
THE DESIGN OF KNOWLEDGE-BASED SYSTEMS
FOR MANAGING ILL-STRUCTURED SOFTWARE PROJECTS

Rajan Srikanth
Leonard N. Stern School of Business

Informastion Systems Department
New York University

90 Trinity Place
New York, NY 10006

and

Matthias Jarke
Lehrstuhl fur Informatik
Dialogorientierte Systeme

Universitat Passau
P.O. Box 2540

8390 Passau, West Germany

July 1989

Center for Research on Information Systems
Informat ion Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

CRIS #211
STERN #89-80

Matthias Jarke's work was supported in part by the European Commission under ESPRIT contract 892
(D AID A), and by the Deutsche Forschungsgemeinschaft under grant no. Ja 445/1- 1. The contributions of

Udo Hahn, Manfred Jeusfeld and Thomas Rose to the conceptual software process model used in this paper
as well as discussions with Vasant Dhar are greatfully appreciated. .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Abstract

Current planning and control procedures for large-scale software projects are not suf-

ficiently equipped to deal with changing or imprecise requirements, resource break-

downs, unexpected delays, etc. We propose a solution for managing change in

projects, based on a semantic model of the software design and development pro-

cesses. A t the heart of this technique is the formation of islands of project knowledge

in a way that facilitates dealing with most design and plan revisions locally. A protocol

for interactive change management is presented that advocates need-based formation

of coalitions between islands as a means for graceful degradation in the place of strict

hierarchical control. The results of initial empirical investigations of the usability of

the approach and plans for its continuing evaluation are also reported.

Keywords: project management, coordination systems, distributed knowledge-based

systems, group decision support, proactive planning, software process model, software

knowledge base, software environment.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

1 Introduction

Every organization undertakes .'one-shot" activities that are not routine or repetitive,

requiring collaborati\~e work among two or more participants to achieve a certain

purpose. We commonly refer to such undertakings as projects. The dimension

along which projects vary most is structuredness. A project is well-structured if

its objectives or deliverables can be specified with precision and detail apriori, and a

definite statement can be made about the sequence of activities, and kinds of resources

needed for this purpose. Projects in manufacturing and civil engineering for instance,

tend to be well-structured since they have clearly specified goals laid out in blue-

prints, and well-defined means to deliver these objectives. In this paper, we are

interested in projects which are less structured. We are concerned in particular with

situations where a strict, contract-like specification of the project cannot be made in

advance, but evolves as the project is undertaken.

Less structured projects such as the development of large-scale software systems

differ fundamentally from other projects because they are much more information-

intensive. Since they are ill-defined, a variety of assumptions must be made even at

the very beginning to impose a semblance of structure on the project. Events that

occur during project implementation and interactions with a changing external en-

vironment, periodicalIy force reevaluation of these assumptions and may result in a

revision of project objectives and strategies. The complexity of managing such poorly

defined work enterprises is further worsened by the need for exchange of information

between multiple, semi-independent participants who exercise control over different

parts of the project. Considering the predominant role of information - how it is con-

tinuously generated, processed, and assimilated - it is apparent that the management

of ill-structured projects requires techniques to capture this information, and support

its characteristic patterns of usage and modification.

Current project management systems were primarily designed for use in well-

structured projects and therefore assume that there is only a limited need for on-

going information management. The network of project activities and requirements

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

of resources are treated as given and not subject to change. Activity durations and

resource availabilities mag' however vary as a result of environmental or chance fac-

tors. As a result. information management is limited to techniques for collecting,

assimilating, and propagating information about delays and resource breakdowns.

The advantage of using such a project model is its computational simplicity. Pow-

erful mathematical programming algorithms have been developed for finding optimal

schedules and resource allocations for a given project network [BMR89]. Ill-structured

projects however, function open-loop and evolve constantly. Since every aspect of

these projects is subject to change in an unpredictable way, efficiency is less of a

concern than effective response to change. The simple representation used by classi-

cal approaches does not provide adequate information for project control decisions.

Icnowledge of the 'logic' behind project designs and plans, and mechanisms for re-

viewing them in the Iight of new information are necessary, but not available.

This research advocates a new approach for the management of unstructured

projects in general, and large-scale software development projects in particular. It

is anchored on strategies for the representation and management of project-related

information that draw upon observations from an empirical study that we conducted,

and work that the we have undertaken in developing knowledge-based approaches for

software development [DAIDA88] and management of change in projects [SRI89]. We

advocate a two-pronged strategy:

1. Support for the "technical" aspects of change (revision of design specifications,

etc.). This could take the form of creating and managing a knowledge base

of project information, that captures the 'logic' or rationale behind design and

plan decisions. A software process and project model for structuring such a

knowledge base developed in [JJR89] is used in this paper. And,

2. Support for the "managerial7' aspects of change (minimizing the impact of unan-

ticipated developments, building flexible plans Sr. designs etc.). This may be

done by forming "islands" of project knowledge and using these as a basis for

distributing project responsibility. A methodology for partitioning the knowl-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

edge base along these lines, is also offered in this paper.

Each island is an almost independent information-handling and control unit - a sort

of .organization-in-the-small' - a set of project activities linked to other like units

by virtue of commitments requested or made. These commitments typically concern

design specifications or plan deliverables. The islands are formed in a way that most

knowledge relevant to the design and planning of a given part of the project, is

available locally within the island.

Formulation of the project control problem as an attempt to localize change within

islands, allows us to apply techniques that we develop, recursively to higher level

aggregates - collections of islands, multiple interdependent projects, etc. We turn

now to a brief review of other research that has sought to introduce knowledge-based

technologies into project management over the past few years.

One category of approaches deals with the development of conceptual models for

capturing project-related information. Most of these approaches are grounded in

the traditional planning-for-purpose-of-scheduling framework. that views projects in

terms of activities and precedence relationships. Bimson and Burris [BB88] for in-

stance, provide a frame-based reformulation of classical project modelling techniques

along with some limited document management capabilities (cf. also [HOF88]). In a

similar but more extensive fashion, Callisto [SFG85] provides formal representations

for notions of project state, activities, and goals. Abstraction mechanisms allow the

description of projects in these terms at varying levels of detail. Even greater detail

is captured in the PIMS model [VAU88]. It is interesting to note that all of these

proposals use essentially the same interval-based mode1 of time proposed by [ALL83].

Extensions of the interval-based model for specific use in software project manage-

ment have been studied by Ladkin and others at the Kestrel Institute [GJLP87].

A second class of approaches focus on appropriate architectures for developing

knowledge-based systems to manage software projects in specific domains. Kurbel

and Pietsch [KP88] propose a hierarchical architecture for the management of evo-

lutionary software projects (such as expert systems development). There are three

interacting levels in this hierarchy: strategy, project structuring (work breakdown

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

and communication), and project operation (time management). Feedback from

lower levels to higher levels is posited, but no formal model of this interaction is

offered. Kerzierski [I<ED84] addresses the issue of knowledge base design. He pro-

poses integrating knowledge of project structure with knowledge of the target system

to be developed. Subsequent work within the KBSA project [JDL$t3] extends this

project knowledge base by adding application-specific software engineering heuristics

and procedures, aimed at automating project planning.

