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Abstract * 

We present expert system (ES) and Integer Programming (IP) formulations of an NP- 

complete constraint satisfaction problem (CSP). The problem involves generating a 

plan for assigning faculty to courses given a variety of constraints and preferences and 

other tentative data. The expert system consists of a heuristic rule-based problem 

solver and a truth maintenance system. The IP model consists of about 700 zero-one 

decision variables and 300 constraints. We describe and contrast the expert system 

and IP models in terms of behavior, quality of results, and computational performance. 

We find that the expressiveness of the IP model is hampered by its single objective 

function, inability to encode various types of complex preferences, the lack of useful 

output when it fails to find a feasible solution, and a general lack of control over infer- 

ence. It is also difficult to make incremental revisions to the plan produced by the IP 

model. In contrast, the truth maintenance system maintains justifications for assign- 

ments, which makes it possible to reason about incremental modifications to a plan. 

In terms of performance, we found that whenever the IP approach finds a solution, it 

does so quickly using the Pivot and Complement heuristic of Balas and Martin (1 980). 

The branch and bound always failed to find a feasible integer solution when the heuris- 

tic failed to find one. 

'This work was supported by the following shareholders: Bellcore, CDC, DEC, Harris, Kodak, and 
NCR. This technical report also appears as: Working Paper 205, Dept. of Information Systems, 
Leonard N. Stern School of Business, New York University, 90 Trinity Place, New York, NY 10006. 
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1. Introduction 
Virtually all decision making situations involve constraints. What distinguishes various 

types of problems is the form of these constraints. Depending on how the problem is 
visualized, they can arise as rules, data dependencies, algebraic expressions, or other 
forms. 

Constraint Satisfaction Problems (CSPs) have been studied extensively in the 
Operations Research (OR) and Artificial Intelligence (Al) literature. In OR formulations 
constraints are quantitative, and the solver (such as the Simplex algorithm) optimizes 
(maximizes or minimizes) the value of a specified objective function subject to the 
constraints. In contrast, the interest in Al has been more with inference based on mostly 
symbolic constraints. The inference mechanisms employed include theorem provers, 
production rule interpreters, and various labeling procedures such as those used in truth 
maintenance systems. 

It has been apparent for some time that there is a close relationship between logical 
and quantitative inference. Dantzig (1963) showed how logical propositions could be 
expressed quantitatively using Boolean variables together with algebraic operators. In 
this way, symbolic constraints can be modeled in terms of an integer programming 
formulation. For example, the constraint -1xl*+x3 is equivalent to the clause "x, or 
not-x2 or x3" where each xi is a propositional variable. A clause can be expressed as an 
inequality; the above clause is equivalent to 

x,+(l-xrJ++ 2 1 

where the truth values true and false are denoted by 1 and 0 respectively. In general, as 
has been noted independently by Hinton (1979) and Hooker (1988), a clause can be 
expressed as the following inequality: 

c ~ x ~ + . . . + c G ~ ~  1-n(c) 

where c is a row vector and x is a column vector, and n(c) is the number of negative 
elements in the vector c. Each ci is 1,0, or -1, indicating whether xi appears, does not 
appear, or 7xi appears in the clause respectively. The above notation is due to Hooker 
(1 988). 

In concrete terms, the symbolic/quantitative equivalence means that many constraint 
satisfaction problems can in principle be modeled using symbolic inference techniques 
employed in Expert Systems or the quantitative techniques of OR. In practice, there are 
pros and cons to both approaches. One of our objectives has been to study the 
tradeoffs involved in detail. 

Over the last year, several researchers of the Reasoning Architectures group at the 
MCC Al Laboratory have collaborated with an experienced department head at the 
University of Texas in analyzing the problem of planning the assignment of faculty to 
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courses, and revising plans as assumptions (about faculty availability and enrollments) 
change. The problem is of interest for several reasons. It characterizes many types of 
planning problems where solutions are assumption based or defeasible and must be 
revised in light of a changing reality. The problem also involves a diverse variety of 
constraints, making it a good canonical problem for analyzing different modeling 
approaches. 

Based on an extensive knowledge engineering effort over the last year, an expert 
system has been built and implemented in PROTEUS (Petrie et. al, 1987). The expert 
system consists of a heuristic-rule-based problem solver which contains the expert's 
knowledge, and a truth maintenance system (TMS) which maintains a contradiction-free 
database of assignments. 

In this paper, we present an OR (integer programming) formulation corresponding to 
the expert system and report on our experiences with running this model. We are 
interested in studying whether the integer programming model can provide the results 
that derive from the reasoning process of the expert, whether it can be modified easily 
to accommodate changes, and how general purpose integer programming techniques 
do in terms of computational performance. 

The remainder of this paper is organized as follows. In the next section we provide a 
mathematical formulation of the problem and describe its general structure. This is 
followed by a description of the problem-solver/TMS architecture that constitutes the 
expert system. In section 4 we describe the architectural components of the IP 
implementation. We then analyze the results from running this model, comparing them 
with an expert's decisions when presented with the same problem data. In doing so, we 
classify some of the limitations of the mathematical model and describe why the 
problem-solverflMS combination does not suffer from these problems (although it has 
other drawbacks). We conclude with a list of short and long term issues that must be 
addressed in order to design more expressive and flexible reasoning systems. 

2. The integer Programming Formulation 
Generating a course schedule requires assigning faculty to courses while taking into 

consideration a variety of constraints and preferences. Constraints pertain to bounds on 
the number of sections of courses, minimal faculty teaching requirements, 
dependencies (i.e. whoever teaches lntroduction to Logic must also teach Advanced 
Logic), etc. Preferences are expressed by teachers for desired courses and 
alternatives. In addition, the scheduler (chairman) expresses preferences in deciding 
how to deal with conflicts that arise in synthesizing the plan. After courses have been 
assigned, class rooms and times are scheduled. In this paper we do not deal with this 
latter problem. 
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The structure of the problem data is presented in figure 1. There are three classes of 
data involved: teacher, course, and term. There are three types of teachers (three sub- 
classes), each with specific instances. Likewise, there are two types of courses and 
instances of these two types, and two terms -- fall and spring. Constraints are defined at 
all levels of abstraction, in terms of the various classes and instances. 

