THE DESIGN OF KNOWLEDGE-BASED SYSTEMS
FOR MANAGING ILL-STRUCTURED SOFTWARE PROJECTS

by

Rajan Srikanth
Leonard N. Stern School of Business
Information Systems Department
New York University
90 Trinity Place
New York, NY 10006

and

Matthias Jarke
Lehrstuhl fur Informatik
Dialogorientierte Systeme

Universitat Passau

P.O. Box 2540
8390 Passau, West Germany

July 1989

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

Working Paper Series

CRIS #211
STERN #89-80

Matthias Jarke’s work was supported in part by the European Commission under ESPRIT contract 892
(DAIDA), and by the Deutsche Forschungsgemeinschaft under grant no. Ja 445/1-1. The contributions of
Udo Hahn, Manfred Jeusfeld and Thomas Rose to the conceptual software process model used in this paper

as well as discussions with Vasant Dhar are greatfully appreciated.

-

Center for Digital Economy Research
Stern School ol Business

Working Paper 18-89-80

Abstract

Current planning and control procedures for large-scale software projects are not suf-
ficiently equipped to deal with changing or imprecise requirements, resource break-
downs, unexpected delays, etc. We propose a solution for managing change in
projects, based on a semantic model of the software design and development pro-
cesses. At the heart of this technique is the formation of islands of project knowledge
in a way that facilitates dealing with most design and plan revisions locally. A protocol
for interactive change management is presented that advocates need-based formation
of coalitions between islands as a means for graceful degradation in the place of strict
hierarchical control. The results of initial empirical investigations of the usability of

the approach and plans for its continuing evaluation are also reported.

Keywords: project management, coordination systems, distributed knowledge-based
systems, group decision support, proactive planning, software process model, software

knowledge base, software environment.

Center for Dioital Economy Ry

stern School of Bus

1 Introduction

Every organization undertakes “one-shot” activities that are not routine or repetitive,
requiring collaborative work among two or more participants to achieve a certain
purpose. We commonly refer to such undertakings as projects. The dimension
along which projects vary most is structuredness. A project is well-structured if
its objectives or deliverables can be specified with precision and detail apriori, and a
definite statement can be made about the sequence of activities, and kinds of resources
needed for this purpose. Projects in manufacturing and civil engineering for instance,
tend to be well-structured since they have clearly specified goals laid out in blue-
prints, and well-defined means to deliver these objectives. In this paper, we are
interested in projects which are less structured. We are concerned in particular with
situations where a strict, contract-like specification of the project cannot be made in
advance, but evolves as the project is undertaken.

Less structured projects such as the development of large-scale software systems
differ fundamentally from other projects because they are much more information-
intensive. Since they are ill-defined, a variety of assumptions must be made even at
the very beginning to impose a semblance of structure on the project. Events that
occur during project implementation and interactions with a changing external en-
vironment, periodically force reevaluation of these assumptions and may result in a
revision of project objectives and strategies. The complexity of managing such poorly
defined work enterprises is further worsened by the need for exchange of information
between multiple, semi-independent participants who exercise control over different
parts of the project. Considering the predominant role of information - how it is con-
tinuously generated, processed, and assimilated - it is apparent that the management
of ill-structured projects requires techniques to capture this information, and support
its characteristic patterns of usage and modification.

Current project management systems were primarily designed for use in well-
structured projects and therefore assume that there is only a limited need for on-

going information management. The network of project activities and requirements

of resources are treated as given and not subject to change. Activity durations and
resource availabilities may however vary as a result of environmental or chance fac-
tors. As a result, information management is limited to techniques for collecting,
assimilating, and propagating information about delays and resource breakdowns.

The advantage of using such a project model is its computational simplicity. Pow-
erful mathematical programming algorithms have been developed for finding optimal
schedules and resource allocations for a given project network [BMR89]. Ill-structured
projects however, function open-loop and evolve constantly. Since every aspect of
these projects is subject to change in an unpredictable way, efficiency is less of a
concern than effective response to change. The simple representation used by classi-
cal approaches does not provide adequate information for project control decisions.
Knowledge of the ‘logic’ behind project designs and plans, and mechanisms for re-
viewing them in the light of new information are necessary, but not available.

This research advocates a new approach for the management of unstructured
projects in general, and large-scale software development projects in particular. It
is anchored on strategies for the representation and management of project-related
information that draw upon observations from an empirical study that we conducted,
and work that the we have undertaken in developing knowledge-based approaches for
software development [DAIDAS88] and management of change in projects [SRI89]. We

advocate a two-pronged strategy:

1. Support for the “technical” aspects of change (revision of design specifications,
etc.). This could take the form of creating and managing a knowledge base
of project information, that captures the ‘logic’ or rationale behind design and
plan decisions. A software process and project model for structuring such a

knowledge base developed in [JJR89] is used in this paper. And,

2. Support for the “managerial” aspects of change (minimizing the impact of unan-
ticipated developments, building flexible plans & designs etc.). This may be
done by forming “islands” of project knowledge and using these as a basis for

distributing project responsibility. A methodology for partitioning the knowl-

edge base along these lines, is also offered in this paper.

Each island is an almost independent information-handling and control unit - a sort
of ‘organization-in-the-small’ - a set of project activities linked to other like units
by virtue of commitments requested or made. These commitments typically concern
design specifications or plan deliverables. The islands are formed in a way that most
knowledge relevant to the design and planning of a given part of the project, is
available locally within the island.

Formulation of the project control problem as an attempt to localize change within
islands, allows us to apply techniques that we develop, recursively to higher level
aggregates - collections of islands, multiple interdependent projects, etc. We turn
now to a brief review of other research that has sought to introduce knowledge-based
technologies into project management over the past few years.

One category of approaches deals with the development of conceptual models for
capturing project-related information. Most of these approaches are grounded in
the traditional planning-for-purpose-of-scheduling framework, that views projects in
terms of activities and precedence relationships. Bimson and Burris [BB88] for in-
stance, provide a frame-based reformulation of classical project modelling techniques
along with some limited document management capabilities (cf. also [HOF88]). In a
similar but more extensive fashion, Callisto [SFG85] provides formal representations
for notions of project state, activities, and goals. Abstraction mechanisms allow the
description of projects in these terms at varying levels of detail. Even greater detail
is captured in the PIMS model [VAUS88|. It is interesting to note that all of these
proposals use essentially the same interval-based model of time proposed by [ALLS3].
Extensions of the interval-based model for specific use in software project manage-
ment have been studied by Ladkin and others at the Kestrel Institute [GJLP8T7].

A second class of approaches focus on appropriate architectures for developing
knowledge-based systems to manage software projects in specific domains. Kurbel
and Pietsch [KP88] propose a hierarchical architecture for the management of evo-
lutionary software projects (such as expert systems development). There are three

interacting levels in this hierarchy: strategy, project structuring (work breakdown

3

enter for Diental Economv Research

Stemn Sch

and communication), and project operation (time management). Feedback from
lower levels to higher levels is posited, but no formal model of this interaction is
offered. Kerzierski [IKED84] addresses the issue of knowledge base design. He pro-
poses integrating knowledge of project structure with knowledge of the target system
to be developed. Subsequent work within the KBSA project [JDL88] extends this
project knowledge base by adding application-specific software engineering heuristics
and procedures, aimed at automating project planning.

A final class of approaches that apply knowledge-based technologies to some as-
pect of project management go by the name of collaborative-work tools. They em-
phasize ongoing control of distributed work in offices or projects, rather than planning
activities per se [FIKES82]. Their objectives is to structure the communication un-
dertaken between participants in collaborative work, by providing a set of primitive
message types embedded in enhanced electronic mail systems (the COORDINATOR
[WF86]). Message types specific to software engineering such as bug reports, have
also been developed [DDSVZ86, KED84]. The LEONARDO project at MCC [BCE-
GRS86] applies this approach to the design of a face-to-face multimedia meeting
support environment for software projects, whereas the CoNeX [HJ89] and CoAU-
THOR [HJKFP89] projects at Passau University aim at the conceptual integration
of software project management, software development environment, and software
documentation development and maintenance in a distributed real-time multimedia
conferencing setting.

