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W A G I N G  DEVELOPMENT PRODUCTIVITY 

OF THE COMPUTER AIDED SOFTWAIiE ENGINEERING (CASE) PROCESS 

WITM DYNAMIC LIFE CYCLE TRAJECTORY METRICS 

ABSTRACT 

This paper proposes a new vision for the measurement and 
management of development productivity related to computer aided 
software engineering (CASE) technology. We propose that they be 
monitored and controlled via the application of d y n a m i c  software 
development " l i f e  cycle t ra jec tory  m e t r i c s . "  This view develops 
out of management accounting approaches for process control and 
recent advances in CASE technology that make automated 
measurement possible. We suggest that current approaches involve 
the use of " s t a t i c  m e t r i c s t '  for estimation and evaluation, with 
the result that the depth of the insights they can provide to 
management is necessarily limited. They only provide "point 
estimatesn of output or productivity at the beginning and end of 
the project. Yet to manage software development proactively for 
improved efficiency and effectiveness, management needs to track 
the range of activities and effort across the entire software 
development life cycle. This can only be accomplished when 
timely and relevant information is obtained about the software 
size output, as well as costs, via " d y n a m i c  m e t r i c s , I t  which 
provide a richer phase-by-phase view. 
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1. INTRODUCTION 

The introduction of computer aided software engineering 

(CASE) tools in software development has radically changed the 

dynamics of software creation. In fact, CASE tools are believed 

to represent an industrial revolution in the market for software 

products. In light of these changes, it is worthwhile to re- 

examine the methods and approaches for managing software 

development performance. In this paper, we will argue that CASE 

offers new opportunities to improve software development control 

by matching software product to software costs across the 

development life cycle. 

1,1, The Crisis in Software Costs 

Cost-effective software development is strategically 

important for firms seeking to achieve competitiveness through 

the use of information technology (IT) (BENS86, DAVI88, JONE86). 

The sheer size of the investments in software indicates the depth 

of the commitments made to IT. For example, industry specialists 

estimate that by 1990 the total investment in existing, developed 

and purchased software will be in the neighborhood of 13% of the 

United Statesg gross national product, a staggering $527 billion 

( W 8 4 ) .  Other projections reveal an annual increase in 

software development budgets at the rate of 9% to 12%, exceeding 

$150 billion per year by 1990 (BOEH88, GURB87). The extent of 

the hopes that senior managers place in wresting business value 

from their software investments parallels the magnitude of the 

dollars spent. 

Despite their expenditures, senior managers still regard 

software development as the major bottleneck in exploiting the 

potential of IT (GRAM85, BOUL89). Substantial backlogs of 

software development exist in organizations of all sizes and in 

many different industries, and they are reported to be increasing 

at a rapid rate (SPRA86, YOUR86). One study even reported the 

existence of Ithidden backlogs," consisting of user needs that 

were not formally requested or commissioned; these hidden 

backlogs were estimated at 535% of known backlogs (ALL083). 
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Reports of software projects months behind schedule and far over 

budget are also quite common, and, in fact, up to 15% of ongoing 

software projects are thought to be abandoned due to gross 

underestimation of required resources (JONE86, MAXT83). If 

senior management finds no way to better manage the production of 

software, their commitment to IT could end up becoming a 

liability, rather than an asset, for the firm. 

This software crisis is attributable to multiple factors 

(ALAV85, BOEH88, KANG89, SENN90). The most often cited ones 

include : 
* customized application development practices which redevelop 

from scratch the fundamental procedures and processes that 
are common across applications or business units in an 
organization; 

* outdated and error-prone development methodologies that 
postpone effort to the back end of software development life 
cycle when the software is coded and implemented; this 
results in significant additional hidden costs of 
maintenance; 

* increased complexity, size and scope of the functionality to 
be incorporated into software for meeting user needs in the 
competitive environment of a firm's business; 

* the labor-intensive nature of software development, which 
renders software quality and productivity very vulnerable to 
the skills of the personnel used for development; 

* a growth rate in user needs for IT applications that exceeds 
the growth rate of the supply of experienced and well- 
trained development staff. 

With the increasing emphasis placed on the role information 

systems play in obtaining the strategic goals of an organization 

(CASH88, IVES84, PORT87), the management and control of the 

software development process represents an increasingly difficult 

problem that must be solved. A common intermediate goal for 

senior software development managers is to improve the 

productivity and quality of software operations. They aim to 

achieve this by streamlining the life cycle of software creation 

through the introduction of new development techniques. As a 
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result, in recent years we have witnessed the introduction and 

adoption of many new software development tools and techniques. 

These include: structured programming; rapid prototyping; fourth 

generation languages (4GLs); object-oriented and graphical 

analysis, design and development techniques and data-oriented 

methodologies. 

The most recent addition to this list is integrated computer 

aided software engineering (CASE), a technology that provides new 

options for managing and controlling the productivity and costs 

of software development. Input Inc., a California-based research 

firm, figures that about 6% of annual software expenditures by 

American firms in 1989 were attributable to application 

development tools in general. In terms of dollars, this puts the 

total expenditure in the range of $6 billion or more, and 

spending on such off-the-shelf application development tools is 

conservatively estimated to be growing at a 19% annual rate 

(MOAD90) . 
1.2. CASE -- An Industrial Revolution in Software Development 

CASE is often touted as the most promising of all the new 

tools, and certainly it is the fastest growing segment. Two 

different surveys have indicated that between 55% to 75% of 

organizations have adopted CASE tools for various development 

projects including pilot projects, departmental projects, and 

corporate wide applications (BURK89, SENT90). And, analysts 

predict that the CASE market will grow at 35% to 45% per year, to 

something on the order of $1 billion in the early 1990s (MCCL89). 

