
STRUCTURED ANALYSIS REPRESENTATIONS
AS PRODUCTION SYSTEMS:

AN INTERPRETATION AND ITS IMPLICATIONS

by

Vasant Dhar

and

Barry D. Floyd
Leonard N. Stern School of Business

New York University
624 Tisch Hall, 40 West 4th St.

New York, NY 10003

March 1989

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern Scliool of Business
New York University

Working Paper Series

CRIS #202
GBA #89-21

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

Table of Contents
1. Introduction
2. Production Systems
3. Analysis of Representations
4. Discussion

4.1. Expressiveness
4.2. Organization
4.3. Implementation Language Considerations

5. Summary

Page i
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

Abstract
Much of transaction processing involves classification, that is, the categorization of

inputs into outputs based on various tests. In Artificial Intelligence (Al), classification
systems are generally represented in terms of AND/OR graphs. Such graphs are
collections of production rules that capture declaratively the logic of an application
domain. If one views a transaction processing system as a classification system, it
becomes natural to represent it in terms of an AND/OR graph. In this paper, we
present an interpretation of dataflow diagrams used in Structured Analysis as
AND/OR graphs. By examining the dataflow diagrams, production rules capturing
application-specific knowledge can be constructed. This interpretation has two
implications: 1) production rules can be used to unify analysis and design since the
same data structure (the rule) is used for both purposes, and 2) the resulting design
can be simulated for purposes of explanation and what-if analysis. We also discuss
some of the general pros and cons of production systems as they pertain to systems
analysis and design.

Page 1
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

1. Introduction
There are many analysis tools that can be used to specify the functional requirements

for computer-based information systems. The specification primitives provided by these
tools are meant to enable the designer to cope with the complexity of the problem and
to provide users with an accurate and comprehensive view of the system as
conceptualized by the designer. Further, these primitives should enable a smooth
translation into high-level and detailed design of the system and continue into the
coding phase. For a survey of analysis methods see deMarco (1 978), Gane and Sarson
(1979), and McMennamin and Palmer (1984). Various design tools have been
described by Borgida et.al (1 985), Alford (1 985), Ross (1 985) and Pressman (1 987).

The primitives provided by the various analysis techniques have been shaped
primarily by the type of problem being modeled. To model transaction processing
systems for example, analysts often focus on the processes which occur to transform
the inputs into outputs. In particular, structured methods, such as data flow diagrams,
use a representation whose primitives are data flows, transformations, data stores, and
sources/sinks. On the other hand, in order to model judgemental reasoning or decision-
making oriented tasks, an analyst typically casts the problem in terms of very different
primitives such as production rules and/or structured object representations designed to
capture the types of knowledge involved in these tasks. Such primitives are provided by
a number of expert system building shells.

There is no clear set of guidelines that indicates when an analysis method is most
appropriate. In fact, there has been considerable activity involving the application of
expert system shells (typically rule-based) for prototyping transaction processing
systems. In discussions with practitioners, several have provided anecdotal evidence
suggesting that use of such shells accelerates and simplifies the development of
prototypes. However, there has been no analysis thus far of the real or potential
advantages of doing this, and of the relationships between traditional analysis and
design methods and expert system shells.

In this paper, our intent is to show that the dataflow diagram (DFD) representation
used in structured analysis can be viewed as a special type of production system.
Production systems have been used extensively in Al to model problems involving
synthesis and classification. A classification problem is one where inputs must be
combined and tested to yield various outputs, where all inputs and outputs and their
structures are defined a priori. In contrast, synthesis problems involve the generation of
outputs that might not have been envisioned a priori, such as in design and planning.

