
META-INTERPRETERS FOR RULE-BASED
REASONING UNDER UNCERTAINTY

by

Shimon Schocken

Leonard N. Stern School of Business
Information S yste~lls Department

New York University
40 West 4th Street

New York, NU 10003

and

Tim Finin

Unisys Paoli Research Center
Unisys Corporation

July 1989

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

CRIS #210
STERN #89-69

The authors thank the editor and three anonymous referees for their thoughtful comments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

Abstract

One of the key challenges in designing expert systems is a credible represen-
tation of uncertainty and partial belief. During the past deca.de, a number of
rule-based belief languages were proposed and implemented in applied sys-
tems. Due to their quasi-probabilistic nature, the external validity of these
languages is an open question. This paper discusses the theory of belief re-
vision in expert systems through a canonical belief calculus model which is
invariant across different languages. A zeta-interpreter for non-categorical
reasoning is then presented. The purposes of this logic model is twofold:
first, it provides a clear and concise conceptualization of belief representa-
tion and propagation in rule-based systems. Second, it serves as a working
shell which can be instantiated with different belief calculi. This enables
experiments to investigate the net impact of alternative belief languages on
the exbernal validity of a fixed expert system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

1 Uncertainty and Expert Systems

The ability to model uncertainty and belief revision is now considered a key
challenge in designing credible expert systems. Regardless of whether the
domain of expertise is medical diagnosis, venture capital, or oil exploration -
human experts have to cope with uncertain data and inexact decision rules,
Moreover, it is now an established fact that humans, laymen and experts
alike, are very poor intuitive statisticians (Tversky and Kahneman, 1341).
Specifically, human judgement under uncertainty is often irrational, to the
extent that rationality is equated with the axioms of utility theory and sub-
jective probability.

There have been several attempts to represent uncertainty and belief revision
within the rigid framework of Iogic, with Carnap's (1954) inductive logic [5]
being the most seminal treatise on the subject. Notwithstanding its signifi-
cant philosophical contribution, inductive logic was not meant to serve as a
practical modelling framework. And yet two decades later, Carnap's work on
the theory of confirmation became the motivation for the certainty factors
model - a popular belief calculus which was first implemented in 1976 in the
MYCIN medical diagnosis system (Shortliffe, [30]). Since then, a wide variety
of belief calculi and non-categorical inference methods were developed and
implemented by researchers and practitioners. By and large, these methods
can be classified into two categories: probabilistic, and quasi-probabilistic.

Probabilist ic methods include such models as Bayes networks (Pearl, [20]),
influence diagrams (Howa.rd and Matheson, [14]), and the Dempster-Shafer
theory of evidence (Shafer, [27]). These models enjoy a solid theoretical foun-
dation; they are either consistent with the axioms of probability theory, or
they extend it in a clear and explicit manner, as in the case of the Dempster-
Shafer model. However, it is now well understood that the marriage between
logical inference and probabilistic inference is rather problematic. First, it
was shown by Heckerman 1131 and other authors that the modular structure
of the rule-based architecture is generally inconsistent with the wholistic na-
ture of a joint distribution function. Second, probabilistic inference in a
rule-based architecture was shown to be NP-hard (Cooper, [9]).

Quasi-probabilistic belief-calculi a.re only pa.rtia1ly consistent with the ax-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

ioms of subjective probability. These calculi include MYCIN7s certainty fac-
tors model (Shortliffe, [30]), the ad-hoc Bayesian model used in PROSPEC-
TOR (Duda et al, [l l]) , and an assortment of similar calculi which are es-
sentially isomorphic although they may differ is some details. Following
the great popularity of such rule-based shells as EMYCIN, M.1, and AL/X,
quasi-probabilistic belief calculi became the de-facto method of handling un-
certainty in applied expert systems. And yet the algebraic structure of these
pragmatic models is quite obscure, and their limitations and full potential
are not well-understood by practitioners and knowledge engineers.

This paper has three purposes. First, it gives a formal description of the
structure of a belief calculus and how it may be integrated with the overall
architecture of a rule-based system. Second, the paper presents a method-
ology designed to test the controversial validity of alternative belief calculi.
The question of whether or not a belief calculus credibly represents (or im-
proves) human judgement under uncertainty is of utmost importance, and
it may be answered only through experimentation with human subjects. In
order to run such experiments, one needs a canonical rule-based architecture
which can easily accommodate different belief calculi. This leads to the third
purpose of the paper, which is the development of a Prolog meta-interpreter,
called SOLVE, for non-categorical reasoning. SOLVE is useful in that (a) it
gives a clear computational definition of a belief calculus, and, (b) it provides
a platform for carrying out experiments with alternative belief calculi.

Although the presentation of SOLVE involves a certain degree of logic pro-
gramming, the major concern of this paper is the theory of rule-based belief
calculi, and the software engineering issues related to their integration with
rule-based logic models. The implementation details of SOLVE and related
predicates are presented in a separate appendix. This technical material is
intended for readers who are interested in Prolog.

2 Rule-based inference and Belief Languages

The mat hematical and cognitive underpinnings of rule- based (production)
systems are well-known, and the reader is referred to Davis and King [22]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

and to Newel1 (181 for extensive discussions. Due to its proximity to first-
order predicate calculus, the rational basis of categorical rule-based inference
is normally unchallenged. This validity, however, does not extend naturally
to applications involving uncertain facts and heuristic inference rules. Under
such conditions, rule-based inference becomes an inexact, non-categorical,
classification procedure, designed to map an observed phenomenon on a set
of one or more explaining hypotheses (Cohen, 171). This inexact matching
algorithm is carried out by applying modus ponens repeatedly to a set of
rules of the form IF e THEN h WITH DEGREE OF BELIEF Bel, which,
from now on, we denote e -+ h # Bel'. The postfix Bel is a degree of
belief, which, broadly speaking, reflects an expert's confidence in the logical
entailment associated with the implication e -+ h. The problem, simply put,
is this: given the prior belief in h and all the degrees of belief that parameterize
rules and facts which ultimately imply h, how does one compute the posterior
belief in h? In expert systems, this is typically accomplished by some sort of
a belief calculus.

As the rule-based inference-engine processes rules which ultimately imply
an hypothesis, a belief calculus is applied to update the posterior belief in
this hypothesis. The process normally terminates when the belief in one or
more hypotheses exceeds a certain pre-defined cutoff value. Therefore, a non-
categorical belief calculus may be viewed as a "scoring" algorithm, a term
coined by Cooper [8]. This algorithm accepts a set of inexact rules and a
set of uncertain data, and goes on to "score" a set of competing hypotheses,
i.e. compute their posterior beliefs. There exist conditions under which the
resulting scores are probabilities, but this is not always the case.

According to Shafer and Tversky 1281, the building-blocks of a belief language
are syntax, calculus, and semantics. In the context of rule-based inference,
syntax corresponds to the set of degrees of belief which parameterize uncer-
tain facts, inexact rules, and prospective hypotheses. The degrees of belief
associated with rules are elicited from domain experts as the knowledge-base
is being constructed. The degrees of belief which parameterize observed or
suspected pieces of evidence are obtained interactively through consultation.
Posterior degrees of belief are computed through a set of operators collec-

'throughout the paper, e and h stand for a piece of evidence and a n hypothesis,
respectively

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

tively known as a belief calculus. We take the position that the semantics of
the language consists of either a normative or a descriptive argument which
justifies the validity of the syntax and calculus dimensions of the language.

