engineers. They found that the standardization aspects of CASE

technology, enforcing adherence to a disciplined, rigorous and

higher quality software development methodology, were perceived

to provide the most productivity gains. A different approach to

investigating the impacts of CASE techniques was taken by Vipond

(VIP090) in a longitudinal study to identify the behavioral

implications of introducing CASE methods into software groups.

The study indicated that impacts of CASE on job attitudes and

communicative behaviors of software developers can be complex and

profound; improvements in the software development process will

ultimately need to take into account the behavioral aspects of

CASE, as well as carefully manage and control the technical

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

aspects.

While the actual impacts of CASE are yet to be exhaustively

validated, the major sources of benefits from CASE can be

identified. Banker and Kauffman (BANK91B) present some of the

first empirical results to substantiate large productivity gains

from using CASE development techniques, especially the leverage

created by reusable code. An analysis of the structural and

functional dimensions of CASE technology helps to identify the

major characteristics of this methodology that contribute towards

potential benefits from CASE. These have very broadly been

classified by various authors (see, for example, BURK89, MCCL89

and SENN90) as the standardization of the software development

process, and the automation of software development activities.

Standardization of software development is at the heart of

the "modular approachw to software creation. It enables reuse of

existing software components, which saves the effort in writing,

testing, and implementing portions of the software currently

being developed (HALL87, JONE84). Standardization could thus

lead to reduction in development time as well as an improvement

in the quality of software developed. Automation addresses

tedious or routine manual tasks such as verification, validation

and consistency checking in early development phases, or error

checking in code. This not only reduces the labor required for

manually performing these tasks, it also ensures that these tasks

are satisfactorily and uniformly performed. It also leads to

increases in the quality of delivered software.

Thus, standardization and automation can have significant

impacts on the efficiency and effectiveness of software

development, and thus strategic costs. Efficiency refers to how

productive software developers are when a CASE methodology is

used to develop software. Effectiveness relates to how well

CASE-developed software accomplishes the business goals of the

organization.

The major benefit and cost implications that result from the

standardization and automation of software development are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

described in Table 1 below. What remains is to re-think how

management reporting needs to be recast to support the goal of

reducing software costs as much as possible with the tools

available in this new environment.
...............................

INSERT TABLE 1 ABOUT HERE

The remainder of this paper develops a new vision for the

management of the software development life cycle in the presence

of integrated CASE technologies via automated software metrics.

We will make the case that dynamic life cycle trajectory metrics

made possible by automated development of software projects will

help management to realize the benefits of "software process

controlgg in a way that was not possible before.

2. A PROPOSAL FOR CASE DEVELOPMENT PROCESS CONTROL

2.1. A New Vocabulary for Software Development Performance
Tracking

We propose a framework to measure, control and influence

software development performance that builds upon the

distinguishing characteristics of CASE environments. We find

that existing approaches to the estimation of software

development costs and the measurement of subsequent development

performance only provide single point measures -- when a project
begins or when it has reached completion. Such "static software

development performance metricsgg for cost estimation and

efficiency analysis do not provide sufficiently detailed or

relevant information for proactively managing the software

development process. By contrast, "dynamic software development

performance metricsM can help management to monitor and control

development performance throughout the software development life

cycle.

Boehm (BOEH81) has equated the problem of accurately

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

estimating development costs for a software project with the

problem an author has in estimating the number of pages a book

will have when the plot has just been sketched out. Static

metrics would only support the comparison of the initial estimate

of the length with what the author subsequently writes. But,

dynamic metrics are meant to describe the process of producing

the book, as the author adjusts the plot, resolves problems in

the relationships among the characters, or deals with a crucial

mental block which hampers the writing.

In a similar vein, static software development metrics are

snapshots of the results of software development production

performance. Dynamic metrics capture the development process on

video tape, enabling management to play the action back at will

as it occurs, to better understand it, and then to control and

improve overall project performance. Figure 1 contrasts the

richness of the information provided from dynamic versus static

measures.
....................................

INSERT FIGURE 1 ABOUT HERE

The figure depicts the trajectories of labor consumed by two

software projects, A and B. Initially, both are estimated to

consume approximately the same level of resources during the life

cycle. Suppose, however, that management's estimates are

inaccurate to an equal extent for both projects. In this

situation, we would observe two similar cost estimates and also

two similar variances between the estimated and actual costs.

Such static metrics might suggest that management take the same

kind of action to improve wsimilarfl projects in the future.

But note that the labor consumption trajectory suggests that

the software development processes in each project were quite

different. (Let us assume that the area under the phased labor

consumption curves and the size of the resulting software are the

same for both projects.) Project B required relatively more

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

effort during technical analysis and functional design, while

Project A consumed more labor during the construction phase.

A similar sketch could be made for productivity in function

points, month-by-month, as the construction of a software

application proceeds. The point is that utilizing such full

trajectory information makes it more likely that managers will

ask the right questions. For example: Were the functional design

problems experienced due to the qualities of the resulting

application or the experience of the analysis and design staff?

Was the skill mix or experience of the analysis and design staff

of Project B unsuited to the development requirements of the

project?

Managers can ask more general questions as well. For

example: How much code reuse occurs in software development, and

what is the extent of its leverage on productivity? Does the

skill mix or the experience level of the staff assigned to a

project influence the trajectory of its labor consumption or

productivity?

