
REPRESENTATION SCHEMES FOR

MATHEMATICAL PROGRAMMING MODELS

by

Frederic H. Murphy
School of Business
Temple University
Philadelphia, PA

Edward A. Stohr

and

Ajay Asthana
Information Systems Area

New York University
90 Trinity Place

New York, NY 10006

September 1988

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

ABSTRACT

Because of the difficulties often experienced in formulating and
understanding large scale models, much current research is directed
towards developing systems to support the construction and
understanding of management science models. This paper discusses six
different methods for representing mathematical programming models
during the formulation phase of the modeling process. The approaches
discussed in the paper include algebra, three different kinds of
graphical schemes, a database-oriented approach and Structured
Modeling. We emphasize representations that have graphical elements
suitable for incorporation in the interface to a modeling system. The
different methods are compared using a common example and conclusions
are drawn as to their suitability for various modeling tasks and
situations.

Key words: Modeling, mathematical programming, graphics

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

1. INTRODUCTION

Our ability to solve large mathematical programming models has
improved with the introduction of new algorithms and continued
advances in computer technology. The major impediment to more
widespread use of these models appears to be a human one. Modeling
is a time-consuming, error-prone task that is understood by only a
small number of management scientists (Fabozzi and Valente [1976]).
Recently, there has been an awakening of interest in the modeling
process itself and in computer systems which directly support the
modeler. An example of the benefits that can be obtained from the
combination of a user friendly interface and powerful modeling
language is given by the PLANET system at General Motors (Breitman and
Lucas [1987]).

Most mathematical programming systems (Optimizers) accept model
definitions in the MPS format (IBM [1975]). This consists of a list
of triples in the form (Row Label, Column Label, Value). Although MPS
format is efficient from a machine processing point-of-view, it is
difficult for humans to develop and debug models in this form,
(Meeraus [1984]). Over the last few decades, a number of systems have
been developed which attempt to make the modeling task easier. Early
systems (Matrix Generators) were essentially procedural programming
languages that helped generate MPS statements. Some examples are LOGS
Brown et a1 [1987], OMNI El9771 and DATAFORM (Creegan, [1985]).
Later, systems which accept problem statements in a non-procedural
language (e.g. in algebraic form) were developed. Example systems in
this class include GAMS (Meeraus [1984]), AMPL (Fourer et a1 [1987]),
XMPL (Dolk [1986]) and CAMPS (Lucas and Mitra [1985]). PAM (Welch
[1987]) is a non-procedural, table-oriented language written in
DATAFORM.

More recent modeling approaches include Structured Modeling (Geoffrion
[1987]), which provides a general representation for a broad range of
model types, and Netforms (Glover [1988]), which is suitable for
mathematical programs that are primarily networks. Dolk [I9861 has
developed a system based on concepts from database management systems.
Krishnan [I9871 and Raghunathan [I9881 have designed new modeling
languages based on artificial intelligence techniques for representing
domain dependent knowledge. The former uses a dialogue-driven
interface controlled largely by the computer, while the latter
proposes a modeling language based on And-Or graphs. Some Itrestricted
natural languagett interfaces have also been developed. Binbasioglu
and Jarke [I9861 develop a simple wactivity-resourcet~ language for
specifying problems in the area of manufacturing production,
Greenberg [I9871 has developed a restricted natural language system
for interpreting LP models and results. A number of systems,
effective for small applications, integrate optimization with the
spreadsheet paradigm (Bodily [1986]). Finally, we have built a
prototype system, LPFORM, to help modelers formulate linear
programming (LP) models (Murphy and Stohr [I9861 and Ma [1988]).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

LPFORM provides a graphic interface which uses icons to represent real
world objects such as inventories, machines and transportation
networks. The interface is described in Ma et a1 [I9861 and has been
improved and tested by Asthana [1988].

The great diversity of existing and proposed modeling systems makes a
comparative analysis worthwhile. Our objective is to review these
systems from the point-of-view of the interface presented to the user.
In particular, we wish to investigate the merits of various methods
for representing problems. In the space available, we can only review
some major alternatives: non-procedural programming languages,
graphics-oriented interfaces and database representations. We have
chosen some typical systems in each of these categories in an attempt
to discover their advantages and disadvantages in terms of the two
goals of user friendliness and machine efficiency. Since all viable
representations must lead to unambiguous model statements, it should
be possible for a system to transform from one representation to
another and to achieve both goals simultaneously. The paper outlines
the steps needed to perform some of these transformations.

Useful representations for management science problems must help users
cope with the complexity of real world applications. The paper
introduces wcompactw forms for some existing graphic representations
and illustrates several simplifying principles including direct
representation of real world objects through the use of graphic
"icons", hierarchical problem decomposition, and a wpiecemealn
approach which supports simultaneous top-down and bottom-up strategies
during problem definition.

Section 2 provides a general framework for comparing different
representation schemes. Section 3 introduces an example that will be
used to illustrate the different approaches and also discusses some
traditional representations including algebraic languages. Sections 4
through 8, respectively, cover Activity-Constraint Graphs, Netforms,
Structured odel ling, database representations, and the iconic approach
used in LPFORM. The paper ends with some brief conclusions and
suggestions for future research.

2. REPRESENTATION SCHEMES IN MODELING

In this section, we discuss the objectives of advanced modeling
systems and the role of problem definition languages in helping to
achieve these objectives.

A typical design for a modeling system is shown in Figure 1. Most
current systems contain all of the subsystems shown in the figure in,
at least, a rudimentary form. Ideally, the interface module handles a
variety of input and output presentation modes. The Model Processor
accepts the user's input and produces a statement of the model in a
form suitable for a standard optimizer such as LINDO (Schrage [1984])
or IBM's MPSX [1975]. A Solution Analyzer (e.g. Analyze, Greenberg

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

[1983]) accepts the solution from the Optimizer, performs analyses,
and provides reporting and online query facilities for the user. The
Model Management and Database Management components provide
information, access and maintenance facilities for models and data
respectively (see Blanning [I9821 and Date [I9871 for a discussion of
these components).

[FIGURE 1 ABOUT HERE]

The following are some objectives of a good modeling system:

(1) Provide a rigorous conceptual framework for problem
formulation.

(2) Allow the representation of a broad range of model types.

(3) Reduce the complexity of the modeling process.

(4) Support all phases of the development and use of models.

(5) provide model-data independence.

(6) Provide model-solver independence.

(7) Check the validity of models.

(8) Employ modern interface techniques.

(9) Integrate modeling with modern database techniques.

(lo) Provide powerful computational features to help generate the
data.

(11) Facilitate the reuse of previously developed models and
their combination into larger models.

(12) Provide automated documentation of models.

(13) ~xplain model structure and interpret model results.

(14) Accumulate domain dependent knowledge over time.

The above includes the list of desirable features given by Geoffrion
[1987]. The items in this list are self-explanatory except for items
(5) and (6). Model-data independence, implies a separation of the
statement of the structure of the model from the data that is to be
used in it. Thus, the sizes of sets and values of data items can vary
from run to run without changing the statement of the model.
Similarly, model-solver independence implies that the statement of the
model is in a format that does not depend on the requirements of any
one solver or class of model.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

In considering the role of representation schemes in the achievement
of these goals, it is important to distinguish between external and
internal representations. An external representation scheme is used
by the modeler to define models and to express queries to be answered
by the model. Objectives (1) through (3) simply cannot be achieved
without a good external representation scheme. In addition, goals (4)
through (8) are critically affected, and the remaining objectives
somewhat affected, by the choice of external representation.