2.1 A Canonical Belief Calculus

In order to propagate degrees of belief in a rule-based architecture consist-
ing of uncertain facts and inexact rules, a belief calculus must be capable of
handling three generic types s f reasoning: Boolean conditioning, sequential
propagation, and parallel combination. This section gives canonical defini-
tions of each of these cases. Elsewhere in the paper we present language-
dependant instantiations of these models and give their corresponding logic
programming implementations.

Let h, el, and ez be an huypothesis and two pieces of evidence with cur-
rent beliefs Bel(h), Bel(el), and Bel(e2), respectively. A non-categorical
inference mechanism must be capable of computing the posterior belief in
h, denoted Bel(hl.), in light of any recursive combination of the following
generic evidential rela.tionships:

Boolean cond i t i on ing : (e l OR e2) -> h # Be1

(e l AND e 2) -> h # Be1

s e q u e n t i a l p ropaga t ion : e l -> e2 # B e l l
e2 -> h # Be12

P a r a l l e l combinat ion: e l -> h # Bell
e2 -> h # Be12

The exact specification of how to compute the posterior belief in h in any
one of the above circumsta.nces is precisely the definition of a belief calculus.
Although the details of such specifications va.ry greatly across different belief
languages, the basic structure of their underlying calculi is quite invariant.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

This observation leads to the notion of a canonical belief calculus, whose three
components are described next.

Boolean Conditioning: Consider the rules (el or e2) -+ h #Bell and (el
and e2) -+ h #BeE2. The degrees of belief Bell and Be12 represent the
strengths of the rules if both el-and el are known to be certain. But what
if one or both of these pieces of evidence is uncertain? In such cases, the
belief calculus first computes the current belief associated with the premise
of each rule, i.e. Bel((el and e2)) and Bel((el or e2)). Technically speaking,
this computation is carried out through the template functions F-and and
F-or, respectively:

Once the current belief in a rule's premise is established trough Boolean
conditioning, the posterior belief in the rule's conclusion ca.n be computed
through sequential propaga.tion.

Sequential Propagation: Rule-based belief calculi make the implicit assump-
tion that the "actual" degree of belief in a rule has to cha.nge when the belief
in the rule's premise changes. Specifically, let e -4 h #Bel(h, e) be a rule
specifying that "given e (with certainty), h is implied to a degree of belief
Bel(h, e)," and let the current belief in e be Bel(e). When a rule-based
inference engine operates on a knowledge-base, the premise e might be ei-
ther (a) a terminal fact whose prior belief Bel(e) is specified by the user, or,
(b) an intermediate sub-hypothesis whose current belief Bel(e1.) was already
computed by the system.

Whichever category e falls in, the "a.ctua1" degree of belief in the rule, de-
noted Bell(h,e), is computed through a. va.ria.nt of the following sequential
propagation function, Fs:

Bell(h, e) = Fs(Bel(e) , Bel(h, e))

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-69

The function F-s is monotonically increasing in both variables Bel(e) and
Bel(h,e). Therefore, F-s is sometimes referred to in the A1 literature as
an "attenuation function," designed to carry over the uncertainty associated
with a rule's premise into the uncertainty associated with the rule itself.

pa.ralle1 Combination: Let h be an hypothesis with current degree of belief
Bel(h) and let el -+ h #Bel(h, el) and e2 4 h #Bel(h, e2) be two rules
that bear evidence on h independently. The combined, posterior belief in
h in light of {el, e 2) is given by the following binary parallel combination
function, F-p:

Bel(h, {el, e2)) = F-p(Bel(h), Bel(h., el), BeE(h, e2)) (4)

(it is implicitly assumed that Bel(h, el) and Bel(h, e2) were already attenu-
ated by F s) . In order to free the inference process from order and clustering
effects, the function F-p is normally required to be commutative and asso-
ciative. If these requirements are satisfied, the binary F-p function can be
extended recursively to an n-ary parallel combination function. The details
of this extension are straightforward.

We now proceed to describe the C F calculus and the likelihood-ratio Bayesian
calculus. These models are presented verbatim, and no attempt is made here
to either defend their cognitive appeal or argue for or against their normative
justification. Such analyses were carried out by Adams (11, Heckerman 1131,
Grosof [12], Schocken and Icleindorfer 1251, and other authors.

2.2 The Certainty Factors Language

Following its initial implementation in MY CIN, the certainty-factors calculus
has evolved into several forms, a.11 of which may be easily incorporated into
the architecture described in this paper. The calculus discussed here adheres
to the original model, described in detail by Buchanan and Shortliffe 141.

In the additive CF syntax, a dia.gnostic rule of the form e -4 h #CF(hle)
means that e increases the belief in h by the ma,gnitude CF(h1e) which

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

varies from -1 to 1. If e is irrelevant to h, CF(h1e) = 0. The extreme
case of e being sufficiently convincing to confirm (disconfirm) h in cer-
tainty is modeled through CF(h1e) = 1 (CF(h1e) = -1). There are ba-
sically two types of certainty-factors. The CF7s associated with rules (e.g.
paci f is t (X) -+ democrat(X) #0.9) are elicited from a domain expert when
the rule-base is being constructed. The CF's associated with uncertain facts
(e.g. p c i fisb(jm) #O.E;) are supplied through consultation.

Boolean Conditioning: Consider the categorical disjunctive rule (el or e2) -+
h which reads: either one of the two pieces of evidence el or ez (known in
certainty) can alone establish the hypothesis h. How does one extend this
rule to situations in which either el or ez are uncertain? this question is
complicated by the observation that the uncertainty associated with these
facts is not a probability, but, rather, an abstract measure of human be-
lief. Iiahneman and Miller [15] have argued that, under these circumstances,
the most reasonable rule for Boolean combination is the one used in fuzzy
logic (Zadeh, [35]). This rule, which was implemented in MYCIN, sets the
belief in a colljunction (disjunction) to the minimal (maximal) belief in its
constituents:

Sequential combination: The CF associated with the diagnostic rule e -+ --
h #CF(hIe) is elicited from a domain expert under the assumption that the
premise e is known wit11 certainty. \Vhen the belief in e is less than certainty,
the CF calculus attenuates the rule's degree of belief through the following
sequential propagation function:

CF(h le) CF(e) if CF(e) > 0
CFt(h/e) = { otherwise

Parallel cornhination: When two rules el -+ h #CF(hlel) and e2 -+

h #CE(hle2) bear evidence on IL independently, their compound increased

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

belief in h in light of {el, e2} is computed through a binary combination
function, defined as follolvs:

I CF(hle1) + CF(hle2) . (1 - CF(hlel)) if both CF's are positive

{ -(ICF(hle~)l + ICF(hle2)l . (1 - ICF(hlel)j) if both CF's are negative

if the CF's have mixed signs

2.3 The Bayesian Language

In Bayesian languages, a rule of the form h --t e #Be1 reads: the hypothesis
h causes the evidence e with a degree of belief Bel. There exist several differ-
ent interpretation of Bel. Some Bayesian systems elicit and propagate con-
ditional probabilities of the form Be1 = P(el h). A more balanced Bayesian
design would record not only P(elh) but also ~ (e l x) , leading to the two-place
degree of belief Be1 = [P(el h), ~ (e l x)] . Finally, the likelihood-ratio Bayesian
syntax consists of likelihood-ratios of the form Be1 = el h)/p(elx). If the
prior-odds on h , P(h)/P('7;), is known, then Bayes rule dictates that the pres-
ence of e will change the posterior odds on h to P (h) /P (x) - ~ (e l h) / ~ (e l f j ;) .
Hence, the Bayesian syntax is multiplicative, unlike the C F syntax, which is
additive.

