
ON COMPLETENESS OF
HISTORICAL RELATIONAL DATA MODELS

by

Albert Croker

and

James Clifford

Information Systems Department
Leonard N. Stern School of Business

New York University
90 Trinity Place

New York, NY 10006

January 1989

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

CRIS #192
GBA #89-2

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

Abstract

Several proposals for extending the relational data model to incorporate the
temporal dimension of data have appeared in the past several years. These
proposals have differed considerably in the way that the temporal dimension
has been incorporated both into the structure of the extended relations that
are defined as part of these extended model, and into the operations of the
extended relational algebra or calculus component of the models. Because
of these differences it has been difficult to compare the proposed models and
to make judgements as to which of them is "better" or indeed, the "best."
In this paper we propose a notion of historical relational completeness,
analogous to Codd's notion of relational completeness, and examine several
historical relational proposals in light of this standard.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

1 Introduction

In this paper we define a notion of completeness that is applicable to his-

torical relational data models. This historical relational completeness

provides a basis for determining the "power" of the query languages that

have been defhed as part of proposed historical relational data models. As

such, historical relational completeness serves a role similar to that of the

original notion of relational completeness first proposed by Codd [Cod721

and later justified as being reasonable by Bancilhon [Ban78].

Recently various historical relational data models have been proposed

[Ari86,Ben82,CC87,Gad86,Sno87]. These data models are intended for

those situations where data changes over time, but for which previous val-

ues of data items must remain as part of the database. Generally, these

data models LLextend" the standard relational data model by including a

temporal component. This temporal component could be included by sim-

ply adding an additional attribute, say time, to a relation (the equivalence

of time-stamping) [Sno87] or by including it as a more intrinsic part of

the structure of a relation [CC87,Gad86]. The latter approach results in

non-first normal form relations.

Although the structures of the historical relations defined in each

of the proposed historical relational data models differ from each other

to varying degrees, they generally have the same modeling capabilities.

However, the query languages defined in these data models differ from each

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

other, not only in their formulations, but in their capabilities for use in

extracting various subsets of a database.

In order to define a basis against which to measure the various query

languages we define a historical relational calculus as a first-order lan-

guage with a universe consisting of both objects (values) and times. This

calculus is defined with respect to a specific historical relation structure,

which we also formally define, that has a modeling capability that is at least

as great as those defined in other historical relational data models. The his-

torical relational calculus, viewed as a query language, provides a formal

method for denoting the set of historical relations derivable from a given

set of historical relations (a historical database). The set of derivable

relations provide a measure of the selectivity of the historical relational

calculus.

Each of the proposed query languages has an associated selectivity. This

selectivity, which is what we have previously referred to as the power of the

language, represents a common basis for comparison. Although the histori-

cal relational calculus cannot (and is not intended to) represent all possible

queries - for example, like standard relational languages, it too cannot

express a transitive closure - its appropriateness as a basis for histori-

cal completeness is dependent on its ability to express only "reasonable"

queries, and to express those queries expressible by the other proposed

historical query languages.

In Section 2 we define a historical relational calculus that serves as the

Center for Digital Economy Research
Sterri School o f Business
IVorking Paper 19-89-002

basis for our notion of historical relational completeness. Included along

with the specification of the syntax and semantics of this calculus is a

specification of the structure of the historical relation used in defining the

calculus. We follow in Section 3 with a discussion of the appropriateness

of this relational calculus as a basis for historical completeness. In the

next section we examine the completeness of several historical relational

languages that have been proposed in order to assess their completeness.

We conclude in Section 5.

2 An Historical Relational Calculus

2.1 Preliminaries

In this section we specify the historical relation structure that will be used

in the development of our notion of historical relational completeness. In

order that this notion of completeness be applicable to the various histor-

ical relational data models that have been proposed, it is necessary that

this structure have the representational capabilities of the various relation

structures defined in these models. These required capabilities can be de-

termined from the intent of a historical relational data model.

Both historical and non-historical databases model situations that are

usually viewed as being dynamic. Thus the state of the database must also

be able to change. Traditionally non-historical databases handle change

through operations of the type INSERT (a record into the database), and

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

UPDATE or DELETE (an already existing database record). When a

record is modified some of the attribute values are replaced by new values,

with the old values being lost; when a record is deleted, all trace of the

existence of the referent of that record is lost. When a new record is added

to the database it is usually not known whether or not the database con-

tained a record with the same key (and therefore modeled the same object')

at some time in the past. Each of the above operations cause the previous

state of the database to be lost.

In a historical database the state of the database as it existed at any

point in the past must be retained. Thus, assuming a tuple correlates

to an entity, each tuple in a historical relational database represents a

history of values associated with each of the attributes over which the tuple

is defined. Reflecting this view, historical relations are often depicted as

three-dimensional structures (Figure 1). The uneveness and holes in the

structure reflect the fact that tuples may be inserted at different times, and

that during certain periods the entity modeled by a tuple may no longer

be relevant, the tuple being viewed as not existing during those periods.

2.2 A Canonical Historical Relation

In this section we define the structure of a historical relation upon which

we will base the calculus that we define in the next section. The structure

'We use the term object to refer to both entities and relationships, as defined, for
example, in the entity-relationship data model [Che76].