On the other hand, an internal representation scheme is usually
invisible to the user. It is used by the system to support all of the
goals on the above list. In particular, the use of knowledge
representation schemes from artificial intelligence can facilitate the
attainment of goals (13) and (14). The internal representation is
used to generate a problem statement for the optimizer, to document
the model and to act as a database for online queries concerning the
structure and objectives of the model.

~lthough the internal and external representations are naturally
related, there is every reason to believe that they should be
different. The purpose of an external representation is to help the
user. The formulation of models involves a mapping between real world
objects and relationships and symbolic (usually mathematical) objects
and relationships. This process is painful even for experts as it
involves minute attention to detail. Usually, the correctness of a
model can only be ascertained by trial runs involving much data
processing. For nonexperts, the translation process is almost
impossible because of their poor understanding of mathematical
concepts such as variables and indices (Orlikowski and Dhar, [1986]).
A major theme of current research is that a good external
representation scheme helps users visualize the real world in
conceptual terms and thereby facilitates the generation of correct
models (Shneiderman [1987]). The system itself should
automatically translate from the external to the internal
representation scheme.

~epresentation schemes can be discussed in terms of four dimensions:
generality, concreteness, labor-intensiveness, and interface
potential. Generality refers to the applicability of the technique to
a range of management science models (both within and beyond LP). The
other three dimensions are aspects of what is generally referred to as
#*user friendliness.

The concreteness dimension measures how closely real world objects are
captured. External representation schemes should be concrete in the
sense that they should closely mirror the real world. Internal
representation schemes may be abstract since they portray the symbolic
representation of the model and must, of necessity, include
mathematical concepts. Evidence concerning the desirability of icons
and other concrete objects that can be directly manipulated by users
is quite strong (Shneiderman [1988]). Graphs can provide more
concrete representations for modelers because they can reveal hidden

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

facts and relationships and stimulate human thinking (Shepherd
[1987]). A study by Carlson et a1 [1977], showed that decision makers
seem to rely on conceptualizations and that graphs and visual
scenarios helped improve decision making. The advent of low cost
computer graphics technology makes interactive systems possible. For
these reasons, our research has emphasized graphic representation
schemes.

~abor-intensiveness (the amount of detailed book-keeping work required
from the user) is a function of the complexity of the representation
and is especially important for large problems. While graphics can
help on the concreteness dimension, graphical representations can be
too complex both to draw and to understand for the large mathematical
programming models found in practice. We need to invent methods of
computer support that allow users to draw high-level diagrams of major
model relationships while hiding the messy details. How to provide
useful forms of hierarchical abstraction that help, rather than
hinder, users is a challenging area for research.

The final dimension, interface potential, measures how well the
representation form lends itself to advanced computer interface
techniques. In the final analysis, it is the combination of the
representation scheme with support for the dynamics of the user
interaction that is important. Thus, the interface should provide not
only a good medium for expression of ideas, but also support problem
solving strategies and other features that can help users. These
include:

(1) Hierarchical definition of the problem through top-down
refinement.

(2) Piece-wise model development (bottom-up development) with a
submodel integration capability.

(3) Reuse of previously developed models and model fragments.

(4) Consistency and validity checking during (as well as
subsequent to) the model construction phase.

(5) Memory aids.

(6) Good interface characteristics including fast response and
easy revision and modification of previous work.

Of the above, we need elaborate only on item (2). By this, we mean
that users should be able to define small pieces of their models in
any order, The need to organize work in a strict order, to formally
define objects before they are used, and to follow a rigid syntax,
places an unnecessary burden on the user. As illustrated later, it
seems preferable for the computer to perform the necessary steps to
infer missing problem components and to construct a properly ordered,
consistent internal problem representation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

To summarize, we are interested in concrete, graphic and simple
representation schemes that cover a wide range of model types and that
can be incorporated in interfaces that provide a broad array of
supporting features.

3. SAMPLE PROBLEM AND ALGEBRAIC REPRESENTATIONS

To compare the different languages for representing models, a sample
problem has been taken from Schrage [1987]. This is a small problem
but has sufficient complexity to illustrate most of the issues
involved in developing internal and external representation schemes.
The problem statement is as follows:

"A farmer has 120 acres which can be used for growing wheat or corn.
The yield is 55 bushels per acre per year of wheat or 95 bushels of
corn. Any fraction of the 120 acres can be devoted to growing wheat
or corn. Labor requirements are 4 hours per acre per year plus 0.15
hour per bushel of wheat and 0.70 hour per bushel of corn produced.
Cost of seed, fertilizer, etc., is 20 cents per bushel of wheat
produced and 12 cents per bushel of corn produced. Wheat can be sold
for $1.75 per bushel and corn for $0.95 per bushel. Wheat can be
bought for $2.50 per bushel and corn for $1.50 per bushel.

In addition, the farmer may raise pigs and/or poultry. The farmer
sells the pigs or poultry when they reach the age of one year. A pig
sells for $40. He measures the poultry in terms of coops. (One coop
brings in $40 at the time of sale). One pig requires 25 bushels of
wheat and or 20 bushels of corn. One coop of poultry requires 25
bushels of corn or 10 bushels of wheat, plus 40 hours of labor, and 15
square of floor space.

The farmer has 10,000 square feet of floor space. He has available
2,000 hours of his own time and another 2,000 hours from his family.
He can hire labor at $1.50 per hour. However, for each hour of hired
labor, 0.15 hour of the farmer's time is required for supervision.
How much land should be devoted to corn and how much to wheat, and in
addition, how many pigs and/poultry should be raised to maximize the
farmer's profits?"

The formulation of this problem in wtableaull format is shown in Figure
2 using numeric data.

[FIGURE 2 ABOUT HERE]

We now formalize the problem somewhat by defining symbolic names for
the data. Since we are concerned with the language used for the
external representation, the conventions used to name the objects in
the model are important. In general, long (descriptive) names, short
mnemonics, and comments are all essential to good modeling practice.
Short names are useful in algebraic statements. Also, brief mnemonic

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

names (no longer than 8 characters) have to be supplied for the row
and column labels of data coefficients in the input to many
optimizers, e.g. those using MPS format. These labels can be composed
by concatenating together the short names for variables, indices and
data coefficients. Devising unique, meaningful short names and labels
is a tedious job which lends itself well to computer assistance.
Asthana [I9881 suggests a suitable set of naming conventions. It is
assumed that the user supplies the "longw names for all the basic
objects in the model. The computer then suggests short names for the
objects and data coefficients and also provides some limited help in
generating descriptive comments. Figure 3 illustrates these
conventions for the Farmer's Problem.

[FIGURE 3 ABOUT HERE]

Using the definitions in Figure 3, the conventional algebraic
representation for the Farmer's Problem is:

(1) Maximize:

Subject to:

C HAT .H < AS
g g g -

HLLT.HL - C RLTa.Ra - C HLT .H < LS
a 4 g g -

C FAT .F - R a = 0,
g g,a g,a

g in Grains

(Acres Usage)

(Labor Usage)

 r rain Balance)

a in Animals (Animal Balance)

(Floor Usage)

where HL HLS.