In summary therefore, most existing work in developing knowledge-based systems
for project management uses the traditional scheduling perspective as the point of
departure. While allowing a more detailed representation of activities, resources,
milestones, and other domain-specific project knowledge, the proposals just reviewed
do not quite address the needs of ill-structured projects. They do not capture the
dependencies between objectives, activities, and resources, that underly the logic of
project design and plan decisions. As a result, support for change management is
limited. Collaborative-work tools on the other hand, provide a basis for structuring

the communication undertaken to manage change, but do not offer any guidance for

design or plan revision decisions. The ideas presented in this paper differ from both

of these in the following respects:

e We have developed a methodology for change management that integrates tra-
ditional scheduling concerns with the need for control and coordination in the

face of change.

e We extend the basic conceptual model of projects used by techniques such as
CPM and PERT, to capture the logic of project plans in order to facilitate
pro-active project planning. These extensions are ‘consistent’ with the existing
model and can therefore be grafted on to currently available project manage-

ment systems. And

e Finally, the project model and change management methodology offered in this
paper have strong empirical roots, and are being subjected to careful validation.
The completeness and understandability of the model, and the effectiveness
of change management with this methodology, have or are being empirically

evaluated.

The remainder of this paper is organized as follows. Section 2 outlines the empiri-
cal background, and the basic principles we propose for the design of knowledge-based
systems for managing ill-structured projects. In section 3, a formalization of these
principles in the context of software projects, is sketched out in terms of a knowledge
representation language based on semantic networks. Section 4 describes a project
management methodology based on this formalism, its implementation through a
knowledge-based support system, and a strategy for empirical evaluation. Section 5

summarizes conclusions and directions for future work.

2 Requirements for a Project Knowledge Base

We argue that ill-structured projects are information intensive, and that effective
management of information is critical for their success. Information management

requires the development of techniques for: (1) capturing all appropriate information,

5

(2) representing it in a form that facilitates effective usage, (3) processing and utilizing
the information to maximum benefit, and (4) ensuring the integrity of the ‘state of
information (or knowledge)’ over time. In this research, we develop an approach for
the management of ill-structured projects by addressing these requirements.

The first question that must be addressed is “what information must be cap-
tured?”. A starting point for finding an answer to this question is to examine what
we mean by a project, more closely. This research takes the position that a project
is a purposeful, non-routine activity that involves collaboration among people. The
process of software development is clearly a point in case. By defining projects in this
manner, we make certain implicit assumptions about the nature of the project world
- the entities of interest, and dependencies between them. In this section, we show
how conventional views of projects differ from this perspective and are inadequate
for our purposes. We offer a formal model or ontology, of the project domain and
empirically demonstrate its adequacy for capturing information used in project plan-
ning. We then develop prescriptions for how this information must be represented
and organized in a project knowledge base, for the effective management of change.
One important characteristic of these prescriptions is that they facilitate knowledge

base maintenance and ensure greater integrity of stored knowledge, over time.

2.1 Conceptualizations of Project Management

Research that has addressed project management concerns to date, belongs to one of
two classes: (1) network planning techniques, and (2) collaborative-work research. A
brief overview of these areas is offered below.

Network planning techniques (CPM/PERT) are typical of the classical approach
to project management. They model a project as a given network of activities linked
by precedence relationships. Resources are seen as constraints on finding best sched-
ules, and allocation of resources is undertaken using mathematical programming for-
mulations, to maximize utilization or minimize project duration (Figure 1).

Though the classical approaches provide powerful algorithms for efficient schedul-

ing, the information they capture is limited to activity precedences, duration and

I%EE%

/’-

Figure 1: Classical view
of Project Management

resource estimates. This surface representation of available project knowledge is
probably appropriate for well-defined and repetitive projects such as in manufac-
turing or engineering. However, it proves inadequate for Information Age projects
like large-scale software development where there is a need to manage a wide variety
of information. For instance, the goals of a project are typically not clearly specified
and evolve during implementation. Project plans made in these situations reflect
assumptions that have been made to impose some structure. As goals evolve, the
assumptions must be reevaluated and plans revised accordingly. Yet another source
of difference is that people resources utilized by these projects tend to fall under the
growing category of “knowledge workers”, as different from labor or clerical person-
nel. They collaborate with each other, exchange information, and exercise control
over different parts of the project. Resources such as these cannot be treated as
passive scheduling constraints.

Techniques for modeling collaboration between people, and computer-based tools
for su;ﬁporting collaborative work have become an active area for research in the
recent past [FIK82] [WF86]. Collaboration is viewed as a process in which individual
participants initiate requests, and make commitments to fellow workers concerning
the performance of activities at specified points in time (Figure 2).

Sophisticated tools have been developed for structuring the communication pro-
cesses involved in collaboration [COORD86]. Though such tools offer added value
by providing formal techniques for electronic messaging between participants, there
is little support for the complex decision-making undertaken to plan and control col-
laborative work.

Classical approaches to project management, and techniques for modeling work-
group collaboration therefore represent different extremes on the spectrum of project
ontologies. It appears however, that neither of these conceptualizations succeeds
in capturing the wealth of knowledge typically used in the planning and control of

Information Age projects.

=1

s

o\
CES |

O
HESOUR

Figure 2: Collaborative Work
perspective on project management

2.2 Some Empirical Evidence

We conducted a set of empirical studies to better understand the knowledge used by

project managers planning software projects.

Subjects: Ten part-time graduate students (6 female, 4 male) of an advanced cap-
stone Information Systems elective participated as subjects in this study. These
subjects had an average 2.7 years of experience in managing systems development
projects at work. Their business backgrounds varied but a majority worked in the

financial services industry.

Task: A case study that described problems faced by a company which manually
stored and retrieved personnel document microfiches was presented, and an outline
for a computer-based alternative was offered. Subjects were then asked to imagine
they were in-charge of the systems group, and required to prepare a plan and schedule
for designing, developing and implementing a computerized document maintenance

system.

Data Collection and Analysis: Collection and analysis of think-aloud protocols
[ES84] is a technique that has gained wide-spread acceptance in experimental psy-
chology as a method for studying cognitive information processing. In this study,
subjects were instructed to “think aloud” while planning the project, and to voice
all assumptions and thoughts. These think-aloud protocols were recorded on audio
tape and subsequently transcribed. An analysis of the transcripts was performed to
identify the different kinds of knowledge used, and to obtain insights into the process

of project planning,.

Findings: Analysis of the transcripts clearly establishes that subjects engage in
more than just specifying activities and precedences. For instance, subjects made
use of a variety of information to reason about project objectives/deliverables and

activities:

Working Paper 15-8

SCALE)

SERn

Figure 3: Conceptual Model
for Information Age projects

“You have to make a decision whether to use this ADF facility or the [MS. ADF seems
{0 be latlored to the applicaiion (from the description). If you want to go to ADF. you
will have to irain your people.”

“You might also want to do a demo to your users - I put as a task ‘Convincing users’
(to go with the system), because the users have a different tdea in maind (according lo
the case).”

“After we delermine what the index 1s, then we also need to determine the conversion
strategy. We have a system in place today and we need to convert il lo a new system.

We have to determine how we are going fo do that.”

In addition, subjects considered several kinds of relationships between activities, and

made assumptions or statements of preference while determining precedence relation-
ships.
“Determining the requirements - we can determine the requirements before we learn the
system, bui it would’nt be a good idea. We should write requirements understanding
the tool we have to work with..”
“Designing the screens, I think, does not rely on the design of the index because the
internal daiabase could be structured in a certain way and the screens could be siructured
in a different way.. I am going to put that parallel to Designing the mder, but I am
going to put il after Convincing the users because we want the user’s to help us design
screens..”
. Conversion - if we are using a PC, conversion can start as soon as we have designed

the indez, and it does not depend on the screens and the reports.”

The implications of these findings for the development of techniques for managing
software projects are the following: (1) a variety of knowledge other than activities,
and precedence relationships underly the reasoning processes involved in the develop-
ment of a project plan, (2) this knowledge may be systematically captured, and (3)
availability of this knowledge may be used to pro-actively plan projects to accomodate

change, and subsequently to generate strategies for control.