Our approach to monitoring software development can be

implemented with dynamic t r a j e c t o r y metrics which measure

performance parameters in each life cycle phase of software

development. However, such metrics only become feasible in the

CASE environment because the phase activities and phase

boundaries are better defined and more rigidly enforced. In

keeping with the automated character of CASE development,

measurement mechanisms can also be built into the CASE toolset

enabling management to carry out continuous, low cost monitoring.

2.2. Process Control Systems and Software Development

The intellectual backdrop of our proposal is found in recent

developments in the field of management accounting. Today, it is

increasingly recognized that two different types of control

systems are needed to facilitate effective management: produc t

c o s t i n g and p r o c e s s control (KAPL88). The normal approach to

software development productivity management compiles the total

costs for producing software, and accounts it against the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

aggregate software delivered, as described in the equation below:

PRODUCTIVITY =
TOTAL S O F m m E S I Z E OUTPUT

TOTAL DEVELOPMENTT COST INPUT

This is akin to product costing systems. Product costing is

advocated in the accounting discipline in such contexts as

pricing and valuing products. It is useful, for example, to

provide information to support project bidding, but product

costing is not capable of providing information that enables

dynamic performance evaluation as a project proceeds. The

problem with obtaining dynamic productivity measures arises

because existing output measurement approaches are not geared to

gauging software size at intermediate points of the software

development life cycle. Examples of such "end-pointw output size

estimation and measurement approaches include source-lines-of-

code-based models like COCOMO (LOW90) and SLIM (KEME87), and

function points (LOW90) .
By contrast, process control systems are responsible for

facilitating operational functions (COOP88). Operational control

allows management not just to value the total cost of the

delivered software (as in product costing), but also to control

the costs as software development occurs over the project life

cycle. Dynamic measurement can be performed to diagnose factors

driving the costs of operations as the development proceeds.

Information on the nature and impact of cost drivers can be used

to make tradeoff and compromise decisions, and adjustments in the

process based on sensitivity analyses.

Both the software costing approach and the software process

control approach to measuring software activities are relevant in

the management of software development. However, the ability to

control and influence process costs is critical in meeting the

challenge of building strategically beneficial software assets.

Thus, the primary productivity control framework in terms of the

frequency and approach to measuring a software project should be

based on the measurement principles that support optimal process

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

control.

Management accounting distinguishes among four requirements

for software product costing and process control systems (COOP88,

JOHN87). Table 2 summarizes these requirements.
...............................

INSERT TABLE 2 ABOUT HERE

Nature of Costs: For effective control of the software

development process, development costs should be considered

variable with respect to all relevant cost drivers. Software

product costing systems dontt adequately diagnose the causes of

cost variances; they only use labor cost figures captured when

development has been completed. So, an approach that

incorporates a more effective treatment of cost drivers is needed

to reflect their nature and impacts on project costs.

Management Scope: A time-tested principle of management is

that managers should only be accountable for those activities

that they can influence directly. Individual project managers

are held accountable for their project's development performance.

But, they only can influence the costs of their projects by

reacting to process control measures that permit corrective

actions to be taken as development proceeds. The information

provided by static product costing approaches can best be used by

departmental or senior managers in comparing performance across

projects being developed at that same time or historically over

time. Thus, if controlling or influencing the internal

operations of a project is the major concern, project managers

should be supported by process control systems that cover their

responsibilities across the entire life cycle.

Time Horizon: Another important characteristic of process

management systems is their ability to explain variances in short

term software development costs. The key to achieving this is

the definition of the "short-termtt time horizon in the context of

software development. This is the time period during which we

expect constructive process control opportunities to occur

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

(BRUN87). Control opportunities are traditionally known to

coincide with the occurrence of a measurable unit of work. In

other words, to be useful, the frequency of process control

information should match the cycle of the software production.

Our premise is that productive decisions only can be made at the

natural breakpoints that occur during the production --
especially as phases end -- and so measurement procedures should
deliver information that is relevant to decision making at these

points.

Reporting Frequency: The design of existing static software

development productivity measures was justified in manual

development environments since a traditionally-developed software

project was only concretely and unambiguously measurable upon

completion. But, project completion is not the only time that

decisions can be made which affect the software development

process, and this is especially true for CASE development. For

example, a manager may wish to determine whether schedule

overruns are being caused by inefficient design, error-prone

coding, or unexpected implementation difficulties. Thus, there

is a need for more frequent reporting to support the shorter time

horizon of measurable software development in each life cycle

phase.

Since software development projects have become so much

larger and more complex, the completion point should no longer be

viewed as the only concrete decision time. As the software

development life cycle proceeds, each phase becomes a distinct

sub-process of the overall production of software. Upon closer

inspection, each phase would seem to have different outputs,

different conversion efficiencies, and, thus, different

parameters for management action. And, each phase often has

qualitatively different inputs as the composition of the

development team assigned to the project changes over time to

match the difficulties presented by development in each life

cycle phase.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

2.3. Automating Dynamic Trajectory Metrics for Process Control:
Benefits and Costs

In effect, we are advocating the collection of finer and

more "perfect informationw in the context of software development

cost control, but only to the extent that it is relevant. The

collection of more information in a decision setting only can be

justified after a careful consideration of the costs and benefits

of that information. Traditional software development

environments were unable to deliver perfect information as the

life cycle progressed without forcing a project manager to incur

unacceptably high costs. But CASE changes this cost-benefit

relationship.