Recall that our ultimate purpose is to develop a canonical meta-interpreter
which can accommodate a wide variety of different belief calculi. With that
in mind, we'll focus on a general Bayesian language in which the degree of
belief Be1 which parameterizes the rule h --, e #Be1 is taken to be the
3-place list [P(A), P(elh), ~ (e l x)] . If e is a terminal piece of evidence, the
degree of belief in e is taken to be Bel = P(e).

Boolean Conditioning: In qua.si-probabilistic Bayesian systems, e.g.
PROSPECTOR, the current belief in conjunctions and disjunctions involving
uncertain propositions is computed through the same fuzzy logic conventions
used in MYCIN:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

Sequential propa.gation: The literature contains several heuristic procedures
for Bayesian sequential belief update, e.g. Jeffsies rule of conditioning (Shafer,
1261) and PROSPECTOR'S interpolaiion function (Duda et al, [ll]). For
the sake of brevity, we choose to describe here a simple interpolation func-
tion, discussed by Wise [36]. Suppose the knowledge-base contains the rule
h -, e #[P(h), P(elh), ~ (e l A)] and we find out through consultation that
the piece of evidence e obtains with the current belief P(e). Before we can
calculate the impact of e on the posterior belief in h, we attenuate the rule's
degree of belief as follows:

This gives the "actual" rule's degree of belief, [P(h), P1(elh), ~ ' (e l x)] . Note
that (11) is a weighted average of P(elh) and P (~ l h) , weighted by P(e) and
P(z). (12) is similar.

Parallel combination: Let h + el #Bell, . . - , h + en #Beln be n causal
rules with (already attenuated) degrees of belief Bel; = [P(h), P(el h), P(elK)].
The posterior belief in h in light of the evidence {el, . . ,en) is computed
through the following version of (the commutative and associa.tive) Bayes
rule:

products-odds = P(ellh), P(enlh)
~ (e t l 7 i) ' ' p(en17i)

P(h) odds = proclucts-odds . -
P(E)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

The posterior belief in h, P(hl.), may be derived through the simple trans-
formation:

odds
P(h1.) =

1 + odds

3 On the Validity of Belief Languages

As the previous section illustrates, the C F and the Bayesian languages offer
two different representations of uncertainty and partial belief. At the same
time, one would hope that the behavior of a CF-based expert system would
be compatible with that of a Bayesian expert system, all other things held
equal (including the expert and tlze knowledge-base). This hypothesis can be
tested only through experimentation. The design of such experiments and
the computational tools which are necessary to support them are discussed
in this section.

Consider the familiar problem of rating prospective dates and managing a
little black book. Suppose a person, denoted hereafter dater, wishes to deter-
mine whether 01- not another person is a good match for a blind-date, based
on a single telephone conversation. For the sake of simplicity, let's assume
that the dater's rationale is represented t,hrougll the following CF-oriented
knowledge- base:

good,looking(X) o r s m a r t (x)
-> date(X) # 0 .8 .

This knowledge-base has the following interpretation: [I] is a wishful (and
inexact) conjecture that blind-daters typically nial<e and then learn that they

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

should have known better. 121 is an inexact rule of thumb which models the
dater's social preferences. [3] is a certain fact about Leslie. S/he sounds good
over the telephone. Fact [4] is an inexact estimate of Leslie's IQ.

We see that not unlike other domains of expertise, the dater's "knowledge"
and perception of reality are heuristic and subjective, respectively. In the
rule-based architecture of 11-41, this non-determinism is represented by the
degrees of belief following the # symbol. Note, however, that barring these
numbers, [I-41 may be readily translated to a standard logic model. Let's
assume that this model is implemented in Prolog, and consider the following
query:

Prolog's response to this query will be the laconic and rather unproductive
result "Yes." Under the given semantics, this means: "go ahead and date
Leslie." We think that most dakers would reject this black and white di-
chotomy in favor of a finer and more informative matcher. In particular,
let's assume that (a) the # degrees of belief in [I-41 were reinstated, and, (b)
a certainty-factors oriented meta-interpreter called SOLVE were available.
Under these conditions, the original query may be recast as the following
meta-query:

solve (date(les1ie) , Bel) ?

To which Prolog will answer:

Yes, Bel=O. 56

Like standard Prolog, SOLVE attempts to prove the goal date(leslie), search-
ing for facts and rules which imply this hypothesis categorically. In the pro-
cess of constructing this proof, however, SOLVE also collects degrees of
belief relevant to Leslie and fuses them into Bel, the posterior belief in the
proposition date(les1ie). In a meta-interpreter environment, the Be1 variable

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

is bound and updated on the fly, as a side-effect of the ordinary inference
process.

The preceding discussion made the implicit assumption that SOLVE has a
built-in belief calculus. In other words, the belief calculus is assumed to be a
fixed part of SOLVE'S theory. However, in view of Sterling's [31] principles
of mixing flavors, it is far more tasteful to define a stand-alone belief calculus,
say c, and pass it on to the SOLVE meta-interpreter as a parameter. In this
form, the query solve(h, Bel, c) consists of a request to confirm an hypothesis,
h, and compute its posterior belief, Bel, modulo the belief calculus, c.

For example, let cf and b be two complex predicates which implement the
certainty-fa.ctors and the Bayesian ca.lculus, respectively. Assume further
that the same dater has specified the degrees of belief which parameterize
[I-41 twice, once as certa.inty factors, and once as conditional probabilities.
Now consider the following set of queries:

Suppose that the results of this experiment were x l > yl and $2 < y2. This
would indicate that at least one of the belief languages under consideration
fails to capture the human's preferences. Note that excluding the change in
the belief calculus and syntax, everything else is kept intact, including Leslie,
Pat, the dater's preferences, and the inference-engine. Hence, the experiment
measures the net impact of alternative belief language "treatments" on the
system's behavior, all other things held equal.

Shafer a.nd Tversky [2S] note that there axe no formal criteria or general em-
pirical procedures for evaluating proba.bilistic designs, and go on to conclude
that "the design and analysis of mental experiments th,erefore represents a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

challenge to both statisticians and psychologists." The validity of this par-
ticular experiment must be qualified by two observations: first, the design
assumes that the knowledge-base remains constant across different belief lan-
guages. Second, if the results of the experiment were indeed incompatible, it
would be impossible to say whether this inconsistency was due to the different
belief calculi or due to the different sets of degrees of belief. Notwithstanding
the external validity s f these reservations, they don't diminish the value of
the experiment. RmfE that om objective is to test the wholesome impact
of different belief languages on expert systems, This calls for a simultaneous
rnanigrrIation of both the syntax and the cdculus across treatments. Fur-
thermore, in order for this experiment to be internally valid, we must seek
a task in which the knowledge-base is sufficiently simple to remain constant
across different belief languages.

A within-sttbject experiment which follows these guidelines was carried out by
Schocken 1241. The "'experts" were professors and senior Ph.D. students in a
decision sciences department. The context was a real-life inference problem
taken from the domain of faculty recruiting. Ten resumes of hypothetical
prospective candidates were given to each subject , who rank-ordered them
in terms of increasing likelihood of potential academic success. Each subject
then underwent an elaborate knowledge elicitation procedure administered
by the experimenter, who played the role of a knowledge engineer. The result
of this interaction was a, rule-base which presumably captured the ranking
rationale of the human expert. The subjects were then assigned randomly
to two groups, I and 11.