2.3 Enhanced model of project knowledge

Based on our empirical observations, we developed a model for conceptualizing Infor-
P P g

mation Age projects (Figure 3). This view of the project world is adapted from the

9

Starn Schoe

Waorkme Paper [S-89-80

ontological model of projects proposed in [SRISI].

Descriptive knowledge about any domain including projects. may be captured by
modeling entities of interest, and the dependencies that exist between these entities.
Project objectives or deliverables, the activities that accomplish these objectives, the
resources that are used for this purpose, and the time scale or time horizon over which
the project is scheduled, are the types of project entities that we are concerned with.

Two types of decisions are made during project planning: design decisions, and

plan decisions.

e Design decisions concern the determination of project objectives or specifica-
tions (design objects), and the activities and resources needed to “deliver” these

objectives (design activities).

e Plan decisions involve the determination of precedences between activities,
and resource allocations, based on assumptions about work dependencies or

relationships between activities.

Documentation of the knowledge underlying design and plan decisions, is critical for
managing change in poorly defined, evolving project scenarios. An example is the
case of developing large software systems.

To document this knowledge, it is also necessary to define the different kinds
of dependencies that may exist between project entities. There are primarily two
categories of dependencies: associations representing dependencies between entities
of different types, and relationships or dependencies between entities of the same
type. Associations of particular interest are the ones between objectives and the
activities they are accomplished-by, associations between resources and the activities
they commit-to, etc.

Relationships can also be of several types. Srikanth [SRI89] took a work-centered
view of projects, and based on observations from the empirical study, identified the
following 4 kinds of activity-relationships: (1) output-input relationships represent-
ing one activity’s dependence on another for needed input, (2) facilitatory relation-

ships where the performance of one activity presumably makes another easier, (3)

10

coordination-reqd relationships where reciprocal influences between activities makes
a temporal overlap necessary, and (4) shared-resource relationships between activities
that use the same resource in adjacent time intervals. This categorization of activity-
relationships refines and extends the classification of work dependencies proposed in
the literature on Organizational Design by Thompson [THO67].

This characterization of project knowledge was evaluated through a follow-up
study. Six experienced project managers - three Civil Engineers and three Systems
Development professionals (with > 5 years experience) - were asked to think out
aloud while they planned two different test projects: a kitchen renovation, and the
development of a computerized document maintenance system. The transcripts of the
think-aloud protocols were studied by a panel of 3 independent judges, who coded the
information heeded by subjects, in terms of these relationships. Inter-rater reliability,
used as a measure of how appropriate the relationship categories were, turned out
reasonably high. The judges also agreed that in their subjective evaluation, the model
seemed complete and adequate for representing information used in generating project
plans.

The above taxonomy of relationships focusses on knowledge underlying plan de-
cisions. In ill-structured projects, we have seen that a second class of class decisions
- project design decisions - are also of interest. This paper extends the taxonomy
by incorporating dependencies that play a role in decisions about design: (1) When
a set of activities is specified as necessary for “delivering” a single design object or
objective, each member of the set is conjointly dependent on the others. And, (2)
two activities are logically dependent when the method or way of doing one activity
determines the choice of method for the other.

When project knowledge is represented in terms of this model, we succeed in
capturing the ‘whole picture’. It facilitates documentation of the logic behind project
decisions. For projects that evolve over time, this kind of documentation allows
managers to consider alternative responses to change in the light of earlier decisions
about the project design and plan.

In terms of the information management problem posed earlier, this observation

11

gives us a basis for an answer to the second question: “in what form must information
be represented to facilitate its effective usage?” We argue that knowledge of the logic
underlying project decisions must be represented in a knowledge base so that it it is

available for consultation prior to making revisions in design and plan.

2.4 Design goals for project knowledge bases

The first and primary goal in designing a knowledge base of project information, must
therefore be to capture the different kinds of knowledge embodied in the enhanced
project model. A discussion of how some of this information can be effectively utilized
to generate strategies for change management can be found in [SRI89].

That however, is not all. In addition to the static characteristics of the knowl-
edge base, it is also essential to consider its dynamic traits: patterns of usage and
modification, maitaining integrity of knowledge over time, etc. Ill-structured projects

evolve and are prone to one or both of the following kinds of changes:

1. Changes in design specifications (changes in objectives or available design al-

ternatives). And,

2. Changes in plan specifications (changing activity time estimates and resource

availabilities).

Since these projects are inherently poorly defined, changes in objectives or scope,
and deliverables, are unavoidable. When objectives or deliverables change, design
decisions must often be revised, potentially leading to chain-reaction revisions to
logically or conjointly dependent design activities.

Likewise, when unanticipated external events such as resource breakdowns and
overruns cause delays, schedules are revised and resources reallocated. The web of
work dependencies such as output-input relationships, shared-resource relationships
etc., propogate these changes, leading to system-wide revisions.

Such wide-spread revision of design and plan decisions is typically unacceptable
from an operational standpoint since it makes coordination within and across inter-

related projects very difficult. It also gives rise to the need for more frequent and

12

widespread “repair” of the knowledge base, to maintain the integrity of information
stored.

Designers must therefore consider the following while developing knowledge bases
for supporting ill-structured, Information Age projects: (a) changes in design and
plan are inevitable, (b) knowledge of design and plan logic facilitates response to
change, and (c) project decisions about design and plan. are interdependent in a
variety of ways - the revision of one could possibly cause chain-reaction changes in
others. The question that must now be addressed is: “how must we design knowledge
bases to support management of projects such as these?”

Computer-based systems that support organizational information processing are
either designed to be compatible with existing organizational practises, or with a view
to modifying them as seen fit. Here, we are interested in the design of knowledge-
based systems for management of uncertainty and change in project organizations
whose work 1s poorly defined.

From an organizational view-point, it is clearly desirable that such projects be
managed “pro-actively”, by increasing the ability to respond to unanticipated events
[ACK81]. It is also essential to find ways to limit chain-reactions, or localize the
effects of change in design or plan decisions. Systems theory [SIM62], and the litera-
ture on Organizational Design [GAL73] advocate the creation of self-contained units
to reduce the need for wide-spread exchange and processing of information in such
circumstances. A knowledge-based system that aims to assist ill-structured project
organizations may be designed in a like spirit.

We argue that chain-reaction revisions of project knowledge bases can be pro-
actively reduced by partitioning the knowledge base into minimally “related” groups
of design and plan decisions. If an effort is made to confine the effects of changes in
design and plan to be within one or more of these “islands” of project knowledge,
the extent of knowledge base maintenance required can be significantly reduced.

This knowledge partitioning also assists in the organizational aspects of change
management. When the project knowledge base is designed and constructed in this

manner, knowledge that is required for control is distributed. Responsibility and

13

Center tor Dhyental Economy Research

Working Paper 18-89-80)

ownership of each knowledge base module may now be assigned to different knowledge
workers in the project organization, who will then have complete authority for local
project control decisions. Formation of these almost-independent groups of design
and plan decisions, therefore defines islands of control for managing a project (see
[SRI8Y] for a more thorough discussion of the benefits of forming islands of control
to manage change).

The second goal in the design of systems for supporting poorly defined, evolving
projects, must therefore be the partitioning of the project knowledge base into almost-
independent segments or modules.

In summary therefore, we argue that knowledge-based systems for managing ill-

structured projects may be designed as follows:

1. Step 1: Making use of the enhanced project model as a framework for captur-
ing and representing information about project design and plan decisions, in a

knowledge base.

o

Step 2: Utilizing this knowledge, and a definition of “relatedness” to identify

minimally related groups of design and plan decisions. And,

3. Step 3 Modularizing the knowledge base into islands of project knowledge

along these lines.

The next section sketches a semantic network formalization of such a model as a basis

for an implementation effort.

3 Software Project Knowledge Representation

The formal software project model sketched below is intended to represent content,
process, and project control for design tasks in a uniform framework suitable for co-
operative work. Although any programming language could be used to implement
such an approach, a knowledge representation language with powerful abstraction
mechanisms specifically tailored for requirements modelling allows for a concise ini-

tial specification. In this paper, we use a subset of the knowledge representation

14

enter for Dienta) Economy Research

stemn School of Business

e f"_-;:'-‘ r [S-80.2()

language CML/Telos for this purpose. Actually, a related model which emphasizes
different aspects of project management (e.g., negotiation support [HAHN89]) is be-
ing implemented in the CoNeX system on top of the ConceptBase knowledge base

management environment [JJR88| that directly implements CML.