Benefits of Measurement: The benefits of information that

describe the software development life cycle to the project

manager are a function of the actions that can be taken based on

the information, and the consequences that the actions can

produce. First, measures that are collected should be able to

resolve decision options. Dynamic life cycle metrics enable

actions that influence subsequent software development

activities. Second, there is not much value in collecting

measures with accurate up-to-the-minute detail if the software

operations cannot (or need not) be controlled to that level of

fineness. This is likely to be the case in the early phases of

development, when order of magnitude estimates of labor may

suffice.

Thus, it is reasonable to expect that the value of very

accurate and detailed information to a project manager in the

earlier life cycle phases is probably less than its value in the

later phases. Figure 2 depicts the high variability and

unpredictability of project costs when estimations are made in

the earlier phases.
...............................

INSERT FIGURE 2 ABOUT HERE
...............................

Efficient control measures in these phases could be rough,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

first approximations because they cannot resolve very finely the

management actions vis a vis cost control. In the later phases,

more accurate, refined measures of the costs and cost drivers

will better support decision making for cost control.

Costs of Measurement: The other issue in committing to

dynamic measures is an acceptable cost to implement them.

Considerations regarding the decision value of the information

affect the nature and design of suitable metrics. Clearly, the

cost of measuring should not exceed its decision value, else it

will reduce management's motivation to measure. Johnson and

Kaplan suggest that the reduction in the costs of information

collection and processing no longer justifies highly aggregated,

low-detail process information. They comment:

"... t h a t managers [were] n o t i n c l i n e d t o c o m p i l e
[d i s a g g r e g a t e d and] a c c u r a t e d a t a ref lects their judgment on
the costs and benefi ts and f e a s i b i l i t y o f s u c h i n f o r m a t i o n ,
not a l o s t sense o f what i n f o r m a t i o n i s r e l e v a n t t o
[o p e r a t i o n a l] management decisionsM (JOHN87, pp. 1 4 4)

This suggests that managers might have been convinced of the

value of measuring across the life cycle, but the cost of such

measurement would have deterred them. The cost of collecting

data and providing prompt reports for each life cycle phase of

software development was too high in the manual programming era

to permit the real time process control we are now advocating.

Automated Measurement: But, today's CASE development

environments make it possible to automate dynamic software

development life cycle metrics. The reduced cost of automated

measures no longer requires managers to contend with irrelevant,

aggregate measures on complex and critical software development

processes. The challenge in developing dynamic cost measurement

procedures for software development is to reduce the costs of

measurement itself. Automation of measurement metrics in the

CASE environment can provide ongoing control information such

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

that the decision value outweighs the costs. 1

3. CONTROLLING CASE DEVELOPMENT COSTS WITH DYNAMIC TRAJECTORY
METRICS

3.1. Requirements For Dynamic control of CASE Development costs

Effective software cost control systems should deliver three

basic capabilities to management (SHAH81):

[I] Measurement -- The ability to unambiguously and consistently
measure costs associated with identifiable units of work.

[2] ~stimation -- The ability to accurately estimate and
forecast cost measures.

[33 Variance Analysis -- The ability to isolate variances
between estimated and actual cost measures, enabling
corrective measures to be taken in subsequent stages of the
production process.

We next examine these components more closely, as each relates to

our proposal for dynamic trajectory metrics.

Measuring the costs associated with the work of software

development should take account of all inputs into the software

production process, Costs arise from a number of sources, such

as development labor, hardware resources, business transactions,

and so on. However, development labor is by far the largest,

most significant and most variable cost component (HOR084).

Therefore, the measure for the cost of development usually

considers only labor inputs and is in terms of the number of

person-days or person-months logged on the software project by

the development team over the entire life span of the project.

The second requirement, the ability to accurately estimate

costs, is required because managers gauge how well an activity is

'1n fact, product development in this area is underway for a
number of CASE development environments, including Texas
Instrument's IEF (MAZZ90), Andersen Consulting's Foundation
(HIDDgO), and Seer Technologiest High Productivity Systems CASE
tools (BANK90). These firms are undertaking the construction of
automated metrics facilities at a one time-cost, to defray the
cost of repetitive measurements to be made in the future.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

being performed by comparing actuals against estimated

performance. Whatever its sophistication, a specific software

development performance measurement system cannot be effective in

controlling the process unless it incorporates a set of standards

which managers can agree upon and use as anchors on which to base

their performance expectations. The limited ability of software

managers to estimate the time required and costs of development

has long been a major shortcoming, and was first brought to the

attention of the systems development community by Brooks, in his

essay The Mythical Man Month (BR0075) .
In fact, even experts tend to underestimate software project

development times, and in spite of this awareness projects

continue to be behind schedule and budget. Moreover, sometimes

irrational political perspectives influence the cost estimation

process, and have important ramifications for taking meaningful

managerial actions to improve estimation (LEDE90). Advances in

more formal approaches to measuring software size have tested

empirical models that predict development time based on

historical relationships between software size and development

labor. (These include models such as COCOMO, ESTIMACS and SLIM,

as discussed in KEME87.)