A final class of approaches that apply knowledge-based technologies to some as-

pect of project management go by the name of collaborative-work tools. They em-

phasize ongoing control of distributed work in offices or projects. rather than planning

activities per se (FIKE82]. Their objectives is to structure the communication un-

dertaken between participants in collaborative work, by providing a set of primitive

message types embedded in enhanced electronic mail systems (the COORDINATOR

[WF86]). Message types specific to software engineering such as bug reports, have

also been developed [DDSVZ86, I(ED841. The LEONARD0 project at MCC [BCE-

GRS86] applies this approach to the design of a face-to-face multimedia meeting

support environment for software projects, whereas the CoNeX [HJ89] and CoAU-

THOR [HJKFP89] projects at Passau University aim at the conceptual integration

of software project management , soft ware development environment, and software

documentation development and maintenance in a distributed real- time multimedia

conferencing setting.

In summary therefore, most existing work in developing knowledge-based systems

for project management uses the traditional scheduling perspective as the point of

departure. While allowing a more detailed representation of activities, resources,

milestones, and other domain-specific project knowledge, the proposals just reviewed

do not quite address the needs of ill-structured projects. They do not capture the

dependencies between objectives, activities, and resources, that underly the logic of

project design and plan decisions. As a result, support for change management is

limited. Collaborative-work tools on the other hand, provide a basis for structuring

the communication undertaken to manage change, but do not offer any guidance for

4

Center for Digital Economy Research
Stem School o f Business
Walking Paper IS-89-80

design or plan revision decisions. The ideas presented in this paper differ from both

of these in the following respects:

T/Ve have developed a methodology for change management that integrates tra-

ditional scheduling concerns with the need for control and coordination in the

face of change.

We extend the basic conceptual model of projects used by techniques such as

CPnil and PERT, to capture the logic of project plans in order to facilitate

pro-active project planning. These extensions are 'consistent' with the existing

model and can therefore be grafted on to currently available project manage-

ment systems. And

Finally, the project model and change management methodology offered in this

paper have strong empirical roots, and are being subjected to careful validation.

The completeness and understandability of the model, and the effectiveness

of change management with this methodology, have or are being empirically

evaluated.

The remainder of this paper is organized as follows. Section 2 outlines the empiri-

cal background, and the basic principles we propose for the design of knowledge-based

systems for managing ill-structured projects. In section 3, a formalization of these

principles in the context of software projects, is sketched out in terms of a knowledge

representation language based on semantic networks. Section 4 describes a project

management methodology based on this formalism, its implementation through a

knowledge-based support system, and a strategy for empirical evaluation. Section 5

summarizes conclusions and directions for future work.

2 Requirements for a Project Knowledge Base

We argue that ill-structured projects are information intensive, and that effective

management of information is critical for their success. Information management

requires the development of techniques for: (1) capturing all appropriate information,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

(2) representing it in a form that facilitates effective usage, (3) processing and utilizing

the information to maximum benefit, and (4) ensuring the integrity of the 'state of

information (or knowledge)' over time. In this research, we develop an approach for

the management of ill-structured projects by addressing these requirements.

The first question that must be addressed is "what information must be cap-

tured?". A starting point for finding an answer to this question is to esamine what

we mean by a project, more closely. This research takes the position that a project

is a purposeful, non-routine activity that involves collaboration among people. The

process of software development is clearly a point in case. By defining projects in this

manner, we make certain implicit assumptions about the nature of the project world

- the entities of interest, and dependencies between them. In this section, we show

how conventional views of projects differ from this perspective and are inadequate

for our purposes. We offer a formal model or ontology, of the project domain and

empirically demonstrate its adequacy for capturing information used in project plan-

ning. We then develop prescriptions for how this information must be represented

and organized in a project knowledge base, for the effective management of change.

One important characteristic of these prescriptions is that they facilitate knowledge

base maintenance and ensure greater integrity of stored knowledge, over time.

2.1 Conceptualizations of Project Management

Research that has addressed project management concerns to date. belongs to one of

two classes: (1) network planning techniques, and (2) collaborative-work research. A

brief overview of these areas is offered below.

Network planning techniques (CPM/PERT) are typical of the classical approach

to project management. They model a project as a given network of activities linked

by precedence relationships. Resources are seen as constraints on finding best sched-

ules, and allocation of resources is undertaken using mathematical programming for-

mulations, to maximize utilization or minimize project duration (Figure I) .

Though the classical approaches provide powerful algorithms for efficient schedul-

ing, the information they capture is limited to activity precedences, duration and

Center for Digital Economy Research
Stem School of Business
Walking Paper IS-89-80

SCALE

Figure 1: Classical view
of Project Management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

resource estimates. This surface representation of available project knowledge is

probably appropriate for well-defined and repetitive projects such as in manufac-

turing or engineering. However, it proves inadequate for Information Age projects

like large-scale software development where there is a need to manage a wide variety

of information. For instance, the goals of a project are typically not clearly specified

and evolve during implementation. Project plans made in these situations reflect

assumptions that have been made to impose some structure. As goals evolve, the

assumptions must be reevaluated and plans revised accordingly. Yet another source

of difference is that people resources utilized by these projects tend to fall under the

growing category of "knowledge workers", as different from labor or clerical person-

nel. They collaborate with each other, exchange information, and exercise control

over different parts of the project. Resources such as these cannot be treated as

passive scheduling constraints.

Techniques for modeling collaboratio~l between people, and computer-based tools

for supporting collaborative work have become an active area for research in the

recent past [FIIW] [WF86]. Collaboration is viewed as a process in which individual

participants initiate requests, and make commitments to fellow workers concerning

the performance of activities at specified points in time (Figure 2).

Sophisticated tools have been developed for structuring the communication pro-

cesses involved in collaboration [COORD86]. Though such tools offer added value

by providing formal techniques for electronic messaging between participants, there

is little support for the complex decision-making undertaken to plan and control col-

laborative work.

Classical approaches to project management, and techniques for modeling work-

group collaboration therefore represent different extremes on the spectrum of project

ontologies. It appears however, that neither of these conceptualizations succeeds

in capturing the wealth of knowledge typically used in the planning and control of

Information Age projects.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

SCALE

Figure 2: Collaborative Work
perspective on project management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

2.2 Some Empirical Evidence

We conducted a set of empirical studies to better understand the knowledge used by

project managers planning software projects.

Subjects: Ten part-time graduate students (6 female. 4 male) of an advanced cap-

stone Information Systems electi1.e participated as subjects in this study. These

subjects had an average 2.7 years of experience in managing systems development

projects at work. Their business backgrounds varied but a majority worked in the

financial services industry.

Task: A case study that described problems faced by a company which manually

stored and retrieved personnel document nlicrofiches was presented, and an outline

for a computer-based alternative was offered. Subjects were then asked to imagine

they were in-charge of the systems group, and required to prepare a plan and schedule

for designing, developing and implementing a conlputerized document maintenance

system.

Da ta Collection and Analysis: Collection and analysis of think-aloud protocols

[ES84] is a technique that has gained wide-spread acceptance in experimental psy-

chology as a method for studying cognitive information processing. In this study,

subjects were instructed to "think aloud" while planning the project. and to voice

all assumptions and thoughts. These think-aloud protocoIs were recorded on audio

tape and subsequently transcribed. An analysis of the transcripts was performed to

identify the different kinds of knowledge used, and to obtain insights into the process

of project planning.