A number of systems have been developed which accept problem
statements in algebraic form. As mentioned earlier, these include
GAMS, GXMP, AMPL and CAMPS. LINDO (Schrage [1984]) allows a
restricted form of algebraic input in extended coefficient form (no
summations or indices). The following partial problem representation
follows the syntax of GAMS and is sufficient to give the flavor of
fully algebraic systems:

SETS
G grains /WHEATI CORN/
A animals /HENS, PIGS/ ;

SCAIARS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

HLLT effective labor hours per hired labor hour /0.85/

FS floor supply (sq. ft.) /10000/
PARAMETERS

RFT(A) sq. ft. of flooring used per animal
/ HENS 40
PIGS 25/;

VARIABLES
B (GI buy grain

R (A) raise animals (units) ;
EQUATIONS

ACRES use of land for crops

GRAINS (G) balance equation for grains of type G;

ACRES . . SUM (G, HAT (G) *H (G) L AS

GRAINS . . B(G) + H(G) - SUM(A, F(G,A)) - S(G) =E= 0
MODEL FARMERS /ALL/;
SOLVE FARMERS USING LP MAXIMIZING Z;

In the above, the model components such as Sets, Parameters (data),
Variables and Equations are specified in a fixed order using a fairly
rigid syntax. The text in small letters represents optional comments.
The meaning of the problem statement should be clear to any one versed
in management science. In fact, this is a major advantage of algebraic
notation as an external representation scheme. In addition, algebraic
statements are nonprocedural, compact (not labor-intensive) and easily
parsed by a computer. Most importantly, they provide the potential
for both model-data and model-algorithm independence. In the case of
GAMS, these advantages are somewhat nullified because the data values
and algorithm type are compiled with the model statement. It would
be advantageous to support the input of data values as a separate
process so that the same model can be run with different data
instances.

The use of algebraic languages is a major step forward. Nevertheless,
they involve abstract rather than concrete concepts. For this reason,
their use is probably restricted to a small group of management
scientists. Students with one course in LP for instance, had a very
hard time formulating LPs in algebraic notation (~rlikowski and Dhar
[1986]). preliminary results from an experiment which directly
compared groups of users formulating LP problems using the graphical
and algebraic languages provided by LPFORM, show that the former group
obtained a higher percentage of correct solutions in a shorter time

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

and were more satisfied with their experience (Asthana [1988]). The
relative advantage of the graphics package increased with the
complexity of the problem.

An additional disadvantage of algebraic representation schemes is that
they do not contain information on the physical structure of the
underlying problem. Such information can be gleaned, after the fact,
from the generated matrix, and used to determine the reasons for
infeasibilities (if they exist) and to explain the results of the
model (Greenberg [1983]). However, if structural information is input
directly as part of the model statement, the user's comprehension of
the model can be enhanced and there are additional opportunities for
the system to analyze the correctness of the model during the
development process (Murphy et a1 [1987]).

4. ACTIVITY-CONSTRAINT GRAPHS

An Activity-Constraint (A-C) graph for the Farmer's Problem is shown
in Figure 4 (adapted from Schrage [I987 p.1191).

[FIGURE 4 ABOUT HERE]

Any LP can be represented in this form. There are two types of nodes.
~ctivity nodes representing decision variables are depicted by open
boxes. Constraint nodes are shown as circles. The arrows represent
the effect of the activities on the resource levels associated with
the constraints. If the arrow points to a constraint the associated
activity provides an input to the constraint and conversely. The
numerical coefficients on the arrows provide the values for the
transformations. Thus, if the resource is an input (output), its
level in the constraint is lowered (raised) by the value of the
coefficient when the activity level is increased by one. Exogenous
supply and demand values for resources are written in the circles.
constraint nodes with zero values represent flow balance equations.

An A-C graph provides an intuitively appealing representation that can
help users understand, construct and check a problem formulation. The
graph can be translated in a straight-forward manner into an LP matrix
for input to a Solver. The coefficients on the arcs associated with
each activity form the nonzero elements in its column, while the
values in the constraint nodes form the RHS for the problem. However,
it is usually more convenient to formulate the constraints one-at-a-
time. The constraint corresponding to a constraint node is formed by
adding together terms involving each activity to which it is
connected. Each term is formed by multiplying the coefficient on the
arc by the symbol for the variable. We follow the convention that
terms on incoming (supply) arcs are positive while those on outgoing
(demand) arcs are negative.

The major disadvantage of such graphs is that they are very labor-
intensive, even for small problems such as that in Figure 4. (Note

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

that the connections to the money resource in the objective function
were omitted to simplify the graph). A problem with 3,000 constraints
and 10,000 variables would occupy approximately one half million
square feet of paper if drawn to the scale of Figure 4!

The obvious way to reduce the complexity of the graph is to replace
coefficient values by array names and to use set notation to portray
activity and resource types as in Figure 5a.

[FIGURE 5 ABOUT HERE]

To reduce the visual complexity, objective function coefficients are
written beside their associated activities. Also, explicit upper and
lower bounds on resource levels and activities are shown symbolically
(rather than graphically) by including symbols for the upper and lower
limits in square brackets at the relevant nodes. This is illustrated
in Figure 5 for the Floor constraint and the Use-Acres activity.
Finally, the index sets for the coefficients have been omitted. These
can be computed as the union of the sets associated with the Activity
and Constraint at either end of the arc (singleton sets are treated as
null for this purpose). Note that the indices of coefficients are
simply identifiers for particular values. The dimensions of the sub-
matrices corresponding to the coefficients in the larger LP matrix are
determined by the number of constraint and activity rows. Thus, the
coefficient, FAT ,, represents four non-zero values, but forms a (2 x
4) array in the Zableau of Figure 2.

When there are relationships between elements with different values in
the same set (as occurs with time in planning and inventory problems),
it is necessary to replicate the A-C graph for a sufficient number of
consecutive index values to reveal the underlying pattern. It might
also be necessary to show the pattern for both the starting and ending
conditions. Thus, in a finite horizon planning problem, one might
depict all constraint and activity nodes for time periods 1, t-1, t
and T.

Most practical LPs include a number of "side constraintsw arising
from policy or other requirements. Examples are generalized bounds on
variables and constraints on ratios of variables such as:

and E: H > HUB
g g -

Fcorn, hens O O Fwheat, hens

Figure 5b shows the additions to the A-C graph to accommodate these
constraints. Constraints (2) are represented by the wBushelsll
constraint node. A lower bound constraint can be represented as a
demand node and an upper bound as a supply node. When the two are
merged as in the figure, the arrow becomes bi-directional. Note that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

the same coefficient applies to both directions of a bi-directional
arrow since constraints with the same RHS index sets must have the
same LHS (Murphy et a1 [1987]). The "Ratiosw node in the figure
indicates that there is a 2 0 constraint for each member of the
animals set. Using the rules given above, the coefficient R for
variable F is indexed by (Grains, Animals); the values needed to
capture constraints (3) are given in Figure 11 below.

While such constraints can be represented by simple extensions to the
formalism, the resulting graph becomes less "concretew since the
physical flow analogy is lost. Complicated policy relationships
between more than two variables add further clutter to the graphs.
However, these are problems that have to be faced by any
representation scheme.