3.1 Basic Concepts

CML/Telos is a hybrid knowledge representation language that integrates predica-
tive rules and constraints and an interval-based time calculus into an object language
based on highly structured semantic networks. The language has been used in var-
ious applications mainly in software requirements modelling and software informa-
tion management. A full description including a formal semantics can be found in
[KMSB89)].

The CML object language fully supports the abstraction principles of classification,
generalization, and aggregation. A number of built-in axioms enforce the semantics
of the:se structuring principles. In terms of surface syntax, a knowledge base can be
equivalently described as a semantic network, a set of frames, or as a combination of
both. In the ConceptBase implementation, this has been exploited to offer the user
hypertext-style interaction with the system [JJR88].

Classification is used to make the language extensible in the sense that it is easy
to define sub-languages for specific application areas. For example, the software pro-
cess meta-model and the software project meta-model below define general languages
in which specific software development environments can be defined by instantiation
of these meta-models. Specific software development projects, in turn, are repre-
sented as instantiations of these software development environments (see section 4
for examples). One more instantiation step allows the documentation of prototyping
examples for these specific software development projects. Note that this multi-level
metaclass facility goes beyond that of most other object-oriented languages. Addition-
ally, CML’s classification axioms enforce organizational principles such as referential
integrity in the knowledge base.

As in other object-oriented languages, generalization is used to facilitate reusabil-

15

ity and localize the effect of change by inheritance mechanisms. CML supports mul-
tiple inheritance to avoid representation anomalies.

Aggregation is intended to relate in-the-large and in-the-small development by an
attribute mechanism that connects objects to each other. A unique feature of CML
is that attributes (i.e., links among objects) are themselves full-fledged objects with
classification, generalization, and inheritance. In the software process model, below.,
this feature is used to document dependencies among attributes created by design
decisions.

Modular aggregation is a special kind of aggregation in which access to part ob-
jects can only be achieved through explicit import and export, as in programming
languages such as MODULA or Ada or in the 'worlds” approach of [WA88]. This ex-
tension is currently being added to CML in order to support the information hiding
requirements of distributed project control, as required by our approach. It also serves
as the basis for conceptual version and configuration management [JJR89] required
for the controlled integration of separately developed software components.

The CML assertion language introduces a special kind of objects into the semantic
network. These objects are represented externally by strings that express first-order
predicate calculus expressions. As in deductive databases, these expressions can be
used either as deduction rules to infer implicit information from stored data, or as
integrity constraints to enforce semantic theories not directly expressible by the struc-
tural axioms of the object language. Which of the two meanings of an assertion object
is intended, is expressed by the class of the attribute link pointing to the assertion
object.

The temporal sublanguage is also fully integrated into the data model; this, of
course, substantially facilitates project modelling in which the duration and temporal
relationship among (activity) objects plays a central role. Since every CML object has
built-in time, there is no need to introduce explicit time objects as shown in figures
1 through 3. Temporal constraints can be expressed using Allen’s [ALL83]| interval
calculus. This calculus, however, offers only simple temporal relationships such as

“before”, “overlaps”, etc. Using the CML object language, content-oriented special-

16

izations such as discussed in section 2.3 (cause. facilitate, etc.) can be introduced.
A detailed discussion of these options would go beyond the scope of this paper (see

[BMR89], [SRI8Y], and other works cited in the introduction).

3.2 Software Process Model

As an example of the above CML facilities, we now review a basic model of software
development processes fully elaborated in [JJR89]. The model, summarized in the
semantic network of figure 4a, is actually a meta-model of software development

environments that consists of three kinds of objects:

o Design objects represent any kind of intermediate result achieved in the soft-
ware process. For example, in the DAIDA software development environ-
ment [DAIDAS8S], this includes requirements models (i.e., functional and non-
functional system requirements as well as a conceptual model of the system
environment), formal specifications, conceptual designs, the actual software,

and any accompanying documentation.

e Design decisions characterize the planned or actual activities required during
the software development process. In DAIDA, we distinguish refinement of
the design objects within a particular level of representation, mapping between
different levels (e.g., from design to implementation), retract decisions that
correct previous reﬁnemenlt or mapping decisions, and release decisions that
make a particular design object available to a larger group. Documenting these
decisions explicitly as knowledge base objects defines dependencies to be used

in subsequent maintenance decisions.

o The execution of design decisions is supported by design tools. Design tools are
usually reusable software components specifically designed to support a partic-
ular class of design decisions. In the DAIDA environment, tools are triggered

by the user by suitable attachment to particular design objects [JJR89].

17

Center far Digital Economy Research

Stermn School of Ba

Working Paper I5-89-80

Since the software process data model is represented in CML, the full power of object
language, assertion language, and time sublanguage is available to the representation
of actual software development environments (instances of the meta-model) and soft-
ware development projects (instances of those software development environments).
For example, the time calculus can be used to represent versions of certain software
components, and the assertion language for expressing constraints such as those gen-
erated by certain commitments in the process model sketched in section 3 of this
paper. Most importantly, modular aggregation can be used to isolate certain config-
urations of design decisions and their intermediate results so that only their external

commitments remain visible.

3.3 Software Project Model

The software process data model is intended (and used) as a means to represent
a software development environment from the perspective of the contents of design
tasks. Surprisingly, much of the model remains valid when viewed from a project
management perspective. However, knowledge base objects take on additional inter-

pretations:

e Design objects can be viewed as goals or deliverables whose temporal validity
characterizes the (planned or actual) status of a project. (Besides, a particular
new kind of design object, the project plan itself, should be introduced, together

with design decisions that create or change the plan.)

o Design decisions represent the project activities; their conceptual representation
is reduced from a rich, content-oriented model to information about their tem-
poral duration, temporal interrelationsships, and tool requirements. Even qual-
itative information about the design decisions may be rather different, when
viewed from the project management perspective, as indicated by Srikanth’s
taxonomy of design dependencies; possibly, deduction rules can be used to infer

these relationships from the content description of design decisions.

18

Center for Dhgital Economy Rese:

Stemn School of Business

Working Paper 18-89-8(

trigger

justificatioen

suppoarth

Desianbjgctl |DesignDecision — DesignToocl |

from/to decisionsemantic

lDecisionDescription]

objectsemantic
dependson

dependencies

Fig. 4a: Software Process Model [JJR89]

trigger
justification
DesignCbject/ DeS%gn0801§l?n/ — DesignTool/
Deliverable PrOjectActlv:.ty———‘ Resource
isa;
from/to
Goal
concerns
hasGoal
send ¥
Agent - Conversation
recelive
isa isa
Possibility- Action-
Conversation Conversation

Fig. 4b: Software Project Model

e While the process model records tools for eventual explanation and reuse in the
maintenance phase, the project model views them as (scarce) resources that
have to be scheduled and may cause costs. This may require the recording
of tools/resources that are of no interest to the software process model (e.g..

money).

In summary, although the basic software process meta-model remains useful as a
structuring mechanism for software project knowledge as well, different viewpoints
[AS84] have to be offered when we intend to integrate software development support
from the engineering and from the project management perspective. In CML, this
can be achieved by the use of deduction rules.

Additionally, however, decentralized project management requires modelling of
the agents that control each island of project knowledge, and of the commitment
structures between these agents, as defined by the project breakdown into islands.
Like all other CML objects, agents and commitments can be organized in modu-
lar aggregates of related objects. In the case of agents, this allows the modelling
of project group structures; in the case of commitments, it defines how individual
messages can be composed to entire conversations. Analogously to speech act theory
[DDSVZ86, WF86], we distinguish as specializations (using the generalization ab-
straction of CML!) conversations for possibilities in the project planning phase, and
strictly controlled conversations for action in the project execution phase. Details of
a negotiation model for this kind of networking are explored in the CoNeX system
[HJ89]. For the purposes of the distributed project management approach discussed
in the remainder of this paper, the level of detail given in figure 4b should suffice.