The formulation of the problem we present is based on a detailed problem description 
that appears in Petrie et.al (1989). Many of the constraints in the IP formulation have 
been derived from the rules in the expert system. The IP formulation is best presented 
by first defining all subscripts, variables, and coefficients, followed by the constraints 
and objective function. 

2.1. Subscripts 
i = 1,2,..,n instructors 
j = 1,2, ... m courses 
t = 1,2 terms (fall or spring) 
k = 1,2, ...p categories of courses (for balancing curriculum) 

2.2. Variables 
1 if faculty i is assigned to course j in term t ={ Ootherwise 

2.3. Coefficients 

Pi = load factor of course j (depending on its size and type) 
Ti = teaching load requirement (TL) for teacher i 
lbjt = lower bound on sections of course j to be taught in t e n  t 
ubjt = upper bound on sections of course j to be taught in term t 
Ibj = lower bound on total sections of course j to be taught in year 
ubj = upper bound on total sections of course j to be taught in year 
yj = number of sections of course j to the taught in the entire year 
Gt = the number of graduate level courses normally offered during term t. 
cijt = "cost" of assigning teacher i to course j in term t. 
This can take on three values: 

0 i f  course j i s  desired by faculty i i n  term t - 
Cijt - M, a small number i f  j i s  an expl ic i t  alternative 

Z ,  a large number i f  j i s  an implicit alternative or 
i f  faculty i can teach course j in  term tl # t 

Actually, another number is added to the value of c to incorporate the "flexibility" of a 
teacher in terms of his capability and propensity to teach alternative courses. 
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Data Hierarchy 

Figure 1 
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Specifically, teachers are ranked on a 1-5 scale (both inclusive) where a 1 expresses 
least flexibility. The combined number is the cost coefficient and expresses a "penalty" 
associated with assigning faculty i to course j in term t. We shall discuss this further in 
section 5. 

1 if j is a graduate level course 
gj =C0 otherwise 

uj ={ 1 if j is an upper division course 
0 otherwise 

lj ={ 1 if j is a lower division course 
0 otherwise 

1 if j is a writing course 

fi ={ 1 if i is a faculty member 
0 otherwise 

'jk ={ 1 if course j is in category k 
0 otherwise 

tijt ={ 1 if course j is proposed as a tutorial by i in term t 
0 otherwise 

ABj = 1 if course j has the A-B sequence 
0 otherwise 

2.4. Constraints 
1. number of teachers assigned to a course in each term should be between the lower 

and upper bounds on the number of sections of that course: 

lbit s x=,xql s ubit for 1 a j s m, and t=1,2 

2. the total number of sections of course j taught in the year should be: 

Ibj s ~ ~ , ~ = ,  xijt a ubj for 1 2 j a m, and t=1,2 

3. each teacher must satisfy some minimal teaching load: 

zg,pjxiit 5 Ti for i=1 ,2....n, and t=1,2 

4. Only professors can teach graduate courses: 

x i  1 - (1 - f )  . for i=1,2 ,... n, for j=1,2 ,... ,m and t=1,2 
1 91 

5. No professor can teach more than G graduate courses per year: 
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xgl xE1 xiitSj 5 G for i=1,2, ... n 

6. Course sequence continuity (A-B) constraint: 

ABj(xij, - xij,) 5 0 for i=1 ,2 ,... n, and j=1,2 ,... m 

The above constraint says that someone can only teach a "B" course in spring if they 
taught the "A" course in the fall. If someone MUST teach the B course if they taught the 
A course in fall, the inequality must be changed to an equality. 

7. There must be at least U upper division writing course offered each term: 

Crn x.. w-u. 2 U for i=1,2 ,... n and t=1,2 j=l lfi J J 

8. Similar constraints are formulated for lower division writing courses and the number 
of graduate courses that must be offered each term. 

2.5. Objective Function 
A variety of objective functions can be formulated for this problem depending on the 

primary goal. One reasonable goal is to maximize fit, or minimize deviations from 
teachers' desired courses. To express this, the objective function is: 

Minimize z = xkl xgl xEl cijtxiit 

The above objective function states that the good of the many outweighs the good of 
the few. 

2.6. Problern Structure 
If one considers courses as "producing" sections for which there are maximum and 

minimum supplies (capacities) and teachers as "demand" points, the problem can be 
viewed as a transportation problem. In fact, with constraints 1 and 2 and the objective 
function, the problem is a classical transportation problem. This problem has a nice 
property in that it produces an integer solution for integer inputs. Thus the problem of 
fractional assignments does not arise. 

Unfortunately, the third constraint, relating course load factors to teaching load 
requirements, is a knapsack problem constraint. This destroys the integer solution 
property. More importantly, the problem becomes NP-complete and its solution time 
varies extremely unpredictably. 
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Actually, the real problem is more complex in one other way. In our formulation, all 
sections of a course have been assumed to be of equal size (they have the same load 
factor). In fact, a few courses have sections of varying sizes. If size is also considered 
variable (another subscript added to the decision variable), the number of decision 
variables can increase significantly thereby increasing the overall complexity of an 
already difficult to solve problem. Specifically, the problem becomes a bin packing 
problem which is known to be NP-hard (Garey and Johnson, 1979). The expert deals 
with this complexity by assuming default section sizes in making assignments (ignoring 
TLs), and then increasing section sizes in order to satisfy the various teaching load 
requirements. In the IP formulation, we have dealt with this problem in a similar way by 
assuming default section sizes but lowering the TLs a little (about 10 percent). The 
expert then has the latitude in increasing section size and fine tuning the loads. 