Many physically large problems have a simple enough underlying
structure to be represented conveniently by A-C graphs using the above
conventions. In fact, automated interfaces to optimization packages
that are based on such techniques can be developed using computer
graphics techniques similar to those used in CAD (computer-aided
design) applications (see Section 8 below).

5. NETFORM GRAPHS

Every LP model can be represented by an A-C graph because activities
and constraints are logically paired by the technology coefficients.
When the underlying real world problem has a network representation,
there is only one arc entering and leaving each activity node. Thus,
the activity nodes can be dropped without losing the uniqueness of the
representation. Glover [I9871 has studied such problems extensively
and has developed modeling approaches for a broad variety of
applications as well as a coherent set of graphical conventions.
Figure 6 illustrates these conventions for a network representing a
modified version of the Farmer's problem in which the Labor and Floor
constraints are disconnected (omitted from the problem) to obtain a
network subproblem of the original problem.

[FIGURE 6 ABOUT HERE]

In the Netform representation, activities are denoted by arcs while
constraints are denoted by circles as before. The activities have
associated upper and lower bounds (enclosed in parentheses), costs,
and both head and tail multipliers. Unit values for multipliers and
lower and upper bounds of (0,oo) on activity values are not shown
explicitly. Networks with integer-valued activities (indicated by a #
sign on the arc) are admissible. Omitting the non-network elements,
Figure 6 is obtained simply from Figure 5. Multipliers at the heads
of activities in the Netform representation correspond to activity
output coefficients in the Resource/~ctivity diagram, while those at
the tails correspond to activity input coefficients. Exogenous
supplies and demands are shown as "danglinglV arcs since they can be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

thought of as constant activities.

Experience with the Netform approach to modeling has been very
positive, (Glover [1987]), confirming the value of graphical
representations in the modeling process. A surprisingly large number
of important integer and non-integer problems can be represented as
networks. Many problems involving a time element, such as inventory
and cash management applications, have a quite simple network
representation. The rules for converting a Netform graph to an
algebraic statement are straightforward being practically identical to
those for an A-C diagram, In practical applications, side conditions,
which do not adhere to the network restriction, may be present. These
can be handled either by adopting the A-C representation for a part of
the network, or by adding constraints/activities by hand to the
algebraic statement of the network (see Glover [I9871 for details).

Network diagrams which attempt to represent every activity and node
are impractical for problems of even small to moderate size. Often,
it is sufficient to develop a typical pattern of connections using a
small number of graphical elements as an aid to writing down the
equations in the problem statement. Figure 7 shows how the use of
symbol names and set notation can simplify a Netform diagram and
provide an excellent format for a computer interface.

[FIGURE 7 ABOUT HERE]

6. STRUCTURED MODELING

Structured odel ling (Geoffrion [1987]) represents a major effort
towards building a sound basis for modeling theory and practice.
Because of space limitations we can provide only a brief overview and
illustration. The objective of structured modeling (SM) is to develop
a comprehensive framework to unambiguously represent all the essential
elements of a variety of management science models. This framework of
definitions is to be represented in the computer and to be used to
define and generate problem statements for the Solver, to test that a
computable, consistent problem statement has been produced, to provide
documentation for subsequent users of the model, to afford model-data
and model-solver independence and to allow information about parts of
the model and their relationships to be retrieved and displayed. Thus
the emphasis in SM is on internal representation rather than interface
design.

The elements in a structured model are as follows (from Geoffrion
[1987]) :

(1) primitive Entity (PE): has no associated value and represents a
thing or concept postulated as a primitive of the model (e.g. the
"hensw element in the Farmer's problem).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

(2) Compound Entity (CE): has no associated value and represents a
thing or concept defined in terms of other things or concepts
(e.g. a link between two locations in a transportation problem).

(3) Attribute (A): has a constant value and represents the value of a
property of a thing or concept (e.g. the coefficients UALT, HLT,
etc.) .

(4) Variable ~ttribute (VA): similar to an Attribute except that its
value is computed by the model (e.g. the variables UA, BG, etc.).

(5) Function (F): has a value that can be computed from the other
values in the model.(e.g. the term Z HATg.Hg).

g
(6) Test (T): similar to a function but the result must be either

true or false (e.g. a test to see if a constraint is
satisfied) .

These model elements are related because (except for the primitive
entities) each of the above groups of elements (I1generaw) is defined
in terms of elements from one or more of the preceding groups. This
observation leads to the graph in Figure 8 in which the arcs
(conventionally directed from PEts towards TEST'S) can be interpreted
as "the tail item is used in the definition of the head itemw. The
wGenus"f graph in Figure 8 is one of two principal types of graphs used
in Structured odel ling. The other graph is a "Modular Treew which
depicts a hierarchical grouping of related element groups. A modular
decomposition of the Farmer's Problem is indicated in Figure 8 but a
Modular Tree is not shown.

[FIGURE 8 ABOUT HERE]

Roughly speaking, the relationship between the items in Figure 5 and
those in Figure 8 is as follows:

(1) The Sets (and sets that have single elements) of Figure 5
are the PEs in Figure 8.

(2) The coefficients are the Fixed Attributes (FAs).

(3) The Activity Nodes are the Variable Attributes (VAs).

(4) Each link from a Constraint node to an Activity node in
Figure 5 presents a term in the LP which is a Function (F)
represented by a point in Figure 8.

(5) Each constraint node in Figure 5 is replaced in Figure 8 by
a Test node and one or more Function nodes (one of the
Function nodes gathers all the terms in each constraint
together to define the LHS of the constraint).

The graph for even a small problem is quite complicated and is time-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

consuming to draw by hand. The main specification medium for SM is
text with a rigorously defined syntax similar to a programming
language; it is also necessary for users to order their definitions
carefully. Presumably, SM software will generate the graph
automatically from the textual inputs. In terms of the concreteness
dimension described earlier, SM graphs are highly abstract. Indeed,
it is hard to discern the structure of the underlying AC network in
the graph of Figure 8.

For the reasons outlined in the preceding paragraph, SM does not
provide an ideal external representation for model specification, It
is however, a good internal representation scheme because it relates
all the parts of a model in a consistent and complete fashion. SM is,
in fact, used as an internal representation scheme by Krishnan [1988].
This aspect of the SM model will be further elaborated in the next
section.

7. DATABASE REPRESENTATION SCHEMES

The need to gather and process large quantities of data during the
model building phase and to interpret the voluminous results obtained
from large models, has prompted research directed towards the
integration of modern database technology with mathematical
programming systems (Dolk [1986], Geoffrion El9871 and Choobineh and
Sena [1988]) .
There are two separate but related requirements. First, there is a
need to record information about the structure of the model. Second,
it is necessary to provide for the storage and manipulation of the
data of the problem and of the results that are obtained from the
optimizer. while model structure is probably handled best by data
structures based on artificial intelligence techniques (Elam and
~onsynski [1987]), the power of modern database management systems and
query languages makes them attractive for the data manipulation
aspects of modeling. In the following, a database approach (Date
[1987]) will be used to illustrate the main issues for both
requirements.

Figure 9 gives a conceptual view of the essentials of the graph in
Figure 5 using the notation of the Entity-Relationship model (Chen
[1977]). An E-R diagram depicts the things of interest to the system
as entities (boxes) and relationships between entities (diamonds).
~ntities and relationships represent classes of objects whose
individual instances are distinguished by the values of their
associated attributes or properties.