Summarizing the results of this section, we can see that a relatively simple meta-
model of software processes and software projects can already represent a large variety
of aspects in software engineering and software project management. In a practical
system, however, the user may easily get lost in the intricate details of such a knowl-
edge base. We therefore emphasize the need for powerful viewpoint facilities. In
particular, the system should offer specialized browsing, zooming, and editing facili-

ties for the viewpoints of

19

my hesearch

e any agent (or group of agents) controlling an island of project knowledge
e content-oriented software development activity
e resource-oriented project control activity

as well as many others, with changes being propagated from one viewpoint to related
ones. Prior to the availability of such a generalized software environment (aspired
but hardly achieved by numerous so-called IPSE — Integrated Project Support En-
vironment — projects), a much simpler implementation appears advisable. Such an
implementation, together with an associated project management methodology, is

discussed in the next section.

4 Pro-active Management of Software Projects

Large software development projects are notoriously difficult to manage, and are rou-
tinely plagued by schedule and budget overruns [BRO82]. In this section, we outline
a methodology for pro-active planning that operationalizes the islands of control con-
cept in the context of the software project model. We then present in protocol form,
the strategies that could be used as part of this methodology to interactively manage
change in software projects. Finally, we discuss an implementation of this methodol-
ogy that is currently underway. The presentation will be largely by example; a more

formal treatment is given in [SRI89].

4.1 Overview of the Approach

In Section 2.3, we presented an argument for the modularization of project knowledge
bases as a means for localizing the effects of changing design and plan decisions. The
objective of such a modularization was to facilitate partitioning of the knowledge
base, and limit the extent of design and plan maintenance occassioned by revisions.

Synthesis of such modules or islands of project knowledge, involves grouping “re-

lated” design and plan decisions together, and requires knowledge of the semantics of

the software project model. If the modules are formed in a way that minimizes inter-
dependencies or “coupling” between modules, there would be a greater probability of
change being contained within a module. The concept of forming minimally coupled
modules to facilitate change has strong roots in disciplines as varied as Organizational
Design [GALT73], and Structured Systems Development methodologies [YC78].

In the spirit of the islands of control approach, when unanticipated external
events cause revisions in design or plan decisions, the first response is to attempt to
limit revisions locally within affected modules. If this fails, a ‘coalition’ of affected
modules is formed and this is treated as a new, larger island of project knowledge
within which change may be contained.

In some situations, changes and revisions are so far reaching that localized control
is inadequate and there is a need for overall project reorganization. The knowledge
base assists in this reorganization by providing documentation of prior design and
plan decisions. The content and structure of the knowledge base itself must however,
also undergo revision when the project is re-designed or re-planned.

The rest of this section deals with how we operationalize these ideas. First, con-
sider the following project scenario which we will use to illustrate the discussion:
ABC Inc. would like to computerize their personnel document maintenance function,
currently being done manually. They would like to have a “user-friendly” system
for storing employee data, that also provides facilities for information retrieval and
generation of reports. For the system to be operational, it would also be necessary
to convert all existing documents to the computerized format. A preliminary specifi-
cation of the design would perhaps look like Figure 5a. The leaf nodes of this design
hierarchy represent the specific design objects, or deliverables of interest. Figure 5b
shows the design decisions of ABC’s systems development team: the activities that
they believe must be undertaken, in order to accomplish or “deliver” the different
design objects. Several assumptions about design dependencies (Figure 6) underly
these decisions. Plan decisions such as a project schedules and resource allocations,

are also made likewise after considering work dependencies (Figure 7).

Research

AyoJielalH ubisa(éfmm_:@_n_

oital Eeonomy

w [

,0180], suealog sweiboid .0180], 5uUB8IO5 ejeq

jndu| pelleAu0y s89|pU| sa|ijei1eq

swesboid

Center {1

jeasllley |8a8|i18Y |eaBl1)OH 1ndu | jndu|

SWSIUBYUDB W sws|ueyoen

sbBeiolg eseqele(

jeaajlley

e1em110g BlEMpIEH

walsAsg

Ma._n_ “11eH

dn-1988g
piing

swibid |eA2
-Jjey uBjseqg

S®T1TATIOY ubrsad uﬁm aanbtd

U33I0E |BAD|-

jeaciddy
1121 ubysag

138N

/
Bngag

B8id 1ndu)
¥ 183} apog

AB}Jys uUD|IBI@

-aAu09 ‘jag

\ epon

-p1181 *1eq@

Xapu|
uBiseq

giadojaaaqg
ujeiL

ebeyoed

aujwialag

abeyoed
einsoid ¥ JepiOD

aseqeieq s|skjeuy ElEQ

ub|sag wiojled

sweibosd abe-
1oig ubjeeq

BUB8IDS Indu|

|eaosddy
188N

‘Jjwbel |eAe

uBjsag
? L= \ =
swaitbBoid .2180], suUeBJIDS sweisBoy 0160, suUeBIDG gleqQ
jeagliley |enB 18 |eag1i16y yndu) tndu) indu pelIeAunD g80|pU| se|ijeleqg
SWwsiuBydeW swsiuByse W
|eAa81)18Y efiei0lg aseqeleq

|

81EM1)0S

BIBMPDIBH

welsAg

me:

1S-89.

or Iy
1

Centerl
Stern School

W

Design

Design Stor

Input Screens
- -age Programs

Code Test &
Input Prg Debug

Perform Design

Data Analysis

Code
Database

Database

Determine

Package

Convert
Det. conve-

old date

ersfon atrtgy

Train

Developers

Det.

eval regmt.

retri=

—Cuode
Retr.

prg

User Design Retr-
Approval

Deslgn relr

-leval screen eval prgrmes

Legend:
——— . conjoint dependencies

e————o |logical dependencies

Figure 6: Design dependencies

Deslign Stor
age Program

Code Test &
Input Pr Debug

Design User
Input Screens Approval

.'

Perform
Data Analysls

1 \ Design
Database

Code
Database

Order & Procure
Package

Train
Developers
\ Design
Index
\ /[

Det. retri-
eval regmt.

I
I
I
l
I

Det. SW | ~ Dpeterming
Reqmts. Package

Det. conve-
ersion strigy

e ——

Bulld Convert Integrn
Set-up old data| " |Testing
; =

-

Design retr User __|Design Retr Code Test &
leval screen Approval eval prgrms Retr. prg+> Debug
= = bl =3)
Legend:
. output_input relationship +—— coordination_reqd relationship
(O——(0 shared_resaource relationship

facilitatory relationship

_'Figure 7: Work dependencies

4.1.1 Modularization of project knowledge

Given that a knowledge base can be constructed to capture the preceding information,
our purpose now is to develop a methodology for partitioning this knowledge base
into minimally coupled groups of design and plan decisions.

We refer to this process of forming “islands” of project knowledge as normaliza-
tion. The objective of normalization is to maximize cohesiveness within each module
by grouping related design objects and activities together, and to minimize coupling
between modules by reducing work dependencies between such groups. Ideally, this
modularization should result in knowledge partitions that are stable with respect to
change; changes within one partition should not cause change in another.

The conceptual model of projects that we have developed, captures project knowl-
edge in terms of entities and dependencies between entities. This representation is
isomorphous to graph representations used extensively in Operations Research and
Computer Science: project entities can be treated as graph nodes, and the several de-
pendencies between them as labelled edges. The problem of modularizing the knowl-
edge base is therefore one of partitioning this knowledge graph in a way that
satisfies certain conditions.

The intuition behind the criteria for partitioning the knowledge graph comes from
the following considerations: {a) it is desirable that the knowledge within each parti-
tion is cohesive - it should pertain typically to one design object or a family of related
design objects, and (b) it is essential that the partitions are minimally coupled and the
potential for localized control is maximized - work dependencies between partitions
should be minimum.

The normalization procedure itself consists of two steps:

1. A starting partition is created by identifying “natural” design clusters - groups
of activities related by conjoint and logical dependencies (Figure 8(b)). Figure

8(a) shows the first step in the simple algorithm used for this purpose.

o]

The “cost” of this partition is now minimized by examining each pair of clusters,

and exchanging groups of activities to minimize work dependencies between

(V]
(Sv]

school of Bus

Working Paper 18-89-8(

clusters. Weights are assigned t¢ the different activity-relationships to reflect the
extent of dependency they cause. Coordination-required relationships have the
maximum weight, followed by output-input. facilitatory, and shared-resource
relationships in that order. We have adapted a well-known heuristic algorithm
developed in graph-theory research for finding the minimum cost k-way partition
of weighted graphs [KL70]. The result of applying our adapted version of this
algorithm to the initial partitioning of the knowledge graph (Figure 8(b)). is

shown in Figure 9.