Transaction processing systems model problems that have well defined inputs,
outputs, and relationships among them. Such problems are essentially classification

Page 2
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

problems, representable in terms of production rules that define and AND/OR graph. In
addition to showing the declarative logic of an application, these graphs can also be
interpreted as dataflow diagrams. This observation has two interesting implications.
First production systems can be used to unify analysis and design since the same
representational formalism (rules) is used for both. This reduces the arbitrariness at the
analysis/design boundary inherent to SDMs, that is, the arbitrariness involved in
translating the information contained in the analysis to the design phase and in
translating the detailed design to code. Secondly, a design specified in terms of
productions is "runnable" at all levels. The specification of the abstract design in terms
of productions can be run for purposes of explanation (i.e. why are certain data being
processed, how is a certain output achieved, or what set of outputs will be produced
from a given set of inputs), and the specification of the detailed design in terms of
productions (which corresponds to the mini-spec in structured analysis) provides the
functionality of the system.

The remainder of this paper is organized as follows. In the next section we describe
the basic primitives that define a production system. Readers familiar with the
production system architecture may skip this section. In section 3 we introduce a typical
type of transaction processing system, namely, an accounts receivable system, and
specify it both in terms of a data flow diagram and in terms of a production system. We
also describe the relationship between the two representations. In section four we
enumerate a set of criteria that are typically used in evaluating specification languages
and point out the considerations involved in using production rules for analysis and
design. We conclude with implications for practitioners and for designers of analysis
and design tools.

2. Production Systems
In contrast to traditional programs that use sequenced instructions as the basic unit of

computation, production systems are characterized by data-sensitive rules called
production rules or simply , productions. A production system architecture involves three
components:

1. Working memory, an evolving global database of symbols. This
database typically consists of working memory elements which
correspond to (are instances of) an abstract data type.

2. Production memory, consisting of a set of production rules. Each rule
consists of an antecedent and a consequent. An antecedent is a set of
condition elements each consisting of patterns that are sensitive to the
data in working memory. An antecedent (and its associated rule) is said
to be satisfied if each of its condition elements is matched by a working
memory element. A satisfied rule is called an instantiation. An
instantiation cannot be executed more than once by the rule interpreter

Page 3
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

(defined below). The consequent generally consists of inputloutput
statements or actions that modify working memory.

3. A Control Regime (also known as the rule interpreter), consisting of a set
of rules that determine the execution (or firing) of production rules.
Control consists of a match/selecUexecute cycle. In the match stage, all
rules whose antecedents are satisfied are collected into a conflict set.
Multiple instantiations of the same rule can exist in this set. In the select
stage, one instantiation is selected using a conflict resolution strategy.
This is executed, which results in modification of working memory or
inputloutput. In effect, control is driven by data in working memory.

The conflict resolution strategy can be based on a variety of criteria, many of which
have been enumerated by Winston (1984). Commonly used strategies are recency
where the rule matching the most recently deposited symbols in working memory (i.e.
the most recent working memory elements) is chosen, and specificity ordering where a
satisfied rule with the maximum number of condition elements is chosen. In addition
meta rules, that is, rules whose sole function is to control execution of other rules, can
be employed. The first two strategies control the execution of object level rules based
on syntactic or domain-independent knowledge, whereas meta-rules express domain-
knowledge which is used to guide rule execution.

Productions can be used to implement standard control constructs such as
conditionals, iteration, and recursion. Since the basic unit of computation is an iythen
statement, conditionals are naturally encoded as rules. Iteration is expressed easily
since the control cycle is essentially a dowhile loop that produces all instantiations of
each rule. Recursion is also easily implemented, particularly when the conflict
resolution is based on recency (see Brownston et. al (1985) for examples of how to
implement various control constructs using production systems).

It may be necessary sometimes to execute actions in a certain sequence. For
example, a master file might need to be updated before it is used to generate monthly
statements. In such cases, the firing of productions (actions) must be explicitly
controlled. This can also be achieved using recency in conflict resolution, that is, by
ensuring that working memory elements are created in an order opposite to that in
which they need to be processed. Alternatively, it can be controlled using domain-
specific knowledge encoded in meta-rules. The choice of what type of control strategy is
adopted has important consequences for the modularity of a system. We shall illustrate
this point in the context of an example in section 3.