Findings: Analysis of the transcripts clearly establishes that subjects engage in

more than just specifying activities and precedences. For instance. subjects made

use of a variety of information to reason about project objectives/deli~rerables and

activities:

Center for Digital Economqg Research
Stem School of Business
1Vorking Paper IS-89-80

' OBJECTIVES))

SCALE i

Figure 3: Conceptual Model
for Information Age projects

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

"You have to make a deczszoil whether to u5e t h ~ s A D F faczlity or the 131.5 .4DF seems

t o be lazlored to the applzcnlto~~ (front f f i c descnpllolt) If you roant lo go to .1DF you

wzll have to traln your people "

"You rnzghf also want to do a demo to your users - I put as a task 'Convznczng users'

(to go wzth the system), because the users have a dzfjerent zdea zn rnzitrl (accordzng to

the case)."

"After we determnrte what the zndex zs, then we also need to determ?ne the converszon

sdrategy. W e have a system zn place today aild we need lo convert zl lo a new system.

W e have to deterrnzne how ure are gozng to do that."

In addition, subjects considered several kinds of relationships between activities, and

made assumptions or statements of preference while determining precedence relation-

ships.

"Determining the requirements - we can determine the requireincnts before we learn the

system, bu1 it wou211d7nt be a good idea. We should write reqtizrements understanding

the tool we have to work with.."

""Designing the screens, I think, does not rely on the design of the index because the

internal database could be structured in a certain way and the screens could be structured

in a diflerent way.. I a m going to put that parallel to Designing the i7adexl but I a m

going to put it after Convincing the users because we want the user's to help us design

screens..

".,Conversion - if we are using a PC, conversion can start as soon as we have designed

the index, and it does 7l0t depend on the screens and the reports."

The implications of these findings for the development of techniques for managing

software projects are the following: (1) a variety of knowledge other than activities.

and precedence relationships underly the reasoning processes inr;olved in the develop-

ment of a project plan, (2) this knowledge may be systelilatically captured. and (3)

availability of this knowledge may be used to pro-actively plan projects to accomodate

change, and subsequently to generate strategies for control.

2.3 Enhanced model of project knowledge

Based on our empirical observations, we developed a model for conceptualizing Infor-

mation Age projects (Figu7.e 3). This view of the project ~vorld is adapted from the

Center for Digital Economy Research
Stem School of Business
Wolkirlg Paper IS-89-80

ontological model of projects proposed in (SRI891.

Descriptive knowledge about any domain inclu6ing projects. ma). be captured by

modeling entities of interest, ancl the dependencies that esist between these entities.

Project objectives or deliverables, the activities that accomplish these objectives, the

resources that are used for this purpose, and the time scale or time horizon over which

the project is scheduled, are the types of project entities that we are concerned with.

Two types of decisions are made during project planning: design decisions. and

plan decisions.

Design decisions concern the determination of project objectives or specifica-

tions (design objects), and the activities and resources needed to "deliver" these

objectives (design activities).

Plan decisions involve the determination of precedences between activities,

and resource allocations, based on assumptions about work dependencies or

;elationships between activities.

Documentation of the knowledge underlying design and plan decisions, is critical for

managing change in poorly defined, evolving project scenarios. An example is the

case of developing large software systems.

To document this knowledge, it is aIso necessary to define the different kinds

of dependencies that rnay esist between project entities. There are primarily two

categories of dependencies: associations representing dependencies between entities

of different types, and relationships or dependencies between entities of the same

type. Associations of particular interest are the ones between objectives and the

activities they are accomplished-by, associatiolls between resources and the activities

they commit-to. etc.

Relationships can also be of several types. Srikanth [SRI89] took a work-centered

view of projects, and based on observations from the empirical study, identified the

folloiving 4 kinds of activity-relationships: (1) output-input relationships represent-

ing one activity's dependence on another for needed input. (2) facilitatory relation-

ships where the performance of one activity presumably makes another easier. (3)

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

coordination-reqd relationships where reciprocal influences between activities makes

a temporal overlap necessary. and (4) shared-resource relationships between activities

that use the same resource in adjacent time intervals. This categorizatioil of activity-

relationships refines and extends the classification of work dependencies proposed in

the literature on Organizational Design by Thompson [TH067].

This characterization of project li~lowledge was evaluated through a follo~v-up

study. Six experienced project managers - three Civil Engineers and three Systems

Development professionals (with > 5 years experience) - were asked to think out

aloud while they planned two different test projects: a kitchen renovation, and the

development of a computerized document maintenance system. The transcripts of the

think-aloud protocols were studied by a panel of 3 independent judges. who coded the

information heeded by subjects, in terms of these relationships. Inter-rater reliability,

used as a measure of how appropriate the relationship categories were, turned out

reasonably high. The judges also agreed that in their subjective evaluation, the model

seemed complete and adequate for representing information used in generating project

plans.

The above taxonomy of relatiollships focusses on knowledge underlying plan de-

cisions. In ill-structured projects, we have seen that a second class of class decisions

- project design decisions - are also of interest. This paper extends the taxonomy

by incorporating dependencies that play a role in decisions about design: (1) When

a set of activities is specified as necessary for "delivering" a single design object or

objective, each member of the set is conjointly dependent on the others. And, (2)

two activities are logically dependent when the method or way of doing one activity

determines the choice of method for the other.

When project knowledge is represented in terms of this model, we succeed in

capturing the 'whole picture'. It facilitates documentation of the logic behind project

decisions. For projects that evolve over time, this kind of documentation allo\vs

managers to consider alternative responses to change in the light of earlier decisions

about the project design ancl plan.

In terms of the information management problem posed earlier, this observation

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

gives us a basis for an answer to the second question: "in what form must information

be represented to facilitate its effective usage?" IVe argue that knowledge of the logic

underlying project decisions must be represented in a knowledge base so that it it is

available for consultation prior to making revisions in design and plan.

2.4 Design goals for project knowledge bases

The first and primary goal in designing a knowledge base of project information, must

therefore be to capture the different kinds of knowledge embodied in the enhanced

project model. A discussion of hozv some of this information can be effectively utilized

to generate strategies for change management can be found in [SRI89].

That however, is not all. In addition to the static characteristics of the knowl-

edge base, it is also essential to consider its dynamic traits: patterns of usage and

modification, maitaining integrity of knowledge over time, etc. Ill-structured projects

evolve and are prone to one or both of the following kinds of changes:

1. Changes in design specifications (changes in objectives or available design al-

ternatives). And,

2. Changes in plan specifications (changing activity time estimates and resource

availabilities).

Since these projects are inherently poorly defined, changes in objectives or scope,

and deliverables, are unavoidable. When objectives or deliverables change, design

decisions must often be revised, potentially leading to chain-reaction revisions to

les. logically or conjointly dependent design activ't'

Likewise, when unanticipated external events such as resource breakdowns and

overruns cause delays, schedules are revised and resources reallocated. The web of

work dependencies such as output-input relationships, shared-resource relationships

etc., propogate these changes, leading to system-wide revisions.

Such wide-spread revision of design and plan decisions is typically unacceptable

from an operational standpoint since it malies coordination within and across inter-

related projects very difficult. It also gives rise to the need for more frequent and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

widespread "repair" of the knowledge base, to maintain the integrity of information

stored.