Each of these final partitions is an usland of project knowledge, and serves as the basis
for modularizing the project knowledge base. In addition, these modules also serve
as units for distribution of project responsibility, as seen in the discussion on the
Software Project Model. The agent who is responsible for, or “owns” a module must
not only be aware of dependencies within the module. but also of the extent and
nature of dependence on other modules. It is conceivable that normalization may
partition the project in a way that either ignores certain situation-specific depen-
dencies between modules, or combines parts of the project that for some reason are
best seperated. A post-normalization adjustment is therefore typically undertaken,
where agents may negotiate changes in the partitioning, based on their knowledge of
existing dependencies.

The end result of this process is the segmentation of the project knowledge base
into modules that are weakly coupled. In Figure 9, these modules are shown numbered
A through G. The design and plan dependencies that remain across the partition,
define the commitments made by each module to other modules. Project control in
the face of change takes the form of attempts at the level of a module, or at recursively
higher levels of aggregation, to meet commitments made. In the rest of this section,

we present a protocol of how this may take place.

4.1.2 Dealing with change locally

Once the project knowledge base has been modularized. and responsibility for each

module assigned to different agents, the implementation of the project gets underway.

23

sJalsn|o ubisap juioluo) “A)8 a4nbi4

sal}inlloe ubisep juiofuoo Jo 1disNn|o Y . ﬂ_iijm”_ .v:mmm._

Bngaqg id :mm i wibid jeAd jeaosddy uaelos |BAD|
| @ asaL apon m _um :m.mmn_ 198N m 1181 uBisaqg

enter for Dy

!

‘jwbal jeAd
-11181 "}aq

sladojanag
ujely

pass, n:wa_ [ABya1s uoyssa |
piing | F-m..:._oo ‘1ea |

{yuews-) [6upsar| [eiep pio
Idu uibeju||: :|118AU0D

‘sjwbay
MS '12d

: abej)yoed !
i [eanooid ¥ J8PIO| e J

98BqE}E (Ol

eseqeleq
F uBisag

s|sA|euy ejeQ
wiojiad

sugalng jnduj
ubisaq

‘| Bngaqg id “:a...:,_ £ Em:uoha. mmL. x_ |eaoiddy
® 183l [T @apoD loig ubjseq | _ les

spue|si ubiseq :(d)g 8nbid

saljlAljoe ubisap Jo 181sn|o |einieN, ﬂu ib pusbaT

.mmmm:u 1d 1y swibid |eAs jeacsddy uU9sI0s |BAD|
g 1sa] muo liey :mawo 18 1381 uBIsag

enter for

—_—

!

.Eumh |eA®
-11181 "13Q@

siadojanag
utesy

ABji}s uOIBID
-8AUO0D “}eQ

. |eyep Eo S
118AU0D

{juawa- ml.:.:mmh :
EE_ i uibeju|.

sjwbay
MS '12a

' abeyoed
Jnooid ¥ 48pI0

. 2B S — .,.zwyﬁﬂaﬁm

e——— sseqeled
uBisaqg

s|sA|euy ejeQ
wiojiad

suaalng _._.__a:_
ubisaqg

.mﬂnmn hm __:a: Emhmohn_ afie _m__,oaaﬂ
® 189)] apon 10}g ubjiseq 198N

abpajmouy josloud jJo spuels| ‘6 a2.nbi 4

UOI}BZI|BWIOU 13}j8 S3l}IAI}08 JO 18}SN|D DIIIE :puaban

g _m>ohan< _|| ammhum |eas @
4 tesn || 53l ca_mmn

m:ama |..ma :mm ”
% 1sel apod :

wEhEn _m..,m
1184 ubBisaqg
=

a N jwbes |eas
R Y i -143131 120

3

si1adojanag
utell

v R

-8AUDD "}OQ

?.:mm.r ejep pjo
_.:mm:.__ :m..:._oo

abeyoed
einoold ¥ 1epiQ

.m_um_u:(ejeq
. wiojlad

Emhm.ohnm abe |eaciddy susalog jnduj

1] 401s ubBiseqg |— 188N uBisaqg

'sjwbay
‘19qa

During implementation, the need for changes in design and/or plan specifications arise
fairly often. |

For example, external events may force the owner of island A (Figure 10), to
reconsider developing the software in-house rather than procuring a package from
outside and training personnel. Or alternatively, delays in building the conversion
set-up (island F in Figure 11), may cause its owner to consider whether additional
resources should be added, or if conversion of old data could commence before the
set-up is complete.

The partitioning of the software knowledge base makes knowledge that is required
for responding to changes in specifications, available locally within the affected mod-
ules in most cases. In addition, the owner of each affected module has: (a) the
responsibility to meet commitments to other modules, and (b) the authority to make
any changes to the design or plan, as long as their effects are localized. For instance,
in the first example above, the owner of island A may change a design decision by
electing to develop the software in-house. As a consequence, he could replace ac-
tivities Determine-Package, Order-and-Procure-Package, and Train Developers, with
Develop-Package as long as it satisfies the same design specifications. Likewise, the
owner of island F in the second example, could decide to overlap Build-SetUp, and
Convert-Old-Data, reassign resources under his control, or subcontract it out in order
to meet schedule commitments to island G.

Sometimes, localized control either does not succeed in meeting commitments, or
results in unexpected consequences. Under these circumstances, the affected island

is in default and must communicate this condition to other islands.

4.1.3 Propagation of Change among Islands

Normalization does not completely eliminate dependencies between islands, it only
attempts to reduce the incidence of certain kinds of relationships between them.
From the algorithm used for partitioning the knowledge base, it may be seen that
shared-resource relationships, facilitatory relationships, and sometimes output-input

relationships in that order, could span activities in two uslands. Logical dependencies,

24

and to a lesser extent conjoint dependencies, may also exist between islands.

When a shared-resource relationship spans two isfands, it represents a commit-
ment by the first island to release the shared resource at a certain point in time. to
the second island. In a similar manner. facilitatory and output-input relationships
represent scheduled commitments for delivering certain outputs. A logical depen-
dency forces related islands to commit to how certain activities will be undertaken,
and conjoint dependencies indicate commitment to service a shared project objec-
tive. In summary therefore, commitments may be made about schedules, resources,
deliverables, methods or shared objectives.

In the face of unanticipated events, an affected island may sometimes be unable
to meet one or more of these commitments through localized control. It must then

communicate this condition to its affected neighbors.

e When delays within an island cannot be controlled, schedule commitments made
as a result of shared-resource, facilitatory and output-input relationships must
be revised. Time delay is therefore, one kind of information flow that may be

propogated across modules in the project knowledge base.

¢ Sometimes resources may breakdown or become unavailable. This event could
affect one or more islands that share the resource. Changes in the availability
of a shared resource, is yet another condition that may be communicated across

modules.

o Activities may sometimes fail to deliver desired outputs, or accomplish desired
objectives. The owner of the island may attempt to remedy this failure by
localized replanning. Inability to do so affects commitments made about deliv-
erables as a result of facilitatory or output-input relationships between islands.
Changes in the status of deliverables must therefore, be communicated between

knowledge base modules.

e The method chosen for performing an activity may under some circumstances,

be changed. This change in the “contracted” method for an activity may call

(R
on

Center for Dieital Economs
enter for Dienal Economy

Stern Sche

Working Paper 15-89-80)

for a change in an activity in another island that is logically dependent on it.
So changes in methods committed to, is another piece of information that may

be propogated between modules.

e Last, a change in project goals or specific deliverables may sometimes be man-
dated by certain events. If this happens. all activities that are associated
with the affected deliverable (and conjointly dependent) must be reevaluated.

Changes of this nature, could also ripple through a project knowledge base.