Page 4
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

3. Analysis of Representations
There are several appealing features about the dataflow diagram representation. The

DFD captures two of the ubiquitous features of transaction processing systems, namely,
the types of data involved in processing and how and where the data is transformed.
Equally importantly, such a diagram is a powerful communication tool since users find
that it provides an intuitively understandable picture of the processing logic. However,
the DFD also presents two problems for the analyst.

One of the DFD's basic drawbacks is its imprecise semantics, that is, the meaning of
flows and transformations is derived purely from the labels assigned to them rather than
from the structural features of the diagram. Analysts often stop decomposing the
processing bubbles leaving the logic between the dataflows into the process and
emanating from it unclear. While it may be reasonable not to concern oneself with the
logic at the higher levels within the DFD, the lack of precision at the lower levels can
cause different users to interpret the same dataflow diagram very differently.

Secondly, the real, detailed processing logic is often not clear from the diagram, but is
buried across several levels of the design. In structured design, the processing logic is
often documented only in the 'mini-specs' - a separate document describing the
processes at the lowest level in the hierarchy of DFD's. At times, analysts document the
processing logic only in the code of the programs. In effect, there can be a basic
indeterminism involved in going from the design to the code.

The resulting diffusion of system logic across many different representations is
particularly problematic from a maintenance standpoint since it is not clear from the
design what the repercussions of a change (driven by user requirements or otherwise)
will be at the level of code. Over time, this can cause the design and implementation to
become out of sync thereby rendering the design useless.

In the remainder of this section we show how to integrate analysis, design and
implementation using productions as the underlying representation for each. We
illustrate how system logic buried within a DFD can be made more explicit within the
domain of the DFD representation by requiring each transformation bubble to possess
only one output data flow. Once the DFD has been defined under this diagramming
rule, we show how the DFD can be reinterpreted as an augmented AND/OR graph
which can be rewritten as a set of productions. At this stage of the analysis the system
is runnable to answer macro level questions regarding the relationship between sets of
inputs and outputs.

The design can then be completed within the production system representation by
writing the detailed logic of the lower level data transformation bubbles (the mini-spec)

Page 5
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

using production rules. The system is then runnable at the lowest level of system logic,
providing the functionality required.

In order to illustrate this approach, we consider a typical transaction processing
system, namely, an accounts receivable system. Figure 1 shows an abstract DFD
representation (level 1) of one type of accounts receivable system. In this example, five
processing steps and four data stores are used to represent receivables information.
The first and second steps update the consolidated A/R file. The third step, which
occurs after the file has been updated, matches charges with payments and write-offs.
This results in a file containing records of invoices that have been paid or are to be
written off and a file containing records of invoices where payment is still outstanding.
The fourth step categorizes the invoices based on the age of the outstanding receivable
and generates an aging schedule. The fifth step combines customer information with
the aged accounting schedule and detailed accounting data to print customer monthly
statements.

invo ic ing C u s t o m e r m a s t e r

invo ices LT__1

1 Pos t 1
summary u

i nvo ice 1 n10
summar i i

Cus tomer
i n f o r m a t i o n

Mt J ?[c u s t o m e r j
s t a t e m e n t s

d 1 Aged r l 0 n t h l ;
account accoun t s t a t e m e n t

/ Accounts rece ivab le /Remain ing rece ivab les 1

account 1 st/:ary 1
Outstanding

Invoices

C u s t o m e r s LI
I summary / / t r a n s a c t i o n s I a / invoices
u u

W r i t e - o f f
F a - , i_ ,

i n s t r u c t i o n s
I

C o l l e c t i o n s
Deleted invo lces

Figure 1 . F ive s teps i n process ing accounts receivable i n f o r m a t i o n

Page 6
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

Recelvables
Account (4)

outstandwig
involces (6)

Pald Invoices (7)

Wr l t ten -o f f

t ransact lons

T Wr i te -o f f
rnst ruct lons (5)