CASE technologies and the methodologies that they promote 

aim to transform the process of software development. Up to the 

present, software development has essentially been a manual, 

craft work-like process, but CASE is at the heart of an 

industrial revolution in the making. It is rapidly transforming 

the creation of software into a more automated, rigorous and 

standardized engineering discipline. Paralleling the structure 

of production in other industries such as automobile 

manufacturing, home-construction, and even computer hardware 
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manufacturing, CASE is enabling a move of the software enterprise 

from an assembly industry to a process industry. This means that 

each product is no longer custom built, one at a time. Instead, 

production occurs through the use of pre-fabricated components 

from reusable templates, plans and procedures (POLL90). This 

"modular softwareN approach offers considerable promise to 

alleviate the major problems causing the software crisis cited 

above. CASE advocates and firms investing heavily in CASE argue 

that software automation is the key to increasing productivity, 

controlling quality, and introducing predictability into the 

software development process. Thus, CASE is increasingly 

classified as a "strategic techn~logy,~ especially among those 

firms which have moved to implement it early to control longer 

term software development costs. 

Reports on CASE claim a myriad of benefits ranging from 300% 

productivity increases to lzero-maintenancel program code, But 

only a few of these benefits have been rigorously substantiated 

(KEME89, NUNA89). Studies describing successful implementation 

of CASE methods and surveys reporting on usage proportions and 

profiles of CASE tools abound (BURK89, MCCL89, MCNU89). 

Norman and Nunamaker (NORM89) investigated the functional 

and behavioral aspects of CASE technology that contribute most 

favorably towards increasing the productivity of software 

engineers. They found that the standardization aspects of CASE 

technology, enforcing adherence to a disciplined, rigorous and 

higher quality software development methodology, were perceived 

to provide the most productivity gains. A different approach to 

investigating the impacts of CASE techniques was taken by Vipond 

(VIP090) in a longitudinal study to identify the behavioral 

implications of introducing CASE methods into software groups. 

The study indicated that impacts of CASE on job attitudes and 

communicative behaviors of software developers can be complex and 

profound; improvements in the software development process will 

ultimately need to take into account the behavioral aspects of 

CASE, as well as carefully manage and control the technical 
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aspects. 

While the actual impacts of CASE are yet to be exhaustively 

validated, the major sources of benefits from CASE can be 

identified. Banker and Kauffman (BANK91B) present some of the 

first empirical results to substantiate large productivity gains 

from using CASE development techniques, especially the leverage 

created by reusable code. An analysis of the structural and 

functional dimensions of CASE technology helps to identify the 

major characteristics of this methodology that contribute towards 

potential benefits from CASE. These have very broadly been 

classified by various authors (see, for example, BURK89, MCCL89 

and SENN90) as the standardization of the software development 

process, and the automation of software development activities. 

Standardization of software development is at the heart of 

the "modular approachw to software creation. It enables reuse of 

existing software components, which saves the effort in writing, 

testing, and implementing portions of the software currently 

being developed (HALL87, JONE84). Standardization could thus 

lead to reduction in development time as well as an improvement 

in the quality of software developed. Automation addresses 

tedious or routine manual tasks such as verification, validation 

and consistency checking in early development phases, or error 

checking in code. This not only reduces the labor required for 

manually performing these tasks, it also ensures that these tasks 

are satisfactorily and uniformly performed. It also leads to 

increases in the quality of delivered software. 

Thus, standardization and automation can have significant 

impacts on the efficiency and effectiveness of software 

development, and thus strategic costs. Efficiency refers to how 

productive software developers are when a CASE methodology is 

used to develop software. Effectiveness relates to how well 

CASE-developed software accomplishes the business goals of the 

organization. 

The major benefit and cost implications that result from the 

standardization and automation of software development are 
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described in Table 1 below. What remains is to re-think how 

management reporting needs to be recast to support the goal of 

reducing software costs as much as possible with the tools 

available in this new environment. 
............................... 

INSERT TABLE 1 ABOUT HERE 

The remainder of this paper develops a new vision for the 

management of the software development life cycle in the presence 

of integrated CASE technologies via automated software metrics. 

We will make the case that dynamic life cycle trajectory metrics 

made possible by automated development of software projects will 

help management to realize the benefits of "software process 

controlgg in a way that was not possible before. 

2. A PROPOSAL FOR CASE DEVELOPMENT PROCESS CONTROL 

2.1. A New Vocabulary for Software Development Performance 
Tracking 

We propose a framework to measure, control and influence 

software development performance that builds upon the 

distinguishing characteristics of CASE environments. We find 

that existing approaches to the estimation of software 

development costs and the measurement of subsequent development 

performance only provide single point measures -- when a project 
begins or when it has reached completion. Such "static software 

development performance metricsgg for cost estimation and 

efficiency analysis do not provide sufficiently detailed or 

relevant information for proactively managing the software 

development process. By contrast, "dynamic software development 

performance metricsM can help management to monitor and control 

development performance throughout the software development life 

cycle. 