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

Figure 1: Historical Relation as a 3-D Structure

of this relation is specified in such a way as to capture the intent and

requirements of a historical relation, and to be general enough to have the

representational capabilities of other proposed historical relations. We refer

to this relation as a canonical historical relation.

Let UD = { D l , D2 . . . , Dnd) be a (universal) set of value domains

where for each i, D; # 0. Each value domain Di is analogous to the tradi-

tional notion of a domain in that it is a set of atomic (non-decomposable)

values. Further, let D = Uy& Di be the set of d l values.

Associated with each value domain Di is a set of value colnparators

OD,, each element of which can be used to compare two elements of the

domain. At a minimum each set of value comparators contains the com-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

parators "=" and "f." to test for the equality and inequality, respectively,

of any two elements of the associated value domain.

Let T = {to, tl, . . . , ti, t;+l,. . .) be a non-empty set, the set of t imes,

and let < be a total order on T. The cardinality of T is restricted to be at

most countably infinite. We call any subset L C T a lifespan.

Corresponding to each value domain Di is a temporal domain DT of

partial temporal-based functions from the set of times to the value domain

D;. Each of these partial functions define an association between each time

instance in some lifespan L, and a value in a designated value domain, and

thus provides a means of modeling the changing of an attribute's value over

time.

Let UA = {Al, A 2 , . . . , A,,) be a (universal) set of attributes. Each

attribute names some property of interest to the application area.

A historical relation scheme R is a 3-tuple R =< A, K, DOM >

where:

1. A 5 UA is the set of at tr ibutes of scheme R

2. I< 2 A is the key of scheme R

3. DOM : A -+ UD is a function that assigns to each attribute of scheme

R a value domain, and, by extension, the corresponding temporal

domain. We denote the value domain of attribute A; in scheme R by

DOM(A;, R).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

A historical relational database scheme DB = {Rz,.. . , R,) is a

finite set of historical relation schemes.

A historical tuple t on scheme R =< A, K, DOM > is a function

that associates with each attribute A; E A a temporal-based function from

a common lifespan L C T to the value domain assigned to attribute A;;

that is, t(Ai) : L + DOM(A;). The subset of times 1; is called the tuple

Iifespan o f t and is denoted t.1. We note that it is also possible to asso-

ciate lifespans with attributes [CC87]. Doing so perrnits historical relation

schemes to accomodate changes that may occur to them over time.

A historical relation r on scheme R =< A, K, DOM, > is a finite set

of historical tuples on scheme R such that given any two tuples tl and t2

in r, Vsl E t1.l and Vs2 E t2.1, 3A; E K such that tl(Ai)(sl) t2(Ai)(~2).

With the concept of a key that we are using here a tuple must throughout

its lifespan differ, with respect to its key attributes, from every other tuple,

throughout their respective lifespans. Although in general we would assume

that the temporal-based function associated with each key attribute of a

tuple is constant with respect to the lifespan of that tuple, we do not require

it to be so.

In Figure 2 we show two historical relations: EMPL and DEPT. The

tuples in these relations are shown separated by horizontal lines. The tem-

poral based functions assigned to tuple attributes are depicted as a col-

lection of time intervals such that all of the times within an interval are

associated with the same value domain value. Thus, for example, a salary

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

S M P L

[5, now] -+ Juni
[2,10) -+ Ashley
[14, now] -+ Ashley

SALARY

[O, 7) -+ 20K
[7,11) -+ 30K
111. now1 -+ 27K

NAME
[0, now] -+ Tom

D E P T

Figure 2: The Historical Relations EMPL and D E P T

DEPT

[O, 10) -+ Sales
110, now] 4 Mktg

15, now] -+ Acctng

[2,6) -+ Engrng
[6,10) -+ Mktg
[14, now] -+ Engrng

DEPT
[o, now] -+ Acctng

[O, now] -+ Engrng

[0, now] -+ Mktg
[O, now] -+ Sales

of 20K is associated with each of the times in the open interval [0,7) of

L 1

15, now] -+ 28K
[2,5) -+ 27K
[5,10) -+ 30K
[14, now] -+ 35K

MGR
[O, 5) -+ Paul
[5, now] -+ J m i
[O, now) -+ Wanda
[14, now] 4 Ashley
[O, now] -+ Tom
[O, now] -+ Sue

the attribute SALARY of the first tuple in the relation EMPL. We use the

symbol now to designate that element of the set of times T that corresponds

to the current time.

A historical database d = {rl, rz, . . . , r,) is a set of historical rela-

tions where each r; is defined on a not necessarily unique historical relation

scheme R;.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

2.3 The Calculus

Two types of calculi have been defined for the standard relational data

model: domain relational calculi and tuple relational calculi. Although

the equivalence of these two types of formulation is well-known, in general,

the tuple relational calculus is easier to understand, and has served as the

basis for the most popular implementations of relational query languages,

SQL and QUEL. We will therefore define a tuple calculus for historical

relations. To simplify the discussion we will assume that we are defining an

applied relational tuple calculus relative to a particular relational database

d = {rl, r2 , . . , , rn}.

The major differences between historical relational data models and the

standard relational data model arise from the explicit incorporation of a

temporal component into the model. This difference is reflected in the

definition of the calculus that we specify as the language Lh.