F i g u r e 2 Process 3 of the A/R DFD

Bubble 3 in Figure 1 which has three outputs, illustrates the hidden logic which can
occur in lower level DFD's. The correct interpretation of this bubble (shown in Figure 2)
is that each account (data flow 4) with write-off instructions (5) must be classified as a
written-off invoice (8), each invoice without such instructions must be classified as an
outstanding invoice (6) or a paid invoice (7) depending on the balance due. However,
this logic is not clear unless the reader ascribes the correct interpretation to the labels
and identifies the relationships between various subsets of these labels. The ambiguity
surrounding bubble 3 is resolved partially at level 2 (Figure 3) where it is clear how
written-off invoices are produced. The ambiguity surrounding bubble 3.1 is similarly
resolved at level 3 (Figure 4). In general, the logic surrounding the relationship between
the incoming dataflows and the outgoing dataflows of a bubble become unambiguous
when the bubble has exactly one output.

Wri te-of f
/ \

Inst ruct ions (5) 3 1 '
Delete paid

transactrons

Outstanding
Invorces (6)

Paid
b

Invoices (7)
b

Recervabies I
Accounts (4) I (3 2 1
Wr i te -o f f
lnst ruct lons (5) wr i t t en -o f f I

Page 7

/ t ransact ions /

Wrr teof f
lnst ruct lons (5)

Recelvables fo r balances
Accounts (4) grea te r than I [zero ,!

Outstanding
Invoices (6)

t ransact lons
f o r balances
equal t o zero

F i g u r e 3 Detari of process 3 0 f i g u r e 4 Deta l l of process 3 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

The notion of requiring each lower level processing bubble to possess one, and only
one outgoing dataflow allows the transformation to production rule notation to be done
automatically. Such a diagramming rule also forces the analyst to consider in detail the
relationship among the inputs and outputs. However, we note that there are
circumstances where the representation of the system logic is clearer when this rule is
violated. For example, in modeling payments from customers, we may have a check
and an invoice arriving in the same dataflow and we show the invoice being sent to the
accounts receivable process and the check going to a bank. Such situations seem to
call for two outgoing dataflows from one processing bubble. Such situations can remain
in the diagram as long as aN incoming dataflows are necessary in producing the
outgoing dataflows. Note, however, that the analyst may still draw the diagram with only
one output dataflow by showing the dataflow split into two dataflows, one going to each
subprocess (see Figure 5.).

Check

Payment
P rocess
Payment

Flgure 5 Cresting s lngle output processing hubbies

In the preceding discussion, we have been treating arrows as flows and bubbles as
transformations not only in the traditional way, but also as entities that expose the logic

-

of the application. More precisely, we have been interpreting arrows as predicates and
bubbles as logical connectives. This can be graphically depicted as an augmented
AND/OR graph. The AND/OR graph corresponding to the logic of Figure 1 discussed
so far is shown in Figure 6. In this graph the half-circle symbols correspond to AND
logic components (i.e., both incoming 'dataflows' must exist for the outgoing dataflow to
be created). The rectangular symbol represents a datastore (the augmented part of the
AND/OR graph) and the dotted arcs represent dataflows emanating from them, feeding
back into transformations that update the datastores. This graph contains all the
information in Figures 2, 3 and 4. in addition, the logic is explicit, defined in terms of the
AND/OR primitives which have well defined semantics. For example, AND symbol 2,
requires both dataflow CASH and dataflow RECEIVABLE ACCOUNTS in order to
produce the output dataflow RECEIPTS AIR SUMMARY.

)

+

Check
Process
Check

+
i

-,

Page 8

-
Process
lnvolce

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-89-21

Paid lnvolce
?

This graphical representation of the logic of the system can then be translated directly
to a production system notation. In effect, the bottom part of Figure 3 then expresses a
rule, interpreted as:

IF (4) is true and (5) is true THEN (8) is true
Similarly, Figure 4 expresses the rules:

IF (4) is true and (5) is true THEN (6) is true

IF (4) is true THEN (7) is true

More precisely, the conditions express existential quantification such as
If there exists a receivables account and there exists a write-off instruction for that

account, then it is true that that account should be written off.