The third requirement, the ability to isolate variances

between estimated and actual cost measures is a diagnosis

capability which provides answers to an important question: *$What

is the cause for the difference between estimates and actuals?"

Providing a satisfactory answer requires an understanding of cost

drivers -- those development attributes that impact and mediate
the conversion of development labor into software product. In

software development, as in most production processes, the size

of the software output is the most important cost driver, But

attributes of the development process have also been found to

impact development labor input (SCAC87, BOEH81). These

attributes can be classified into program attributes (e.g.,
reliability requirements), environment attributes (e.g., main

memory constraints), personnel attributes (e.g., average

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

experience of project team), and project attributes (e-g., type

of development tool used).

In software development, the impact of project development

attributes on the labor effort required for delivering the system

is not a simple relationship. The impact depends on both the

life cycle phase of the software project as well as the value of

other attributes (BOEH81, VICI90). Once managers are able to

diagnose the causes for the deviation in performance, they should

be able to understand what actions are appropriate or necessary

to influence the factors causing the deviation. This ability to

influence cost drivers, like isolating the causes of variances,

is again dependent on an understanding of the nature and effect

of the cost drivers.

For example, applications with the project attribute high

reliability have been found to be adversely affected in terms of

development time in the functional design phase, but to a lesser

extent than in the coding phase. Similarly, if the personnel

attribute for a project is high experience for the development

team, reliability considerations would not impact development

time as much as if the attribute were low experience. So, we see

that the cost drivers are phase-dependent and also may exhibit

joint effects. This considerably complicates the isolation and

correction of variances, and meanwhile places a premium on

obtaining better information throughout the life cycle.

3.2. CASE Repository Objects: A Basis for Dynamic Trajectory
Metrics

In order to implement a dynamic software process control

system incorporating trajectory metrics, we need to identify a

sound basis for designing the specific metrics which measure cost

efficiency parameters at relevant intermediate points in the

development life cycle. We have established that these relevant

intermediate points are the endpoints of the life cycle phases.

We have also stressed that diagnostic ability in controlling

costs can be achieved only by regarding costs as variable with

respect to all cost drivers. This suggests the need for the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

following functional relationship to be tested:

D.W.ELOPHENT-LABOR-INPUTp = f(COST-DRZVERS-FOR-CRSE)p

where p indicates the phase of the life cycle in which

measurement occurs. Thus, trajectory metrics should be based on

measures of DEVELOPMENT-LABOR-INPUT and COST-DRIVERS-FOR-CASE for

each development phase.

DEVELOPMENT-LABOR-INPUT measures for each life cycle phase

can be obtained from existing measurement approaches. Existing

labor tracking systems generally account for labor hours over the

entire life cycle. These labor hours can be summed at the end of

each phase. Linking labor tracking systems to automated software

development performance analysis facilities with the proposed

trajectory metrics would also help to motivate measurement.

Phase measures for the COST-DRIVERS require a more radical

change in existing approaches. The prerequisite for establishing

measures for cost drivers is the identification of relevant cost

drivers: those attributes that significantly affect labor input

costs in the different phases. In a CASE development

environment, only some factors will impact the software

development process enough to make a significant difference in

the input labor hours. Thus, the set of relevant software cost

drivers identified in prior research needs to be revised, based

on what can be learned from new research on CASE development

performance.

Although more exhaustive, empirical verification is still

needed, some preliminary evidence exists to suggest that in CASE

environments DEVELOPMENT-TEAM-EXPERIENCE, SOFTWARE-PRODUCT-OUTPUT

and REUSE-LEVEL impact development labor significantly (BANK91BI

KARI90). DEVELOPMENT-TEAM-EXPERIENCE can generally be measured

with subjective rating methods for each phase. A bigger

challenge is to develop trajectory metrics for the SOFTWARE-

PRODUCT-OUTPUT from each phase.

REUSE-LEVEL refers to the use of existing code in order to

program an application. Reused code thus adds to the size and

functionality of the delivered software product without requiring

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

a proportionate amount of development labor. This justifies its

inclusion as an important cost driver for DEVELOPMENT-LABOR-

INPUT. REUSE-LEVEL is measured in terms of the proportion of

reused code in the total SOFTWARE-PRODUCT-OUTPUT. The proportion

of reused code in the final software product is measured in terms

of the same units of work output that are used for SOFTWARE-

PRODUCT-OUTPUT. Thus, measures for both SOFTWARE-PRODUCT-OUTPUT

and REUSE-LEVEL are dependent on identifying work output measures

from the development process. This requires identification of

measurable units of work at the end of each of the life cycle

phases.

~dentifying measurable units of work from phases was not

easy until the advent of CASE development tools. In traditional

development environments each life cycle phase did not have a

unit of delivered work which could be measured with any degree of

accuracy. For example, the work done in the business analysis

phase was partly represented by diagrams on paper and partly in

the analyst's mind. Similarly, a considerable portion of the

work completed in the functional design phase went undocumented

because of verbal communications between the analyst and the

programmer, unwritten contracts, and so on (DHAR89, SASS88,

TURN86) .
bowever, CASE technologies make it possible to capture

outputs from each life cycle phase. The discipline of CASE

development produces well specified, rigorously defined outputs

from each life cycle phase. These outputs can form the basis for

unambiguous work unit measures.