2.3.1 The Language Lh

The Syntax of Lh

1. The Basic Expressions of Lh are of three categories:

(a) Constant Symbols

i. CD = {So, S1, 62, . . .) is a set of individual constants, at most

denumerably infinite, one for each value S in D

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

ii. CT = {TO, TI, ~ 2 , . . .) is a set of temporal constants, at most

denumerably infinite, one for each time T in T

iii. CA = {A1,Az,A3,. . .) is a finite set of attribute name con-

stants, one for each attribute A in UA.

(b) Variable Symbols

i. VT = {to, tl , t2, . . .} is a denumerably infinite set of temporal

variables

ii. VTV = {xO, xl, 23, . . .) is a denumerably infinite set of tuple

variables

(c) Predicate Symbols

i. O = ($1, 02, 03,. . . , One} is a set of binary predicates, one

corresponding to each value comparator defined on objects

of type y (e.g., values from a common value domain),

. .
11. r = {rl, 7-2, . . . , r,) is a set of relation predicates, one corre-

sponding to each relation r in the database d.

2. The Terms of Lh are of several Categories, given as follows:

(a) If x is a tuple variable, A is an attribute name constant, and t

is a temporal variable, then

i. x.A is a Term of Category indexed tuple

ii. x.A(t) is a Term of Category indexed tuple value

(b) If x is a tuple variable, then

i. x.1 is a Term of Category lifespan

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

(c) If L C CT, then

i. L is a Term of Category lifespan

(d) If L1 and L2 are Terms of Category lifespan, then so are L1 U L2,

Ll n L2, and L1 - L2.

3. The Formulae of Lh are the following:

(a) If a and ,B are both terms of the same category, then

i. a = ,B and a # ,B are formulae.

(b) If a and p are both indexed tuple values, 6 is an individual

constant, and 0 is a dyadic predicate, then

i. a0,B is a formula, and

ii. a06 and 60a are formulae.

(c) If a is a lifespan term and t is a temporal variable, then

i. t E a is a formula.

(d) If tl and tz are temporal variables and T is a temporal constant,

then

i. tl < t2 is a formula,

ii. r < t l and tl < r are formulae, and

iii. r = tl and tl = r are formulae.

(e) If r is a relation predicate and x is a tuple variable, then

i. r(x) is a formula.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

(f) If 4 and $ are formulas, then so are ($), 14, (# A $), (4 V $),

(4 -. $1, and (4 - $1.
(g) If 4 is a formula and u is a variable, then Vu4 and 3u4 are both

formulae.

4. The Expressions of Lh are all expressions of the form: [xl .Al, . . . , x, .A, :

t] 4, where:

(a) [xl.Al,. . . , xn.A, : t] is called a target list, and consists of

i. A list of indexed tuple terms xi.Ai

ii. A temporal variable t

(b) # is a formula.

As a convenience we use for a set of attributes A = {Al, A2, . . . , A,}

the notation x.A to denote the list $.Al, z.A2, . . . , x.An in a target

list. Similarly, given a tuple variable x that ranges over a set of

tuples on a common scheme that consists of the set of attributes

A = {Al, AIL,. . . , A,), we use the notation x.* to denote x.A.

The Semantics of Lh Here we give the intended interpretation of the tu-

ple relational calculus. For convenience the numbering used here correlates

directly with that used in the specification of the syntax.

1. The Basic Expressions of Lh denote as follows:

(a) Constant Symbols

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

i. An individual constant denotes an object in some value do-

main D;

ii. A temporal constant denotes a time in the universe of times

T

iii. An attribute name constant denotes an attribute in UA.

(b) Variable Symbols

i. A temporal variable denotes a time in the universe of times

T

ii. A tuple variable denotes a tuple in some relation r in the

database d

(c) Predicate Symbols

i. A binary predicate symbol denotes some value comparator

(e.g., =, #, <, . . .) over objects in some value domain

ii. A relation predicate r denotes a relation (set of tuples) in

the database

2. The T e r m s of Lh denote as follows:

(a) An indexed tuple denotes a temporal-based function from a lifes-

pan to a value domain

(b) An indexed tuple value denotes an object in some value domain

(c) A lifespan denotes a set of times

3. The Formulae of Lh denote as follows:

Center for Digital Ecorlorny Research
Stem School o f Business
IVorking Paper IS-89-002

(a) a = ,f3 and a # ,f3 are true just in case the object denoted by a

is identical (respectively, not identical) with the object denoted

by ,f3 , and false otherwise.

(b) a0P is true just in case the object denoted by a stands in the

relation 0 with the object denoted by P, and false otherwise;

similarly for a0S.

(c) t E a is true just in case the time denoted by t is in the lifespan

denoted by a, and false otherwise.

(d) tl < t2 is true just in case the time denoted by tl occurs before

the time denoted by tz, and false otherwise; similarly for T < tl

and tl < T.

(e) T = tl is true just in case the time denoted by T is the same time

as that denoted by tl, and false otherwise.

(f) r(x) is true just in case the tuple denoted by x is in the relation

denoted by r, and false otherwise.

(g) (41, 74, (4 A $), (4 V $), (4 -.t $7)) and (4 ++ $1. are true just

in case the obvious conditions on 4 and 1C, hold.