[FIGURE 9 ABOUT HERE]

Figure 9 states that each ~ctivity entity is related to one or more
(!IN") Constraint entities and each Constraint entity is related to one
or more (W W) Activity entities. The Activity-Constraint relationship

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

serves to relate the individual instances of the two entity sets and
can carry information on the mathematical transformations linking each
activity to each constraint. Also shown in Figure 9 are two entities
used to record the results of the optimization for each activity and
constraint.

Figure 10 gives a realization of this conceptual data model for the
Farmer's Problem. We will call this the Model Schema.

[FIGURE 10 ABOUT HERE]

For a particular model, the model schema contains information that
is useful in the following processing activities:

(1) Generation of the schema (skeletal outline) for the data
tables that will store the data and results for the problem.

(2) Generation of both the algebraic representation of the
problem and the MPS problem statement for input to the
optimizer.

(3) Updating the model when structural relationships are
changed.

The ~ctivity, Constraint and Transform relations (data tables) in
Figure 10 capture all the information in ~igure 5. The Sets relation
in the figure is redundant in the sense that it can be computed from
the former three tables. However, it will obviously help speed
processing.

The Model Schema in Figure 10 contains almost the same information as
the Structured Modeling Genus Graph in Figure 8. The Sets relation in
the Model Schema records the mappings between the PE's and the FA'S
and VA's in the Genus Graph. The Activities, Constraints and
~ctivities-Constraints relations record information concerning the F's
and Tests in the SM representation. As shown in Murphy et a1 [1988],
this is all the information needed to generate the algebraic form of
the model in the case of LP's. To represent non-linear and other
types of models, the Model Schema can be expanded, along the lines of
the SM graph, to include an additional Function object to store the
algebraic form. A desirable feature of the schema in Figure 10 as an
internal representation, is that it contains information on the
network structure underlying the model. To do this, it uses the
information contained in the Upper- and Lower-bound and Input-Output
fields. As an aside, this information can be derived from the SM
framework using the approach developed by Bradley and Clemence [1987].

Figure 11 shows a Data Schema and its instantiation with actual data
values for the Farmer's Problem. Each set has been assigned a table
of the same name to record set memberships. Similarly, each

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

data coefficient has been assigned a database relation whose name is
the name of the coefficient. The key (unique identifier for tuples in
the relation) is the set of indices that describe the array position
of the data coefficient in the LP matrix. Scalar objects have been
treated as single element tables for uniformity of representation
although they might be gathered together into a single table in an
actual implementation.

[FIGURE 11 ABOUT HERE]

The Data Schema can be generated automatically from an analysis of the
Model Schema (Asthana [1988]). The skeleton outlines for each Set
table can be generated first and filled with element values, either
interactively by the user, or automatically from knowledge stored
previously in the system. Once the set memberships are known, it is
possible to automate, or partially automate, the generation of the
keys for the data elements in the coefficient tables. Finally, the
data coefficient values can be filled-in, either automatically or by
interaction with the user. It should be noted that data elements with
unit values do not have to be stored if they can be implied from the
algebraic statement.

The Data Schema in Figure 11 differs from the "Elemental Data Tables"
that are used for the same purpose in Structured Modeling (see Figure
12). In the former, each set and data element is represented by its
own database table. In the latter, there is a data table for each
Primitive and Compound Entity (i.e. for the sets); the coefficients
are represented by database attributes and the elements of the sets by
values in the same relation. It is difficult to decide between the
two representations. The SM representation is much more compact, but
the data schema in Figure 11 may be more flexible especially when data
is to be shared between different models and modelers. Using the
concept of database views (Date [1987]), it is possible to use one
representation as the basis for the design of the physical database
and to afford users the other view of the data depending on their
tastes.

[FIGURE 12 ABOUT HERE]

From a relational database viewpoint, the matrices and higher
dimensional arrays that are traditionally used by management
scientists to represent the data of mathematical programs, are
unnecessary. The relation for a coefficient stores only the non-zero
elements in the array representation. Thus, it is a sparse
representation that conforms closely to the MPS format used for input
by most Optimizers. There is one table entry in Figure 11 for each
non-zero entry in the LP matrix. Conceptually, all that is necessary
to transform the database in Figure 11 into an MPS statement, is to
replace the values of the keys in the relations by the appropriate
(Row-label, Column-label) pairs. There is no need to generate arrays
in the traditional sense unless the modeler prefers to view his/her
model in this way.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

In summary, the Model Schema is primarily an internal representation
while the Data Schema is both an external and internal representation.
Since the latter involves data rather than model structure, it can be
used in conjunction with any of the other representation schemes
discussed in the paper. ~aking a different approach, Choobineh and
Sena [1988], suggest some extensions to the popular SQL database query
language (Astrahan and Chamberlin [1988]) to support the expression of
algebraic constraints. This has the advantage of providing a unified
language for both the model definition and data manipulation phases of
modeling. The disadvantages are as listed above for algebraic
languages; the main drawbacks are that such languages are abstract
rather than concrete and not as amenable to advanced interface support
as the graphic representation schemes discussed earlier.

8. AN ICONIC REPRESENTATION SCHEME

The ~ctivity-Constraint and Netform graphs are the most concrete
(closest to the real world) representations reviewed so far. However,
the nodes and arcs correspond directly to mathematical objects (the
rows and columns of the model tableau) and only incidently to real
world entities. The arguments in Section 2, and the success of
"iconic*' interfaces in many applications (Shneiderman [1987], Ch. 5),
suggest the desirability of interfaces with more concrete images.
Furthermore, even in their compact forms, the A-C and Netform graphs
can be quite complicated implying the need for some form of
hierarchical aggregation to simplify the problem for the user.
The LPGRAPH (Asthana [1988]) interface to the LPFORM system attempts
to satisfy both of these goals. It has been implemented on an IBM
PC/AT class machine using a set of graphics tools written in the "CM
programming language (EVA [1988]).

The iconic representation of an LP problem in LPGRAPH consists of a
hierarchy of networks which depict the problem in increasing detail.
~t each level in the hierarchy, the network consists of one or more
wblocksM connected by directed arcs. The blocks contain collections
of zero or more LP activities. There are two kinds of directed arcs
connecting the blocks. A "logical linkw (shown by a thin line)
indicates a flow that exists in the real world but is not modeled by
an LP activity. An example is the flow of grains to animals in the
farm problem, i.e. a material flow from one production point to
another in a fixed sequence. A "flow linkw (shown by a thick line)
represents a flow that is modeled by an LP activity. A transportation
activity is the commonest example. Icons are placed within the blocks
to specify the existence of activities. In addition to a completely
general activity icon, more specialized inventory and resource icons
are provided for convenience. The idea of using activity icons during
the formulation process first appears in Dantzig [1963].

We use the Farmer's Problem to illustrate the main ideas. The top
level graph consists of a single wFarm-Problemw block. The

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

representation at the second level of the hierarchy is shown in Figure
13.