In keeping with the standardization and reusability aspects

of CASE environments, measures for monitoring phase outputs

should utilize relevant parameters of the pre-fabricated

components that form the basis of the "modular approa~h.'~ In

related work, we explored the possibility of monitoring the use

and nature of these pre-fabricated components themselves, which

we call Mobjectsm (BANK91A). The results indicated that because

objects act as building blocks to construct the functionality of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

the software, they can be used to represent the outputs of

development in efficiency metrics.

Objects represent specific, well-defined functions in handy,

ready-to-use chunks of code. An object need only be written

once, and all subsequent applications that need to deliver the

same functionality could merely reuse existing objects. In

addition, the definitions and code content of objects in CASE

environments are frequently stored in a centralized repository.

Examples of objects that are often utilized in business CASE

environments are: RULES, SCREEN DEFINITIONS, USER REPORTS, and so

one2 The complexity of the objects written afresh by a

programmer, the level of reuse of existing objects by a

programming team, and the total number of objects of all types

used to build an application provide a natural avenue along which

the design of trajectory metrics can proceed.

3.3. Trajectory Approaches for the CASE Life Cycle: Some
Proposals

A study of the deliverables at the end of each life cycle

phase of CASE development would enable the specification of

outputs at each stage. In integrated CASE environments (i.e.,

those which automate development in all the life cycle phases),

application development is a process of successive refinement of

objects as development progresses from the earlier life cycle

phases of business analysis and design to the later phases of

testing and implementation. The objects created at the business

analysis phase are abstract, higher level representations of

functionalities required by the application. Each subsequent

lower level object of the later phases goes one step further in

instantiating the functionality of the previous phases's object,

until finally the code is written in the construction phase.

Objects created in earlier phases lay out a road map for

subsequent refinement that may occur, or the development of

2 ~ o r additional details on an integrated CASE environment
(ICE) that has some of these features, see BANK90A.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

additional objects in later phases. Table 3 illustrates this

perspective by identifying objects that would be useful to gauge

output phase-by-phase. The examples draw on experience we gained

in a field study of CASE at the First Boston Corporation and Seer

Technologies. The object names are used as illustrations of

generic outputs that can be identified from the different life

cycle phases.

INSERT TABLE 3 ABOUT HERE

The Bus ines s Ana ly s i s phase defines the scope and functions
of the system in terms of user requirements. The output of

business analysis in CASE environments is a model of the

processes and the data involved in the business system. This

stage often uses tools such as an Entity-Relationship Diagrammer

or a Process Hierarchy Diagrammer, and typically outputs objects

such as ENTITIES, PROCESSES, RELATIONSHIPS (between ENTITIES and

PROCESSES). These are generic objects, and their total number

and complexity as they exist in the repository at the end of this

phase can be used to measure the work output from the business

analysis phase.

Similarly, the Functional Design phase translates business
requirements to the specific needs of the application's users,

including features, functions, interfaces, and so on. It uses

tools such as a Report Painter or a Window Generator, and

typically outputs objects such as RULES, WINDOWS, VIEWS, and

RELATIONSHIPS (between RULES, WINDOWS, VIEWS, and so on). The

Technical Design phase further refines the functional
specification of objects by including: the data structures; data

flows; and files referenced, input or output. Examples of

objects produced in this technical phase are FIELDS, FILES, RULE

details, and so on. Sof tware Cons t ruc t ion involves generation of
all code at the source level. Reusable objects need merely

retrieve code from the repository while objects that have to be

written from scratch will require much more labor. Thus, the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

REUSE-LEVEL will affect DEVELOPMENT-LABOR-INPUT very

significantly in this phase. (We are currently studying what the

relevant object outputs will be for the Testing/Implementation

and Maintenance/Enhancement phases.)

To sum up our argument, repository-based objects can act as

the distinct and identifiable units of work from each life cycle

phase of CASE development. The total number, complexity or size,

and origin (reused versus written from scratch) of objects can be

used to measure SOFTWARE-PRODUCT-OUTPUT from each phase. Since

the reuse cost driver is also dependent on the object unit of

work, REUSE-LEVEL can also be distinctly identified for each

phase. This equips us with the capability to perform the dynamic

software process control necessary for reaping significant cost

savings from CASE development methodologies.

4. CONCLUSION

In view of the large costs of software, cost control systems

for software development should be designed to more closely

support the operations and the strategy of the organization. The

technology necessary to implement the approach to software

development monitoring and control systems that we advocate is

radically different from what exists in most 3GL development

shops today. But today, CASE makes implementing our vision of

software development tracking increasingly possible.

4.1. Research Contribution

The paper has described the conceptual framework for the

development of managerially relevant procedures to enhance

software process control with dynamic software development

performance trajectory metrics. We also have suggested that

automating software process control is appropriate and feasible

in CASE environments, and that this changes the basic cost-

benefit relationship that exists for software project performance

tracking. The low cost of measurement made possible through

automated analysis and the availability of repository-based

objects as distinct, identifiable units of development work from

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

each life cycle phase combine to make integrated CASE

environments ideal testbeds for research on trajectory metrics.

Our approach to implementing dynamic cost control measures

forms the first step in a broader attack on CASE project planning

and project management methods. Control of software development

activities in each phase will support project management

activities from the earliest phases of the software life cycle.