(h) Vud and 3u4 are true just in case the obvious conditions on 4
and u hold.

4. An Expression [xl .Al,. . . , x,.A, : t]4 of Lh denotes a historical rela-

tion, each n-tuple of which is derived from a satisfying assignment to

the variables of the formula 4. The components of the n-tuples are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

denoted by the indexed tuple terms xi. The lifespan of each derived

tuple is the set of values of the temporal variable t that together with

the values of the tuple values satisfies the formula 4.

In order to ensure that the relations denoted by expressions of the cal-

culus are well-defined we include along with the syntax given earlier several

additional restrictions. First, we require that each tuple variable specified

in the target list, either in the specification of an indexed tuple term, or

in denoting a tuple lifespan, must also be specified within the associated

formula. Second, we require that tuple variables range only over tuples

in relations in the database, and temporal variables, when included in an

indexed tuple value term, range only over times in the lifespan of the tuple

denoted by the tuple variable component of that term. These restrictions

on the ranges of variables characterize a concept of safe formula analo-

gous to that defined for the standard relational calculus [Mai83]. Finally

we require that a tuple variable can range only over tuples in relations of

the same type; that is, in the terminology of the standard relational data

model, relations that are union-compatible.

In the following we give several examples of queries expressed in the

language Lh for the database shown in Figure 2. In these examples the

symbols used to identify each of the relation predicates are the names of

the relations (i.e., EMPL or DEFT) that corresponds to that symbol.

Q1. Who are the employees currently in the marketing department?

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

[e.* : t] E M P L (e) A e.DEPT = Mktg A t E e.1

Q2. Who are the managers for whom Tom has worked?

[el.* : t] E M P L (e l) A EMPL(e2) A DEPT(d) A t E e.1 A

3t l (e2.NAME(tl) = Tom A e2.DEPT(tl) = d.DEPT(t1) A

d.MGR = el .NAME)

Q3. Name and salary of each employee?

Q4. Name and salary of each employee at time 12?

Q5. Who are the employees who have only worked in the accounting

department?

[e.* : t] E M P L (e) A t E e.1 A Vtl(t l E e.1 -t e.DEPT(t1) = Acctng)

Center for Digital Economy Research
Stem School of Business
IVolking Paper IS-89-002

Lh-Based Notion of Completeness

The appropriateness of the language Lh as a standard for historical re-

lational query language completeness derives from that of the relational

calculus as a standard for relational query language completeness. For

both languages this appropriateness can be viewed in terms of the set of

relations that can be defined by expressions in the languages.

The relational calculus of the standard relational data model has been

shown to be equivalent to its relational algebra. This equivalence is with

respect to the set of relations that can derived from a given set of (base)

relations. A relational calculus formula denotes a subset of (i.e., selects

tuples from) the Cartesian product of the sets of tuples over which each

of the tuple variables in the formula ranges. (A target list is then used to

project out the desired attributes values from the selected tuples.)

For example, let 4' be a relational calculus formula that is defined over

the tuple variables X I , 2 2 , ..., z,. Each tuple variable xi ranges over a set

of tuples r; that is derived from the set of database relations using the set-

theoretic operators U, n, and -. (In the query languages SQL and Quel

each tuple variable is restricted to range over the tuples in a single relation.)

Let the relation r* = rl x r2 x . . . x r, be defined as the Cartesian product

of these sets. The formula 4' specifies a selection criteria on r* that allows

one or more attribute values of each of its tuples to be compared with other

attribute values in the same tuple, or, through the use of existential and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

universal quantifiers, with attribute values of other tuples in r*.

In the standard relational data model an attribute value is an element

of the value domain associated with that attribute. By definition, all such

values are atomic. Thus, the relational calculus indexed tuple term x1.A;

denotes the value of attribute A; in the tuple designated by tuple variable

X I . Likewise, the formula (or component of a formula) x1 .A;9x2.Aj ex-

presses the relationship, denoted by the comparator 6, between the values

denoted by the terms x1.A; and x2.Aj.

Relational calculus expressions differ from those in the historical re-

lational calculus specified by the language Lh by the absence of temporal

const ants and variables. This lack of temporal components reflects the view

that, in some sense, the state of a standard relational database reflects a

single point in time.

A formula in the language Lh also denotes a selection of tuples from the

Cartesian product of the sets of tuples over which its tuple variables range.

The similarity is such, that a formula in Lh that contains no temporal

variables or constants, and thus can contain only the comparators equality

"=" and inequality "#", is also a formula in the standard relational cal-

culus, and has the same interpretation. (Each formula that is specifiable

in the standard relational calculus, with the exception of the comparator

operators used, is also a formula in the historical relational calculus.)

In the historical relational data model value domains are also associ-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

ated with each attribute. However, unlike the standard relational model,

the value of an attribute in a tuple denotes a time-varying sequence of val-

ues from the associated value domain. We have chosen to represent this

sequence as a temporal-based function that maps each relevant point in

time (i.e., elements of the tuple's lifespan) to the appropriate value in the

value domain. We believe that this is a natural way of viewing time-varying

at tribute values. Other researchers have chosen different, though essentially

equivalent, representation schemes as their metaphor. Thus the historical

relational calculus indexed tuple term x.Ai denotes a partial function from

time into the value domain of attribute Ai, and the term x.Ai(t) denotes

the value of that attribute at the time denoted by t .