[FIGURE 13 ABOUT HERE]

The operation of the farm is visualized as four separate functions
(~dministration, Crops, Husbandry and Marketing) each of which
consists of a number of activities and is represented by a block on
the diagram. Non-transportation links (logical links) between the
blocks indicate the connections. As each activity icon is placed in
its parent block, the user completes a fill-in-the-blank Activity
screen. These are summarized in Figure 14. The user defines the
activity index set and the input and output sets for each activity.
To illustrate, HARVEST has "Grainsgg as its activity index set (i.e.
there is a separate decision variable for each type of grain); its
input sets are "AcresM, "Laborw and wDollarsg' (each of which is a
singleton) and its output set is tgGrainsw. As each input or output
set is named, the system suggests a short name for the associated data
coefficient according to the conventions in Asthana [1988]. These
names are shown after the colons in Figure 14. They can be changed by
the user (as has occurred for the unit coefficients in the figure).

[FIGURE 14 ABOUT HERE]

After the user has supplied the information in Figures 13 and 14, the
Model Schema (Figure 10) and Data Schema (Figure 11 without the data
values) are constructed internally. The algebraic statement (1) is
generated and displayed using an algebraic language similar to that
used by GAMS (see Section 3). The index matching rules provided in
Murphy et a1 119871 guarantee the completeness of the resulting model.
Set memberships and the values of data coefficients must be specified
at some point prior to running the model.

An entirely different strategy for defining the Farmer's Problem in
LPFORM is to take a constraint- rather than an activity-oriented
viewpoint. There are two ways of doing this. The first uses
Constraint Screens that are, in a sense, the g'duals" of the Activity
screens outlined in Figure 14. Each constraint is defined in terms of
the activities with which it interacts and the associated coefficient
names. This approach avoids the use of mathematical notation by using
the linearity property of LPts and certain relationships between index
sets, to automatically generate the algebraic problem statements. The
second method is to input the algebraic form of the problem statement
directly using a language similar to that provided by GAMS. It is
often useful to combine the activity- and constraint-oriented
approaches because actual applications often require that additional
constraints be added to standard models defined from an activity
perspective. Thus, a user might prefer to enter the ratio constraint
(3) directly rather than by the method indicated in Figure 14.

comparing Figure 5 and Figure 14 as alternative input representations
for a computerized system, we see that only the activities have been

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

defined in LPGRAPH; the user is not required to define either the
Constraint Nodes nor the connections between the Activities and
Constraints. This is an example of the ltpiecemealw approach to
problem specification mentioned earlier. Its advantage is that the
user does less work (supplies the same information in less redundant
form) and does not have to follow a rigid input sequence. The
disadvantages are that users may feel uncomfortable about leaving
things "up to the computerN and may not obtain as detailed an
understanding about the way the model components relate. As mentioned
earlier, preliminary results on the use of the graphics interface of
LPGRAPH versus (its own) algebraic language are encouraging.

To illustrate some other features of iconic modeling, we use the
following example:

"Warehouses purchase and store Raw-Materials prior to their
transportation to Factories. The Factories maintain Raw-Materials and
Products inventories. They use Raw-Materials to produce Products
using a production process that has been modeled previously. Finally,
Products are transported to Markets where they are sold."

The different types of entities and activities in the above problem
are each represented, in a fairly obvious way, by an icon in Figure
15. Given this graph, the system requests the user to fill-in forms
for the buy and sell activities, each inventory activity, each
transportation flow and the production model. The input screens for
the activities are used mainly to define their inputs and outputs (as
described above for the Farmer's Problem). The input screen for the
previously stored production model asks the user to match the names
stored in the template model to the names for the same objects in the
new model.

[FIGURE 15 ABOUT HERE]

The Flow, Inventory and Resource icons represent specialized kinds of
activities and trigger user interactions which result in the addition
of appropriate constraints to the model (see Ma [I9881 for details).
Resource icons are used to represent physical entities such as plant
and equipment which are used by activities rather than consumed as
with inventories. Other examples of LPGRAPH formulations are given in
Ma [1988], Ma et a1 El9871 and Asthana [1988].

Note that several, more complicated, graphs could be drawn to
represent the above problem. First, one could draw a detailed
transportation network showing individual warehouses, factories and
markets together with all of the individual transportation routes. It
is usually easier, however, to stop the drawing at the stage shown in
Figure 15 and to let the detailed network connections be defined
through the data. As a second alternative, one could draw an A-C
graph using the conventions in Figure 5. However, this graph would be
quite complicated as the model involves flows in both space and time.
In effect, the LPGRAPH system automatically recognizes the network

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

substructure of the problem and implicitly makes the connections of
the underlying A-C graph as it generates the algebraic representation.
The detailed connections of the transportation network are obtained
from the data when the MPS format of the problem is generated.

The above paragraphs illustrate several features which should help the
modeler. These include a simple, non-mathematical representation,
hierarchical problem definition (only the top-most graph was drawn in
this instance), bottom-up construction of the model (use of the
previously developed production model) and a piecemeal approach to
problem definition (it was not necessary to adhere to a rigid order in
defining the problem to the computer nor even to supply all the detail
concerning interrelationships between model elements). Users are
however, required to maintain consistent naming conventions so that
the system can sort and assemble the components of the problem (see
Murphy et a1 [1987], for a detailed description of how the model
components can be generated and assembled).

An LPFORM graph (c.f. Figure 13) can be viewed as an aggregated form
of A-C graph (c.f. Figure 5). An A-C graph can be simulated in LPFORM
by making the following correspondences: use LPFORM blocks containing
a single activity to represent A-C Activity nodes, blocks containing
no activities to represent A-C! Constraint nodes, and wlogicalw flows
connecting the appropriate blocks to represent the arcs in the A-C
graph. Note that the data coefficients appear with the activities in
LPFORM rather than on the arcs as in an A-C graph.

If there are no submodel icons, the steps to transform an LPFORM graph
into an equivalent compact A-C graph are as follows:

(1) For each LPFORM Activity, Inventory or Resource icon, attach
a node to the tail end of each of its input arcs and to the
head of each of its output arcs. In the A-C diagram, these
will represent constraints on the inputs and outputs of
resources to activities. Replace the LPFORM activity icon by
its open box representation in the A-C graph.

(2) For each LPFORM block, add its index sets to the index sets
of its activities and to the index sets of the resource nodes
constructed in step (1). Discard the block icon.

(3) Replace each LPFORM flow activity (arc) by an A-C activity
icon connected to the appropriate output resource node in the
block at the tail of the LPFORM arc and the appropriate input
resource node in the block at the head of the LPFORM arc.

(4) Complete the A-C graph by replacing multiple instances of
the same constraint nodes by single instances while
maintaining all connections.

~hus, we can translate from one representation scheme to another
except that we lose information on the hierarchical structure if we go

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

from the iconic representation to the A-C diagram and back.

In the special case where the model is a pure or generalized network
problem, there is an LPFORM graph which is equivalent to the Netform
graph for the problem. In this graph, the LPFORM blocks and flows
correspond, respectively, to the NETFORM resource nodes and arcs, The
major difference between the two graphs is that exogenous supplies and
demands are shown as blocks in LPFORM rather than as dangling arcs as
in Netform.

TO summarize, iconic representation schemes can provide an elegant
method for specifying large LPfs. The ability to define the problem
piece-wise and in non-algebraic terms should also be helpful to both
experts and nonexperts. In any case, we believe that it is fruitful
to provide a number of different, interchangeable, representation
schemes within a common framework. The LPGRAPH interface therefore
combines elements from the Activity-Constraint graph, Netform,
database and algebraic representation schemes.