Subjects in group I were asked to express their degrees of belief in each rule
using the certainty factors language, and group I1 subjects expressed their be-
lief in terms of subjective probabilities. Two months later, the subjects were
recalled, and the very same sequel ensued: first, each subject generated a sec-
ond "human ranking" of the (very same) ten candidates. Next, each subject
was presented with the same rule-base that he or she has provided originally,
with one exception: the degrees of belief which parameterized the rules were
omitted. Finally, the knowledge elicitation treatment was switched: subjects
from groups I and I1 underwent a probabilistic and C F elicitation, respec-
tively. This completed the data gathering stage of the experiment.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

At that point, two expert systems (per subject) were constructed, using a
CF and an a Bayesian versions of the SOLVE meta-interpreters. The two
systems varied only in their dependence on the CF and on the Bayesian
calculi. The systems were then fed with the subject's rule-base and the
set of ten (encoded) resumes, and went on to compute the rankings of the
candidates in terms of certainty factors and posterior probabilities. Note
that the two systems were identical in their reliance on the same rule-base,
fact- base, and expert. These factors were tightly controlled, varying only the
syntax and the belief caIculus "treatment."

The data, anaIysis paart of the experiment consisted of comparing the various
rankings of candidates generated by huma.ns and machines, using standard
statistical rank-correlation t,ests. The correla~tjon between the two "human
rankings" (which were spaced two months apart) were used to control for
consistent subjects. The correla.t.ion between human rankings and machine
rankings were used to test a, series of hypotheses regarding the descriptive
and external validity of alternative belief languages.

The descriptive validity of the Bayesian (C F) language was estimated through
the correlation between the human ranking and the Bayesian (CF) machine
ranking. The external validity of the Bayesian (CF) language was estimated
through the c~rrela~tion between the Bayesian (CF) ranking and the pooled
human ranking of those subjects who were professors at the decision sciences
department. These professors were actively involved in real hiring decisions,
and their pooled ranking was therefore viewed as a gold standard against
which other rankings could be pitted.

The results of the experiment were son1ewha.t surprising. The CF and the
Bayesian 1a.ngua.ge scored highly and simila,rly in terms of descriptive validity.
At the sa.me time, the Ba.yesia,n la.ngua,ge outperformed the CF language in
terms of external validity. The details of the experiment and the results are
reported in Schocken 1241, and are somewhat irrelevant to the present paper.
Our chief concern here is research methodology, and, in particular, the design
of the meta,-interpreters which enable such experiments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

Meta-Interpreters as Logic Models of Ex-
pert Systems

The meta-interpreter presented below was developed to support experimen-
tation with alternative belief languages. The objective was to develop a
computational environment which (a) simulates a standard rule-based infer-
ence algorithm, and, (b) allows a great deal of design flexibility with respect
to creating and modifying alternative belief calculi. In the process of devel-
oping these tools, we became aware of a paper by Sterling [31] describing
the analogy between Lisp Flavors and Prolog meta-interpreters. Sterling's
paper provides an elegant theoretical framework within which our work can
be described in terms of mixing flavors.

The basic notion of logic PI-ogrnms with uncertninties is due to a paper of
this title by Shapiro [29]. In a logic program with uncertainty, rules and
facts are parameterized by some sort of a degree of belief. The inference
algorithm is extended to compute posterior beliefs in goals as a side-effect
of standard reasoning. Belief computations can be performed either within
the logic program itself (e.g. Clark and h.lcCabe, [6], Alvey et al, [2]), or at
higher, meta-level of interpretation (Shapiro, [%I).
A h4eta.-interpreter is an interpreter of a language written in the same lan-
guage. In Prolog, meta-interpreters have proven to be particularly useful
in building expert system shells. The ba.sic idea is that Prolog is already a
very capable first-order inference-engine; turning this raw power into a full-
featured shell is basically a, matter of adding functiona,lities to the standard
language. For the sake of modula.rity, this is best accomplished by creating
specialized meta-interpreters and en11a.ncing them incrementally (Sterling,

1311).

Prolog meta-interpreters were developed to add a. number of essential capabil-
ities found in most commercial expert system shells. For example, Harnmond
and Sergot 1191 extended the basic inference-engine with a "query the user"
facility which obtains missing information through interactive consultation.
Sterling and Lalee [32] developed techniques to expla,in the system's line of
reasoning. A number of authors, e.g. Dincbas [lo] and Pereira 1211, have

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

shown how the fixed control structure of Prolog can be short-cut and mod-
ified t o suit various inferential needs. Baldwin and Monk [3] developed a
met a-interpreter for inexact reasoning based on the Demps t er-Shafer model.

Wirth's [35] software engineering principle of programs = algorithms + data
structures is well-known. The expert systems analogy of this principle is as
follows:

e x p e r t - knowledge in fe rence 151 -
system base + mechanism

This pa.per takes the modula.rity principle one step further, achieving what
may be described symbolically a.s:

i n f e r e n c e - - in fe rence + b e l i e f 161
mechanism engine c a l c u l u s

The inference engine was implemented through the SOLVE meta-interpreter,
which is completely independent of the details of the belief calculus and the
syntax of the knowledge base. This modularity facilitates comparative ex-
perimentation with alternative belief calculi, leaving the rest of the system
intact. For example, consider an experiment designed to compare the recom-
mendations generated by a CF-based and a Bayesian-based systems. This
experiment will malce use of two logic models which may be described sym-
bolically, as follows:

i n f e r e n c e -
..-..,

SOLVE CF c71
mechanism1 + c a l c u l u s

in fe rence - SOLVE Bayesian - C81
mechanism2 + c a l c u l u s

The remainder of this section presents logic niodels of the two major compo-
nents of [5] - the knowledge base and the inference mechanism. The glue that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

integrates these components (the + sign) is also discussed. Logic models of
the certainty factors and the Bayesian calculi are presented in a separate Ap-
pendix. Due to the modularity of SOLVE, the details of these calculi have
no impact on the overall architecture, and we therefore delay their discussion
t o a later stage.

4.1 A Canonical Knowledge-base

This section presents a logic model of a non-categorical knowledge-base.
From a logic modeling perspective, this knowledge-base is simply a set of
predicates. In order to merge these predicates with SOLVE'S theory, how-
ever, some parsing a.nd pre-processing must take place. The discussion of
these issues serves to highlight the snytachtical differences of the C F and
the Bayesian Languages, and the ease by which this pluralism is accommo-
dated by the SOLVE meta-interpreter.

Going back to the da,ting exa.mple, consider the following subset of an hypo-
thetical, CF-oriented, knowledge-base:

/* ru l e -base */

age(X,Age) and Age>l8 and Age<35 -> date(^) # 0 . 3 .

s a l a r y (X , Salary) and Salary>75000 o r
p a r e n t (X ,Pa ren t) and s a l a r y (Pa ren t ,SalaryP) and

SalaryP>l50000
-> r ich(X) # 0 . 9 .

/* f a c t base */

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

p a r e n t (nicky ,bob) .
sa lary(bob, 160000).
salary (nicky ,20000) # 0 . 8 .
good-looking (pat) # 0.95.
s a l a r y (p a t , 0) .
age (pa t , 24) .
potent ia l ,da te(nicky) .
p o t e n t i a l - d a t e (p a t) .

Figure I

In order to merge this knowledge-base with the meta-interpreter, we have to
convert its rules and facts into a generic clausal form consistent with Prolog's
syntax. The strategy taken here is to (a) convert inexact rules of the form
e -4 IL #Be1 into the generic clause (1 2 , e,Bel), and, (b) convert uncertain
facts of the form e #Be1 into the generic clause (e,true, Bel), The generic
clause is important because this is the only data structure that SOLVE
recognizes.

Since the direction of rules and the semantics of degrees of belief vary across
different belief languages, each language requires a specialized parser. The
rema.inder of this section presents a certainty-factors parser and a Bayesian
parser. The section concludes with some genera1 remarks on other functions
which may be incorpora'ted in more sophisticated parsers.