When any of these changes occurs, and is communicated by the affected island to its
neighbors, control of the project could take one of two forms. First, the neighboring
islands could accept the change and try to accomodate it locally, or second they could
“appeal” the change. An instance of the former may be seen in Figure 11. Imagine
that the delay in the activity Build-SetUp, in island F cannot be controlled locally.
Island F cannot therefore keep its schedule commitment to neighboring island G, and
so communicates it. In this case, island G accepts the change in commitments after
considering that completion of Convert-Old-Data though desirable, is not necessary

for beginning Integration- Testing.

4.1.4 Formation of Coalitions for Project Control

When an island indicates that it cannot accept a change in commitments and appeals
it, a mini-breakdown in the project is signalled. At this point, a higher-level aggregate
island is created by forming a coalition between the island in default and the island
on appeal, and an attempt is made to control the change within this aggregate.

Once a coalition is formed, the corresponding knowledge base modules are com-
bined into one so that all available knowledge may be used for plan or design revision.
Localized reevaluation of the project is undertaken within this aggregate island to en-
sure that inconsistencies and redundancies are eliminated. Plan revision by reschedul-
ing or reallocation of resources, and design revision within the aggregate island. may
then be made in order to meet commitments.

Examples of this are shown in Figures 10 & 1. Imagine that halfway through

26

Working Paper 18-89-8(

the project, a design decision is made to implement the system using a relational
rather than a hierarchical database as determined earlier. The database schema that
will be delivered by Design-Database in island B will now be in a different format
from that committed to island C. If island C appeals this change, a higher-level coali-
tion is formed by combining B and C (Figure 10). Combining the corresponding
knowledge base modules provides access to all information required for incorporating
this change in project design specification. Likewise, Figure 11 illustrates the case
when Systems Analyst I responsible for Det-Retrieval- Requirements (and also Design-
Retrieval-Screen), falls ill. Island A cannot keep its schedule and resource commit-
ments to island D, which appeals this change. A higher-level coalition, island A+D
is formed and the project plan is revised locally. The other systems analyst available
in island A is reallocated to Det-Retrieval- Requirements and Design-Retrieval-Screen,
while Design-Indez proceeds as per schedule.

This method of adaptive, need-based formation of coalitions between islands, re-
sults in a more flexible approach to management of change. It allows us to control
each part of the project independently until the need arises for considering inter-
actions. Even then, these interactions are not dealt with in a strictly hierarchical
manner as advocated in traditional control paradigms, but in a more oppurtunistic
and need-based manner that minimizes the effects of the disturbance.

In summary therefore, this section offered a methodology for managing change
in relatively ill-structured project domains. We have argued that in such domains
a knowledge base that captures the ‘complete picture’ facilitates pro-active project
planning and interactive project control. We outlined a technique for pro-active plan-
ning, that normalizes project knowledge bases by partitioning the knowledge graph
into minimally dependent islands. A protocol for interactive change management was
advocated, that recursively attempts localized control within islands or higher-level
aggregates. When local control fails, changes in commitments are communicated to
neighboring islands, and if needed, coalitions are formed between affected islands to

manage the change.

S
-1

enler tor Lhgnal Economy Research

alem dehool of Business
Waorkin

r Paper [5-89-80

ubisap ul sabueyd O] Buipuodsay :Ql aInbi

oBpoajmouy joafosd jo spue|s| [F——-] - ipuaben
i |swibid |eAe jeaoiddy UEBIdE |BAD| -
: p41ey ubiseq|” 1880 1181 uBisaq 5§55

Ny|'jwbal |eAs
c/l-14vRd f1ed

siadojanag
utesl

AB1118 uoOl8lid
-8AUO0D "}8Q

Bunsal | : [eiep plo

‘gjwboay

uibaju||: | 148AUOD
MS ‘12a

abeyoed
einooid % 19pi0

EY-1:-101 517 . ,:::.._ouanmumn

uBisaq /fw
: g|sA|eUyY EBlEQ

‘A wiojiad

id induj welsBoiyg abe |eaociddy s
=1 @apoDd lo1g ubBiseaq 188N

uaalog induj
ubisaqg

M Bngeqg
] ® 183l

uejd ur sabueyo o} Buipuodsay ‘L 24nBi4

abpajmouy }oafoid jo spue|s| =i 1 puBha] 28
6bngaq __ swibid |BA® jeaciddy | |ueeios |eAe| =
¥ 1s9) 11ey ubiseg | 1321 uBysag 5 g2

‘jwbel |eaAe
e My -14391 "3aq| :

xepu] y\ 3
{ uBisag \

| saadojaaag
B iy T DS N A O urell

L e . S S
juswa- Buiysal |- . |eiep U_OJ1 ﬂnzl-aw ABjJys uoisJI8 B
dwi uiBaju|l . - |148AUOD ﬁ pIINg -aAuO0D ‘}8q@ . - .
I P g 9 A e R auaxuan_t i ‘sjwban l
@ | abBeyoed puiw 1e3e MS “120a |
einsoid 3 18pI0 . i .

— e : I ! | “.._
& epoD _ |

A
g|sA|euy eBlEQ

wiojiad

‘dweisboig abe jeacsddy ' suaalog jnduj|:
1] 1018 uBjseqg |— — 188N uBisaqg

>

Software
Process
Knowledge

ASK Base

o RN

Proposed System
(Project Supervisor)

Activity/
Dependency

. Subprojects,
Information

Activities,
Resources,
Constraints

Islands

Schedules
of Knowledge c v

and Reports

Normalization Project
System Management
Workbench (TM)

'Fig. 12: Implementation Architecture

mnmn

4.2 Implementation and Evaluation

This methodology is currently being implemented on a microcomputer based system,
for purposes of laboratory and field evaluation. In this subsection, we outline the
architecture and construction of the system, and the design of a computer-based

simulation study that will be used to for evaluating its effectiveness.

4.2.1 Implementation of the System

The implementation has been designed to exploit the fact that our project model
is a ‘consistent extension’ of the classical project model. Our objective in building
the system is to create a prototype that will allow users to pro-actively plan a soft-
ware development project, representing information in terms of the enhanced project
model. The system will then recommend a partitioning of the project knowledge into
islands. After adjustments are made, it will (i) generate a schedule for each island
and the project as a whole, using traditional scheduling algorithms, (ii) document the
commitments that are made by each island to other islands.

The system architecture is shown in Figure 12. It consists of 3 modules: a knowl-
edge base cum supervisor module, a normalization module, and a scheduling cum
resource allocation module.

The knowledge base cum supervisor module controls interaction with the user.
It allows users to plan a project by specifying objectives/deliverables, activities, re-
sources, and the dependencies they consider in making design and plan decisions.
When the user has finished representing project-related information, he or she may
initiate normalization of the project knowledge base. This module is currently being
implemented in Smalltalk V /286, an object-oriented programming environment for
microcomputers.

The normalization module is a FORTRAN implementation of the algorithm that
we outlined for partitioning the knowledge graph. The scheduling cum resource allo-
cation module is an off-the-shelf project management package. It is primarily used for
applying powerful scheduling algorithms, and providing the user with sophisticated

graphing and report generation capabilities.

28

The implementation as a whole, falls under the category of what are being in-
creasingly referred to as “multi-paradigm” systems. These are software applications
which consist of several modules, each written in a language that is best suited for its
given function; inter-module communication of data and control flags occurs through

the use of shared data files.

4.2.2 Empirical Evaluation

The purpose of the implementation outlined above was to provide a usable prototype
for field evaluation, and a platform for conducting laboratory studies.

A laboratory study is currently being planned that seeks to evaluate the effec-
tiveness of the interactive change management methodology we have developed. In
particular, we are interested in its effects on the extent to which a project’s designs
and plans are affected by disturbances, and the overall cost of responding to such
change.

Using a computer-based simulation, disturbances such as changes in deliverables
or design specifications, time overruns, and resource breakdowns will be generated.
The responses of interactive change management and classical project control, to
identical disturbances will also be simulated for a variety of project networks. A
log of any revisions in design or plan will be maintained electronically, and project
completion times and costs documented.

A comparison of the change logs will be made to obtain qualitative insights into
differences between the two methods. The vector of changes distributed across each of
the islands will provide a metric for the extent of disturbance propogation. Statistics
of completion times and costs can likewise be determined to compare the overall costs
incurred during change management.