Temporal variables and constants provide a means of extending the

selection criteria specified on the Cartesian product beyond that of simply

comparing for equality and inequality attribute values that are, in the case

of the historical relational data model, temporal-based functions.

Using temporal variables and constants, and the dyadic predicates used

to denote comparators, it is possible to express with a formula a selection

criteria for historical tuples in the Cartesian products of the sets of tuples r;

over which the tuple variables of the formula range. This selection criteria

allows the value of one or more attributes at specified points in time to

be compared with the values of other attributes at other specified points

in time. These other attributes may be in the same or different tuples.

In effect, this selection criteria is defined over a Cartesian product of the

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

sequence of values assigned to each attribute in a tuple (extending the

Cartesian product into the temporal dimension of the historical relation).

As an example, let x1 and x2 be two tuple variables, tl and t2 denote

two points in time, and 9 be a dyadic predicate. Further, let Al and A2

be two attributes having temporal function domains that correspond to

value domains that are 9 comparable. The formula xl.Al(tl)9x2.A2(t2)

then asserts that the value of attribute A1 in tuple xl at time tl satisfies

the relationship specified by 6 with the value of attribute A2 in tuple x2 at

time t2. Both xl.Al and x2.A2 denote temporal functions. Existential and

universal quantifiers can be used to further specify (indeed, to completely

specify) the times for which values are to be compared.

Although a formula such as x1.Al(t1)9x2.A2(t2) has been presented as

denoting a comparison between two attribute values at the indicated times,

it can also be viewed as denoting a comparison between attribute values

that, as in the standard relational data model, are viewed as being atomic.

That is, 6, t l , and t2 can be viewed as parameters that select a func-

tion comparator 8 = .F(9,tl,t2) where X ~ . A ~ ~ X ~ . A ~ is true exactly when

xl. Al (t1)9x2. A2 (t2) is true. Similarly, other function comparators can be

defined for formulae that contain temporal const ants and quantifiers over

the temporal variables.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

4 Historical Models and Completeness

All of the historical relational data models that have been proposed differ

from one another in the set of query operators that they provide. In addi-

tion, they often differ in the structure of the historical relations that they

specify, that is, the way in which the temporal component is incorporated

into the structure. In this section we describe several of these models, and

discuss their completeness with respect to the historical calculus character-

ized by the language Lh.

For each of the data models discussed in the following, we are interested

in two aspects of its query language relative to the language Lh: its expres-

siveness, that is, its ability to express every relation that can be denoted

by expressions of the language Lh, and its boundedness, its ability to

express only those relations that can be expressed in Lh. The standard re-

lational calculus satisfies both of these criteria with respect to the standard

relational calculus.

We define the completeness of a language soley in terms of its relative

expressiveness. That is, a language is complete with respect to the language

Lh if it is as expressiveness as Lh. Allowing that all reasonable queries can

be expressed in Lh, we also consider the boundedness of each of the query

languages discussed here. If Lh is an appropriate basis for a notion of com-

pletness, then it must be the case that each language considered is bounded

by Lh, or if not, then those queries that are not expressible in Lh are in

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

some sense "not reasonable". For each of the historical query languages

discussed in the following we consider first its boundedness, translating

various of its operators into equivalent expression in the language Lh, and

then its expressiveness.

We begin with a discussion of the completeness of the historical re-

lational algebra specified by the historical relational data model H R D M

[CC87]. We discuss this language first both because the canonical historical

relation defined in Section 2.1 is derived directly from the structure of the

historical relation defined by HRDM, (thus we assume the same relational

structure in the following), and because the set of operators specified by

this model were intended initially to provide all the functionality thought

useful and desirable.

4.1 HRDM

In order to establish the historical relational completeness of the H R D M

algebra or any other historical query language, it is sufficient to provide a

translation from each relation defining expression in Lh to a semantically

equivalent expression of that query language. Similarly, a query language

is incomplete if it can be shown that for some relation defining expression

in Lh no such translation exists.

We categorize the operators of the H R D M as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

Set-Theoretic These operators are defined in terms of the set charac-

teristics of relations, and include the standard set operators union (U),

intersection (n), set difference (-), and Cartesian product (x).

Attribute-Based This category includes those operators that are de-

fined in terms of the attributes (or their values) of a relation. Some of

these operators, as suggested by their names, are derived from similar op-

erators that exist in the standard relational algebra. As shown below, often

the original definition of these operators has been modified to exploit the

temporal component of the historical model. For each of these operators

we give both its set-theoretic definition, and then an equivalent Lh-based

expression.

1. Project (T) : This operator is equivalent in definition to its standard

relational counterpart, and has the affect of reducing the set of at-

tributes over which each of the tuples x in its operand, a relation r ,

is defined, to those attributes contained in a set of attributes X.