A Certainty-factors Parser: A knowledge-base with certainty-factors is trans-
lated into generic clauses through the following pa.rser:

parse(H,E,Bel) :- (E -> H # Bel) .
parse (E , t rue ,Be l) :- (E # Bel) .
p a r s e (E , t r u e , l) :- E.

This code reads as follo\vs: [9] ma,tches the rule E -4 H #Be1 with the
clause (H , E, Bel). [lo] matches the uncertain fact E #Be1 with the clause
(E, true, Bel). Fina.lly, certa.in facts of the form E (with no attached degrees

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

of belief) are defaulted by [ll] to the clause (E, true, 1) which reads: E is
true with cei-tainty. The latter convention allows us to freely mix certain and
uncertain facts in the same knowledge-ba.se, and, at the same time, relieves
us from the tedium of a.ssigning a 1.0 degree of belief to such certain facts as
parent (nicky, bob). Instea.d, we let the system take care of this nuisance as
a side-effect of parsing.

A Bayesian Parser: Recall that in our Bayesian langua,ge, the degree of belief
Bel which parameterizes the rule h -+ e #Be1 is taken to be the 3-place list
[P(h), P(elh), ~ (e l x)] . If e is a terminal piece of evidence, the degree of belief
in e is taken to be Be1 = P(e). With that in mind, the Bayesian parser is
defined as follows:

parse(H,E,Bel) :- (H -> E # Bel).
parse(E,true,Bel) : - (E # Bel)
parse(E,true,[0.9999,1,1]) :- E.

The meaning of [12] and [13] is identical to their corresponding meaning in
the C F parser, but note that the direction of the rule in the right-hand side
is reversed. MThen the parser detects a certain fact through [14], it defaults
its prior probability to 0.9999. The difference between this and the more
plausible 1 is due to an uninteresting tecl2nical detail.

Similarly to the C F pa.rser, the role of 112-141 is to translate rules and facts
into the generic clause (N,E,Bel) which is recognizable by the SOLVE
meta-interpreter. Note tha.t no a.ttempt is rna,de here to unpa.ck compound
degrees of belief into their three individual components. This task is left
where it belongs - the belief ca,lculus level. This a.ga.in illustrates how a
modulafdesign can relieve the inference-engine from unnecessary technical
clutter.

Other Uses of Parsers: Thoughtful use of parsers and pre-processors allow
the designer to modify the syntax of a belief language and its corresponding
knowledge-bases without tinkering with the rest of the system. For example,
suppose we wish to leave the C F calculus intact, and, at the same time,
elicit degrees s f belief that vary from -100 to 100 instead of -1 to 1 (this is

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

normally done by most CF knowledge engineers). This leads to rules and
facts of the form:

l ikes (X,sush i) -> date(X) # -10.
na t iona l i ty (X, japan) -> l ikes(X, sush i) # 90.
n a t i o n a l i t y (tomo, j apan).

Following the standard C F requirement that degrees of belief be restricted
to the interval [-I, I], we can pre-process the knowledge-base as follows:

parse(H,E,Bel) :- (E -> H # B e l l) ,
Be1 is Be11/100.

parse(E, t rue ,Bel) :- (E # Bel l) ,
Be1 i s Be11/100.

p a r s e (E , t m e , l) :- E .

One can easily envision other useful applications of PARSE beyond this
trivial example. In PROSPECTOR, for example, there is a provision for
representing belief in evidence through qualitative terms, e.g. occasional,
rare, etc. Those statements are then transformed into probabilities, e.g. 0.1
and 0.01, respectively (Duda et al, [Ill). In a similar vein, Lichtenstein and
Newman [16] concluded empirically that verbal descriptions of uncertainty
may be mapped on ranges of probabilities. These verbal-numeric mappings
can be made explicit as a side-effect of parsing, through the following syn-
tactical sugar:

parse(E, t r u e ,Bel) : - (E # Bel-text) ,
t r ans la te (Be1- tex t ,Bel) .

t r ans la te ("occas iona l" , O . 1) .
t r an s l a t e (" r a r e " ,O.OI) .
e t c .

To sum up, the parser shields the inference-engine from the syntactical id-
iosyncra.sies of the underlying belief language. This separation enables us to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

elicit and represent rules and facts in a variety of forms, and, at the same
time, process them through a canonical inference mechanism which operates
on a collection of generic clauses of the form (H, E, Bel). The details of this
mechanism are presented in the next section.

4.2 A Canonical Inference Mechanism

We assume that any knowledge-base, regardless of how complex, is a recursive
union of the four generic inferentia.1 structures depicted in the following figure:

Figure 2

In a non-categorical knowledge-base, these structures are also parameterized
by degrees of belief. Hence, the SOLVE meta-interpreter (the inference
engine) must employ a belief calculus which specifies how to combine degrees
of belief in the cases of (a) sequential propagation (b) parallel combination
(c) conjunctive conditioning, and (d) disjunctive conditioning. In section 2.1,
the functions which specify this calculus were denoted F A , F-p, F-and, and
F-or, respectively. Since we want our meta-interpreter to be independent
of the calculus, we pass these functions as parameters to SOLVE'S theory.
The SOLVE predicate if defined as follo\vs:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

solve((H1 or ~2),Bel,~-s,~-p,F-and,~,or) :- C161
solve (Hi ,Bell ,F-s, F-p and, F-or) , C171
solve (H2 ,Be12 ,F-s, F-p , F-and , F-or) , C181
apply (F-or (Bell, Bel2) J~el]) . C191

solve((H1 and H2) ,Be1 ,~,s,~-~,~-and,~-or) :- C201
solve (HI ,Be1 1 ,F-s, F-p , F-and, F-or) , C2 11
solve (H2 ,Be12 ,F-s ,F-p, F-and ,F-or) , C221
apply(F-and(Bel1 ,Bel2) , [Bell) . C231

solve(H,Bel,F~s,F~p,F~and,F~or) :- C241
parse(H, - , Belp) , ! , C251
bagof (Belx, C261

(parse (H,E, Bel-rule) , C271
solve(E,Bel~e,F~s,F~pyF~andyFFor), C281
apply(F,s,[Bel-e,Bel-rule,Belx)), C291

Bels) , C301
apply(F,p, [Belp, Bels, Bell 1. C311

solve(E,l,F-s,F-p,F-and,F-or) :- E,!
solve(E,O,F-s,F-p,F-and,F-or).

The base-fact [15] of SOLVE, which is ground, assigns a belief of 1 to the
constant hypothesis true. The subsequen t handling of Boolean conditioning
in [16-231 is self-explanatory. In [25], PARSE is used to check if the hypoth-
esis II is present in the knowledge-base, and, if so, to bind Belp to its prior
belief. The BAGOF predicate accomplishes a few things. First, it looks
(through parsing) [27] for all the rules E -4 HBelrule whose conclusion is
H . For each such rule, SOLT/E= is applied recursively to compute the poste-
rior belief in the premise E , yielding Bcl-e 1281. This current belief, in turn,
is used by F-p to attenuate the original rule's degree of belief, Belsule, into
Belx [29]. Attenuated degrees of belief are strung together (via BAGOF)
into the list Bels [30].

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

The "punch line" of SOLVE is 1311. When we get to this point, the list
Bels consists of all the attenuated degrees of belief associated with all the
rules whose conclusion is H. Since this list is constructed recursively, Bels
encapsulates all the evidence tha.t SOLVE drew from all the reasoning chains
whose ultimate conclusion is H . At that point, the parallel combination
function F-p is applied to fuse this informa.tion with the prior belief Belp,
yielding the ultimate outcome of SOLVE, i.e. the posterior belief in H, Bel.