Tasks such scheduling, identifying staff requirements and

performing resource planning can be performed on a phase-by-phase

basis, rather than on a project-by-project basis. Moreover,

these plans can be revised dynamically as the actual performance

occurring in a phase becomes known. Such an approach will allow

more powerful project planning which can more readily adapt to

unanticipated changes in performance or project parameters.

A great deal of potential exists to increase management

effectiveness by using phase-based performance measures. Their

use opens up the possibility of conducting new, rich and

insightful analyses that cannot be conducted using today's

aggregate and static performance measures. As management's

database of phase-by-phase performance results grows, project

managers can utilize the historical experience to fine tune their

management actions in the short term. They can identify the most

productive practices, perform sensitivity analyses of

environmental and functional features on project parameters, and

make trade-off to optimize productivity, hit a target cost, reach

a given level of software quality, or match a tough deadline.

We envision a dynamic software project control environment

which integrates:
* more accurate project planning based on better phase

estimates;

* more proactive project management whose decisions are based
on sensitive phase measures;

* more flexible plan revision based on diagnosing differences
between phase plans and actuals.

Such an integrated software project control environment

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

places the control back in the hands of the project manager.

4 .2 . Research Agenda
The paper has described the conceptual framework for the

development of managerially relevant procedures to enhance

software process control with software development performance

trajectory metrics. We also have suggested that automating

software process control is appropriate and feasible in CASE

environments. The low cost of measurement and the availability

of objects as distinct, identifiable units of development work

from each life cycle phase combine to make the CASE tool we are

studying at Seer Technologies and First Boston Corporation an

ideal testbed for research on trajectory metrics.

Our proposal for trajectory measures opens up several new

lines research inquiry for the future .
[I] ~mpirical evidence to identify relevant cost drivers

for CASE development environments would provide
valuable insights into the nature of the cost drivers
and the metrics required to track them.

[2] Research to validate and specify object outputs as
measures of work from the different phases is also
needed to provide a rigorous, empirical basis for
justifying the implementation of our cost control
framework CASE.

[3] Another important extension within our cost control
framework would be to study and compare the estimation
accuracy and ease of different measurement approaches.
Our work on "object pointsn is a step in this direction
(BANK91A) .

We are now involved in investigating the estimation

performance of dynamic, object-based trajectory metrics. This

should further our goal of developing an integrated CASE process

control system which makes use of the features of the CASE

development environment. Software production can then be matched

more closely with strategy formulation to enable a firm to

minimize its strategic software costs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

REFERENCES

ALAV8 5 Alavi, M. High-Productivity Alternatives for Software
Development. Journal of Information Systems
Management, 2(4), Fall 1985, pp. 19-24.

ALL08 3 Alloway, R. M. and Quillard, J. A. User Managers'
Systems Needs. MIS Quarterly, 7(2), June 1983, 27-41.

BANK9 0 Banker, R. D., Fisher, E., Kauffman, R. J., Wright, C.,
and Zweig, D. Automating Software Development
Performance Metrics. Working Paper, Stern School of
Business, New York University, September 1990.

BANK91A Banker, R. D., Kauffman, R. J., and Kumar, R., Output
Metrics for Object-Oriented, Integrated Computer Aided
Software Engineering (CASE): Critique, Evaluation and
Proposal. Forthcoming in the Proceedings of the
Twenty-Fourth Hawaii International Conference on System
Sciences, Hawaii, January 1991, pp. 327-339.

BANK91B Banker, R. D.! and Kauffman, R. J. An Empirical Study
of Computer Alded Software Engineering (CASE)
Technology: Productivity, Reuse and Functionality.
Forthcoming in MIS Quarterly, 1991.

BENS86 Benson, R. J. and Parker, M. M. Enterprise Wide
Information Management: Strategic Planning For
Information Technology - An Introduction for the
Business Executive, IBM Los Angeles Scientific Center,
G320-2775, January 1986.

BOEH8l Boehm, B., Software Engineering Economics, Prentice
Hall, Englewood Cliffs, NJ, 1981.

BOEH88 Boehm, B. W. and Papaccio, P. Understanding and
Controlling Software Costs. IEEE Transactions on
Software Engineering, 14(10), October 1988, pp. 1462-
1477.

BOUL8 9 Bouldin, Barbara M. CASE: Measuring Productivity --
What Are You Measuring? Why Are You Measuring It?
Software Magazine 9(10), August 1989, pp. 30-39.

BR007 5 Brooks, F. P., Jr. The Mythical Man-Month. Addison
Wesley, NY, 1975.

BRUN8 7 Bruns, W. and Kaplan, R. S. eds., Field Studies in
Management Accounting and Control, Harvard Business
School Press, Boston, MA, 1987.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

CASH88

COOP88

DAVI 8 8

Burkhard, D. L. and Jenster, P. V. Applications of
Computer-Aided Software Engineering Tools: Survey of
Current and Prospective Users. Database, Fall 1989,
pp. 28-37.

Cash, J., McFarlan, F., McKenney, J. and Vitale, M.
Corporate Information Systems Management: Text and
Cases, Irwin, Homewood, IL, 1988.

Cooper, R. and Kaplan, R.S. Measure Costs Right: Make
the Right Decisions. Harvard Business Review,
September-October, 1988, pp 96-103.