- - - - - - - - - - - - - - - -' Write-off

I Receivables Accouna -l I n s m u o n s Outstaxdlng I Invoices
I 3.1.1 -b D

I
I Receivables Accounts
L ----- - -- - --- - ----_I

AND GATE DATASTORE DATAFLOW RECUR8IVE
DATAFLOW

Figure 6. A u g m e n t e d AND/OR g r a p h f o r p r o c e s s e s
1 , 2 and 3

Page 9
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

The major implication of this view is that the design is "runnable" and can be used for
explanation. For example, a question such as "how are written-off invoices produced"
can be answered as "when a receivables account has write-off instructions"; likewise,
the user or designer might want to know what outputs will result when no write-off
instructions are provided.

Similarly, mini-specs are also expressible as productions. For example, consider the
mini-spec corresponding to the first process, Post AIR Summary, which is essentially a
sequential file update program. As rules, this logic is expressible as follows (variables
are enclosed in angle brackets, with condition elements on separate lines):

I F there i s an unprocessed master record number an>
there i s an invoice record <t> where <t> = an>,
there i s NOT an unprocessed master number less than un>

THEN
create an updated master record and w r i t e i t .

I F there i s an unprocessed master record number <m>,
there i s NOT any invoice record <t> where <t> = un>,
there i s NOT an unprocessed master number l e s s than un>

TaEN
w r i t e the master record without change.

The first rule updates a master record, whereas the second rule writes it out
unchanged. The two rules assume that the records are not sorted (if they are sorted,
the rules can be modified to achieve the efficiency obtainable by sorting the two files).
The third condition elements ensure that the records are considered in ascending order.
An encoding of the two rules above (ignoring file handling) is shown in terms of the two
0PS5 rules in Table 1. Note that each condition element involves a data type (an
'object') that has a specified structure -- in this case a set of attributes or 'slots' that take
on values. This is similar to the function provided by the data dictionary in structured
analysis methods.

We view our representation as 'runnable' at many levels. Certainly if the mini-spec
processing logic is defined then our representation becomes the implementation. This
logic will contain not only the macro relationships among the dataflows but will also
express the detailed transformation logic and the required control information which is
not found in the dataflow diagram. As shown earlier, even without this detailed logic
definition we still can run our representation, though with limitations. In moving from the
minispec level to the lowest level DFD's we immediately lose the control information
found in the minispecs and detailed transformation logic. As we 'move up' the
representation hierarchy (i.e., move up levels in the dataflow diagram) relationships
among the incoming and outgoing dataflows become less clear as expected. For

Page 10
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

example, in viewing Figure 1, we can ask the same question we asked earlier: "how are
written-off invoice produced". The answer will be 'When we have either receivable
accounts or write-off instructions or both'. We do not know what inputs are directly
associated with what outputs. In general, without having the information contained in
the detailed design, we are left with uncertainty - the uncertainty which is comprised of
'or' conditions regarding the requirements for input for a particular output.

The above analysis can be summarized as follows. Since dataflow diagrams are
considered a useful communication tool between users and analysts, it makes sense to
retain them as an analysis tool. However, the logic underlying the design that is buried
across various levels can be made explicit and represented in terms of production rules
(corresponding to the AND/OR graph). If one describes dataflows as objects consisting
of attributes and values and follows the one-output diagramming convention, the rules
can be constructed automatically. Control information will be expressed only in the
production rules corresponding to the mini-specs as described in Table 1.

4. Discussion
A representation can be evaluated along several criteria. Borgida et. al (1985)

categorize evaluation criteria into two broad categories which we shall adopt here,
namely expressiveness -- the ability of the representation to capture the relevant
features of the concepts being modeled, and organization -- organizing the knowledge
so that it is easily understood by designers and users, and so that inconsistencies in a
design (at least syntactic ones) can be detected easily. Finally, the implementation
language should provide a natural and efficient encoding of the detailed design.

4.1. Expressiveness
In terms of expressiveness, the representation should have the following properties:

1. it should describe properties of the concepts in the application domain,

2, it should describe change,

3. it should make explicit the constraints relevant to the problem,

4, it should facilitate incremental specification and development since many
problems are difficult to specify at the outset and requirements often
change.