To sum up, solve(H, Bel, F-s, F-p, F-and, F-or) implements an exhaustive
depth-first search, pruning all the rules and facts which bear evidence on
H , either directly or indirectly. As a side-effect of this process, the program
computes the posterior belief in H modulo the variable belief calculus <
Fs, F-p, F-and, F-or >. When SOLT/E branches horizontally, F-p is used
to combine the degrees of belief originating from rules whose direct conclusion
is H. When SOLVE backtraclcs from a vertical recursive call, F-s is used
to synthesize the belief committed to I3 from lower-levels of reasoning. If a
Boolean "fork" is encountered, either F-and or F-or are invoked to compute
the posterior belief coming out of the fork.

Note again that the predicates < F s , F-p, F-and, F-or > are left unspec-
ified. This is done in purpose, in order to highlight the modularity and
top-down design of SOLI/E. In a separate appendix, we give logic models
of the CF calculus, < c f -s, c f -p, c f -and, cf -or >, and the Bayesian calculus,
< b-s, b-p, b-and, b-or >, and explain how they may be bound to SOLVE'S
theory.

In the context of 1a.rger logic model, the fully instantiated SOLVE meta-
interpreter ma.y be viewed as simply yet another predicate. Therefore, one
can blend SOLVE with other predica.tes in a variety of different ways. For
example, a.ssume that the dater from Section 4.1 wishes to print a list of dat-
ing candidates sorted in decreasing order of composite attractiveness. This
version of the little black book may be crea.ted through the following (CF-
oriented) predicate:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

c r e a t e (Book) : -
bagof ((X ,Rating) ,

(~ o t e n t i a l - d a t e (X) ,
solve(date(X) ,Rating, cf -s ,cf ,p ,cf ,and,cf -or) ,
XS) ,

s o r t (Xs, Book) .

Given the database listed in Figure 1 (consisting of only two potential dates),
the goal create(BooX:) will yield the response:

Book = [(pat,0.832),(nicky,0.426)1.

The casual nature of the dating example should not obscure the underlying
seriousness of the SOLVE: meta-interpreter. Consider, for example, a medi-
cal diagnosis application. In this contest, potential dates and their perceived
characteristics correspond to prospective diseases and symptom manifesta-
tions, respectively. Sub-hypotheses, like ricfi(X), correspond to clinical syn-
dromes or intermediate diagnoses. Datiilg rules are analogous to text-book
medical knowledge and heuristic inferences of experienced experts. Under
this interpretation, the evaluation of a prospective date is analogous to the
diagnosis of a certain patient, and the goal creat €(Book) would probably be-
come rank(Diseases). Given a certain lino~vledge-base and a set of observed
symptoms, this goal gives a list of all the potential diseases that this patient
might have, in decreasing order of Iilielil~ood.

Conclusions and Future Research

The validity of alterna.tive belief Ianguages can be investigated in two different
and complementary methodologies: analytical, and empirical. The analytic
approach is chiefly concerned with compa.ring belief calculi to well-known
norma.tive criteria., e.g. probal~ility theory or predica.te logic. This line of
resea.rch leads quite clea.rly to the realiza.tion tha,t, not unlike the humans that
they attempt to model, all rule-hased belief ca.lculi contain varying degrees

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

of normative violations. Nonetheless, the extent of these violations is not
well understood, and the sensitivity of the system's advice to such violations
is still an open question.

In spite of their normative deficiencies, rule-based belief calculi are widely-
used in commercial expert systems. Moreover, it might be that a careful
design of the underlying knowledge-base might ensure that normative viola-
tions are kept to a minimum. With that in mind, there is a crucial need for an
empirical approach to investigating the external validity of alternative belief
calculi. This line of research simulates real settings in which the expertise of
human subjects is elicited and represented via different belief languages. The
experiments then pit the systems' recommendations with (a) the judgment
of the humans Chat they claim to model, and (13) an external norm - a gold
standard - which may be a either a credible expert opinion, or, preferably,
the actual "true state of the world."

The empirical approach is very novel. There exist only a few empirical stud-
ies which pit a.lternative belief languages, e.g. Mitchell [17], Yadrick et a1
[37], Wise [36], and Schocken [24]. These studies attempt to understand the
conditions under which one belief language performs better than another.
Therefore, they h a ~ e important prescriptive impIications on knowledge engi-
neering,

One limitation that inhibited more research in this direction has been a lack of
a common benchmark environment. Such an environment ought to simulate
the mechanics of rule-based inference and, at the same time, allow a great
deal of design flexibility in terms of tinkering with alternative belief calculi
without touching the rest of the system. We feel that Prolog and meta-
interpret.ers like SOLIfE provide a very flexible environment in which such
experiments can be carried out. ?Ve hope that these and similar tools will
promote further research on the questionable validity of rule-based inference
under uncertainty.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

6 Appendix: Implementation Details

6.1 Knowledge Representat ion

Consider the set of rules and facts depicted in Figure 1. Let us assume
that this knowledge-base is physically stored and maintained in a standard
text file called KBASE. How can we merge the contents of this file with a
standard Prolog database? ideally, we would like to simply prove the goal
consult(kbase). This, however, won't work, since the K B A S E contains non-
standard Prolog terms. This difference may he resolved through the following
predicate:

define-syntax :- op(255,xfy,->),
op(254,xfx,#),
op(254,xfx,or),
op(253,xfxYand).

Each application of the system predicate op(P, A,T) defines the token T
as a new, non-standard Prolog operator. The precedence and associativity
properties of T are given by P and A, respectively. The actual values of
these arguments vary from one Prolog implementation to another and are of
little interest.

6.2 The CF' Calculus

The C F calculus presented in Section 2.2 is implemented below through the
four predicates < c f -and, c f -or, c f -s, cf -p >:

/* CF Boolean conditioning functions.
input : Be1 1, Be12
output: Be1 */

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

/* CF sequen t i a l propagation f u n c t i o n .
i n p u t : Bel-e: c u r r e n t b e l i e f i n premise,

Bel-rule: r u l e ' s degree of b e l i e f ,
output : Bel: a t t e n u a t e d r u l e ' s degree of b e l i e f */

cf ,s(Bel,e,Bel,rule, Bel) : - max(0, Bel-e ,Bel,max) ,
B e 1 is Bel- ru le * Bel-max.

/* Binary CF p a r a l l e l combination f u n c t i o n .
i n p u t : X , Y : two CFJs of independent r u l e s which render

evidence t o t h e same hypothes is)
ou tpu t : Z: combined CF */

cf,p,2(X,Y,Z) :- ((X=<O,Y>=O) ; (x>=o,Y=<o)),
abs (X,A), abs(Y ,B) , min(A,B,C),
Z i s (X+Y)/(I-C), ! .

/* n-ary CF p a r a l l e l combination f u n c t i o n */
i npu t : X s : a s e t (cf (h 1 e l) , . . . , c f (h 1 en))
ou tpu t : Bel: c f (h l e 1 , . . . , en)

The explicit omission of the first va.ria,ble in the cf -p function underscores the
fact that the C F 1angua.ge ignores pl-ior beliefs. This can be seen clearly in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

the definition of the base-fact of cf-p, which models the state of insuficient
reason (Savage, [23]). This case, which is chara.cterized by an empty set of
degrees of belief, causes c f -p to assign a posterior belief of 0 to the hypothesis
in question. This is consistent with the additive C F philosophy, in which
the absence of any relevant evidence on h causes the belief in h to neither
increase nor decrease. In a Bayesian language, one would normally model
this case by setting the posterior belief in the hypothesis to its prior belief.