2. Select-If (a - IF): This variant of the select operator selects from

a relation r those tuples x each of which for some period within its

lifespan has a value for a specified attribute A that satisfies a specified

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

selection criterion. The period of time within the lifespan is specified

by a lifespan parameter I;. The selection criterion is specified as AOa,

where 8 is a comparator and a is a constant. (It is also possible to

compare one attribute with another in the same tuple.) A parameter,

Q, of the select-if operator is used to denote a quantifier that specifies

whether the selection criterion must be satisfied for all (V) times in

the specified subset of the tuple's lifespan, or that there exists (3) at

least one such time.

3. Select-When (a - W H E N) : This operator is similar to the 3-

quantified select-if operator. However, the lifespan of each selected

tuple is restricted to those times when the selection criterion is satis-

fied.

4. 0-Join: Like its counterpart in the standard relational data model

this operator combines tuples from its two operand relations. With

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

@-join two tuples are combined when two attributes, one from each

tuple, have values at some time in the intersection of the tuples'

lifespans that stand in a 6 relationship with each other. The lifespan

of the resulting tuple is exactly those times when this relationship is

satisfied.

Let rl and r2 be relations on schemes R1 and R2, respectively, where

A E R1 and B E R2 are attributes.

5. Static Time-Slice (IQL): This operator reduces a historical relation

in the temporal dimension by restricting the lifespan of each tuple x

of the operand relation r to those times in the set of times L.

6. Dynamic Time-Slice (TiA): The dynamic time-slice also reduces

a relation in the temporal dimension, and is applicable to relations

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

that include in their scheme an attribute A whose domain consists of

partial functions from the set of times into itself. Under this operation

the lifespan of each tuple t in the operand relation is reduced to those

times that also occur in the range of values of its attribute A.

TQA(r) = {x13xf E r[for L, the image of x.A,x.l= 1; A x = x'l~])

[x.* : t]r(x) A t E 2.1 A 3tl(tl E 2.1 A t = x.A(tl))

Other Operators In addition to the above categories of operators, the

HRDM algebra includes several of what we term structural operators be-

cause they are used to restructure a relation without changing the infor-

mation content of that relation. Each of these operators, union-merge

(u,), intersect ion-merge (no), and difference-merge (-,), first com-

putes the set-theoretic operator indicated by their prefix, and then in the

resulting relation combine into a single tuple several tuples that, based on

their key values, denote the same entity. Various types of structural oper-

ators are often found in extensions to the relational data model, historical

or otherwise.

The HRDM algebra also includes an operator WHEN. We categorize

this operator as an extra-relational operator in that it computes a result that

is not contained in a database relation, nor given as a constant. Applied

to a historical relation, this operator returns a value defined as the union

of the lifespans of the tuples in that relation. This operator can be viewed

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

as a type of temporal-based aggregate operator.

We omit such operators from our discussion of completeness of HRD M

and the remaining languages that we will discuss since in the case of the

structural operators they are not intended for querying, and in the case of

the extra-relational operator because they generally fall within the realm

of other notions of completeness. (We make reference to other such notions

in Section 5.)

The translations that we have provided for each of the relation-defining

operators of the HRDM algebra shows that this algebra is bounded by

the language Lh. However, this historical algebra is not complete in that

there are queries that are expressible in Lh for which no equivalent algebraic

expression (i.e., sequence of algebraic operations) exists. One example is

the query on the database in Figure 2 for the name and department of each

employee that has at some time received a cut in salary, expressible in Lh

as

The lack of an equivalent algebraic expression is due to the specification

of those operators that include the comparison of two values as part of their

definition: the join, and the various select operators. In each case only

attribute values that occur at the same point in time can be compared.

Thus, as required by the above query, it is not possible to compare the

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

salary of an employee at some time tl with that employee's salary at some

other point in time, tZ.

4.2 TQuel

TQuel is the query language component of an historical relational data

model proposed by Snodgrass {Sno87]. We shall call this model TRDM2

in order to distinguish it from the previously defined HRDM.

T R D M provides for two types of historical relations. One, called an

interval relation (Figure 3) is derived from a standard relation through

the addition of two temporal attributes, valid-from and valid-to, both of

whose domains are the set of times T. The values of the other attributes of

a tuple in such a relation are considered to be valid during the beginning

of the interval of time starting at the valid-from value and ending at, but

not including, the valid-to value. (This interval thus denotes the lifespan

of the tuple.)

The second type of relation, an event relation is defined by extending a

standard relation by a single temporal attribute valid-at. Since both inter-

val relations and event relations are derived from first normal form relations

through the addition of attributes whose values are atomic, they are also

in first normal form. Although our discussion of TQuel and T R D M con-

2The reason for the specific choice of TRDM is that this model is part of a larger
model that Snodgrass refers to as a temporal because of its ability to also accomodate a
second temporal component called transaction time.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

EMPL
SALARY

20K

NAME

Tom
Tom
Tom
Tom
Juni
Ashley
Ashley
Ashley

Figure 3: A TRDM Interval Relation

DEPT
Sales
Sales
Mktg
Mktg
acctng

engrng
engrng
engrng

7
10
11
5
2
5
14

siders only interval relations, it can be extended easily to also cover event

relations.

valid-from

0
10
11
now
now

5
10
now

The query language TQuel is a calculus-based language that is derived

from and defined as a superset of Quel, the query language of the INGRES

relational database manageinent system [SWKH76], through the addition

of temporal- based clauses that accomodate the valid-from and valid- to at-

tributes. (These attributes are not visible to the existing components of

the Quel language.)

valid-to

7

A WHBN clause is added to define an additonal temporal-based selec-

tion constraint that must be satisfied in conjunction with the constraint

defined by the TQuel (and Quel) W E R E clause. This constraint, speci-

fied as a temporal predicate over a set of tuple valid-from-valid-to intervals

(lifespans) defines a restricted set of relationships that must hold amongst

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

them.