9. CONCLUSIONS

The microcomputer revolution has increased computer literacy and
familiarity with models (at least of the spreadsheet variety) beyond
the wildest dreams of only a few years ago. The current proliferation
of powerful desk-top workstations in all forms of office and
professional work provides a tremendous opportunity for management
science. The algorithms and analytic techniques developed over the
last forty years can now influence policy makers in a much broader
array of applications and situations. The challenge is to develop
software environments that will improve the productivity of the
modeling process, the quality of the models produced and, most
importantly, the quality of the decisions based on the use of these
models.

 his paper has reviewed some methods for representing mathematical
problems in graphical and/or textual formats that avoid the use of
algebra or other essentially mathematical representations. As we have
tried to show, the representations are largely equivalent in that
transformations exist from one form into another. We believe however,
that they differ in terms of the amount of work, skill and
understanding that is required from users. Thus, we need both
external and internal representations that take into account the
cognitive limits of human beings. Because of the importance we attach
to this issue, the paper has introduced wcompacttt forms of both A-C
graphs and Netforms. The iconic representations in the previous
section go one step further in the sense that they are aggregated
forms of the A-C graphs.

In section 2, we proposed four dimensions for characterizing external
representation schemes: generality (the applicability of the technique

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

to a range of management science models), concreteness (how closely
real world objects are represented), labor-intensiveness (a function
of the complexity of the representation) and interface potential (how
well the representation lends itself to advanced computer interface
techniques). From the discussion in this paper it is apparent that no
representation scheme dominates the others on all of these dimensions.
In fact, we believe that an optimal modeling system will employ more
than one form of model representation.

Actual experience with the representation schemes discussed in this
paper in real work environments will be necessary before their
usefulness in promoting more effective use of modeling in
organizations can be properly evaluated. In the final analysis, the
choice of a particular representation scheme will depend on the
circumstances and on the tastes of users as each method has its
advantages and disadvantages. It is possible to build systems that
avoid unfortunate trade-offs between user convenience, generality of
representation and machine efficiency. Thus, one can have mixed
representations at the user interface that allow iconic, network and
algebraic techniques to be used to define different parts of the same
model. The resulting external specification can then be translated
automatically into an unambiguous and valid statement that is stored
and analyzed internally using, for example, the techniques of
Structured Modeling. Note that the iconic representation and
Structured Modeling have a natural fit in their hierarchical
structuring of problems since a block in the former is equivalent to a
module in the latter.

Much research remains to be done in the area of modeling interfaces.
In our view, the greatest problem facing designers of languages to
support the modeling process involves the trade-off between the need
to present a precise, unambiguous input to the optimizer and the
limited cognitive capabilities of human beings. There is a great need
for improvement in our understanding of the issues in this area. For
example, we have proposed:

(1) Multiple methods for representing problems and parts of the same
problem.

(2) Graphic representation schemes including the use of icons.

(3) ~ynamic support for problem solving strategies such as
hierarchical decomposition and piece-wise composition.

The effectiveness of the above interface features is a matter for
research. Certainly, no prima facie argument can prove their
desirability. For example, multiple representation schemes may be
confusing to users. Furthermore, the domain in which graphical
representations are natural and easy to understand without training in
operations research, is somewhat limited. In some applications, the
entities represented by such graphs are far from concrete in the sense
that we have been using the term. For example, in a network

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

representing a cash flow application, the nodes represent time periods
and the arcs represent cash flows both within a period and between
periods, Thus, there is a need to develop and experiment with
graphical representations for more abstract entities and, in
particular, to extend the techniques to include nonlinear and integer
programming. Finally, we need a better understanding of the problem
solving strategies of expert modelers so that we can build systems
that can truly extend their capabilities.

The power of modern computers, their graphic capabilities, new forms
of man-machine communication (other than typing at a keyboard), and
the emergence of artificial intelligence techniques, all point to an
exciting period of research and development which will result in
modeling workstations of tremendous power and versatility. New
problem representation techniques will play an essential role in this
evolution and represent an important new area of management science
research.

REFERENCES

Asthana, A., "LPGRAPH: An Expert System for Graphically Formulating
Linear Programsw, Ph.D. Thesis, New York University (1988). In
preparation.

Astrahan, M. M., and D. D. Chamberlin, "Implementation of a
Structured Programming Language8', Communications of the ACM, Vol.
18, No. 10, (October 1988), pp 580-588.

Binbasioglu, M. and Jarke, M., Domain Specific Tools for Knowledge-
Based Modelingw, Decision Support Systems, Vol. 2 (1986).

Blanning, R. W., "A Relational Framework for Model Management in
Decision Support Systemsw, DSS-82 Transactions (1982), pp. 16-28.

Bodily, S., "Spreadsheet Modeling as a Stepping Stonew, Interfaces,
Vol. 16, No. 5 (1986), pp. 34-52.

Bradley, Gordon H. and Robert D. Clemence, Jnr., "A Type Calculus
for Executable Modeling Languagesw, IMA Journal of Mathematics and
Management, Vol. 1, 1987, pp. 277-291.

Breitman, R. L. and J. M. Lucas, "PLANETS: a Modeling System for
Business Planning8', Interfaces, Vol . 17, No. 1 (Jan-Feb 1987) .
Brown, R, W., W. D. Northup and J. F. Shaoiro, ItLOGS: A Modeling and
Optimization System for Resource Planningw. In: "Computer Methods to
Assist Decision Makingw, New York, North-Holland (1987).

Carlson, E., B. Grace and J. Sutton, ##Case Studies of End User
Requirements for Interactive Problem Solving", MIS Quarterly, Vol 1,
No 1, (March 1977) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Chen, P. P. S., "The Entity- elations ship Model: Towards a Unified
View of DataN, ACM Transactions on Database Systemsw, Vol. 1, No I.,
(March 1976), pp. 9-36.

Choobineh, Joobin, and James A. Sena, "A Data Sublanguage for
Formulation of Linear Mathematical Modelsw, Proc. Twenty
First Annual Hawaii Conference on the System Sciences, Kona, Hawaii
(1988), pp. 340-348.

Creegan, J. B. Jr., ggDataform: A Model Manageemnt Systemw, Ketron
Management Science, Inc., Arlington, Virginia, Novenber (1985).

Dantzig, George B., "Linear Programming and Extensionsw, Princeton
University Press, Princeton, N.J. (1963).

Date, C. J., "An Introduction to Database Systemsw, Addison-Wesley,
~eading, Mass. (1987) .
Dolk, D.! "A Generalized Model Management System for Mathematical
Programmlngw, ACM Transactions on Mathematical Software, Vol. 12,
No. 2 (June 1986), pp. 619-628.

Elam, J. J. and B. Konsynski, "Using Artificial Intelligence to
Enhance the Capabilities of Model Management Systemsgt, Decision
Sciences, Vol. 18 (1987), pp. 487-502.

EVA UIMS/GDB, User Manual, Expert Vision Associates, Cupertino,
California (1988) .
Fabozzi, J. F., and J. Valente, "Mathematical Programming in
American Companies: A Surveygg, Interfaces Vol. 7, No. 1 (November
1976).

Fourer, R., D. M. Gray and B. W. Kernighan, ItAMPL: A Mathematical
programming Languagew. AT&T Bell Laboratories, Murray Hill, N.J.
(1987).