6.3 The Bayesian Calculus

The Bayesian calculus presented in Section 2.3 is implemented in below
through the four predicates < b-and, b-or, b-s, b-p >:

/* Bayesian Boolean Condi t ioning: */

/* Bayesian s e q u e n t i a l p ropaga t ion f u n c t i o n .
I n p u t : Bel-e: P(e)

PO: P (h) ,
91: P (e l h) ,
Q2: P (e l h) ,

Output: PO: P(h) ,
PI: P q e l h) ,
P2: P ' (e l h) */

/* Bayesian P a r a l l e l combinat ion f u n c t i o n :
i n p u t : Bels : a set of 3 -p lace degrees of b e l i e f (B e l l , , . . , B e l n)

P r i o r : p r i o r b e l i e f i n t h e h y p o t h e s i s , P(h)
Output : P: p o s t e r i o r b e l i e f i n t h e h y p o t h e s i s , P (h le1 , ..., en)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

b-p([Priorl,],Bels,P) :-

mult (Bels, Product -Odds) ,
Odds is (~rior/(i-prior)) * Product-Odds,
P is Odds/(l+Odds).

rnult(C1 ,I).
mult([[XI ,X211Xs1 ,Product) : - mult(Xs ,Bel,Xs) ,

Product is (Xl/X2)*Bel,Xs.

/* A more efficient, tail-recursive version of MULT
can be defined as follows: */

mult (List ,Product) : - multl (List, 1 ,Product) .
multl([],Accumulator,Accumulator).
multl([[- ,X1 ,X2] 1 Xs] ,Acumulator,Product) : -

NewAccumulat or is Accumulator*X1/X2,
mult 1 (Xs , NewAccumulator , Product) .

6.4 Miscellaneous predicates

The following predicates complet,e the definition of the SOL?'E meta-interpreter:

bagof(X,G,,) :- asserta(found(mark)),G,asserta(found(X)),fail.
bagof (, , , ,L) : - collectFound ([I ,M) , ! ,L=M.
collectFound(Lin,Lout):- getNext(X),!,collectFound([XlLin],Lout).
collectFound(Lin,Lin).
getNext (X) : - retract (f ound(X)) , ! ,not (X==mark) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

/* the following predicate sorts a list of pairs [x,Y]
in decreasing order of Y */

sort (CX IXs] ,Ys) : - sort (Xs ,Zs) , insert (X,Zs,Ys) .
sort ([I , [I .
insert(CXl,X21 ,[I, CCXl,X211).
insert(CXi,X23 ,CCYlyY21 IYsl , E[Y1,Y21 IZs]) :-

X2>Y2, insert ([XI ,X2] ,Ys ,Zs) .

6.5 Cooking Instructions

The practice of incremental enhancements of meta-interpreters was ana-
lyzed by Sterling [31]. This analysis, which draws its terminology from
object progra.mming, suggests tha.t Prolog meta-interpreters are analogous
to Lisp Flavors. Using Sterling's 1a.nguage (which is underlined), the mod-
ules PARSE a.nd < F A , F-p, F-and, F-01. > a.re orthogonal enhancements
to the SOLVE fia.vor, in tha,t the computations necessa.ry for incorporat-
ing them are completely sepasa.te. The P A R S E predicate amounts to a
beha(vi0ra.l enha.ncement : it extends the computation performed by SOLVE
without changing the meta-goal of the enhanced meta-interpreter. This is
done simply by a,dding the parsing predica.tes to SOLVE'S theory. The fla-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

vor solve(H,Bel, Fs, F-p, F-and, F-or) is a structural enhancement of the
vannila flavor solve(H), in that the extra arguments < Fs, F-p, F ~ n d , F-or >
(which are bound to a fixed belief calculus < f s, f -p, f a n d , f -or >) are used
t o compute Be1 as H is being solved.

So, now that all the ingredients have been provided, the creation of a rule-
based inference system is merely a matter of mixing flavors. Let p and q be
two Prolog predicates whose exknded theory is stored in two text files whose
names are also p and g, respectively (the extended theory of p includes p7s
theory and the theory of all the predicates mentioned in p's theory. In what
follows, when we say add p to q or mix I:, and q we mean "prove the goals
consult(p) and consudt(q)."

With this terminology in mind, to prepare a CF-oriented inference system
follow this set of irsstrractions:

1. Create a CF-oriented knowledge-ba.se a.nd saxre it in a file called K B A S E

2. Prove the god de f ine-sp12tuz

3. Mix the C F PARSE predica.te with the SOLVE flavor

4. Add the predicates c f s, cf -p, c.f -a??.(], c f -or

5 . Mix the resulting inference system with the knowledge-base K B A S E

6. Confirm the hypothesis h and compute its posterior certainty-factor by
proving the meta-goal solve(h, Bel, c f s , c f -p, c f a n d , c f -or).

To prepare a Bayesian-oriented inference system, follow this set of instruc-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

tions:

1. Create a Bayesian-oriented knowledge-base and save it in a file called
ICBASE

2. Prove the goal de f ine-syntax

3. Mix the Bayesian PARSE predicate with the SOLVE flavor

4. Add the predicates b-s, b-11, b-and, b-or

5. Mix the resulting inference system with the knowledge-base KBASE

6. Confirm the hypothesis h and compute its posterior belief by proving
the meta-goal solve(h, Bel, bps, b-11, b-and, b-or).

6.6 A Note on Function Variables in Prolog

Throughout the paper, the belief calculi functions were specified using the
conventional algebraic notation Y = f (X) . In Prolog, this notation has
no meaning. Instead, the logic progra.mming equivalent of the computation
Y = f (S) is normally the predica.te f (S, Y). This goal is made to succeeds
always, unifying the va3ria.ble 1'- to the value f (X). For example, the successor
function s (X) = X + 1 is implemented tl~rough the predicate s(X, Y) :

-Y is X+1. VV11en we a.sk Prolog to prove t,he goal 4 3 , Y), Prolog succeeds
and binds Y to 4 as a. side-effect.

Now, things become slightly more complicated if we wish to treat the func-
tor f itself as a variable. This is precisely ~sl la t is required in the SOLVE
meta-interpreter, which uses a belief calculus without knowing its exact spec-
ification. From a design standpoint, the ideal solution is to pass the four
predicates < f s, f-p, f a n d , f -or > as parameters to the SOLVE predi-
cate, creating a goal of the form solz~e(h,Bel, f s , f-p, f-and, f-or). In this
context, the predicates < f -s, f -p, f -and, f-or > are meant to instantiate
the variables < Fs, F-p,F-and, F-or > in SOLVE. However, this type
of quantification is beyond the scope of first-order predicate calculus. This
limitation can be overcome via Prolog's "univ" =.. operator. Among other

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

things, this operator may be used to bind variables to functions. For exam-
ple, consider the following APPLY1 predica.te, defined in by Sterling and
Shapiro, 1331):

applyl(F,Xs) :- Goal=..[FI~sl, Goal.

The goal applyl(f, X's) causes Profog to apply the function f to the argument
list Xs. For example, the goal apply 1 (s, [3, Y]) will succeed, resulting with
Y = 4.

In this paper we define a more polverf~11 version of APPLY, as follows:

Defined that way, the first argument of A P P LI', Predicate, can be either an
atomic symbol naming a predicate, or, alternatively, a term representing a
predicate with some of its arguments supplied. For example, apply (s, [3, Y])
will yield Y = 4, and so will apply(s(3), [E']). As yet another example of
the utility of APPLY, coilsider the following numeric computation of the
square-root function, using Newton's approximation formula:

sqrt(X,Y) :- apply(newton(0.01) , [x,Y]).
newton(Epsilon,X,Y) :- iterate(Epsilon,X,Y ,l) .
iterate(Epsilon,X,Y,Y) :- Diff is X-Y*Y,abs(Diff,Z),Z=<Epsilon,!.
iterate(Epsilon,X,Y,Z) :- NewZ is (X/Z+Z)/2,
iterate(Epsilon,X,Y,Newz)

Defined that way, the parameter of the .NET.TTI'ON predicate, currently set
to 0.01, specifies the precision level of the SQRT function. That is, Y is
guaranteed to be within a 0.01 neigl~l~oshood of the true value of a. In
this example, sqrt(4, Y) will yield Y = 2.0006.