Designers must therefore consider the following while developing knowledge bases

for supporting ill-structured. Inforrtlation Age projects: (a) changes in design and

plan are inevitable. (b) knowledge of design and plan logic facilitates response to

change. and (c) project decisions about design and plan. are interdependent in a

variety of ways - the revision of one could possibly cause chain-reaction changes in

others. The question that must now be addressed is: ..hou: must we design knowledge

bases to support management of projects such as these P"

Computer-based systems that support organizational information processing are

either designed to be compatible with existing organizational practises, or with a view

to modifying them as seen fit. Here, we are interested in the design of knowledge-

based systems for management of uncertainty and change in project organizations

whose work is poorly defined.

From an organizational view-point, it is clearly desirable that such projects be

managed "pro-actively" , by increasing the ability to respond to unanticipated events

[ACK81]. It is also essential to find ways to limit chain-reactions. or localize the

effects of change in design or plan decisions. Systems theory [SIMG2], and the litera-

ture on Organizational Design [GAL731 advocate the creation of self-contained units

to reduce the need for wide-spread exchange and processing of information in such

circumstances. A knowledge- based system that aims to assist ill-structured project

organizations may be designed in a like spirit.

We argue that chain-reaction revisions of project knowledge bases can be pro-

actively reduced by partitioning the linowledge base into minimally "related" groups

of design and plan decisions. If an effort is made to confine the effects of changes in

design and plan to be within one or more of these "islands" of project knowledge,

the extent of knowledge base maintenance required can be significantly reduced.

This knowledge partitioning also assists in the orgarlizational aspects of change

management. When the project knowledge base is designed and constructed in this

manner, knowledge that is reciuirecl for control is distributecl. Responsibility arid

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

o\vnership of each knowledge base module may now be assignecl to different knowledge

workers in the project organization, who will then have complete authority for local

project control decisions. Formation of these almost-independent groups of design

and plan decisions, therefore defines islands of coritrol for managing a project (see

[SRI89] for a more thorough discussion of the benefits of forming islands of control

to manage change).

The second goal in the design of systenis for supporting poorly defined, evolving

projects, must therefore be the partitioning of the project knowledge base into almost-

independent segments or modules.

In summary therefore, we argue that knowledge-based systems for managing ill-

structured projects may be designed as follows:

1. Step 1: Making use of the enhanced project model as a framework for captur-

ing and representing information about project design and plan decisions, in a

knowledge base.

2. Step 2: Utilizing this knowledge, and a definition of "relatedness" to identify

minimally related groups of design and plan decisions. And,

3. Step 3 Modularizing the knowledge base into islands of project knowledge

along these lines.

The next section sketches a semantic network formalization of such a model as a basis

for an implementation effort.

3 Software Project Knowledge Representation

The formal software project model sketched below is intended to represent content,

process, and project control for design tasks in a uniform framework suitable for co-

operative work. Although any language could be used to implement

such an approach, a knowledge representation language with powerful abstraction

mechanisms specifically tailored for requirements modelling allows for a concise ini-

tial specification. In this paper, we use a subset of the knowledge representation

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

language CML/Telos for this purpose. Actually, a related model which emphasizes

different aspects of project management (e.g., negotiation support [HAHNt39]) is be-

ing implemented in the CoNeX system on top of the ConceptBase knowledge base

management environment [JJRSS] that directly implements CIVIL.

3.1 Basic Concepts

CML/Teios is a hybrid knowledge representation language that integrates predica-

tive rules and constraints and an interval-based time calculus into an object language

based on highly structured semantic networks. The language has been used in var-

ious applications mainly in software requirements modelling and software informa-

tion management. A full description including a formal semantics can be found in

[KMSB89].

The CML object language fully supports the abstraction principles of classification,

generalization, and aggregation. A number of built- in axioms enforce the semantics

of these structuring principles. In terms of surface syntax, a knowledge base can be

equivalently described as a semantic network: a set of frames. or as a combination of

both. In the ConceptBase implementation, this has been exploited to offer the user

hypertext-style interaction with the system [JJR88].

Classification is used to make the language extensible in the sense that it is easy

to define sub-languages for specific application areas. For example. the software pro-

cess meta-model and the software project meta-model below define general languages

in which specific software development environments can be defined by instantiation

of these meta-models. Specific software development projects, in turn, are repre-

sented as instantiations of these software development environments (see section 4

for examples), One more instantiation step allows the documentation of prototyping

examples for these specific software development projects. Note that this multi-level

metaclass faciIity goes beyond that of most other object-oriented languages. Addition-

ally, CML's classification axioms enforce organizational principles such as referential

integrity in the knowledge base.

As in other object-oriented languages. genernli:utio9z is used to facilitate rensabil-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

ity and localize the effect of change by inheritance mecllanisn~s. ChlL supports mul-

tiple inheritance to avoid representation arlornalies.

Aggregation is intended to relate in-the-large and in-the-small development by an

attribute mechanism that connects objects to each other. X unique feature of ChIL

is that attributes (i.e., links among objects) are themselves full-fledged objects with

classification. generalization, and inheritance. In the software process model. below.

this feature is used to document dependencies among attributes created by design

decisions.

Modular aggregation is a special kind of aggregation in which access to part ob-

jects can only be achieved through esplicit import and export. as in programming

languages such as MODULX or Ada or in the 'worlds' approach of [WA88]. This ex-

tension is currently being added to CML in order to support the information hiding

requirements of distributed project control, as required b ~ . our approach. It also serves

as the basis for conceptual version and co~lfiguration management [JJR89] required

for the controlled integration of separately developed software components.

The CML assertion language introduces a special kind of objects into the semantic

network. These objects are represented externally by strings that express first-order

predicate calculus expressions. As in deductive databases, these expressions can be

used either as deduction rules to infer implicit information from stored data. or as

integrity constraints to enforce semantic theories not directly expressible by the struc-

tural axioms of the object language. Which of the two meanings of an assertion object

is intended, is expressed by the class of the attribute link pointing to the assertion

object.

The temporal sublanguage is also fully integrated into the data model; this. of

course, substantially facilitates project modelling in which the duration and temporal

relationship among (activity) objects plays a central role. Since every CML object has

built-in time, there is no need to introduce explicit time objects as shown in figures

1 through 3. Temporal constraints can be expressed using Allen's [ALL831 interval

calculus. This calculus, fio\\~ever, offers only simple temporal relationships such as

"before", 'Loverlaps", etc. Using tlle CAlL object language, content-oriented special-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

izations such as discussed in section 2.3 (cause. facilitate, etc.) can be introduced.

A detailed discussion of these options would go beyond the scope of this paper (see

[BMR89], [SRI89], and other ~sorlis cited in the introduction).

3.2 Software Process Model

As an example of the above CML facilities. we now re~ietv a basic model of software

development processes fully elaborated in [JJR89]. The model. summarized in the

semantic network of figure 4a, is actually a meta-model of software development

environments that consists of three kinds of objects:

Design objects represent any kind of intermediate result achie~ed in the soft-

ware process. For example, in the DAIDA software development environ-

ment [DX4IDA88], this includes requirements models (i.e., functional and non-

functional system requirements as well as a conceptual model of the system

environment), formal specifications, conceptual designs: the actual software,

and any accompanying documentation.

Design decisions characterize the planned or actual activities required during

the software development process. In DAIDA, we distinguish refinement of

the design objects within a particular level of representation, mapping between

different levels (e.g., from design to implementation), retract decisions that

correct previous refinement or mapping decisions, and relea.se decisions that

make a particular design object available to a larger group. Documenting these

decisions explicitly as knowledge base objects defines dependencies to be used

in subsequent maintenance decisions.