The setup for this simulation study is currently under development and will be
ready shortly. Through this study, we expect to demonstrate that the methodology we
have developed results in significantly reduced propogation of disturbances across the
project knowledge base. We also expect to show that cost efficiencies are comparable,

if not better than classical approaches to project control.

29

5 Summary and Outlook

The starting point of this paper was the observation that, in large, ill-structured
projects, change of requirements and available resources is so frequent that rigid
project planning techniques become obsolete. Consequently, our “islands of project
knowledge” approach attempts to help project managers plan pro-actively, with the
goal of organizing projects so that most change can be dealt with locally. Knowledge
representation techniques were then used to represent such change-friendly project
structures, simultaneously supporting actual content-oriented project work. Given
the current limitations of such systems, a project management methodology and
implementation approach were proposed that start from currently available project
management software and just enhance it with a few crucial qualitative features.

Both the underlying model and the actual implementation have been, or are in
the process of being, empirically validated in laboratory and field settings. In this
way, we hope to improve management performance on a class of important projects
that have enjoyed little effective support by information system technology so far,
and have consequently been plagued by time and cost overruns continuously.

A distinctive feature of our approach is that the distribution of project control
shifts responsibility back to human collaborators, rather than just treating them as
resources, hopefully fostering creativity and responsiveness. To achieve this goal,
models and tools for project decomposition and re-integration as presented in this
paper are, of course, only a first step. Further work on actual group support tools is
therefore underway that facilitate idea generation and organization, negotiation, and

commitment monitoring.

References

ACKB81 Ackoff, R.L. (1981). Creating the Corporate Future, New York: John Wiley.

ALL83 Allen, J.F. (1983). Towards a general theory of action and time. Artificial

Intelligence 23, 2, 123-154.

30

fLER

AMBS3

AS84

BB88

BCEGRS86

BMR&89

BROS82

COORD86

DAIDASS

DDSVZ386

ES84

Abdel-Hamid, T.K., Madnick, S.E. (1988). Lessons learned from modelling the
dynamics of software development. WP 2069-88, Sloan School of Management,

Massachusetts Institute of Technology, Cambridge, Mass.

Attardi, G., Simi, M. (1984). Metalanguage and reasoning across viewpoints.

Proc. ECAI ’84, Pisa, Italy (North-Holland), 315-324.

Bimson, K.D., Burris, L.B. (1982). Conceptual model-based reasoning for
knowledge-based software project management. Proc. 21st Hawaii Intl. Conf.

System Sciences, Kona, HW, 255-265.

Begeman, M., Cook, P., Ellis, C., Graf, M., Rein, G., Smith, T. (1986). Project
NICK: meetings augmentation and analysis. Proc. First Intl. Conf. Computer-
Supported Cooperative Work, Austin, TX, 1-6.

Bartusch, M., Moehring, R.H., Radermacher, F.J. (1989). Design aspects of
an advanced model-oriented DSS for scheduling problems in civil engineering.

Decision Support Systems 5, 3 (this volume).

Brooks, F.P. (1982). The Mythical Man-Month: Essays on Software Engineer-
ing, Addison-Wesley, Reading, MA.

COORDINATOR, (1986). The COORDINATOR Workgroup Productivity Sys-
tem: Workbook and Tutorial Guide. Action Technologies Inc., San Francisco

CA.

Jarke, M., DAIDA Team (1988). The DAIDA environment for knowledge-based
information systems development. Proc. ESPRIT ’88: Putting the Technology
to Use, Brussels, Belgium, 405-422.

DeCindio, F., G. De Michelis, C. Simone, R. Vassallo, and A. Zanaboni. (1986).
CHAOS as a coordination technology, Proc. First Intl. Conf. Computer-
Supported Cooperative Work, Austin, TX, 325-340.

Ericsson, K.A. and H.A. Simon. (1984). Protocol Analysis: Verbal Reports as
Data. Bradford Books/MIT Press, Cambridge, MA, 1984.

31

FIK82

GALT73

GJLP87

HAHN89

HJ89

HIJKFP

HOF88

JDL88

JJRS3

Fikes, R.E. (1982). A commitment-based framework for describing informal

cooperative work. Cognitive Science, 6():331-347.

Galbraith, J.R. (1973). Designing Complex Organizations. Addison-Wesley

series on Organizational Development. Addison-Wesley, Reading, MA.

Gilham, L.M., Juellig, R., Ladkin, P., Polak, W. (1987). Knowledge-based
software project management. Report KES.U.87.3, Kestrel Institute, Palo Alto,
Ca.

Hahn, U. (1989). Dialogstrukturen in Gruppendiskussionen. Report, DFG
Project Ja-445/1-1, University of Passau, W. Germany. Submitted for publica-

tion.

Hahn, U., Jarke, M. (1989). CoNeX: Coordination and negotiation support

for expert teams in project management. European Conference on Computer-

- Supported Cooperative Work, London, UK.

Hahn, U., Jarke, M., Kreplin, K., Farusi, M., Pimpinelli, F. (1989). CoAU-
THOR: a cooperative group authoring environment. Report, ESPRIT Tech-
nology Integration Project 2105 (MULTIWORKS), European Conference on
Computer-Supported Cooperative Work, London, UK.

Hofbauer, T. (1988). IPMSS, an intelligent project management support sys-

tem. Diploma thesis, Technical University of Munich, W. Germany.

Juellig, R.K., Daum, M., Ladkin, P.B. (1988). Approaches to planning the the
Project Management Assistant. Proc. 3rd Annual KBSA Conf., Utica, N.Y.,
31-51.

Jarke, M., Jeusfeld, M., Rose, T. (1988). A global KBMS for database software
evolution: documentation of first ConceptBase prototype. Report MIP-8819,

University of Passau, W. Germany.

JJR89

KED84

KL70

KMSB89

KP87

MOS85

SFG85

SIM62

SRI89

THO6T

Jarke, M., Jeusfeld, M., Rose, T. (1989). A software process data model for
knowledge engineering in information systems. /nformation Sysiems, to appear;

also available as Report MIP-8910, University of Passau, W. Germany.

Kedzierski, B.1. (1984). Knowledge-based project management and communi-
cation support in a system development environment. Proc. 4th Jerusalem

Conf. Information Technology, Jerusalem, Israel.

Kernighan, B.W., Lin, S. (1970). An efficient heuristic procedure for partition-
ing graphs, The Bell Systems Technical Journal, February: 291-307.

Koubarakis, M., Mylopoulos, J., Stanley, M., Borgida, A. (1989). Telos: fea-
tures and formalization. Technical Report KRR-4, Dept. Computer Science,

University of Toronto, Canada.

Kurbel, K., Pietsch, W. (1987). Projektmanagement bei Expertensystem-Entwicklungen.

Report no. 12, Lehrstuhl fuer Betriebsinformatik, University of Dortmund, W.

Germany.

Mostow, J. (1985). Towards better models of the design process. AI Magazine
6, 1, 44-57.

Sathi, A., Fox, M.S., Greenberg, M. (1985). Representation of activity knowl-
edge for project management. Report CMU-RI-TR-85-17, Carnegie-Mellon
University, Pittsburgh, Pa.

Simon, H.A. (1962). The architecture of complexity. Proceedings of the Amer-
ican Philosophical Society, 106:467-482.

Srikanth, R. (1989). Islands of control: a knowledge-based approach for manag-
ing change in projects. Ph.D. dissertation, Leonard N. Stern School of Business,

New York University, New York, NY, in progress.

Thompson, J.D. (1967). Organizations in Action. McGraw-Hill, New York NY.

33

VAU88 Vauquois, P. (1988). PIMS, a Project Integrated Management System. Proc.
ESPRIT ’88: Putting the Technology to Use, Brussels. Belgium, 392-404.

WA88 Wile, D.S., Allard, D.G. (1988). Worlds: aggregates for object bases. USC

Information Sciences Institute, Marina del Rey, Ca.

WF86 Winograd, T. and F. Flores. (1986). Understanding Computers and Cognition:
A New Foundation for Design. Ablex Publishing, Norwood NJ.

YCT78 Yourdon, E. and L.L. Constantine. (1978). Structured Design. Yourdon Press.

34