Boehm (BOEH81) has equated the problem of accurately 
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estimating development costs for a software project with the 

problem an author has in estimating the number of pages a book 

will have when the plot has just been sketched out. Static 

metrics would only support the comparison of the initial estimate 

of the length with what the author subsequently writes. But, 

dynamic metrics are meant to describe the process of producing 

the book, as the author adjusts the plot, resolves problems in 

the relationships among the characters, or deals with a crucial 

mental block which hampers the writing. 

In a similar vein, static software development metrics are 

snapshots of the results of software development production 

performance. Dynamic metrics capture the development process on 

video tape, enabling management to play the action back at will 

as it occurs, to better understand it, and then to control and 

improve overall project performance. Figure 1 contrasts the 

richness of the information provided from dynamic versus static 

measures. 
.................................... 

INSERT FIGURE 1 ABOUT HERE 

The figure depicts the trajectories of labor consumed by two 

software projects, A and B. Initially, both are estimated to 

consume approximately the same level of resources during the life 

cycle. Suppose, however, that management's estimates are 

inaccurate to an equal extent for both projects. In this 

situation, we would observe two similar cost estimates and also 

two similar variances between the estimated and actual costs. 

Such static metrics might suggest that management take the same 

kind of action to improve wsimilarfl projects in the future. 

But note that the labor consumption trajectory suggests that 

the software development processes in each project were quite 

different. (Let us assume that the area under the phased labor 

consumption curves and the size of the resulting software are the 

same for both projects.) Project B required relatively more 
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effort during technical analysis and functional design, while 

Project A consumed more labor during the construction phase. 

A similar sketch could be made for productivity in function 

points, month-by-month, as the construction of a software 

application proceeds. The point is that utilizing such full 

trajectory information makes it more likely that managers will 

ask the right questions. For example: Were the functional design 

problems experienced due to the qualities of the resulting 

application or the experience of the analysis and design staff? 

Was the skill mix or experience of the analysis and design staff 

of Project B unsuited to the development requirements of the 

project? 

Managers can ask more general questions as well. For 

example: How much code reuse occurs in software development, and 

what is the extent of its leverage on productivity? Does the 

skill mix or the experience level of the staff assigned to a 

project influence the trajectory of its labor consumption or 

productivity? 

Our approach to monitoring software development can be 

implemented with dynamic t r a j e c t o r y  metrics which measure 

performance parameters in each life cycle phase of software 

development. However, such metrics only become feasible in the 

CASE environment because the phase activities and phase 

boundaries are better defined and more rigidly enforced. In 

keeping with the automated character of CASE development, 

measurement mechanisms can also be built into the CASE toolset 

enabling management to carry out continuous, low cost monitoring. 

2.2. Process Control Systems and Software Development 

The intellectual backdrop of our proposal is found in recent 

developments in the field of management accounting. Today, it is 

increasingly recognized that two different types of control 

systems are needed to facilitate effective management: produc t  

c o s t i n g  and p r o c e s s  control (KAPL88). The normal approach to 

software development productivity management compiles the total 

costs for producing software, and accounts it against the 
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aggregate software delivered, as described in the equation below: 

PRODUCTIVITY = 
TOTAL S O F m m E  S I Z E  OUTPUT 

TOTAL DEVELOPMENTT COST INPUT 

This is akin to product costing systems. Product costing is 

advocated in the accounting discipline in such contexts as 

pricing and valuing products. It is useful, for example, to 

provide information to support project bidding, but product 

costing is not capable of providing information that enables 

dynamic performance evaluation as a project proceeds. The 

problem with obtaining dynamic productivity measures arises 

because existing output measurement approaches are not geared to 

gauging software size at intermediate points of the software 

development life cycle. Examples of such "end-pointw output size 

estimation and measurement approaches include source-lines-of- 

code-based models like COCOMO (LOW90) and SLIM (KEME87), and 

function points (LOW90) . 
By contrast, process control systems are responsible for 

facilitating operational functions (COOP88). Operational control 

allows management not just to value the total cost of the 

delivered software (as in product costing), but also to control 

the costs as software development occurs over the project life 

cycle. Dynamic measurement can be performed to diagnose factors 

driving the costs of operations as the development proceeds. 

Information on the nature and impact of cost drivers can be used 

to make tradeoff and compromise decisions, and adjustments in the 

process based on sensitivity analyses. 

Both the software costing approach and the software process 

control approach to measuring software activities are relevant in 

the management of software development. However, the ability to 

control and influence process costs is critical in meeting the 

challenge of building strategically beneficial software assets. 

Thus, the primary productivity control framework in terms of the 

frequency and approach to measuring a software project should be 

based on the measurement principles that support optimal process 
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control. 

Management accounting distinguishes among four requirements 

for software product costing and process control systems (COOP88, 

JOHN87). Table 2 summarizes these requirements. 
............................... 