The execution of design decisions is supported by design fools. Design tools are

usually reusable software components specifically designed to support a partic-

ular class of design decisions. In the DAIDA environment, tools are triggered

by the user by suitable attachment to particular design objects fJJR891.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

Since the software process data model is representecl in CML. the full power of object

language. assertion language. arid time sublanguage is available to the representation

of actual software development environlrleilts (instances of the rneta-model) and soft-

ware development projects (instances of those software dei,elopment environments).

For example, the time calculus can be used to represent versions of certain software

components, and the assertion language for expressing constraints such as those gen-

erated by certain commitments in the process model sketched in section 3 ~f this

paper. Most importantly, modular aggregation can be used to isolate certain config-

urations of design decisions and their intermediate results so that only their external

cornmi tments remain visible.

3.3 Software Project Model

The software process data model is intended (and used) as a means to represent

a software development environment from the perspective of the contents of design

tasks. Surprisingly, much of the model remains valid when viewed from a project

management perspective. However. knowledge base objects take on additional inter-

pretations:

Design objects can be viewed as goals or deliverables whose temporal validity

characterizes the (planned or actual) status of a project. (Besides, a particular

new kind of design object, the project plan itself, should be introduced, together

with design decisions that create or change the plan.)

a Design decisions represent the project nctivztzes; their conceptual representation

is reduced from a rich, content-oriented model to information about their tem-

poral duration, temporal interrelationsships. and tool requirements. Even qual-

itative information about the design decisions may be rather different, when

viewed from the project management perspective, as indicated by Srikanth's

tasonomy of design dependencies: possibly. deduction rules can be used to infer

these relationships fro111 the content description of design decisions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

justification

Designobject

from/to aec:sionse~ant;c ' \
00 ject seman

dependencies 7
Fig. 4a: Software Process Model [JJR89]

trisser - -

justrf ication

-
~esignDecision/ supportb Design~ool/ Designobject/
~roject~ctivity '$ Resource Deliverable

concerns

conversation

Possibility- Action-
conversation Conversation

Fig. 4b: Software Project Model

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

While the process model records tools for eventual explanation and reuse in the

maintenance phase. the project model views tlieni as (scarce) resources that

have to be scheduled and may cause costs. This may require the recording

of tools/resources that are of no interest to the software process model (e.g..

money).

In summary, although the basic software process meta-model remains useful as a

structuring mechanism for software project knowledge as well, different viewpoints

[AS841 have to be offered when we intend to integrate software development support

frorn the engineering and frorn the project management perspective. In CML, this

can be achieved by the use of deduction rules.

Additionally, however, decentralized project management requires modelling of

the agents that control each island of project knowledge, and of the commitment

structures between these agents, as defined by the project breakdown into islands.

Like all other CML objects, agents and commitments can he organized in modu-

lar aggregates of related objects. In the case of agents, this allows the modelling

of project group structures; in the case of commitments, it defines how individual

messages can be composed to entire conversations. Analogously to speech act theory

[DDSVZ86, WF86], we distinguish as specializations (using the generalization ab-

straction of CML!) conversations for possibilities in the project planning phase, and

strictly controlled conversations for action in the project execution phase. Details of

a negotiation model for this kind of networking are explored in the CoiUeX system

[HJ89]. For the purposes of the distributed project management approach discussed

in the remainder of this paper, the level of detail given in figure 4 b should suffice.

Summarizing the results of this section, we can see that a relatively simple meta-

model of software processes and software projects can already represent a large variety

of aspects in software engineering and software project management. In a practical

system, however, the user may easily get lost in tile intricate details of such a knowl-

edge base. We therefore emphasize the need for powerful viewpoint facilities. In

particular, the syste~n should offer specialized browsing, zooming, and editing facili-

ties for the viewpoints of

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

any agent (or group of agents) controlling an island of project knowledge

content-oriented software development a c t i ~ i t y

resource-oriented project control activity

as well as many others, with changes being propagated from one viewpoint to related

ones. Prior to the availabiIity of such a generalized software environment (aspired

but hardly achieved by numerous so-called IPSE - Integrated Project Support En-

vironment - projects), a much simpler implementation appears advisable. Such an

implementation, together with an associated project management methodology, is

discussed in the next section.

4 Pro-act ive Management of Software Projects

Large software development projects are liotoriously difficult to manage, and are rou-

tinely plagued by schedule and budget overruns [BR082]. In this section, we outline

a methodology for pro-active planning that operationalizes the islands of control con-

cept in the context of the software project model. We then present in protocol form,

the strategies that could be used as part of this methodology to interactively manage

change in software projects. Finally, we discuss an implementation of this methodol-

ogy that is currently underway. The presentation will be largely by example; a more

formal treatment is given in [SRItiSj.

4.1 Overview of the Approach

In Section 2.3, we presented an argument for the modularization of project kno~vledge

bases as a means for localizing the effects of changing design and plan decisions. The

objective of such a modularization was to facilitate partitioning of the knowledge

base, and limit the extent of design and plan maintenance occassioned by revisions.

Synthesis of such modules or islands of project knotuledge. involves grouping "re-

lated" design and plan decisions together, and requires knowledge of the semantics of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

the software project model. If the modules are formed in a way that minimizes inter-

dependencies or .-coupling" between modules. there would be a greater probability of

change being contained within a module. The concept of forming minimally coupled

modules to facilitate change has strong roots in disciplines as varied as Organizational

Design [GAL73], and Structured Systems Development methodologies [Y C78j.

In the spirit of the islands of control approach, when unanticipated esternal

events cause revisions in design or plan decisions, the first response is to attempt to

limit revisions locally within affected modules. If this fails, a 'coalition' of affected

modules is formed and this is treated as a new, larger island of project knowledge

within which change may be contained.

In some situations, changes and revisions are so far reaching that localized control

is inadequate and there is a need for overall project reorganization. The knowledge

base assists in this reorganization by providing documentation of prior design and

plan decisions. The content and structure of the knowledge base itself must however,

also undergo revision when the project is re-designed or re-planned.

The rest of this section deals with how we operationalize these ideas. First, con-

sider the following project scenario which we will use to illustrate the discussion:

ABC Inc. would like to computerize their personnel document maintenance function,

currently being done manually. They would like to have a "user-friendly" system

for storing employee data, that also provides facilities for information retrieval and

generation of reports. For the system to be operational, it would also be necessary

to convert all existing documents to the computerized format. A preliminary specifi-

cation of the design would perhaps look like Figure 5a. The leaf nodes of this design

hierarchy represent the specific design objects, or deliverables of interest. Figure Sb

shows the design decisions of ABC's systems development team: the activities that

they believe must be undertaken, in order to accomplish or .'delivern the different

design objects. Several assumptions about design dependencies (Figure 6) underly

these decisions. Plan decisions such as a project schedules and resource allocations,

are also made likewise after considering work dependencies (F i g w e 7).

Center for Digital Economy Research
Stem School o f Business
Walking Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

D e a l g n f ,
U a e r D a s l g n S t o r I n p u t S c r e e n s

n
a

Approva l - a g e P r o g r a m s

P e r f o r m D e s i g n

D a t a A n a l y s i s
', D a t a b s a e

I

Order 6 Procure 4
Package

D e t e r m i n e ,
P a c k a g e

i
D e t . c o n v e - o l d d a t a

e r e l o n s t r t a y

D e v e l o p e r 1

D e l .

eva l

r e t r i -

r e q m t .