A VALID clause is used to define, in terms of temporal expressions,

valid-from and valid-to values for tuples in the relation resulting from the

TQuel statement.

As Snodgrass shows [Sno87], both temporal predicates and temporal

expressions have a semantics that is expressible in terms of the standard

tuple c a l c~ lu s .~ Since these same temporal predicates and temporal ex-

pressions are defined in terms of intervals that denote lifespans they can

also be represented using the temporal constants and variables of the more

expressive language Lh, implying that TQuel is bounded by Lh.

The completeness, and thus expressiveness, of TQuel can be viewed in

terms of that of Quel. In addition, the expressiveness of TQuel is dependent

on the type of domains over which non-temporal attributes are defined, and,

as we discuss below, by extension, the existence of event relations.

TQuel is bounded by the language Lh since the semantics of TQuel like

that of Quel [U1188] can be expressed in terns of, and is thus bounded

by, the standard relational calculus which in turn is bounded by Lh. In

particular, any TQuel query can be expressed as a formula of the form

Q A I' A Qi, where Q, I', and Qi, are the calculus formulae of the underlying

Quel statement, the TQuel WHEN clause and VALID clause, respectively,

and I' and Qi, contain no quantifiers. Additionally, I' and Qr are defined only

3This specification also includes the use of several auxiliary functions that are used to
compare times in order to determine which of two times occurs first or last.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

over the temporal attributes valid-from and valid-to, neither of which may

be included in Q. The structure of this formula means that, as with Quel,

not all algebraic expressions can be expressed as a single TQuel statement

(for example, algebraic expressions containing the union operator).

If none of the non-temporal attributes over which a TRDM database

is defined has a domain whose values are comparable to those in the set of

times T, then in no algebraic expression over the relations in this database

can such an attribute be compared to either valid-from or valid-to. For such

a database, TQuel statements, as represented by a defining tuple calculus

formula, are no more restrictive than Quel statements, and as with Quel

a sequence of TQuel statements, by creating temporary relations, and us-

ing operators such as APPEND and DELETE, can express any algebraic

expression.

However, if some attribute A is defined over some subset of times, then

there exists some algebraic expressions for which no sequence of TQuel

statements can be equivalent; while an algebraic expression can compare

attribute A to either attribute valid-from or valid- to, a relational calculus

expression derived from a TQuel statement cannot.

This problem is remedied in TRDM through the use of event rela-

tions. Rather than including a temporal attribute, other than valid-from

and valid-to, in an interval relation, it can be moved to a separate relation,

along with the apropriate key attributes, and renamed to the temporal

attribute valid-at. Such a change will allow it to be included in TQuel

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

temporal expressions along with the temporal attributes valid-from and

valid-to.

Although interval relations and event relations are distinguished by

TQuel, they are standard first nornal form relations that provide a fixed

way of encoding temporal data using the temporal attributes. TQuel dif-

fers from Quel only in the distinction accorded these attributes. Thus, like

Quel it is, with the addition of such operators as APPEND complete in

the sense defined by Codd, and by extension it is, as a result of the use

of the temporal attributes, historically complete. The cost of achieving

this historically completeness is the need to define two intrinsically differ-

ent relation types, and to include more relations in a database than would

otherwise be necessary; for example, as with HRDM or the historical model

that we describe in the next section. In addition it should be noted that

since TQuel relations are in first normal form, it requires several tuples to

represent a single entity having attributes whose values vary over time.

4.3 The Historical Model of Gadia

The third historical data model that we discuss is one that was proposed

by Gadia [Gad86]. This data model, which we shall label TDMG, defines a

historical relation that is the same as that of HRDM, and thus the canonical

historical relation defined in Section 2.1. Here too the value of a tuple

attribute is a function from a set of times to the value domain of the

attribute.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

Corresponding to this historical relation Gadia defines two query lan-

guages that he shows to be equivalent: one a historical algebra, the other a

historical calculus. In the following discussion we consider only the algebra.

Again we partition the operators into the three categories: set-theoretic,

attribute based, and other. We discuss only the individual attribute based

operators; the set-theoretic operators being, similar to those of HRDM,

are expressible in the language Lh in the obvious way, and the operators in

the category other, not being relevant.

Attribute Based The algebra of TDMG defines historical equivalents

to the project, select and join operators of the standard relational model.

The differences, where they exist, between these operators and their stan-

dard relational counterparts arise from the need to accomodate the use of

temporal-based functions as tuple attribute values. In addition to these

operators TDMG defines a temporal selection operator that is a variant of

the time-slice operator that we discussed in Section 4.1. Below we define

each of these operators in terms of expressions of the language Lh.