3. The Expert System Architecture 
In contrast to the IP model, the expert system has no global objective function that 

guides it towards an "optimaln solution. Rather, the process of finding a solution involves 
a series of local decisions that are most preferred at each point in the problem solving 
process. 

The expert system consists of two components, the problem-solver and the TMS. The 
problem solver is essentially a production system consisting of rules whose patterns are 
matched by data (assertions) in a global database. Each assertion is a problem-solver 
datum such as an assignment of a value to a variable (i.e. a decision) or an operation 
that can result in an assignment. The problem data is represented in terms of an ISA 
object hierarchy corresponding to the structure in figure 1. Problem constraints are 
stated in terms of the objects in the hierarchy. 

Each problem-solver datum has a justification associated with it. The justification 
encodes the reasons for belief in the datum. The task of the TMS is to ensure that the 
global database is contradiction-free, that is, the data are logically consistent (their truth 
values do not result in logical contradictions). 

Before describing the types of problem-solver rules it is expedient to explain how the 
TMS works. For an overview of truth maintenance systems, the reader should refer to 
survey articles by Reinfrank (1 988), McAllester (1 982), or Dhar (1 989). However, the 
fundamental concepts and mechanics underlying the TMS should be clear in the 
following description. 
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3.1. The Truth Maintenance System 
There are two types of TMSs, justification-based (Doyle, 1979) and assumption-based 

(de Kleer, 1986). We shall concern ourselves with the former type. Further, the 
discussion is in terms of a Doyle-style TMS since this is the type of TMS used in the 
expert system. 

In a TMS, every datum has a support status associated with it; a status of IN indicates 
that the datum is currently believed whereas an OUT indicates disbelief. The values IN 
and OUT are computed via justifications associated with the datum. Each justification 
has two parts, an inlist and an outlist A justification is considered valid if it evaluates to 
true, that is, if each datum in its inlist is IN and each datum in its outlist is OUT. 
Ultimately, all data depend on "ground" level justifications of two types, premises and 
assumptions. In a premise justification, the inlist and outlist are both empty. This type of 
justification is always valid. An assumption justification has a non-empty outlist, that is, 
its belief is justified by a lack of belief in some other datum. Such a justification is 
considered non-monotonic since its validity depends on a lack of belief in some other 
datum. Finally, deductive justifications are those in which the outlist is empty. A datum 
can have more than one justification associated with it. A datum is IN if it has at least 
one valid justification, otherwise it is OUT. 

To illustrate, consider the following simple example which is taken from Petrie et.al 
(1987). Upper case symbols denote functions and the lists of lower case symbols refer 
to data: 
Datum: (appendicitis f red) 
Justification: (AND (INLIST (side-pain f red) (no-prior-appendectomy f red) ) 

(OUTLIST (colitis f red) (recent-meal f red) ) ) 

Datum: (no-prior-appendectomy fred) 
Justification: (AND (INLIST (says-no-prior-appendectomy f red) ) 

(OUTLIST (unreliable f red) ) ) 

The example can be visualized in terms of the graph in figure 2 which shows the 
justifications of data referenced in the above two justifications. Each circle corresponds 
to a justification, with an arrow pointing to the justified datum, positive arcs connected to 
the elements of the inlist and negative arcs connected to the elements of the outlist. 
The datum "(appendicitis fred)" has a two element inlist and two element outlist. The 
datum "(side-pain fred)" has an empty inlist and empty outlist and is therefore a 
premise. The datum "(unreliable fred)" has an empty list of justifications and is therefore 
OUT. If this datum were to acquire a valid justification, its support status and that of 
those that depend on it must be reevaluated. Specifically, the "(no-prior- 
appendectomy)" would go out, also causing "(appendicitus fred)" to go out. 

Actually, in reevaluating the belief status of the data, referred to as reason 
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(no-prior- 
appendectomy (colitis fred) 

fred) (IN) 

(says-no-prior- ) ( (unreliable fred) 
appendectomy fred) 

A Consistent Well-Founded State 

(recent-meal 
fred) (OUT) 

Figure 2 
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maintenance, what the TMS really does is to ensure that the data as a whole satisfies 
two properties, consistency and well-foundedness. In a stable state each datum with at 
least one valid justification is IN and each one without a valid justification is OUT. A 
state is well-founded if no set of beliefs is mutually monotonically dependent; in terms of 
a labeled network such as that in figure 2, this means that there is no set of arcs from a 
node to itself all of which are labeled positively. 

In the expert system, the TMS works in conjunction with the problem solver as 
follows. Each problem-solver action is communicated to the TMS at which point the 
TMS executes a constraint satisfaction procedure to ensure consistency and well- 
foundedness. Essentially, this involves updating the justifications associated with each 
datum such that the two conditions are satisfied. A problem-solver action can lead to a 
constraint violation which is recorded in the network as a contradiction, that is a special 
node called "contradiction" becomes IN. When this is detected by the TMS, it tries to 
compute a new labeling that makes the contradiction OUT. Control then passes back to 
the problem solver, and the cycle repeats. We shall describe in more detail the workings 
of the TMS in the context of an example later in this section. 

3.2. Rules 
In the following paragraphs we describe the expert system architecture using a 

simplified set of rules that play a role in one part of the problem solving process. The 
rules employ a LISP-like prefix notation that is used in PROTEUS (Petrie et.al, 1987). 
In the following rules a question mark followed by a symbol denotes a variable, i.e. ?xxx 
is the variable xxx. Each list in a rule consists of a pattern (a form) that is matched 
against a datum in the global database. There are two types of rules, forward and 
backward. When the problem solver has a proposition that it is trying to prove to be 
true, it attempts to do so via a backward rule. A "e--" symbol denotes a backward rule; 
the form appearing before it is the consequent and the ones after it are antecedents. In 
trying to prove a goal, the assertions that match the antecedents become subgoals. 
Proving all of these subgoals completes the proof of the original goal. This process is 
known as backward chaining. 