T e a t - R e t r . p ro u e o u g

eva l p r g r m s - l eva1 a c r e e n

Legend:
c o n j o i n t dependenc ies

log ica l dependenc ies

Figure 6: Design dependencies

Input Screens

Order & Procure

- output- Input re lat ionship

\

Legend:
4- coordinat ion-reqd re lat ionship

--- fac i l i ta tory re lat ionship GGO shared-resource re lat ionship

Figure 7: Work dependencies

4.1.1 Modular iza t ion of projec t knowledge

Given that a knowledge base can be co~istructed to captuit- ri;c, preceding information.

our purpose now is to develop a methodology for partitioning this knowledge base

into minimally coupled groups of design and plan decisions.

We refer to this process of forming "islands" of project knowledge as normaliza-

t ion . The objective of normalization is to maximize cohesiveness within each module

by grouping related design objects and activities together. and to minimize coupling

between modules by reducing work dependencies between such groups. Ideally, this

modularization should result in knowledge partitions that are stable with respect to

change; changes within one partition should not cause change in another.

The conceptual model of projects that we have developed. captures project knowi-

edge in terms of entities and dependencies between entities. This representation is

isomorphous to graph representations used extensively in Operations Research and

Computer Science: project entities can be treated as graph nodes, and the several de-

pendencies between them as labelled edges. The problem of modularizing the knowl-

edge base is therefore one of partitioning this knowledge g r a p h in a way that

satisfies certain conditions.

The intuition behind the criteria for partitioning the knowledge graph comes from

the following considerations: (a) it is desirable that the knowledge within each parti-

tion is cohesive - it should pertain typically to one design object or a family of related

design objects, and (b) it is essential that the partitions are minimally coupled and the

potential for localized control is maximized - work dependencies between partitions

should be minimum.

The normalization procedure itself consists of two steps:

1. ,4 starting partition is created by identifying "natural" design clusters - groups

of activities related by conjoint and logical dependencies (Figure 8(b)). Figure

8(a) shows the first step in the simple algorithm used for this purpose.

2. The "cost" of this partition is now minimized by examining each pair of clusters,

and exchanging groups of activities to minimize work dependencies between

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

clusters. Weights are assigned tcl the different acti\~it!--relationships to reflect the

extent of dependency they cailsc. !'<,ordination-req~iired relationships have the

maximum weight, followed !iy output-input. facilitatory. and shared-resource

relationships in that order. lye have adapted a well-known heuristic algorithm

developed in graph-theory research for finding the nlinilnum cost k-way partition

of weighted graphs [I<LSO]. The result of applying our adapted version of this

algorithm to the initial partitioning of the linowledge graph (Figure 8(b) j . is

shown in Figure 9.

Each of these final partitions is an 1s2and oj'project knozcleclge. and serves as the basis

for modularizing the project knowledge base. 111 addition,. these n~odules also serse

as units for distribution of project responsibility, as seen in the discussion on the

Software Project Model. The agent who is responsible for. or "owns" a module must

not only be aware of dependencies within the module. but also of the extent and

nature of dependence on other modules. It is conceivable that normalization may

partition the project in a way that either ignores certain situation-specific depen-

dencies between modules, or combines parts of the project that for some reason are

best seperated. A post-normalization adjustment is therefore typically undertaken.

where agents may negotiate changes in the partitioning, based on their knowledge of

existing dependencies.

The end result of this process is the segmentation of the project knowledge base

into modules that are weakly coupled. In Figure 9. these modules are shown numbered

A through G. The design and plan dependencies that remain across the partition,

define the commitments made by each module to other modules. Project control in

the face of change takes the form of attempts at the level of a module, or at recursively

higher levels of aggregation, to meet conlnlitnlents made. I11 the rest of this section.

we present a protocol of 110~7 this may take place.

4.1.2 Dealing with change locally

Once the project knowledge base has been modularized. and responsibility for each

module assigned to different agents. the implementation of the project gets underway.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

During implementation, tlle need for changes in design and/or plan specifications arise

fairly often.

For example, external events may force the o ~ ~ n e r of island .4 (Figure l o) , to

reconsider dex~eloping the software in-house rather than procuring a package from

outside and training personnel. Or alternatively. delays in building the conversion

set-up (island F in Figure 2 1) , may cause its owner to co~lsider whether additional

resources shouId be added, or if co~lversion of old data cotlld commence before the

set-up is complete.

The partitioning of the software knowledge base makes knowledge that is required

for responding to changes in specifications, available locally within tlle affected mod-

ules in most cases. In addition, the owner of each affected module has: (a) the

responsibility to meet commitments to other modules, and (b) the authority to make

ally changes to the design or plan, as long as their effects are localized. For instance,

in the first example above, the owner of island A may change a design decision by

electing to develop the software in-house. As a consequence, he could replace ac-

tivities Determine-Package, Order-and-Procure-Package, and Train Developers, with

Develop-Package as long as it satisfies the same design specifications. Likewise, the

owner of island F i11 the second example, could decide to overlap Build-Setup, and

Convert-Old-Data, reassign resources under his control, or subcontract it out in order

to meet schedule commitments to island G.

Sometimes, localized control either does not succeed in meeting commitments, or

results in unexpected consequences. Under these circumstances, the affected island

is in default and must cornmullicate this condition to other islands.

4.1.3 Propagation of Change alllong Islands

Normalization does not completely eliminate dependencies between islands, it only

attempts to reduce the incidence of certain kinds of relationships between them.

From the algorithm used for partitioning the knowledge base, it may be seen that

shared-resource relationships, facilitatory relationships, and sometimes output-input

relationships in that order, could span activities in two islands. Logical dependencies.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

and to a lesser extent conjoint dependencies. may also exist between zslands.

When a shared-resource relationship spans two ~s la tzds. i t represents a commit-

ment by the first island to release the shared resource at a certain point in time. to

the second island. In a similar manner. facilitator). and output-input relationships

represent scheduled corn~nitments for deli\,ering certain outputs. A logical depen-

dency forces related islands to commit to how certain activities will be undertaken.

and conjoint dependencies indicate commitment to ser~ice a shared project objec-

tive. In summary therefore, conmitments may be made about schedules, resources,

deliverables, methods or shared objectzves.

In the face of unanticipated events, an affected zslund may sometimes be unable

to meet one or more of these commitments througli localized control. It must then

communicate this condition to its affected neighbors.

When delays within an island cannot be controlled, schedule commitments made

as a result of shared-resource. facilitatory and output-input relationships must

be revised. Time delay is therefore, one kind of information flow that may be

propogated across lnodules in the project linowledge base.

Sometimes resources may breakdown or become unavailable. This event could

affect one or more islands that share the resource. Changes in the availability

of a shared resource, is yet another condition that may be communicated across

modules.

Activities may sometimes fail to deliver desired outputs, or accomplish desired

objectives. The owner of the island may attempt to remedy this failure by

localized replanning. Inability to do so affects commitments made about deliv-

erable~ as a result of facilitatory or output-input relationships between islands.

Changes in the status of deliverables must therefore. he communicated between

knowledge base modules.

. The method chosen for performing an activity may under some circumstances.

be changed. This change in tlle ..contracted" nlethod for an activity may call

Center for Digital Economqg Research
Stem School of Business
IVorking Paper IS-89-80

for a change in an activity in another island that is logicall?- dependent on it.

So changes in methods committed to, is another piece of information that may

be propogated between modules.