INSERT TABLE 2 ABOUT HERE 

Nature of Costs: For effective control of the software 

development process, development costs should be considered 

variable with respect to all relevant cost drivers. Software 

product costing systems dontt adequately diagnose the causes of 

cost variances; they only use labor cost figures captured when 

development has been completed. So, an approach that 

incorporates a more effective treatment of cost drivers is needed 

to reflect their nature and impacts on project costs. 

Management Scope: A time-tested principle of management is 

that managers should only be accountable for those activities 

that they can influence directly. Individual project managers 

are held accountable for their project's development performance. 

But, they only can influence the costs of their projects by 

reacting to process control measures that permit corrective 

actions to be taken as development proceeds. The information 

provided by static product costing approaches can best be used by 

departmental or senior managers in comparing performance across 

projects being developed at that same time or historically over 

time. Thus, if controlling or influencing the internal 

operations of a project is the major concern, project managers 

should be supported by process control systems that cover their 

responsibilities across the entire life cycle. 

Time Horizon: Another important characteristic of process 

management systems is their ability to explain variances in short 

term software development costs. The key to achieving this is 

the definition of the "short-termtt time horizon in the context of 

software development. This is the time period during which we 

expect constructive process control opportunities to occur 
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(BRUN87). Control opportunities are traditionally known to 

coincide with the occurrence of a measurable unit of work. In 

other words, to be useful, the frequency of process control 

information should match the cycle of the software production. 

Our premise is that productive decisions only can be made at the 

natural breakpoints that occur during the production -- 
especially as phases end -- and so measurement procedures should 
deliver information that is relevant to decision making at these 

points. 

Reporting Frequency: The design of existing static software 

development productivity measures was justified in manual 

development environments since a traditionally-developed software 

project was only concretely and unambiguously measurable upon 

completion. But, project completion is not the only time that 

decisions can be made which affect the software development 

process, and this is especially true for CASE development. For 

example, a manager may wish to determine whether schedule 

overruns are being caused by inefficient design, error-prone 

coding, or unexpected implementation difficulties. Thus, there 

is a need for more frequent reporting to support the shorter time 

horizon of measurable software development in each life cycle 

phase. 

Since software development projects have become so much 

larger and more complex, the completion point should no longer be 

viewed as the only concrete decision time. As the software 

development life cycle proceeds, each phase becomes a distinct 

sub-process of the overall production of software. Upon closer 

inspection, each phase would seem to have different outputs, 

different conversion efficiencies, and, thus, different 

parameters for management action. And, each phase often has 

qualitatively different inputs as the composition of the 

development team assigned to the project changes over time to 

match the difficulties presented by development in each life 

cycle phase. 
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2.3. Automating Dynamic Trajectory Metrics for Process Control: 
Benefits and Costs 

In effect, we are advocating the collection of finer and 

more "perfect informationw in the context of software development 

cost control, but only to the extent that it is relevant. The 

collection of more information in a decision setting only can be 

justified after a careful consideration of the costs and benefits 

of that information. Traditional software development 

environments were unable to deliver perfect information as the 

life cycle progressed without forcing a project manager to incur 

unacceptably high costs. But CASE changes this cost-benefit 

relationship. 

Benefits of Measurement: The benefits of information that 

describe the software development life cycle to the project 

manager are a function of the actions that can be taken based on 

the information, and the consequences that the actions can 

produce. First, measures that are collected should be able to 

resolve decision options. Dynamic life cycle metrics enable 

actions that influence subsequent software development 

activities. Second, there is not much value in collecting 

measures with accurate up-to-the-minute detail if the software 

operations cannot (or need not) be controlled to that level of 

fineness. This is likely to be the case in the early phases of 

development, when order of magnitude estimates of labor may 

suffice. 

Thus, it is reasonable to expect that the value of very 

accurate and detailed information to a project manager in the 

earlier life cycle phases is probably less than its value in the 

later phases. Figure 2 depicts the high variability and 

unpredictability of project costs when estimations are made in 

the earlier phases. 
............................... 

INSERT FIGURE 2 ABOUT HERE 
............................... 

Efficient control measures in these phases could be rough, 
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first approximations because they cannot resolve very finely the 

management actions vis a vis cost control. In the later phases, 

more accurate, refined measures of the costs and cost drivers 

will better support decision making for cost control. 

Costs of Measurement: The other issue in committing to 

dynamic measures is an acceptable cost to implement them. 

Considerations regarding the decision value of the information 

affect the nature and design of suitable metrics. Clearly, the 

cost of measuring should not exceed its decision value, else it 

will reduce management's motivation to measure. Johnson and 

Kaplan suggest that the reduction in the costs of information 

collection and processing no longer justifies highly aggregated, 

low-detail process information. They comment: 

"... t h a t  managers [were]  n o t  i n c l i n e d  t o  c o m p i l e  
[ d i s a g g r e g a t e d  and]  a c c u r a t e  d a t a  ref lects  their  judgment on 
the costs and benefi ts  and f e a s i b i l i t y  o f  s u c h  i n f o r m a t i o n ,  
not a l o s t  sense o f  what i n f o r m a t i o n  i s  r e l e v a n t  t o  
[ o p e r a t i o n a l ]  management decisionsM (JOHN87, pp. 1 4 4 )  

This suggests that managers might have been convinced of the 

value of measuring across the life cycle, but the cost of such 

measurement would have deterred them. The cost of collecting 

data and providing prompt reports for each life cycle phase of 

software development was too high in the manual programming era 

to permit the real time process control we are now advocating. 