The symbol "-->" denotes a forward rule. The forms appearing before it are 
antecedents, the others are consequents. The forward rule "fires" when assertions 
match its antecedent. When this happens, the datum (instance) corresponding to its 
consequent is added automatically to the global database. This process is known as 
forward chaining. 

In the following rules, the variables used in the patterns are as follows: 
?prof refers to the current professor under consideration. 
?sem refers to a semester (either fall or spring). 
?course refers to the course that is under consideration for assignment. 
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?p-cycle refers to the list of professors who have already been considered for ?course. 
?c-cycle refers to the list of courses for ?prof, 

The following backward rule states that the goal of making a course ?course a chosen 
course for professor ?prof in semester ?sem can be achieved if that course is actually 
desired by the professor unless that course has already been considered (and 
presumably failed) for that professor: 
(Mark-desired-course-as-chosen ;;name of this rule, rule 1 
(chosen-course ?prof ?course ?sem ?c-cycle) 
<-- 
(desired-course ?prof ?course ? ~ e m  ?~-cycle) 
(unless (element ?course ?c-cycle))) 

The following forward rule would fire whenever there is an assertion stating that 
courses be assigned to a professor: 
(Select -Course ; ; rule 2 
(assign-courses-to-prof ?prof ?sem ?p-cycle ?c-cycle) 
(chosen-course ?prof ?course ?sem ?c-cycle) 
--> 
(attempt-to-satisfy ?prof ?course ?sem ?p-cycle ?c-cycle)) 

In the rule above, the datum corresponding to the consequent would have the two 
data items matching the first two antecedent forms on its inlist. 

The remaining rules can be interpreted similarly. Each form is accompanied by a 
comment whenever necessary. 
(Semester-Succeeds ;; rule 3 
(attempt-to-satisfy ?prof ?course ?sem ?p-cycle ?c-cycle) 
(unless (unacceptable-for-semester ?sem ?prof ?course ?p-cycle ?c-cycle)) 
--> 
(successful ?prof ?course ?sem ?p-cycle ?c-cycle)) ;;mark as successful 

In the above rule, a datum corresponding to the consequent would have 
the datum matching the first form on its inlist and the datum 
matching the form in the "unless" part on its outlist. In effect, it 
would have a non-monotonic justification. 

(Semester-Fails ; ; rule 4 
(attempt-to-satisfy ?sem ?prof ?course ?p-cycle ?c-cycle) 

;; If this semester is not acceptable 
(unacceptable-for-semester ?sent ?prof ?course ?p-cycle ?c-cycle) 
--> 
(failed-semester ?sem ?prof ?course ?p-cycle ?c-cycle)) 

(contradiction-detection-type-1 ;; rule 4 
(failed-semester ?sem ?prof ?course ?p-cycle ?c-cycle) 
--> 
(CONTRADICTION) ) 

There are many rules used to determine why a course should not be assigned to a 
prof in a particular semester (unacceptability of a semester). The following rule, for 
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example, states that a professor may not teach a course if the maximum number of 
sections for it have already been assigned: 
(course-section-check ;; rule 6 
(unacceptable-for-s-ster ?sem ?prof ?course ?p-cycle ?c-cycle) 
<-- 
(semester-max-constraint-satisfied ?course ?~em)) 

In effect, the rule above encodes constraint knowledge. In addition to the assignment 
and constraint checking types of rules, the system also contains rules for contradiction 
resolution. When a contradiction arises, the TMS first finds a culprit to be made OUT to 
resolve the contradiction. The process of finding a culprit is a recursive one that involves 
determining the ground level data (the assumptions) that support the contradiction. The 
contradiction is resolved by invalidating all valid justifications of one of its supporters, 
called the culprit- This involves justifying some belief on the outlist of the justification 
being invalidated. For example, if an attempted assignment fails, one way to resolve 
the problem is to exchange that (chosen) course with an alternative course that that 
professor can teach. The following rule shows the use of a predicate, FIX, that is 
designed to do contradiction resolution as described above. In Petrie's (1987) 
terminology, a datum that unifies with its first argument is referred to as the target, one 
that unifies with its second as the fixculprit, and the third as the fix-elective: 
(fix-via-alternative-course ;; rule 7 
(fix (failed-semester ?sem ?prof ?course ?p-cycle ?c-cycle) 

(chosen-course ?prof ?course ?p-cycle ?c-cycle) 
(exchange ?a&-course ?course ?prof ?sem ?p-cycle ?c-cycle)) 

<-- 
(alternative-course Pprof ?course ?alternatives) 
(element ?alt-course ?alternatives)) 

If an exchange is successful in resolving a contradiction, the following rule makes the 
alternative course a desired course, which in turn causes the first rule to make it 
chosen, thereby repeating the cycle. 
(~ry-An-Alternat ive ; ; rule 8 
(exchange ?alt-course ?course ?prof ?sem ?p-cycle ?c-cycle) 
--> 

;; Mark the alternative course as desired 
;; (this will cause the Select-Course-Rule to fire) 

(desired-course ?prof ?alt-course) 
;; Reject the original course. 

(rejected-course ?prof ?course ?p-cycle ?c-cycle)) 

3.3. An Example 
In order to illustrate how the rules above work, let us consider a scenario where 

among other data, the following are in the database: 

Sartre wants to teach phi304 in fall 
(desired-course sartre ph1304) 
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Sartre has as alternatives to ph1304 in the fall, phi31 0 and phi31 8: 
(alternative-course sartre ph1304 fall (ph1310 phi31 8)) 

Suppose that the maximum allowable sections of ph1304 have already been allocated 
for fall: 
(semester-max-constraint-satisfied ph1304 fall) 

Suppose Sartre is now up for consideration (Anselm has already been considered for 
ph1304): 
(assign-courses-to-prof Sartre fall (Anselm) ()) 

The rules try assigning ph1304 to Sartre in the fall and fail because the maximum 
constraint has been satisfied for the term. This creates a contradiction as shown in 
figure 3. For simplicity we have truncated the data, assuming that they refer to Sartre in 
the fall term. 