We have not focused on the first two criteria in this paper. In general, however, the
second criterion, namely, describing temporal events is probably the most difficult to
incorporate into a representation. While some progress has been made in limited
domains, most representations tend to ignore the time element. Certainly, dataflow
representations and the AND/OR graph both ignore time. The first criterion is dealt with

Page 11
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

Object declarations:
(literalize acct-rec ; data type corresponding to a master record

mno ; field of mrec: the master record number
status) ; field of mrec: indicates whether record

; has been processed

(literalize invoice ; data type corresponding to a transaction rec
tno) ; field of trec: the transaction record number

Rules:
(p update
(acct-rec "mno <m> "status unprocessed)
(invoice "tno {= <m> <t>))

-(acct-rec "mno {< <m>) "status unprocessed)
-->
(write (crlf) Processing master number <m> and trans number <t>)
(modify 1 "status processed))

(p noupdate
(acct-rec "mno <m> "status unprocessed)

- (invoice "tno {= (m>))
-(acct-rec "mno {< <m>) "status unprocessed)
-->
(write (crlf) Processing master record number <m>)
(modify 1 "status processed))

Working Memory:
Master file (working memory elements) : Transac file (WMEs) :

..................................... ------me-----m--

1 acct-rec "mno 1 "status unprocessed I I invoice "tno 2 1 ----------------
I acct-rec A m ~ 2 "status unprocessed I I invoice "tno 4 1 ----------------
I acct-rec "mno 3 "status unprocessed I
.....................................

I acct-rec "mno 4 "status unprocessed I
.....................................

I acct-rec *mno 5 "status unprocessed I

Table 1

Page 12
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

to varying degrees by different representations. Data dictionaries capture to a small
extent the properties of the symbols (concepts) used in modeling the application
domain. More sophisticated schemes that use object oriented representations have
been described by Borgida et.al (1 985) and Dhar and Jarke (1 988).

With respect to the third criterion, an important advantage of the production rule
interpretation of flow diagrams is that it makes explicit the functional constraints that
characterize the problem. This is important from a validation standpoint since designers
and users now have a uniform interpretation of the problem. Although we have
interpreted dataflow diagrams in terms of rules, more generally they may be viewed
purely declaratively, as constraints. These can be modeled using production system
languages such as 0PS5 or logic programming languages such as PROLOG. The
AND/OR graph corresponding to the rules can be traversed in various ways depending
on the control strategy adopted. Again, this is useful from a validation standpoint since
the design can be "run" to produce simulations that can be examined by the designers
and users. Essentially, the simulations would involve backward chaining (i.e. how is
output "X" produced) or forward chaining (what will be the result/outputs from a given
set of inputs).

The fourth criterion raises some important issues. Conceptually, the modularity (loose
coupling) provided by the production system architecture should make such systems
easy to modify in response to changes. This is because rules are meant to be self
contained pieces of declarative knowledge that are automatically invoked under
appropriate problem conditions. In practice, however, it is difficult to avoid embedding
control information in rules. For example, if the right hand side of a rule results in the
creation of two working memory elements, the order in which they are created can
affect the behavior of the system. This leads to situations where the rule may be written
not as an independent module but with the control strategy of the interpreter in mind.
Such situations often violate the spirit in which the expert/user expressed the
knowledge, that is, as a truly declarative piece of knowledge. While massaging control
information into such rules can be employed to great advantage, unless the
programmer exercises extreme caution, modularity can be lost, making the program
extremely brittle to changes.