~eoffrion, A. M., "Introduction to Structured Modelingw, Management
Science, Vol. 33, No. 5 (1987), pp. 547-588.

Glover, Fred, "Notes on NETFORMSw, private communication, (1987).

Greenberg, H. J:, "A Functional Description of ANALYZE: A Computer-
Assisted Analysls System for Linear Programming Modelsw, ACM
~ransactions on Mathematical Software, Vol. 9, No. 1 (1983), pp. 18-
56.

Greenberg, H. J:, "A Natural Language Discourse Model to Explain
Linear Programming Models and SolutionsM, Decision Support Systems,
Vol. 3, (1987), pp. 333-342.

IBM Mathematical Programming Language Extended/370 (MPSX/370),

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Program Reference Manual,SH19-1095, IBM Corporation, Paris, France
(1975).

Krishnan, R., "Knowledge-Based Aids for Model Construction1@, Ph.D.
Thesis, University of Texas, Austin (1987).

Lucas C. and G. Mitra, "CAMPS: Preliminary User Manualft, Dept. of
Mathematics and Statistics, Brunel University, U.K. (July 1985).

Ma, Pai-chun, "An Intelligent Approach Towards Formulating Linear
Programs", Ph.D. Thesis, New York University (1988).

Ma, P., F. H. Murphy and E. A. Stohr, "Design of a Graphics
Interface for Linear Programmingw, Working Paper No. 136, Center for
Research in Information Systems, Graduate School of Business
Administration, New York University, New York (1986).

Ma, P., F. H. Murphy and E. A. Stohr, wComputer-Assisted Formulation
of Linear Programs~~, IMA Journal of Mathematics in Management, Vol
2, September (1987) .
Meeraus, A.! "General Algebraic Modeling System (GAMS): User's
Guide, Verslon 1.0*@, Development Research Center, World Bank (1984).

Murphy, F. H. and E. A. Stohr, "An Intelligent System for
Formulating Linear Programsw, Decision Support Systems, Vol. 2, No.
1 (Jan-Feb 1986) .
Murphy, F. H., E. A. Stohr and P. Ma, wComposition Rules for
Building Linear Programs from Component Modelsw, Working Paper No.
148, Center for Research in Information Systems, Graduate School of
Business Administration, New York University, New York (1987).

OMNI Linear Programming System: User Manual and Operating Manual,
Haverly Systems Inc., Denville, N.J. (1977).

Orlikowski, W. and V. Dhar, a81mposing Structure on Linear
Programming Problems: an Empirical Analysis of Expert and Novice
Modelsft, Proc. National Conference on Artificial Intelligence,
Philadelphia, Pennsylvania (August 1986).

Raghunathan, Srinivasan, "An Intelligent Decision Support System for
Model Formulationw, Working Paper, University of Pittsburgh (1987).

Shneiderman, B., "Designing the User Interface: Strategies for
Effective Human-Computer Interactionw, Addison-Wesley, Reading,
Mass. (1987) .
Schrage, Linus, "Linear, Integer and Quadratic Programming with
LINDOw, Scientific Press, Palo Alto, 1987.

Shepherd, R. N., "Recognition Memory for Words, Sentences and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Picturesw, J. of Verbal Learning and Verbal Behavior1#, Vol, 6, No.
2, (February 1987), pp. 156-163.

Welch, James S., Jr., "PAM: A Practitioner's Guide to Modeling Part
I - Primern, Management Science, Vol. 33, No. 5 (May 1987), pp. 610-
625.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

LONG SHORT
NAlw NAME D B r n P r I O N ...
BUY B (g) w grain g (bushels)
I-Elm-LABOR HL Hire labor (hours)
HlmVEST H (g) Harvest grain g (bushels)
FEED F(g,a) Feed grain g an imd l a (bushels)
S U s (g) S e l l grain g (bushels)
RAISE R (a) Raise animals a (uni ts)

LONG SHORT
NAME NAME D E C R I P r I O N ...
ACRES-USAGE AU Acres balance equation (acres)
LABOR-USAGE LLT Labor usage (acres)
(24ux-UCE GB (4 G r a i n s balance equations (acres)
ANlMX-BALANCE AB(a) Animals balance equations (un i t s)
FIXOR-USAGE FU Floor usage (sq. f t .)

NAIVE TzxIJl3 D E S c R I r n O N
HLC 1.50 Hire-labor Cost
E (g) 2.50 1.50 W r y G r a i n s Cost
HC(g) 0.20 0.10 Harvest G r a i n s Cost
SP(g) 1.75 0.95 S e l l G r a i n s P r o f i t
RP(a) 40 40 Raise Animdls P r o f i t

NAME TzxIJl3 DEScRIPrION
- ----

AS 120 Acres supply (acres)
H I S 13,333 Hire-Labor supply ((H m)
LS 4,000 Labor supply (hours)
FS 10,000 Floor supply (sq. ft.)

LllNG INDEX
NAr-E VALUE DEScRIPrION NAME NAME q P
HLm? 0.85 Hire-Labor/labor Technology ~rains g {wheat, corn)
HAT (9 1/55 1/95 Harvest/Rcres Technology Animals a {hens, p igs)

(9) 0.15 0.70 Harvest/Labor Technology
FAT(g,a) 1 0.1 0.04 1 ~eed/Animals Technology

1 0.04 0.05(
luz! (a) 40 25 Raise/Labor Technology

(a) 15 25 Raise/Floor Technology

Figure 3
DATA DEFINITIONS FOR FAFMEE'S PROBLEM

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

nh

Oh - - - g - - -
m a d

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

(3RAINs ------
Wheat
Corn

AN' IMxs -------
Hens
Pigs

(2RAINS ANIMALS ---------------
W h e a t Hens
Wheat Pigs
Corn Hens
Corn Pigs

HAT Harvest/Acres Technology HLCC Hawest/Labor Technology HC Hawest Grains Cost EC W?y ~ r a h Cost

GRAINS VALUE -------------
Wheat 1/55
Corn 1/95

GRAINS VAUJE GRAINS !RlxE -----------
Wheat 0.20
corn 0.12

GRAINS VALUE

Wheat 0.15
Corn 0.7Q

Wheat 2.50
Corn 1.50

SP Se l l Grains Prof i t REP Raise/Ldbor Technology RFT Raise/Floor Technology RP Raise/Animals
Prof its

GRAINS VALUE ANIMAIS VAUJE ------------
Hens 4 0
Pigs 2 5

GRAINS VALUE -----------
Hens 15
Pigs 25

GRAINS lnLul3 -----------
Hens 40
pigs 40

W h e a t 1.75
Corn 0.95

FACC Feed/Animals Technology R Feed/Ratios Hire-Labor/Labor Technology HLC Hire-Labor Co

GRAINS ANIMALS vzimE GRAINS z-uUMx3 v?mm VALUE
-e--------------------- ----
Wheat H e n s -0.20 0.85
W h e a t Pigs -0.30
Corn Hens 1
Corn Pigs 1

- - - - - - - - - -

Wheat Hens 0.10
Wheat Pigs 0.04
Corn H e n s 0.04
Corn Pigs 0.05

Ilrs Hire-Iabor Supply LS Labor Supply FLS Floor Supply

VALUE VALUE ------
10,000

Figure 11
RF:LATIONAL DATA BASE FOR FARMER'S PROBLEM

i
I

1 m m
I Pi"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-93