Automated Measurement: But, today's CASE development 

environments make it possible to automate dynamic software 

development life cycle metrics. The reduced cost of automated 

measures no longer requires managers to contend with irrelevant, 

aggregate measures on complex and critical software development 

processes. The challenge in developing dynamic cost measurement 

procedures for software development is to reduce the costs of 

measurement itself. Automation of measurement metrics in the 

CASE environment can provide ongoing control information such 
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that the decision value outweighs the costs. 1 

3. CONTROLLING CASE DEVELOPMENT COSTS WITH DYNAMIC TRAJECTORY 
METRICS 

3.1. Requirements For Dynamic control of CASE Development costs 

Effective software cost control systems should deliver three 

basic capabilities to management (SHAH81): 

[I] Measurement -- The ability to unambiguously and consistently 
measure costs associated with identifiable units of work. 

[2] ~stimation -- The ability to accurately estimate and 
forecast cost measures. 

[33 Variance Analysis -- The ability to isolate variances 
between estimated and actual cost measures, enabling 
corrective measures to be taken in subsequent stages of the 
production process. 

We next examine these components more closely, as each relates to 

our proposal for dynamic trajectory metrics. 

Measuring the costs associated with the work of software 

development should take account of all inputs into the software 

production process, Costs arise from a number of sources, such 

as development labor, hardware resources, business transactions, 

and so on. However, development labor is by far the largest, 

most significant and most variable cost component (HOR084). 

Therefore, the measure for the cost of development usually 

considers only labor inputs and is in terms of the number of 

person-days or person-months logged on the software project by 

the development team over the entire life span of the project. 

The second requirement, the ability to accurately estimate 

costs, is required because managers gauge how well an activity is 

'1n fact, product development in this area is underway for a 
number of CASE development environments, including Texas 
Instrument's IEF (MAZZ90), Andersen Consulting's Foundation 
(HIDDgO), and Seer Technologiest High Productivity Systems CASE 
tools (BANK90). These firms are undertaking the construction of 
automated metrics facilities at a one time-cost, to defray the 
cost of repetitive measurements to be made in the future. 
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being performed by comparing actuals against estimated 

performance. Whatever its sophistication, a specific software 

development performance measurement system cannot be effective in 

controlling the process unless it incorporates a set of standards 

which managers can agree upon and use as anchors on which to base 

their performance expectations. The limited ability of software 

managers to estimate the time required and costs of development 

has long been a major shortcoming, and was first brought to the 

attention of the systems development community by Brooks, in his 

essay The Mythical Man Month (BR0075) . 
In fact, even experts tend to underestimate software project 

development times, and in spite of this awareness projects 

continue to be behind schedule and budget. Moreover, sometimes 

irrational political perspectives influence the cost estimation 

process, and have important ramifications for taking meaningful 

managerial actions to improve estimation (LEDE90). Advances in 

more formal approaches to measuring software size have tested 

empirical models that predict development time based on 

historical relationships between software size and development 

labor. (These include models such as COCOMO, ESTIMACS and SLIM, 

as discussed in KEME87.) 

The third requirement, the ability to isolate variances 

between estimated and actual cost measures is a diagnosis 

capability which provides answers to an important question: *$What 

is the cause for the difference between estimates and actuals?" 

Providing a satisfactory answer requires an understanding of cost 

drivers -- those development attributes that impact and mediate 
the conversion of development labor into software product. In 

software development, as in most production processes, the size 

of the software output is the most important cost driver, But 

attributes of the development process have also been found to 

impact development labor input (SCAC87, BOEH81). These 

attributes can be classified into program attributes (e.g., 
reliability requirements), environment attributes (e.g., main 

memory constraints), personnel attributes (e.g., average 
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experience of project team), and project attributes (e-g., type 

of development tool used). 

In software development, the impact of project development 

attributes on the labor effort required for delivering the system 

is not a simple relationship. The impact depends on both the 

life cycle phase of the software project as well as the value of 

other attributes (BOEH81, VICI90). Once managers are able to 

diagnose the causes for the deviation in performance, they should 

be able to understand what actions are appropriate or necessary 

to influence the factors causing the deviation. This ability to 

influence cost drivers, like isolating the causes of variances, 

is again dependent on an understanding of the nature and effect 

of the cost drivers. 

For example, applications with the project attribute high 

reliability have been found to be adversely affected in terms of 

development time in the functional design phase, but to a lesser 

extent than in the coding phase. Similarly, if the personnel 

attribute for a project is high experience for the development 

team, reliability considerations would not impact development 

time as much as if the attribute were low experience. So, we see 

that the cost drivers are phase-dependent and also may exhibit 

joint effects. This considerably complicates the isolation and 

correction of variances, and meanwhile places a premium on 

obtaining better information throughout the life cycle. 

3.2. CASE Repository Objects: A Basis for Dynamic Trajectory 
Metrics 

In order to implement a dynamic software process control 

system incorporating trajectory metrics, we need to identify a 

sound basis for designing the specific metrics which measure cost 

efficiency parameters at relevant intermediate points in the 

development life cycle. We have established that these relevant 

intermediate points are the endpoints of the life cycle phases. 