Last, a change in project goals or specific deliverables may sometimes he man-

dated by certain events. If this happens. all activities that are associated

with the affected deliverable (and conjointly dependent) must be reevaluated.

Changes of this nature, coulcl also ripple tl-irongh a project knowledge base.

Wllen any of these changes occurs, and is com~unicated by the affected island to its

neighbors, control of the project could take one of two forms. First, the neighboring

islands could accept the change and try to accomodate it locally. or second they could

"appeal7' the change. An instance of the former may be seen in Figure 11. Imagine

that the delay in the activity Build-Set U p , in island F cannot be controlled locally.

Island F cannot therefore keep its schedule commitment to neighboring island G, and

so comnlunicates it. In this case, island G accepts the change in commitments after

considering that completion of Convert-Old-Data though desirable, is not necessary

for beginning Integration- Testing.

4.1.4 Formati011 of Coalitio~ls for Project Control

When an island indicates that it cannot accept a change in comlnit~nents and appeals

it, a mini-breakdown in the project is signalled. At this point, a higher-level aggregate

island is created by forming a coalition between the ssland in default and the zsland

on appeal, and an attempt is made to control the change within this aggregate.

Once a coalition is formed, the corresponding knowledge base modules are com-

bined into one so that all available knowledge may be used for plan or design revision.

Localized reevaluation of the project is t~ndertaken within this aggregate island to en-

sure that inconsistencies and redundancies are eliminated. Plan revision by reschedul-

ing or reallocation of resources, and design revision within the aggregate island. may

then be made in order to meet comrnitmeuts.

Examples of this are shown in Figures 10 63' 11. Imagine that halfway through

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

the project, a design decision is made to implement the system using a relational

rather than a hierarchical database as determined earlier. The database schema that

will be delivered by Design-Database in island 3 will now be in a different format

from that committed to island C. If island Cappeals this change, a higher-level coali-

tion is formed by combining B and C (Figure 10). Combining the corresponding

1;nowledge base modules provides access to all inforrnatior~ required for incorporating

this change in project design specification. Likewise, Figure 11 illustrates the case

when Systems Analyst I responsible for Det-Retrieval-Requirements (and also Design-

Retrieval-Screen), falls ill. Island A cannot keep its schedule and resource commit-

ments to island D, which appeals this change. A higher-level coalition, island A+D

is formed and the project plan is revised locally. The other systems analyst available

in island A is reallocated to Det-Retrieval-Requirements and Design-Retrieval-Screen,

while Design-Index proceeds as per schedule.

This method of adaptive, need-based formation of coalitions between islands, re-

sults in a more flexible approach to management of change. It allows us to control

each part of the project independently until the need arises for considering inter-

actions. Even then, these interactions are not dealt with in a strictly hierarchical

manner as advocated in traditional control paradigms, but in a more oppurtunistic

and need-based manner that minimizes the effects of the disturbance.

In summary therefore, this section offered a methodology for managing change

in relatively ill-structured project domains. We have argued that in such domains

a knowledge base that captures the 'complete picture' facilitates pro-active project

planning and interactive project control. We outlined a technique for pro-active plan-

ning, that normalizes project knowledge bases by partitioning the knowledge graph

into minimally dependent islands. A protocol for interactive change management was

advocated, that recursively attempts localized control within islands or higher-level

aggregates. When local control fails, changes in conlrni tments are communicated to

neighboring islands, and if needed, coalitions are formed between affected islands to

manage the change.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

Proposed System Software
(Project Supervisor) Process

4 Knowledge
ASK Base

Resources ,
of Knowledge and Repor t s C o n s t r a i n t s

Normalization Project
Management

Workbench (TM)

Fig. 12: Implementation Architecture

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

4.2 Implementation and Evaluation

This methodology is currently being implemented on a microcomputer based system,

for purposes of laboratory and field evaluation. In this subsection, we outline the

architecture and construction of the system, and the design of a computer-based

simulation study that will be used to for evaluating its effectiveness.

4.2.1 Implementation of the System

The implementation has been designed to exploit the fact that our project model

is a 'consistent extension' of the classical project model. Our objective in building

the system is to create a prototype that will allow users to pro-actively plan a soft-

ware development project, representing information in terms of the enhanced project

model. The system will then recommend a partitioning of the project knowledge into

islands. After adjustments are made, it will (i) generate a schedule for each island

and the project as a whole, using traditional scheduling algorithms, (ii) document the

commitments that are made by each island to other islands.

The system architecture is shown in Figure 12. It consists of 3 modules: a knowl-

edge base cum supervisor module, a normalization module, and a scheduling cum

resource allocation module.

The knowledge base cum supervisor module controls interaction with the user.

It allows users to plan a project by specifying objectives/deliverables, activities, re-

sources, and the dependencies they consider in making design and plan decisions.

When the user has finished representing project-related information, he or she may

initiate normalization of the project knowledge base. This module is currently being

implemented in Smalltalk V/286, an object-oriented programming environment for

microcomputers.

The normalization module is a FORTRAN implementation of the algorithm that

we outlined for partitioning the knowledge graph. The scheduling cum resource allo-

cation module is an off-the-shelf project management package. It is primarily used for

applying powerful scheduling algorithms, and providing the user with sophisticated

graphing and report generation capabilities.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

The implementation as a whole, falls under tile category of what are being in-

creasingly referred to as "multi-paradigm" sy s terns. These are soft ware applications

which consist of several modules, each written in a language that is best suited for its

given function; inter-module comnlunication of data and control flags occurs through

the use of shared data files.

4.2.2 Empirical Evaluation

The purpose of the implementation outlined above was to provide a usable prototype

for field evaluation, and a platform for conducting laboratory studies.

A laboratory study is currently being planned that seeks to evaluate the effec-

tiveness of the interactive change management methodology we have developed. In

particular, we are interested in its effects on the extent to which a project's designs

and plans are affected by disturbances, and the overall cost of responding to such

change.

Using a computer-based simulation, disturbances such as changes in deliverables

or design specifications, time overruns, and resource breakdowns will be generated.

The responses of interactive change management and classical project control, to

identical disturbances will also be simulated for a variety of project networks. A

log of any revisions in design or plan will be maintained electronically, and project

completion times and costs documented.

A comparison of the change logs will be made to obtain qualitative insights into

differences between the two methods. The vector of changes distributed across each of

the islands will provide a metric for the extent of disturbance propogation. Statistics

of completion times and costs can likewise be determined to compare the overall costs

incurred during change management.

The setup for this simulation study is currently under developlnent and will be

ready shortly. Through this study, we expect to demonstrate that the methodology we

have developed results in significantly reduced propogation of disturbances across the

project knowledge base. We also espect to show that cost efficiencies are comparable,

if not better than classical approaches to project control.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

5 Summary and Outlook

The starting point of this paper was the observation that, in large, ill-structured

projects, change of requirements and available resources is so frequent that rigid

project planning techniques become obsolete. Consequently, our "islands of project

knowledge" approach attempts to help project managers plan pro-actively, with the

goal of organizing projects so that most change can be dealt with locally. Knowledge

representation techniques were then used to represent such change-friendly project

structures, simultaneously supporting actual content-oriented project work. Given

the current limitations of such systems, a project management methodology and

implementation approach were proposed that start from currently available project

management software and just enhance it with a few crucial qualitative features.