1. Project:

2. Select: The select operation aAeB(r) differs from its standard rela-

tional counterpart in the interpretation of the selection criteria. This

criteria, where A is an attribute, B is an attribute (or constant), and

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

8 is a comparator of the appropriate type, is satisfied by a tuple x in

r if for all times t in its lifespan z.A(t)Bx.B(t) (or if B is a constant,

x.A(t)BB).

(If B is a constant, then x.B(t) is replaced by B in the above defini-

tion.)

3. Join: As expected, the join operation rl[A10A2]r2 defines a relation,

each tuple of which is formed by joining a tuple from relation rl with

a tuple from r2. Two tuples are joined if and only if they have the

same lifespan, and throughout each time in their common lifespan the

value of attribute A1 of the rl tuple satisfies the relationship specified

by 8 with the value of attribute A2 of the tuple from r2

A second join operator is also defined in the algebra. However, since

it is a more restrictive variant of the above we will not discuss it here.

4. Temporal Selection (Timeslice): The temporal selection r(e) defines a

relation, each tuple of which is derived from a tuple in r by restricting

its lifespan to those times that are included in the set of times defined

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

by the temporal expression e. The temporal expressions allowed are

all included among those definable in the language Lh.

As was the case with the historical model HRDM, TDMG is bounded

by the language Lh since each of its operators are definable in terms of

expressions of Lh. Similarly, as can be seen by the description and definition

of the operators, the TDMG algebra lacks the expressiveness of Lh since it

is not possible to compare the value of one attribute at a time tl with the

value of another or the same attribute at some other time t 2 . Thus, it too

is incomplete with respect to Lh.

5 Summary and Conclusions

In this paper we have defined a concept of relational completeness for his-

torical relational databases. This notion of completeness, analogous to

completeness in the standard relational data model provides a standard

against which the power of various of historical query languages can be

compared.

The basis for our notion of completeness is the language Lh, a historical

relational calculus. This language is defined in terms of a database of

canonical historical relations that are specified so as to reflect the intent of

what is generally meant by a historical database. That is, these relations

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

are able to model a set of "things" (e.g., entities and relationships) that

change over time, retaining both currently valid data, as well as data that

was valid at some time in the past.

After discussing the reasonableness of the historical relational calculus

as a basis for historical relational completeness we then use it in a discussion

of the completeness of several proposed query languages: the historical

algebras proposed by Gadia, and Clifford and Croker, and the historical

calculus proposed by Snodgrass. Each language was found to be bounded

by the the language Lh. Only one of the languages, TQuel, was found to

be as expressive as Lh. However, two different types of relations, interval

relations and event relations, were used to achieve this expressiveness.

In keeping with the analogy with the standard relational calculus, the

notion of historical relational completeness that we describe is limited. For

example, it too is not sufficient for expressing an historical variant of transi-

tive closure. We expect, therefore, that historical analogs to the notions of

completeness defined by Bancilhon [Ban781 and Chandra and Hare1 [CH8O]

can also be defined, with the later being sufficient to describe aggregate-

type operations on historical databases.

Completeness is only one of a number of criteria that can be used to

evaluate and compare historical relational query languages. McKenzie and

Snodgrass [MS87] discuss several other criteria that they then use to eval-

uate various historical relational algebras.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

References

[Ari86] G. Ariav. A temporally oriented data model. ACM Transac-

tions on Database Systems, 11(4):499-527, December 1986.

[Ban781 F. Bancilhon. On the completeness of query languages for rela-

tional databases. In Proc. Seventh Symposium on Mathemati-

cal Foundations of Computing, pages 112-123, Springer-Verlag,

1978.

[Ben821 J. Ben-Zvi. The Time Relational Model. PhD thesis, University

of California at Los Angeles, 1982.

[CC87] J. Clifford and A. Croker. The historical relational data model

HRDM and algebra based on lifespans. In Proc. Third Interna-

tional Conference on Data Engineering, pages 528-537, IEEE,

Los Angeles, February 1987.

[CHBO] A.K. Chandra and D. Harel. Computable queries for rela-

tional data bases. Journal of Computer and System Sciences,

21(2):156-178, October 1980.

[Che76] P.P.-S. Chen. The entity-relationship model - toward a unified

view of data. ACM Transactions on Database Systems, 1(1):9-

36, March 1976.

[Cod721 E.F. Codd. Relational completeness of data base sublanguages.

In R. Rustin, editor, Data Base Systems, Prentice-Hall, 1972.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-002

f

[Gad861 S.K. Gadia. Toward a mulithomogeneous model for a temporal

database. In Proc. Second International Conference on Data

Engineering, IEEE, Los Angeles, California, February 1986.

(Mai831 D. Maier. The Theory of Relational Databases. Computer Sci-

ence Press, 1983.

[MS87] E. McKenzie and R. Snodgrass. An Evaluation of Historical

Algebras. Technical Report TR87-020, University of North Car-

olina at Chapel Hill, October 1987.

[Sno87] R. Snodgrass. The temporal query language tquel. ACM

Transactions on Database Systems, (12):2, June 1987.

[SWKH76] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design

and implementation of ingres. ACM Transactions on Database

Systems, 1(3):189-222, September 1976.

[U1188] J. Ullman. Principles of Database and Knowledge- Base Sys-

tems. Volume 1, Computer Science Press, 1988.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-002