We have also stressed that diagnostic ability in controlling 

costs can be achieved only by regarding costs as variable with 

respect to all cost drivers. This suggests the need for the 
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following functional relationship to be tested: 

D.W.ELOPHENT-LABOR-INPUTp = f(COST-DRZVERS-FOR-CRSE)p 

where p indicates the phase of the life cycle in which 

measurement occurs. Thus, trajectory metrics should be based on 

measures of DEVELOPMENT-LABOR-INPUT and COST-DRIVERS-FOR-CASE for 

each development phase. 

DEVELOPMENT-LABOR-INPUT measures for each life cycle phase 

can be obtained from existing measurement approaches. Existing 

labor tracking systems generally account for labor hours over the 

entire life cycle. These labor hours can be summed at the end of 

each phase. Linking labor tracking systems to automated software 

development performance analysis facilities with the proposed 

trajectory metrics would also help to motivate measurement. 

Phase measures for the COST-DRIVERS require a more radical 

change in existing approaches. The prerequisite for establishing 

measures for cost drivers is the identification of relevant cost 

drivers: those attributes that significantly affect labor input 

costs in the different phases. In a CASE development 

environment, only some factors will impact the software 

development process enough to make a significant difference in 

the input labor hours. Thus, the set of relevant software cost 

drivers identified in prior research needs to be revised, based 

on what can be learned from new research on CASE development 

performance. 

Although more exhaustive, empirical verification is still 

needed, some preliminary evidence exists to suggest that in CASE 

environments DEVELOPMENT-TEAM-EXPERIENCE, SOFTWARE-PRODUCT-OUTPUT 

and REUSE-LEVEL impact development labor significantly (BANK91BI 

KARI90). DEVELOPMENT-TEAM-EXPERIENCE can generally be measured 

with subjective rating methods for each phase. A bigger 

challenge is to develop trajectory metrics for the SOFTWARE- 

PRODUCT-OUTPUT from each phase. 

REUSE-LEVEL refers to the use of existing code in order to 

program an application. Reused code thus adds to the size and 

functionality of the delivered software product without requiring 
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a proportionate amount of development labor. This justifies its 

inclusion as an important cost driver for DEVELOPMENT-LABOR- 

INPUT. REUSE-LEVEL is measured in terms of the proportion of 

reused code in the total SOFTWARE-PRODUCT-OUTPUT. The proportion 

of reused code in the final software product is measured in terms 

of the same units of work output that are used for SOFTWARE- 

PRODUCT-OUTPUT. Thus, measures for both SOFTWARE-PRODUCT-OUTPUT 

and REUSE-LEVEL are dependent on identifying work output measures 

from the development process. This requires identification of 

measurable units of work at the end of each of the life cycle 

phases. 

~dentifying measurable units of work from phases was not 

easy until the advent of CASE development tools. In traditional 

development environments each life cycle phase did not have a 

unit of delivered work which could be measured with any degree of 

accuracy. For example, the work done in the business analysis 

phase was partly represented by diagrams on paper and partly in 

the analyst's mind. Similarly, a considerable portion of the 

work completed in the functional design phase went undocumented 

because of verbal communications between the analyst and the 

programmer, unwritten contracts, and so on (DHAR89, SASS88, 

TURN86) . 
bowever, CASE technologies make it possible to capture 

outputs from each life cycle phase. The discipline of CASE 

development produces well specified, rigorously defined outputs 

from each life cycle phase. These outputs can form the basis for 

unambiguous work unit measures. 

In keeping with the standardization and reusability aspects 

of CASE environments, measures for monitoring phase outputs 

should utilize relevant parameters of the pre-fabricated 

components that form the basis of the "modular approa~h.'~ In 

related work, we explored the possibility of monitoring the use 

and nature of these pre-fabricated components themselves, which 

we call Mobjectsm (BANK91A). The results indicated that because 

objects act as building blocks to construct the functionality of 
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the software, they can be used to represent the outputs of 

development in efficiency metrics. 

Objects represent specific, well-defined functions in handy, 

ready-to-use chunks of code. An object need only be written 

once, and all subsequent applications that need to deliver the 

same functionality could merely reuse existing objects. In 

addition, the definitions and code content of objects in CASE 

environments are frequently stored in a centralized repository. 

Examples of objects that are often utilized in business CASE 

environments are: RULES, SCREEN DEFINITIONS, USER REPORTS, and so 

one2 The complexity of the objects written afresh by a 

programmer, the level of reuse of existing objects by a 

programming team, and the total number of objects of all types 

used to build an application provide a natural avenue along which 

the design of trajectory metrics can proceed. 

3.3. Trajectory Approaches for the CASE Life Cycle: Some 
Proposals 

A study of the deliverables at the end of each life cycle 

phase of CASE development would enable the specification of 

outputs at each stage. In integrated CASE environments (i.e., 

those which automate development in all the life cycle phases), 

application development is a process of successive refinement of 

objects as development progresses from the earlier life cycle 

phases of business analysis and design to the later phases of 

testing and implementation. The objects created at the business 

analysis phase are abstract, higher level representations of 

functionalities required by the application. Each subsequent 

lower level object of the later phases goes one step further in 

instantiating the functionality of the previous phases's object, 

until finally the code is written in the construction phase. 