In the dependency network in figure 3, the contradiction is IN. The TMS attempts to 
make the contradiction OUT by finding a culprit and invalidating one of its in-supporters. 
In this case, the culprit is "(chosen-course 304)" (it unifies with the fix-culprit in rule 7) 
and its in-supporter "(desired-course 304)" is invalidated by putting the "(exchange 31 0 
304)" datum on its outlist, and "(desired-course 31 0)" gets a valid justification by the 
exchange datum (via rule 8) on its inlist. Finally, the contradiction is put on the outlist of 
exchange which makes it (the contradiction) OUT. Part of this new stable and well- 
founded state is shown in figure 4. 

In summary, the dependency network maintains the reasons for assignments. This 
includes desired as well as unexpected assignments such as the one resulting from the 
exchange effected by rule 8. Whenever a justification for some datum becomes invalid, 
the TMS computes what beliefs must be revised in order to restore consistency and 
well-foundedness. It is important to recognize that the problem of contradiction 
resolution is often an underconstrained one, that is, there are many possible labeling 
that satisfy consistency and well-foundedness. The more the application specific 
knowledge provided, the more reasoned is the behavior of the system. 

4. The IP Architecture 
The integer programming formulation consists of about 700 binary variables and 300 

constraints. The model has been implemented using the ZOOM (Zero One 
Optimization Model) library of the XMP package (Marsten, 1987). XMP includes a 
modeling language, XML, for expressing the problem. 

ZOOM solves an integer program as follows. The LP relaxation (ignoring integrality) is 
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Semester Fall 

Contradiction State 

Figure 3 
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- Failed 
Semester Fall 

(OUT) 0 
C> 

Contradiction-Free State 
Figure 4 
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first solved. After an LP solution is obtained, a heuristic procedure, called Pivot and 
Complement (Balas and Martin, 1980) attempts to find an integer solution. Basically, 
this involves a sequence of pivot operations which put all slacks into the basis at 
minimum cost. If a feasible integer solution is found, it is then improved by flipping 
variables to their opposite bounds. 

As shown in figure 5, we have implemented a preprocessor that translates the input 
data used by our expert system into a form acceptable by XML which produces an MPS 
file that is used by ZOOM. The preprocessor takes as input problem data expressed in 
terms of the object hierarchy of figure 1. Expressing the constraints in XML requires the 
preprocessor to translate them into algebraic expressions stated in terms of decision 
variables. For example, a constraint such as "A faculty member can teach at most 1 
graduate course per year" involves searching the ISA hierarchy to locate all instances of 
faculty, graduate courses and terms, defining the decision variables, and writing out the 
constraint. In this way, only decision variables essential to the formulation are defined. 
The number of decision variables can be further reduced by analyzing each teacher's 
course repertoire and excluding variables corresponding to impossible assignments. For 
example, if Frege's repertoire slot does not include ph1381, he can never be assigned 
this course, and there is no point in defining a decision variable for this assignment. 

User --> Input data ---> PREPROCESSOR --- > XML ---> ZOOM 
A I 
I I 
I V 

Report <--------------- TRANSLATOR <---------.- SOLUTION 

Figure 5 

The results produced by ZOOM are translated into a schedule for the user. Although 
not implemented by us, it is also possible to produce other summaries and answer 
questions using the generated schedule and the object hierarchy. For example answers 
to questions like "how many faculty are teaching undergraduate courses that meet twice 
a week", can be very useful to the decision maker. 

The preprocessor and translator are both implemented in Common Lisp. The 
experiments were carried out on a SUN-3 workstation, which is also one of the 
platforms on which the expert system has been developed. 
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5. Results 
In this section we report the computational performance of the IP model and an 

analysis of the results it produces relative to the expert model. 

5.1. Performance 
Like many integer programs, we found the solution time to be highly unpredictable, 

varying from a few minutes to a few days. It was extremely sensitive to the TL 
constraint. Changing the TL requirement by as little as 2% resulted in orders of 
magnitude variations in solution time. We varied the TL in roughly an 8 percent range 
and could not find feasible solutions in the top quarter of this range. 

In all cases, when a solution was found, it was by the pivot and complement heuristic 
(Balas and Martin, 1980) which is incorporated in the ZOOM code. It always took under 
5 minutes on a dedicated SUN-3. The heuristic never found a solution once it started 
executing the rounding procedure. In effect, if a feasible solution was not found quickly, 
it was not found at all. Further, the branch and bound algorithm, which ZOOM resorts to 
if the heuristic fails, never found a solution even after many hours of running time. This 
is because the number of fractional valued variables remaining after the LP solution, 
typically between 300 and 500, gives rise to an enormous search tree. 

In contrast, the expert system's solution time was less volatile. It usually takes 
between 1 and 2 hours for it to generate a solution, or in cases it cannot find one, to 
generate a partial solution. 

5.2. Control of Reasoning 
In general, the integer program generates a plan that has about threequarters of the 

same assignments as those made by the expert. In some cases the expert was 
pleasantly surprised by its decisions, but in a larger proportion of the cases the differing 
assignments were judged to be undesirable. The differing assignments arise for three 
reasons which we call single objective limitations, compiled knowledge limitations, and 
global optimization limitations. 

5.2.1. Single Objective Limitations 
The objective function used in the formulation expresses one goal of the decision 

maker: to give all teachers their desired courses to the extent possible. However, in 
reality there are other goals that the expert tries to satisfy simultaneously. One of these 
is to ensure that as far as possible, each teacher's load is as close as possible to the 
minimum required. What is required, therefore, is a multi-objective formulation. 
Unfortunately, this makes solution extremely difficult. Even if the problem is solvable, a 
"frontier" of optimal solutions is generated which must be evaluated by the decision 
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maker. For large problems involving discrete choices, analyzing the goodness of 
alternative sets of assignments can be difficult. 