Davis, G. B. Commentary on Information Systems:
Productivity Gains from Computer Aided Software
Engineering. Accounting Horizons, 2(2), June 1988, pp.
90-93.

Dhar, V., Ramesh, B., and Jarke, M. REMAP Project: An
environment for Supporting Requirements Analysis and
Maintenance. In Proceedings of Artificial Intelligence
and Software Engineering Symposium, AAAI-89, Spring
Symposium Series, Stanford, CAI March 1989,

Grammas, G. W., and Klein, J. R. Software Productivity
as a Strategic Variable. Interfaces 15(3), pp. 116-
126, May-June 1985.

~urbaxani, V., and Mendelson, H. Software and Hardware
in Data Processing Budgets, IEEE Transactions on
Software Engineering, SE-13(9), September 1987, pp.
1010-1017.

Hall, P. A. V. Software Components and Reuse --
Getting More Out of Your Code. Information and
Software Technology 29(1), January-February 1987, pp.
38-43.

Personal communication with Gezinus Hidding, Andersen
Consulting, 1990.

Horowitz, E. and Munson, J. B. An Expansive View of
Reusable Software. IEEE Transactions on Software
Engineering, SE-10(5), September 1984, pp. 477-487.

Ives, B.! and Learmonth, G. The Information System as
a Competitive Weapon. Communications of the ACM,
27(12), December 1984, pp. 1193-2101.

Johnson, H. T. and Kaplan, R. S. Relevance Lost: The
Rise and Fall of Management Accounting. Harvard
Business School Press, Boston, MA, 1987.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

JONE84 Jones, T. C. Reusability in Programming: A Survey of
the State of the Art. IEEE Transactions on Software
Engineering SE-10(5), September 1984, pp. 484-494.

JONE8 6 Jones, T. C. Programming Productivity, McGraw-Hill, NY,
1986.

KANG89 Kang, K. C.: and L. S. Levy. Software Methodology in
the Harsh Llght of Economics. Information and Software
Technology 31(5), June 1989, pp. 239-249.

KAPL8 8 Kaplan, R. S. One Cost System Isn't Enough. Harvard
Business Review, January-February, 1988, pp. 61-66.

KARI 9 0 Karimi, J. An Asset-Based Systems Development Approach
to Software Reusability. MIS Quarterly, 14(2), June
1990, pp. 179-200.

KEME87 Kemerer, C. F. "An Empirical Validation of Software
Cost Estimation model^,^' ~ommunications of the ACM,
30(5), May 1987, pp. 416-429.

KEME8 9 Kemerer, C. F. "An Agenda For Research in the
Managerial Evaluation of Computer-Aided Software
Engineering (CASE) Tool ImpactsIw Proceedings of the
22nd Hawaii International Conference on Systems
Sciences, Hawaii, January 1989, pp. 219-227.

LEDE90 Lederer, A. L., Mirani, R., Neo, B. S., Pollard, C.,
Prasad, J., and Ramamurthy, K. Information System Cost
Estimating: A Management Perspective MIS Quarterly,
14(2), June 1990, pp. 159-178.

LOW9 0 Low, G. C., and Jeffrey, D. R. Function Points in the
Estimation and Evaluation of the Software Process.
IEEE Transactions on Software Engineering 16, January
1990, pp. 64-71.

MART8 3 Martin, E. W. Strategy for a DoD Software Initiative.
IEEE Computer, 16(3), March 1983, pp. 52-59.

MAZZ90 Mazzucco, F. Automation of Function Counting
Techniques, Texas Instruments, 1990.

MCCL8 9 McClure, C. The CASE Experience. Byte, April 1989,
pp. 235-244.

MCNU8 9 McNurlin, B. Building More Flexible Systems. I/S
Analyzer, October 1989.

MOAD9 0 Moad, J. The Software Revolution. Datamation,
February 15, 1990, pp. 22-30.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

Norman, R. J., and Nunamaker, J. F. Jr. CASE
Productivity Perceptions of Software Engineering
Professionals. Communications of the ACM, 32(9),
September 1989, pp. 1102-1108.

Nunamaker, J. F. Jr., and Chen, M. Software
Productivity: A Framework of Study and an Approach to
Reusable Components. In Proceedings of the 22nd Hawaii
International Conference System Sciences, Hawaii,
January 1989, pp. 959-968.

Pollack, A. The Move to Modular Software. New York
Times, Monday, April 23, 1990, pp. Dl-2.

Porter, M. From Competitive Advantage to Corporate
Strategy. Harvard Business Review, May-June 1987, pp.
43-59.

Ramamoorthy, C. V:, Prakash, A., Tsai, W. and Usnda, Y.
Software Engineering: Problems and Perspectives. IEEE
Computer, 17(10), October 1984, pp. 191-209.

Sasso, W.C. and McVay, M. The Constraints and
Assumptions of Systems Design: A Descriptive Process
Model. Working Paper, CRIS #137, Stern School of
Business, New York University, September 1988.

Scacchi, W., and Kintala, C. M. K. Understanding
Software Productivityw Technical Report CRI-87-67,
Computer Science Department, University of Southern
California, Los Angeles, CAI 1987.

Senn, J. A. and Wynekoop, J. L. Computer Aided
Software Engineering (CASE) in Perspective. Working
Paper, Information Technology Management Center,
College of Business Administration, Georgia State
University, 1990.