Unfortunately, the embedding of control information into productions can also result
from the designer not understanding the problem domain adequately or not bothering to
express adequate domain knowledge in the system. For example, in Figure 1,
processing invoices in the right order (i.e. first post, then record, then age) could be
implemented using the control structure of the interpreter. However, if another step
were added to the design and its corresponding rules need to be specified, the
antecedents of the new rules and most probably the consequents of other rules would

Page 13
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

have to be fashioned carefully in order to have the new rules fire at just the right time1.
On the other hand, if the designer expressed sequencing knowledge explicitly (say
using a meta-rule that expresses knowledge about sequencing), the task of adding the
new rules becomes much simpler. This latter approach requires making explicit as
much of the domain knowledge as possible, leaving as little as possible to the syntactic
criteria used by the interpreter, thereby minimizing the effect of control knowledge
expressed in the object level rules. For a detailed analysis of the properties of meta-
rules, the reader is referred to Davis (1 982).

4.2. Organization
Borgida et.al (1985) propose that in terms of organization, a representation should

have the following properties:
1. it should enable the designer to deal with abstraction,

2. it should provide the designer and users with multiple conceptualizations
of the problem, thereby potentially reducing the likelihood of errors.

An attractive feature about dataflow diagrams is the leveling technique that is useful in
dealing with abstraction. Production systems are equally powerful in this respect since
productions can represent knowledge at different levels of abstraction. Specifically, the
AND/OR graphs corresponding to sets of rules can be viewed at various levels of
abstraction in the same way as levels of dataflow diagrams. Also, exactly the same
integrity rules apply for ensuring consistency in inputsloutputs among the different levels
(i.e., a bubble must have the same inputsloutputs as its detailed breakdown) and in
labeling.

Multiple conceptualizations can help make a description more complete. If these
conceptualizations must be somehow consistent (as is usually the case), this type of
redundancy in description reduces the likelihood of error. By preserving the dataflow
interpretation and enhancing it with a logical one, we have provided a more complete
and powerful modeling capability. For example, Figure 5 can be interpreted both as a
dataflow diagram, and by ignoring datastores, as an ANDIOR graph. This dual property
of the graph enables us, as pointed out above, to employ the same consistency
checking rules that are applied to dataflow diagrams in CASE tools.

Finally, researchers have developed graphical techniques for displaying productions
(Lewis, 1983). Although we have not advocated drawing DFD's for the mini-specs, if the
mini-specs are written as production rules, they may be reviewed graphically through
using systems such as GETREE. This provides a visually rich, and consistent
representation for debugging the micro level design logic.

'Such situations invariably lead to surprising behaviors that the designer never envisioned.

Page 14
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

4.3. Implementation Language Considerations
At the outset of the paper we mentioned that using productions as the

representational formalism unifies analysis and design in that rules can be used to
describe the abstract design and can also serve as the code. In practice, however, two
considerations must be taken into account in deciding whether the code should be
implemented as productions or in a procedural language.

The first consideration is whether the code (or perhaps more appropriately, the mini-
spec) is more naturally represented in terms of declarative statements or procedures.
Clearly, problems involving numerical analysis or approximation (linear programming,
differential equation solvers, Monte Carlo techniques) are better coded as procedures.
Brownston et.al (1985) also suggest that problems that are highly sequential with a
precisely specifiable control are better implemented using conventional languages. In
general, however, the decision is not a straightforward one. For example, in the
previous section we coded a simplified sequential file update program (typically viewed
procedurally) using two productions. It is debatable, however, whether this is a more
natural encoding of the update process.

The other important consideration in the implementation language decision is
efficiency. In general, production systems are one to two orders of magnitude slower
than traditional languages. Thus if minimizing processing time is of prime importance,
using productions for implementation is not a good idea. However, with the dramatic
hardware improvements and faster implementations of production systems on the
horizon, acceptable levels of performance should be easier to achieve using production
systems.

If the production implementation is too slow for practical purposes, it could be
transformed into a procedural language. Although there is not a standard set of
transformations for doing this, it can be relatively straightforward if the rules are well
defined. In effect, the production system could be used as a prototyping environment to
elicit and make explicit all domain knowledge before translation. Clearly, however, the
advantages of such an approach are diminished, particularly for applications where the
knowledge or requirements often change.