While the single objective formulation works well in most cases, it sometimes 
produces undesirable results. For example, consider two teachers, Helga and Hegel, 
who have have been assigned courses that result in TLs of 9 and 12 respectively and 
that 9 is the minimal requirement. Assume that Hegel is more flexible than Helga. Now, 
if a section of Ethics needs to the taught and Helga and Hegel are the only qualified 
teachers, Hegel will be assigned since his cost coefficient is lower than Helga's. Clearly, 
if balancing loads is a concern, the should be assigned to Helga. 

It is possible to alleviate this problem to some extent by expressing the objective 
function as a constraint, but this too has severe limitations. One must decide on a 
reasonable TL upper bounds for each teacher. In the above example, if Hegel's upper 
bound is 14, the course will be assigned to Helga, as desired. However, setting such 
bounds is difficult. If an inappropriate value is used, feasible solutions can be excluded. 

In contrast, it is relatively easy to encode knowledge about multiple objectives in the 
expert system rules. For example, in the HegelIHelga case, it is possible to have in the 
antecedent of a rule that attempts to assign courses (such as the select-course rule) a 
form such as "(least-loaded ?prof))" which would result in the rule condition becoming 
true (unification succeeding) only with the least loaded professor. Such rules ensure 
that "locally good" decisions will be made but they do not guarantee a global optimal 
solution. We shall elaborate on this point in the following subsection. 

5.2.2. Compiled Knowledge Limitations 
The behavior of the system and the solution are very sensitive to the cost coefficients. 

Each teacher has three cost values, corresponding to the penalty associated with 
assigning a desired course, an explicit alternative, and an implicit alternative (a course 
that the teacher is capable of teaching but did not ask for). The values are organized as 
follows: 

Desired Explicit alt. Implicit alt. 
CFI=1 1 10 19 
CFI=2 2 9 18 
WI=3 3 8 17 
CE'I=4 4 7 16 
CFI=5 5 6 15 

Observing the first column, we see that a teacher with less flexibility (CFI=1) will get 
preference for a desired course over a teacher that has more flexibility. Moreover, the 
penalty associated with giving the former an explicit alternative instead of a desired 
course (9) is higher than doing it for the latter (1). For conflicting desired courses, if the 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-89-39 



less flexible teacher gets the desired and the less flexible one gets an explicit 
alternative, the cost is 1 +6, otherwise it is 5+10. Similar reasoning applies to the 
situation where there are conflicts in the explicit alternatives. Finally, note that the 
coefficients are designed so that a desired plus explicit alternative combination is 
always preferred to a desired plus implicit alternative combination. 

In general, the above cost coefficients work well. However, they incorporate a lot of 
compiled knowledge about preferences, flexibility and trading criteria which makes the 
behavior of the system somewhat unpredictable. We have found that changing the cost 
values and differentials can have significant unforeseen (desirable or undesirable) 
consequences on the assignments in the following ways. When the differentials 
between explicit and implicit alternatives are made larger, the penalty associated with 
assigning implicit alternatives is high, hence fewer of these are assigned. However, this 
also has the effect of reducing the desired courses assigned since in conflicting 
situations the penalty associated with assigning explicit alternatives relative to the 
desired courses is low. When both types of differentials, desired-explicit and explicit- 
implicit, were increased, there were a few changes in assignments. However, we were 
not able to determine a general pattern underlying these changes nor the reasons for 
the changes. 

Another related difficulty with compiled knowledge is that of encoding complex 
preferences in it. For example, it is usually preferable to teach two instead of three 
courses but if someone needs to teach three (to make the required TLs) it is preferable 
to have two sections of one course and one section of another instead of one section 
each of three different courses. This is because there is a diminishing marginal effort 
associated with teaching an additional section of a course. Such knowledge is not 
expressed in the coefficients of the objective function, but it is important in matching the 
expert's behavior. 

Another type of knowledge that is difficult to express either in the constraints or the 
objective function is one involving unusual situations, that is, an action that is rarely 
undertaken but is a good one under some circumstances. For example, a seminar 
required in the spring term would not normally be swapped into the fall term except 
under certain unusual circumstances. Clearly, it is not appropriate to exclude such 
actions via constraints. Nor is it appropriate to attach heavy penalties to such actions, 
since this would prevent them from being taken even under appropriate conditions. 

The examples above bring out some of the differences in how the IP and ES models 
incorporate problem solving knowledge. The ES proceeds locally in a GPS-like manner, 
reducing the differences between an evolving partial solution and the requirements 
based on preference information encoded as heuristic rules. In effect, the rules are 
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sensitive to the state of the evolving solution, giving the system builder considerable 
control over inference. 

It is easy to define rules that encode knowledge about the types of preferences 
discussed above, that is, preferences for assigning additional sections of a course 
before considering a new course, preference in unusual situations, or for assigning 
courses to less loaded teachers as discussed in the previous section. In fact, it is such 
rules that are "compiled" into the coefficients in the IP formulation. Given the inevitable 
loss of information resulting from this transformation it is not surprising that there is a 
general loss in control over reasoning with the IP model. In other words, in the IP 
formulation, all such preference knowledge is usually compiled into one global objective 
function, which controls how the search space is explored. In the next section, we 
comment on some of the consequences of global optimization. 

5.2.3. Global Optimization Limitations 
While the minimization of cost is designed to maximize the extent to which teachers 

are assigned desired courses as a whole, the system has a tendency to schedule 
sections that are as close as possible to the lower bound since this also minimizes cost. 
This can have the effect of not assigning such courses to teachers that desired them. 
To illustrate, if at most one section on Ethics should be scheduled, the system has a 
tendency to schedule none. This turns out to be undesirable in situations where a 
professor requested Ethics but was assigned an alternative instead. 