Objects created in earlier phases lay out a road map for 

subsequent refinement that may occur, or the development of 

2 ~ o r  additional details on an integrated CASE environment 
(ICE) that has some of these features, see BANK90A. 
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additional objects in later phases. Table 3 illustrates this 

perspective by identifying objects that would be useful to gauge 

output phase-by-phase. The examples draw on experience we gained 

in a field study of CASE at the First Boston Corporation and Seer 

Technologies. The object names are used as illustrations of 

generic outputs that can be identified from the different life 

cycle phases. 

INSERT TABLE 3 ABOUT HERE 

The Bus ines s  Ana ly s i s  phase defines the scope and functions 
of the system in terms of user requirements. The output of 

business analysis in CASE environments is a model of the 

processes and the data involved in the business system. This 

stage often uses tools such as an Entity-Relationship Diagrammer 

or a Process Hierarchy Diagrammer, and typically outputs objects 

such as ENTITIES, PROCESSES, RELATIONSHIPS (between ENTITIES and 

PROCESSES). These are generic objects, and their total number 

and complexity as they exist in the repository at the end of this 

phase can be used to measure the work output from the business 

analysis phase. 

Similarly, the Functional Design phase translates business 
requirements to the specific needs of the application's users, 

including features, functions, interfaces, and so on. It uses 

tools such as a Report Painter or a Window Generator, and 

typically outputs objects such as RULES, WINDOWS, VIEWS, and 

RELATIONSHIPS (between RULES, WINDOWS, VIEWS, and so on). The 

Technical  Design phase further refines the functional 
specification of objects by including: the data structures; data 

flows; and files referenced, input or output. Examples of 

objects produced in this technical phase are FIELDS, FILES, RULE 

details, and so on. Sof tware  Cons t ruc t ion  involves generation of 
all code at the source level. Reusable objects need merely 

retrieve code from the repository while objects that have to be 

written from scratch will require much more labor. Thus, the 
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REUSE-LEVEL will affect DEVELOPMENT-LABOR-INPUT very 

significantly in this phase. (We are currently studying what the 

relevant object outputs will be for the Testing/Implementation 

and Maintenance/Enhancement phases.) 

To sum up our argument, repository-based objects can act as 

the distinct and identifiable units of work from each life cycle 

phase of CASE development. The total number, complexity or size, 

and origin (reused versus written from scratch) of objects can be 

used to measure SOFTWARE-PRODUCT-OUTPUT from each phase. Since 

the reuse cost driver is also dependent on the object unit of 

work, REUSE-LEVEL can also be distinctly identified for each 

phase. This equips us with the capability to perform the dynamic 

software process control necessary for reaping significant cost 

savings from CASE development methodologies. 

4. CONCLUSION 

In view of the large costs of software, cost control systems 

for software development should be designed to more closely 

support the operations and the strategy of the organization. The 

technology necessary to implement the approach to software 

development monitoring and control systems that we advocate is 

radically different from what exists in most 3GL development 

shops today. But today, CASE makes implementing our vision of 

software development tracking increasingly possible. 

4.1. Research Contribution 

The paper has described the conceptual framework for the 

development of managerially relevant procedures to enhance 

software process control with dynamic software development 

performance trajectory metrics. We also have suggested that 

automating software process control is appropriate and feasible 

in CASE environments, and that this changes the basic cost- 

benefit relationship that exists for software project performance 

tracking. The low cost of measurement made possible through 

automated analysis and the availability of repository-based 

objects as distinct, identifiable units of development work from 
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each life cycle phase combine to make integrated CASE 

environments ideal testbeds for research on trajectory metrics. 

Our approach to implementing dynamic cost control measures 

forms the first step in a broader attack on CASE project planning 

and project management methods. Control of software development 

activities in each phase will support project management 

activities from the earliest phases of the software life cycle. 

Tasks such scheduling, identifying staff requirements and 

performing resource planning can be performed on a phase-by-phase 

basis, rather than on a project-by-project basis. Moreover, 

these plans can be revised dynamically as the actual performance 

occurring in a phase becomes known. Such an approach will allow 

more powerful project planning which can more readily adapt to 

unanticipated changes in performance or project parameters. 

A great deal of potential exists to increase management 

effectiveness by using phase-based performance measures. Their 

use opens up the possibility of conducting new, rich and 

insightful analyses that cannot be conducted using today's 

aggregate and static performance measures. As management's 

database of phase-by-phase performance results grows, project 

managers can utilize the historical experience to fine tune their 

management actions in the short term. They can identify the most 

productive practices, perform sensitivity analyses of 

environmental and functional features on project parameters, and 

make trade-off to optimize productivity, hit a target cost, reach 

a given level of software quality, or match a tough deadline. 

We envision a dynamic software project control environment 

which integrates: 
* more accurate project planning based on better phase 

estimates; 

* more proactive project management whose decisions are based 
on sensitive phase measures; 

* more flexible plan revision based on diagnosing differences 
between phase plans and actuals. 

Such an integrated software project control environment 
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places the control back in the hands of the project manager. 

4 .2 .  Research Agenda 
The paper has described the conceptual framework for the 

development of managerially relevant procedures to enhance 

software process control with software development performance 

trajectory metrics. We also have suggested that automating 

software process control is appropriate and feasible in CASE 

environments. The low cost of measurement and the availability 

of objects as distinct, identifiable units of development work 

from each life cycle phase combine to make the CASE tool we are 

studying at Seer Technologies and First Boston Corporation an 

ideal testbed for research on trajectory metrics. 