Both the underlying model and the actual implementation have been, or are in

the process of being, empirically validated in laboratory and field settings. In this

wayp we hope to improve management performance on a class of important projects

that have enjoyed little effective support by information system technology so far,

and have consequently been plagued by time and cost overruns continuously.

A distinctive feature of our approach is that the distribution of project control

shifts responsibility back to human collaborators, rather than just treating them as

resources, hopefully fostering creativity and responsiveness. To achieve this goal,

models and tools for project decomposition and re-integration as presented in this

paper are, of course, only a first step. Further work on actual group support tools is

therefore underway that facilitate idea generation and organization, negotiation, and

commitment monitoring.

References

ACK81 AckofF, R.L. (1981). Creating the Corporate Future, New York: John Wiley.

ALL83 Allen, J.F. (1983). Towards a general theory of action and time. Artificial

Intelligence 23, 2, 123-154.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

AM88 Abdel-Hamid, T.I<., Madnick, S.E. (1988). Lessons learned from modelling the

dynamics of software development. WP 2069-88, Sloan School of Management,

Massachusetts Institute of Technology, Cambridge, Mass.

AS84 Attardi, G., Simi, M. (1984). Metalanguage and reasoning across viewpoints.

Proc. ECAI '8.4, Pisa, Italy (North-Holland), 315-324.

BB88 Bimson, K.D ., Burris, L.B. (1982). Conceptual model- based reasoning for

knowledge-based software project management. Proc. 2lst Hawaii Intl. Conk

System Sciences, I<ona, HW, 255-265.

BCEGRS86 Begeman, M., Cook, P., Ellis, C., Graf, M.. Rein, G. , Smith, T. (1986). Project

NICK: meetings augmentation and analysis. Proc. First Intl. Conf. Computer-

Supported Cooperative Work, Austin, TX, 1-6.

BMR89 Bartusch, M., Moehring, R.H., Radermacher, F.J. (1989). Design aspects of

an advanced model-oriented DSS for scheduling problems in civil engineering.

Decision Support Systems 5, 3 (this volume).

BR082 Brooks, F.P. (1952). The Mythical Man-Month: Essays on Software Engineer-

ing, Addison-Wesley, Reading, MA.

COORD86 COORDINATOR, (1986). The COOR131NATOR Workgroup Productivity Sys-

tem: Workbook and Tutorial Guide. Action Technologies Inc., San Francisco

DAIDA88 Jarke, M., DAIDA Team (1988). The D AIDA environment for knowledge-based

information systems development. Proc. ESPRIT '88: Putting the Technology

to Use, Brussels, Belgium, 405-422.

DDSVZ86 DeCindio, F., G. De Michelis, C. Simone, R. Vassallo, and A. Zanaboni. (1986).

CHAOS as a coordination technology, Proc. First Intl. Conf. Computer-

Supported Cooperative Work, Austin, TX, 325-340.

ES84 Ericsson, K.A. and H.A. Simon. (1984). Protocol Analysis: Verbal Reports as

Data. Bradford BookslMIT Press, Cambridge, MA, 1984.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

FII(82 Fikes, R.E. (1982). A commitment-based framework for describing informal

cooperative work. Cognitive Science. 6():331-347.

GAL73 Galbraith, J.R. (1973). Deszgnzng Complex O~ganzzc~t~o~zs. Addison-Wealell

series on Organizational Development. Addison-\4iesley, Reading, MA.

GJLP87 Gilham, L.M., Juellig, R., Ladkin, P., Polak. LV. (1987). Knowledge-based

software project management. Report KES.U.87.3, Kestrel Institute, Palo Alto,

Ca.

HAHN89 Hahn, U. (1989). Dialogstrukturen in Gruppendiskussionen. Report, DFG

Project Ja-445/1-1, University of Passau, W. Germany. Submitted for publica-

tion.

HJ89 Hahn, U., Jarke, M. (1989). CoNeX: Coordination and negotiation support

for expert teams in project management. European Conference on Cornputer-

-Supported Cooperative Work, London, UI<.

HJKFP Hahn, U., Jarke, M., Kreplin, I<., Farusi. M., Pimpinelli. F. (1989). CoAU-

THOR: a cooperative group authoring environment. Report, ESPRIT Tech-

nology Integration Project 2105 (MULTIWORKS), European Conference on

Computer-Supported Cooperative Work, London, UK.

HOF88 Hofbauer, T. (1988). IPMSS, an intelligent project management support sys-

tem. Diploma thesis, Technical University of Munich, W. Germany.

JDL88 Juellig, R.I<., Daum, M., Ladkin, P.B. (1988). Approaches to planning the the

Project Management Assistant. Proc. 3rd Annual I{BSA Conf., Utica, N.Y .,

31-51.

JJR88 Jarke, M., Jeusfeld, M., Rose, T. (1988). A global ICBMs for database software

evolution: documentation of first ConceptBase prototype. Report &UP-8819,

University of Passau, Mi. Germany.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

JJR89 Jarke, M., Jeusfeld, M., Rose, T. (1989). X soft~sare process data model for

knowledge engineering in informati011 systems. Information Systems, to appear;

also available as Report MIP-8910, University of Passau, PV. Germany.

ICED84 Kedzierski, B.I. (1984). Knowledge-based project management and communi-

cation support in a system development environment. Proc. 4th Jerusalem

Conf. Information Technology, Jerusalem, Israel.

ICL70 Kernighan, B.W., Lin, S. (1970). An efficient heuristic procedure for partition-

ing graphs, The Bell Systems Technical Journak, February: 291-307.

I<MSB89 Koubarakis, M., Mylopoulos, J.. Stanley, M.. Borgida, A. (1989). Telos: fea-

tures and formalization. Technical Report I<RR-4, Dept. Computer Science,

University of Toronto, Canada.

I(P87 Kurbel, K., Pietsch, W. (1987). Projektmanagernent bei Expertensystem-Entwicklu11gen.

- Report no. 12, Lehrstuhl fuer Betriebsinformatik, University of Dortmund, W.

Germany.

MOS85 Mostow, J. (1985). Towards better models of the design process. A1 ~Uagazine

6, 1, 44-57.

SFG85 Sathi, A., Fox, M.S., Greenberg, M. (1985). Representation of activity knowl-

edge for project management. Report CMU-R1-TR-85- 17, Carnegie- Mellon

University, Pittsburgh, Pa.

SIM62 Simon, H.A. (1962). The architecture of complexity. Proceedings of the A mer-

ican Philosophical Society, 106:467-482.

SRI89 Srikanth, R. (1989). Islands of control: a knowledge-based approach for manag-

ing change in projects. Ph.D. dissertation, Leonard N. Stern School of Business,

New York University, New York, NY, in PI-ogress.

THO67 Thompson, J.D. (1967). Organizations in Action. McGraw-Hill, New York NY.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-80

VAU88 Vauquois, P. (1988). PIMS, a Project Integrated Management System. Proc.

ESPRIT '88: Putting the Teclrnology to Use, Brussels. Belgium, 392-404.

W,488 Wile, D.S., i2llard, D.G. (1988). Ptiorlds: aggregates for object bases. USC'

Information Sciences Institute, Marina del Rey, Ca.

WF86 Winograd, T. and F. Flores. (1986). Understa~sding Computers and Cognition:

A New Foundation for Design. Ablex Publishing, Norwood NJ.

YC78 Yourdon, E. and L.L. Constantine. (1978). Structured Design. Yourdon Press.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-89-80