Essentially, the above problem would be avoided if in the case of the senior professor 
asking for that course, the lower bound is set to one instead of zero. In effect, the 
constraint is conditional on the data. However, deciding the appropriate bound based on 
the input data is tricky since tightening it could rule out feasible solutions or interfere 
negatively in unforeseen ways with others' assignments. 

The only way to express constraints as conditional on the data is to use non- 
monotonic justifications. For the example above, a rule with an "(unless ...)" form could 
be used to set the bound. Then, an assignment would have the datum matching the 
condition in the unless in its outlist, making it clear that one section was scheduled since 
a senior professor desired it. i f  that senior professor were to go on leave, invalidating 
the desire for that course, the TMS could automatically validate the datum specifying 
the bound of zero. In general, a TMS is a natural mechanism for modeling default 
reasoning of this type. 

Another consequence of global optimization is the lack of explanation for its decisions. 
In analyzing the results of the IP we were generally able to infer after analyzing the data 
in detail, why a teacher had not been assigned a desired course. For the most part, this 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-89-39 



happened when there was competition for a limited number of sections. Often, however, 
the rationale for assignments could not be determined even after considerable analysis 
of the constraints, preferences and flexibility indices. In such cases, global optimization 
essentially obscures the reasons for assignments. 

In contrast, the ES attempts to make good local assignments the justifications for 
which are recorded by the TMS. The justifications are extremely useful for purposes of 
explanation and for incremental revision of existing decisions in an evolving solution. 
Although the ES has no notion of a global optimum, the more the knowledge provided to 
the system for resolving conflicts, making choices, etc, the better the quality of its 
solution. The factors that determine whether the expert system will work better than the 
IP model are the extent to which it is important to specify complex preferences of the 
type described in the preceding discussion, and the ease with which such knowledge 
can be specified by the expert. These two factors interact in a complex manner. If 
complex preferences need to the specified, it is usually indicative of the complexity of 
defining optimal solutions, and hence the limitations of the objective function as the 
mechanism driving the search. However, in such situations the expert also finds it 
increasingly difficult to specify the preference knowledge in terms of abstractions. Over 
time, this can result in a situation where interactions among the various pieces of 
knowledge become very complex, thereby eroding the modularity of the knowledge 
base. 

5.3. The Need for Partial Solutions 
A major problem during the early runs of the IP model was its inability to find a 

feasible integer solution even after many hours of running time. Two factors contributed 
to this situation. Firstly, the data were often such that the constraints were not 
satisfiable. For example, if three sections of a course were required and only two people 
were qualified to teach it, clearly, no solution would be found. Secondly, we found that 
the knapsack constraints, on TLs, were often too tight for it to find a feasible integer 
solution. 

We solved the first problem by analyzing the behavior of the expert system. While that 
system is also often unable to find a feasible solution, it generates a useful partial 
solution indicating those "holes" in the schedule that still need to be filled. 

Partial solutions are extremely useful to the decision maker. There is no guarantee 
that the skills of the teachers will cover the requirements (particularly if a significant 
number of faculty are on leave). In such cases, and the decision maker needs to know 
what the holes are. Typically, there are several holes in the schedule in the initial draft. 
These are patched by hiring visiting professors, lecturers, or graduate students. In this 
respect, the integer program is deficient because if it fails to find a feasible integer 
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solution, it runs virtually forever and finally provides no useful information to the decision 
maker. What is required in such cases is an integer solution which even though not 
feasible, is "closew to feasible. 

Even though the results of the expert system pointed us to the section requirements 
constraints to loosen, we still did not manage to obtain a solution until we simplified the 
problem by excluding the TL constraints, solving it as a transportation problem. We then 
introduced lowered TL requirements. As we mentioned earlier, we found that the ability 
of the system to find an integer solution was extremely sensitive to the TL value. On 
analyzing the expert's behavior, we found that he dealt with the TL requirements by first 
ignoring them, making assignments that put teachers' loads in the "ballpark", and then 
massaging the schedule to satisfy the requirements. For the most part, this massaging 
consists of giving teachers larger sections (which have higher credits) or assigning them 
light administrative responsibilities for which they earn small amounts of credit. 

5.4. The Division of Responsibility 
We have come to believe that it is neither practical nor reasonable for a system to 

always generate a complete plan. There are simply too many factors to be accounted 
for in generating a plan that are not reasonably enumerable a priori. For example, the 
expert might feel that a teacher has been assigned too much of a certain topic, which is 
a judgment call, and wish to alter the plan accordingly. 

The user might also use creative tricks in massaging a plan. In one schedule, for 
example, a course was cross-listed with another department and therefore excluded 
from participating in the constraints defined over courses in its class. In that case, the 
expert added another course from that class to the schedule in order to satisfy the 
desires of a professor. 

In summary, from a practical standpoint, a support system must function as a decision 
support system instead of a fully automated planner. In the next section we discuss the 
types of levers that are available to the user for tuning and revising plans in the IP 
model and the directions in which it needs to be enhanced. 

6. Plan Revision 
Since planning problems are based on assumptions that may change, it is important 

that a decision maker be able to modify a model incrementally. Planning course 
assignments is based on assumptions about enrollments (which determine the numbers 
of sections planned), and faculty availability. If enrollments turn out to be higher than 
expected, additional sections must be scheduled. If a faculty member gets a grant or 
goes on leave, substitute teachers must be found. In all such cases, it is important that 
the overall plan be perturbed as little as possible. 
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Several types of actions can be taken by the decision maker when assumptions 
change. Depending on the change, the action can include hiring assistant instructors, 
hiring visiting professors, and swapping assigned courses among faculty. Hiring a visitor 
is usually feasible only if there is sufficient time to negotiate a contract. 

Some changes are easy to manage. For example, if a faculty that goes on leave was 
teaching low level undergraduate courses, instructors can be hired to fill in. However, if 
graduate courses are involved revision becomes more complex since such courses can 
be highly specialized, making it difficult to find faculty qualified to teach them. Also, 
faculty are limited to a maximum of one graduate course per year. In summary, 
determining who to assign to an unassigned graduate course can be difficult, depending 
on how many faculty are qualified to teach the course, how flexible they are, whether 
are already scheduled to teach a graduate course, and whether substitutes can be 
found for such courses. 