Our proposal for trajectory measures opens up several new 

lines research inquiry for the future . 
[I] ~mpirical evidence to identify relevant cost drivers 

for CASE development environments would provide 
valuable insights into the nature of the cost drivers 
and the metrics required to track them. 

[2] Research to validate and specify object outputs as 
measures of work from the different phases is also 
needed to provide a rigorous, empirical basis for 
justifying the implementation of our cost control 
framework CASE. 

[3] Another important extension within our cost control 
framework would be to study and compare the estimation 
accuracy and ease of different measurement approaches. 
Our work on "object pointsn is a step in this direction 
(BANK91A) . 

We are now involved in investigating the estimation 

performance of dynamic, object-based trajectory metrics. This 

should further our goal of developing an integrated CASE process 

control system which makes use of the features of the CASE 

development environment. Software production can then be matched 

more closely with strategy formulation to enable a firm to 

minimize its strategic software costs. 
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Figure 1. Labor Consumption Trajectories for Two Software 
Development Projects of Similar Size 

Labor Consumed -- Additional Labor 
A Consumed by Project A 

in FD and TD Phases 

-- Additional Labor 
Consumed by Project B 

The Labor in SC Phase only 
Consumption -- Labor Consumed by Both 

ProjectAandB 

Software 
Development 

> Life Cycle 
S P B A FD TD SC TI ME Phases 

Assumptions: Project size in function points and total labor equal 
for A and B. 

KEY: SP -- Strategic Planning 
BA -- Business Analysis 
FD -- Functional Design 
TD -- Technical Design 
SC -- Software Construction 
TI -- Testing and Implementation 
ME -- Maintenance and Enhancement 
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Figure 2. Successive Predictability and Accuracy of Costs 
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Table 1. CASE Technology: Cost Impacts of Improved Efficiency and 
Effectiveness 
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MAJOR SOURCES 
OF CASE 
BENEFITS c_, 
Productivity 
Gains 

Speed of 
Development 

Accuracy of 
Development 

Methodological 
Consistency 
of Development 

Traceability of 
development 
operat ions 

Higher 
Functionality 
of Software 
Product 

Less onerous 
technical 
training 
requirements 
for 
personnel 

Makes the 
maintenance 
phase 
manageable l 

COST 

EFFICIENCY DIMENSION 

Reuse supports creation of 
larger amount of software 
for given level of labor 

Has potential to help 
reduce existing backlog 
of software projects 

Reduces debugging and 
maintenance costs by 
lowering error rates 

Provides management with 
new leverage to manage 
development labor 
efficiency across projects 

Enables efficient tracking 
and coordination of project 
activities documented 
on the computer 

Brings creation of very 
complex software within the 
bounds of routine project 
development practices 

Has potential to combat 
labor shortages, by 
reducing the knowledge- 
intensiveness of software 
development 

Maintenance costs are 
lowered by ensuring that 
code is highly modularized 
and well-documented with 
facilities of the CASE 
development environment 

IMPACTS 

EFFECTIVENESS DIMENSION 

Products of CASE development 
create a reusable software 
infrastructure for the firm, 
further lowering costs. 

Allows for flexible, timely 
response to rapid changes 
in business goals 

Supports optimizing the 
functionality of software to 
meet business/user needs 

Permits management to make 
"optimizing" decisions about 
software labor deployment: 
software projects need labor 
with similar toolsets 

Enables continuous checking 
and feedback of project 
correspondence with initial 
business specifications 

Supports development of 
visionary projects w/ "blue 
sky" functionality, and also 
encourages innovative IT uses 

Ensures that delivered 
software is not a function of 
new programming team's 
preferences, but dependent on 
a more fundamental business 
analysis 

More careful monitoring of 
maintenance phase costs can 
help management to identify 
the optimal time to stop 
maintaining and rebuild from 
scratch to lower overall cost 



Table 2. Determinants of Product Costing and Process Control 
Systems for Software Development 
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MANAGEMENT 
ACCOUNTING 
SYSTEMS r7 
PROCESS 
CONTROL 

PRODUCT 
COSTING 

Adapted for software development from Kaplan (KAPL88). 

ATTRIBUTES OF ACCOUNTING SYSTEM FOR S O F T W m  DEVELOPMENT 

REPORTING 
FREQUENCY 

By unit of 
measurable 
software 
development 
work 

At completion 
of the entire 
project(s) 

TIME 
HORIZON 

Short-term; 
repetitive; 
and future- 
oriented 

Long-term; 
non-repeti- 
tive since 
linked to 
completion 
of specific 
projects; 
historical 
perspective 

NATURE OF 
COSTS 

Variable; 
incorporates 
examination 
of all key 
cost drivers 

Variable; 
focuses only 
on labor 
consumed in 
terms of dif- 
sizes of 
software 
development 
outputs 

MANAGEMENT 
SCOPE 

Effected by 
project 
manager and 
limited to 
single project 

Effected by 
senior manage- 
ment as gauge 
of comparative 
development 
performance of 
multiple 
project teams 
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