5. Summary
It has been widely recognized that the boundary between structured analysis and

structured design is fuzzy, requiring a designer to exercise a great deal of judgement in
deciding how to use the products of analysis for design. Accordingly, there have been
attempts to remedy this situation along several directions. These include specifying
more precisely the semantics of dataflow diagrams (Adler, 1988), adding control and
timing via additional primitives (Ward, 1986), and elaborating entities (making distinction

Page 15
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

among several types) in flow diagrams in order to effect a smoother transition between
analysis and high level design (Shoval, 1 988).

The approach we have outlined represents another, somewhat different method for
unifying analysis and design. By virtue of the dual representation of AND/OR graphs,
the simplicity and expressiveness of structured analysis is maintained and a uniform,
largely declarative, representation is provided that is runnable at all levels of the design.
This model can be used for purposes of simulation and explanation.

At the outset of this paper, we cited anecdotal evidence from practitioners supporting
the use of production systems as a prototyping tool. Based on our analysis, we
conjecture that the advantages arise because the formalism enables users and analysts
to express the logic of the application declaratively and incrementally (even though the
implementation can lead to surprises). By laying out this logic using AND/OR graphs
and employing its dual interpretation as a flow diagram, we feel that designers have a
powerful analysis tool at their disposal. However, as we discussed in the previous
section, at the implementation level, production systems can become increasingly brittle
as the number of productions grow unless great care is taken to ensure explicit control
of reasoning. In summary, production systems do not guarantee modularity as is often
asserted.

Finally, the implications for analysis tools should be apparent. A major function of
current CASE tools is that they provide assistance in leveling and syntactic checks. If
such tools were extended to express rules and generate the AND/OR graph and flow
diagram corresponding to them, they would bridge the gap between analysis and
design. This would provide analysts with a comprehensive tool to specify in a top-down
manner the complete functionality of systems.

Page 16
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

References

Adler, M., An Algebra for Data FLOW Diagram Process Decomposition, IEEE
Transactions of Software Engineering, volume 14, number 2, Feb 1988.

Alford, M., SREM at the Age of Eight; The Distributed Computing System, IEEE
Computer, April 1985.

Borgida, A., Greenspan, S., and Mylopolous, J., Using Knowledge Representation
for Requirements Modeling, IEEE Computer, April 1985.

Brownston, L., Farell, R., Kant, E., and Martin, N., Programming Expert Systems in
OPS5, Adisson-Wesley, Reading Mass, 1985.

Davis, R., Teiresias: Applications of Meta-level Knowledge, in Knowledge-Based
Systems in Artificial Intelligence, pp 227-490, Randall Davis and Douglas Lenat (eds),
McGraw-Hill, New York, 1982.

De Marco, T., Structured Analysis and System Specification, You rdon Press, New
York.

Dhar, V., and Jarke, M., Dependency Directed Reasoning and Learning in Systems
Maintenance Support, IEEE Transactions of Software Engineering, volume 1 4,
number 2, Feb 1988.

Eliason, A. L., Online Business Computer Applications, Science Research
Associates, Inc., 1987.

Gane, C., and Sarson, T., Structured Systems Analysis: Tools and Techniques,
Prentice-Hall, 1979.

Lewis, J.W., An Effective Graphics User Interface for Rules and Inference
Mechanisms, Human Factors in Computing Systems, CH1'83 Conference
Proceedings, pp. 139-1 43, A. Janda (Ed.), ACM, 1983.

McMenamin, S., and Palmer, J., Essential Systems Analysis, Yourdon Press, New
York, 1984.

Pressman, R.S., Software Engineering: A Practitioner's Approach, McGraw-Hill,
New York, 1987.

Ross, D.T., Applications and Extensions of SADT, IEEE Computer, April 1985.

Shoval, P., ADISSA: Architectural Design of lnformation Systems Based on
Structured Analysis, lnformation Systems, volume 13, number 2, 1988.

Ward, P., The Transformation Schema: An Extension of the Data Flow Diagram to
Represent Control and Timing, lEEE Transactions on Software Engineering, volume
12, number 2, Feb 1986.

Winston, P., Artificial Intelligence, Adisson-Wesley, Reading Mass, 1984.

Page 17
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-21