Sentry Market Research. CASE Research Report,
Westborough, MA, 1990.

Shah, P. Cost Control and Information Systems, McGraw
Hill Book Co., NY, 1981.

Sprague, R. H. and McNurlin, B. C. (eds.) Information
Systems Management in Practice, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

Turner, J. A. Understanding Elements of Systems
Design. In Critical Issues in Information Systems
Research, R. Boland and R. Hirscheim (eds.), John Wiley
and Sons, NY, 1986.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

VICI90 Vicinanza, S., Prietula, M. J. and Mukhopadhyay, T.
Case-Based Reasoning in Software Effort Estimation: A
Theory, A Model, and A Test, forthcoming in Proceedings
of The Eleventh International Conference on Information
Systems, Copenhagen, Denmark, December 1990.

VIP090 Vipond, S. A. Achieving the Transition to Computer-
Aided Software Engineering: A Longitudinal Study of
Change and Adaption in Two Software Development Groups.
Working Paper, MIS Research Center, Carlson School of
Management, University of Minnesota, April 1990.

YOUR86 Yourdon, E. Whatever Happened To Structured Analysis?
Datamation, 32(11), June 1986, pp. 133-138.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

Figure 1. Labor Consumption Trajectories for Two Software
Development Projects of Similar Size

Labor Consumed -- Additional Labor
A Consumed by Project A

in FD and TD Phases

-- Additional Labor
Consumed by Project B

The Labor in SC Phase only
Consumption -- Labor Consumed by Both

ProjectAandB

Software
Development

> Life Cycle
S P B A FD TD SC TI ME Phases

Assumptions: Project size in function points and total labor equal
for A and B.

KEY: SP -- Strategic Planning
BA -- Business Analysis
FD -- Functional Design
TD -- Technical Design
SC -- Software Construction
TI -- Testing and Implementation
ME -- Maintenance and Enhancement

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

Figure 2. Successive Predictability and Accuracy of Costs

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

+

Variability of
Cost Measures

A

-

H,

*
*

*
*

* * * - - - - - - - - - - - - - - - - - - - *-ACTUALtS
* * *

*
*

*
*

>
SP BA FD TD SC TI ME:

> Life cycle phases

KEY: SP -- Strategic Planning
BA -- Business Analysis
FD -- Functional Design
TD -- Technical Design
SC -- Software Construction
TI -- Testing and Implementation
ME -- Maintenance and Enhancement

Table 1. CASE Technology: Cost Impacts of Improved Efficiency and
Effectiveness

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

MAJOR SOURCES
OF CASE
BENEFITS c_,
Productivity
Gains

Speed of
Development

Accuracy of
Development

Methodological
Consistency
of Development

Traceability of
development
operat ions

Higher
Functionality
of Software
Product

Less onerous
technical
training
requirements
for
personnel

Makes the
maintenance
phase
manageable l

COST

EFFICIENCY DIMENSION

Reuse supports creation of
larger amount of software
for given level of labor

Has potential to help
reduce existing backlog
of software projects

Reduces debugging and
maintenance costs by
lowering error rates

Provides management with
new leverage to manage
development labor
efficiency across projects

Enables efficient tracking
and coordination of project
activities documented
on the computer

Brings creation of very
complex software within the
bounds of routine project
development practices

Has potential to combat
labor shortages, by
reducing the knowledge-
intensiveness of software
development

Maintenance costs are
lowered by ensuring that
code is highly modularized
and well-documented with
facilities of the CASE
development environment

IMPACTS

EFFECTIVENESS DIMENSION

Products of CASE development
create a reusable software
infrastructure for the firm,
further lowering costs.

Allows for flexible, timely
response to rapid changes
in business goals

Supports optimizing the
functionality of software to
meet business/user needs

Permits management to make
"optimizing" decisions about
software labor deployment:
software projects need labor
with similar toolsets

Enables continuous checking
and feedback of project
correspondence with initial
business specifications

Supports development of
visionary projects w/ "blue
sky" functionality, and also
encourages innovative IT uses

Ensures that delivered
software is not a function of
new programming team's
preferences, but dependent on
a more fundamental business
analysis

More careful monitoring of
maintenance phase costs can
help management to identify
the optimal time to stop
maintaining and rebuild from
scratch to lower overall cost

Table 2. Determinants of Product Costing and Process Control
Systems for Software Development

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

MANAGEMENT
ACCOUNTING
SYSTEMS r7
PROCESS
CONTROL

PRODUCT
COSTING

Adapted for software development from Kaplan (KAPL88).

ATTRIBUTES OF ACCOUNTING SYSTEM FOR S O F T W m DEVELOPMENT

REPORTING
FREQUENCY

By unit of
measurable
software
development
work

At completion
of the entire
project(s)

TIME
HORIZON

Short-term;
repetitive;
and future-
oriented

Long-term;
non-repeti-
tive since
linked to
completion
of specific
projects;
historical
perspective

NATURE OF
COSTS

Variable;
incorporates
examination
of all key
cost drivers

Variable;
focuses only
on labor
consumed in
terms of dif-
sizes of
software
development
outputs

MANAGEMENT
SCOPE

Effected by
project
manager and
limited to
single project

Effected by
senior manage-
ment as gauge
of comparative
development
performance of
multiple
project teams

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-23