To sum up, we see that the term representing the predicate in our definition
of APPLY is the equivalent of a clostire in a Lisp-based functional language.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

References

[I] J.B. Adams. Probabilistic reasoning and certainty factors. In B. G.
Buchanan and E. H. Shortliffe, editors, Rule-Based Expert Systems,
pages 263-271, Addison-IVesley, 1984.

[2] Myers C. D. Alvey, P. L. and M. F. Greaves. An analysis of the problems
of augmenting a small expert system. In M. A. Bramer, editor, Research
and Development in Expe~k Systems, pages 61-72, Cambridge University
Press, 1986.

[3] J.F. Baldwin and M.R.M. Monli. SLOP - a System for Support Logic
Programming. Technical Report, University of Bristol, 1986. I.T.R.C.
research report.

[4] B.G. Buchanan and E.1-I. Shortliffe. Uncertainty and evidential support.
In £3. G. Buchanan and E. W. Shortliffe, editors, Rule-Based Expert
Systems, pages 217-219, Addison-Wesley, 1984.

[5] R. Carnap. Logical Fouizdations of Probability. University of Chicago
Press, 1954.

[6] I<. L. Clark and F. G. R4cCahe. Prolog: a language for implementing
expert systems. 111 D. Hayes, Rlichie and 1.51. H. Pao, editors, Machine
Intelligence 10, pages 455-470, Ellis 1_?orwood, 1982.

[7] P. Cohen, A, Davis, et a,l. Representa,tiveness and uncertainty in classi-
fication systems. The A I Afagaziize, Fall:139-149, 1985.

[a] G.F. Cooper. NESTOR: a Computer Based A4edical Diagnosis Aid That
Integmtes Casual an.d Probabilistic Icnowledge. PhD thesis, Stanford
University, 1984.

[9] G.F. Cooper. Probabilistic Inference Using Belief Networks is NP-Hard.
Technical Report, Stanford Uni~~ersity, 1987. I<SL-87-27, Medical Com-
puter Science Group, I<noivledge Systems Laboratory.

[lo] M. Dincbas. Meta.contro1 of logic programs in metalog. In Proc. of
FGCS, Tokyo, Japan, pages 361-370, November, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

[ll] R.O. Duda, P.E. Ha.rt, and N.J. Nilsson. Development of a Computer-
Based Consultant for hfineral Ex1)loration. Technical Report, SRI, 1977.
1nternationa.l Projects 5821 and 6415.

[12] B .N. Grosof. Evidential informat ion as transformed probability. In J.F.
Lemmer and L. Kanal, editors, Uncertainty in Artificial Intelligence,
pages 272-294, North Holland, 1986.

[13] D. E. Heckerman. Probabilistic interpretation for mycin7s certainty fac-
tors. In J. F. Lemmer and L. I<anal, editors, Uncertainty in Artificial
Intelligerzce, North Holland, 1986.

[14] R.A. Howa.rd and J.E. Ma,tlleson. Influence diagra,ms. In R.A. Howard
and J.E. R/ia,tl~eson, editors, Rending on tlze Principles and Applications
of Decision An.alysis, pages 721-762, Strategic Decisions Group, Menlo
Park CA, 1981.

[15] D. Kahneman and D. T. hliller. Norm theory: compa,ring reality to its
alternatives. Psychological Review, 93(2):136-153, 1986.

[16] S. Lichtenstein and J . R. Newman. Empirical scaling of common verbal
phrases associated with numerical probabilities. Psychonomic Science,
9:563-564, 1967.

[17] D.H. hlitchell. Tlie Sliape Expe~-iment. Technical Report, Northwestern
University, 1986.

[l8] A. Nemell. Production systems: models of control structure. In W.
Chase, editor, V i s ~ ~ a l Injo~,nration Processing, pa.ges 463-526, Academic
Press, New York, 1973.

1191 Hammond P. Micro-prolog for expert. systems. In I<. L. Clark and F. G.
McCabe, editors, hficro-Prolog: P~*og?nmnzin.g in Logic, Prentice-Hall,
1984.

1201 J . Pearl. Fusion, propoga.tion and structuring in belief networks. Arti-
ficial Intelligence, September, 19SG.

[21] L. Pereira. Logic control with logic. In Proc. of the First International
Logic Prograrnrnin,g Conference, Afa,rseille, pages 9-lS, 1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

[22] Davis R. and J. J. King. The origin of rule-based systems in ai. In
B. G. Buchanan and E. H. Shortliffe, editors, Rule-Based Expert Sys-
tems, pages 20-52, Addison-Mlesley, 1984.

[23] L.J. Savage. The Foundations of Statistics. Wiley, 1954.

2241 S. Schocken. Quasi-Pro babilistic Rule- Based Inference. ICIT Press, 1989.

[25] S. Schocken and P. R. I(1eindorfer. Artificial intelligence dialects of the
bayesian belief language. IEEE Transactions on Systems, Man, and
Cybernetics, 1989. Forthcoming.

[26] G. Shafer. Jeffrey's rule of conditioning. Philosophy of Science,
September:337-362, 1981.

[27] G. Shafer. A Ahthematical Theory of Evidence. Princeton University
Press, 1976.

[28] G. Shafer and A. Tverslcy. Languages and designs for probability judg-
ment. Cognitive Science, 9:309-339, 1985.

[29] E. Y. Sha.piro. Logic progra,ms with uncerta,inties: a tool for implement-
ing rule-baed systems. In Proc. ofthe IJCAI, Krlsruhe, West Germany,
pages 529-532, 1983.

[30] E.H. Shortliffe. Computer-Based Medical Consultation: AJI'CIN. Amer-
ican Elsevier, 1976.

[31] L. S. Sterling. Meta-interpreters: the fla.vors of logic programming? In
Proc. of th,e TVorksh,op on the P o t ~ n d ~ ~ f i o n ~ of Deduction, Databases, and
Logic Programming, Waslzin.gton, D. C., 1986.

[32] L. S. Sterling and M. Lalee. An expla,nation shell for expert systems.
Computational Intelligence, 1986 (to appear).

[33] L. S. Sterling a.nd E. Y. Sl.la,piro. The axt of prolog. pages 280-283, The
MIT Press, 1986.

[34] A. Tversky a.nd D. Khaneman. Judgement under uncertainty: heuristics
and biases. Science, 185:1124-1131, 1974.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

[35] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
Englewood Cliffs, N.J., 1976.

[36] B.P. Wise. Experimentally comparing uncertain inference systems in
probability. In J. F. Lemmer and L. I<anal, editors, Uncertainty in
Arti&cinl Intelligence 2, pages 89-102, North Holland, 1988.

[37] R.M. Yadrick, B.M. Perrin, D.S. Vaughan, P.D. Holden, and K.G.
Kempf. Evaluation of uncertain inference models i: prospector. In J.F.
Lemmer and L. Kanal, edit,ors, Uncertainty in A~.tificial Intelligence 2,
pages 77-88, North Holland, 19SS.

[38] L. A. Zadeh. Fuzzy sets. Information and Control, 83338-353, 1965.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-69