The IP model supports revision as follows. The decision maker must specify what 
subset of the existing set of assignments can be changed. The complement set is 
considered fixed; the assignments in this set are therefore added as constraints and the 
problem is re-solved. In effect, the decision maker must specify what part of the plan is 
fixed and what is variable. Further, the decision maker must make a judicious choice in 
specifying what com bi nation of lecturers, Assistant Instructors and visiting professors 
should be considered to fill the newly created holes in the plan. 

Unfortunately, it is usually difficult for the decision maker to specify in advance with 
any degree of confidence which parts of the plan should be considered variable. Rather, 
the process of figuring out what to change requires negotiation, the results of which 
serve as further input in determining what parts of the model can be considered 
changeable. In effect, figuring out what can be changed is where support is most 
needed. In this sense, the IP model requires the decision maker to do too much. 
Specifically, if changes are to be minimal, he must keep the variable set small, 
otherwise the new solution can contain too many changes. However, this small set of 
changeable assignments that should also result in a solution being found, otherwise the 
exercise is of little use. Determining the appropriate set can require considerable trial 
and error; finding it is therefore the really difficult part of the problem where support is 
most needed. 

Another aspect of revision is that certain changes actually require that changes be 
made to the constraints. For example, if an instructor who goes on leave was teaching a 
course that is not strictly required, it is usually not re-assigned to anyone when the IP 
model is run with the new data since the objective is to minimize cost. Clearly, this is 
problematic if that course has already been listed as an offering. In such cases, what is 
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really required that the constraints be modified to state that the listed course must be 
offered. 

In order to support revision, it is necessary that a system actually suggest alternative 
courses of action to the decision maker. For this to be possible, it is necessary for it to 
record the rationales for existing assignments. For example, if an instructor I, who goes 
on leave was teaching X1 which was desired by but not assigned to l2 (perhaps due to 
an exchange like the one illustrated in the example), it might make sense to consider 
whether l2 should now teach XI. This type of reasoning requires a truth maintenance 
system. In a TMS, for example, one of the justifications for the assignment l2 C-- X2 
would be the fact that I1 was assigned XI. When this latter proposition is no longer true, 
the justification for l2 c-- X2 becomes invalid, making it possible to assign X1 to 12. This 
process can be repeated recursively until a consistent set of assignments is found. 

In practice, however, it would probably be undesirable for the above process to 
happen automatically for two reasons. Firstly, it is conceivable that taking away X2 from 
l2 could create an even bigger problem if it is difficult to find someone to teach X2. 
Secondly, it would not make sense to take such a course away if a significant amount of 
preparation has already gone into preparing for that course or if the teacher assigned to 
it is inflexible. 

Regardless of the above limitations, a TMS should prove to be useful. Even if it fails 
in repeated attempts at finding a solution, the reasons for failure can be recorded and 
presented to the decision maker. In this way, even if the TMS does not find a solution, it 
provides useful information that can be used to find a solution. Since it is desirable to try 
several avenues simultaneously, an ATMS (de Kleer, 1986) might be suitable even 
though in principle any TMS could be used. 

The problem of determining how breakable an assignment is is a much more difficult 
problem. It depends on the flexibility of the teacher, how suited substitutes are for a 
course, and how much time has already gone into preparation. We are currently in the 
process of trying to formalize these concepts so that they might be representable and 
used by a TMS. 

7. Directions for Future Work 
It is clear that the optimization problems solvers such as ZOOM must be made much 

more flexible if they are to prove useful as decision support tools for practical problems. 
Based on our experience with the experiments and analysis of expert behavior, we feel 
that there are at least two directions that are worthwhile pursuing. First, a more 
expressive interface is required which allows the problem the problem data to be 
specified as "naturally" as possible. Second, it should be possible to augment ZOOM so 
that it provides more useful output to the user. 
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On the interface front, we have found that specifying problem data in terms of the 
object hierarchy and defining constraints in terms of such objects is a very useful 
functionality for the user. In effect, we have built a layer on top of XML. Currently 
languages like XML and GAMS are used directly as specification languages. While they 
(especially GAMS) allow the user to specify the problem in terms of a compact notation, 
they are still relatively low-level utilities. We feel that there are significant productivity 
gains possible by providing a higher level modeling environment where a user can 
specify an arbitrary class hierarchy and constraints over it, and have the mathematical 
formulation generated automatically. We are currently working on the primitives that 
such an environment must have for it to able to work for all mathematical programming 
problems. 

We also feel that it should be able to build in a truth maintenance functionality into the 
optimization package, making it more flexible and useful to the user. In ZOOM, for 
example, considering that the branch and bound is usually unsuccessful (in our case it 
was always unsuccessful), it makes sense to try and generate an "almost feasible" 
solution in cases when the Pivot and Complement heuristic fails. 

When the heuristic fails, the systems knows which constraints are being violated (in 
our problem these were the knapsack constraints). At this point, if the number of non- 
integer variables is not too large (i.e. less than about 30), the system could perform a 
local search around these variables only (keeping values of all integer variables fixed), 
that is, attempt different combinations of integer values for the non-integer variables, 
and keeping a record of the contradictions. Such a history could be used by the system 
(or the user) to decide which constraints to loosen in order to generate a feasible 
solution. In effect, this boils down to augmenting the Pivot and Complement heuristic 
with a primitive truth maintenance system. Actually, this is quite similar to what the 
expert does in overconstrained situations (i.e. ignore TLs, obtain a solution, and 
gradually introduce the TLs). By enabling the system to loosen constraints in situations 
where no solution is in sight, it can begin to approximate the problem solving behavior 
of experts. As a next step in this research we are considering ways of incorporating a 
truth maintenance functionality into optimizers to handle such situations. 
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