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ABSTRACT 

Because of the difficulties often experienced in formulating and 
understanding large scale models, much current research is directed 
towards developing systems to support the construction and 
understanding of management science models. This paper discusses six 
different methods for representing mathematical programming models 
during the formulation phase of the modeling process. The approaches 
discussed in the paper include algebra, three different kinds of 
graphical schemes, a database-oriented approach and Structured 
Modeling. We emphasize representations that have graphical elements 
suitable for incorporation in the interface to a modeling system. The 
different methods are compared using a common example and conclusions 
are drawn as to their suitability for various modeling tasks and 
situations. 

Key words: Modeling, mathematical programming, graphics 
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1. INTRODUCTION 

Our ability to solve large mathematical programming models has 
improved with the introduction of new algorithms and continued 
advances in computer technology. The major impediment to more 
widespread use of these models appears to be a human one. Modeling 
is a time-consuming, error-prone task that is understood by only a 
small number of management scientists (Fabozzi and Valente [1976]). 
Recently, there has been an awakening of interest in the modeling 
process itself and in computer systems which directly support the 
modeler. An example of the benefits that can be obtained from the 
combination of a user friendly interface and powerful modeling 
language is given by the PLANET system at General Motors (Breitman and 
Lucas [1987]). 

Most mathematical programming systems (Optimizers) accept model 
definitions in the MPS format (IBM [1975]). This consists of a list 
of triples in the form (Row Label, Column Label, Value). Although MPS 
format is efficient from a machine processing point-of-view, it is 
difficult for humans to develop and debug models in this form, 
(Meeraus [1984]). Over the last few decades, a number of systems have 
been developed which attempt to make the modeling task easier. Early 
systems (Matrix Generators) were essentially procedural programming 
languages that helped generate MPS statements. Some examples are LOGS 
Brown et a1 [1987], OMNI El9771 and DATAFORM (Creegan, [1985]). 
Later, systems which accept problem statements in a non-procedural 
language (e.g. in algebraic form) were developed. Example systems in 
this class include GAMS (Meeraus [1984]), AMPL (Fourer et a1 [1987]), 
XMPL (Dolk [1986]) and CAMPS (Lucas and Mitra [1985]). PAM (Welch 
[1987]) is a non-procedural, table-oriented language written in 
DATAFORM. 

More recent modeling approaches include Structured Modeling (Geoffrion 
[1987]), which provides a general representation for a broad range of 
model types, and Netforms (Glover [1988]), which is suitable for 
mathematical programs that are primarily networks. Dolk [I9861 has 
developed a system based on concepts from database management systems. 
Krishnan [I9871 and Raghunathan [I9881 have designed new modeling 
languages based on artificial intelligence techniques for representing 
domain dependent knowledge. The former uses a dialogue-driven 
interface controlled largely by the computer, while the latter 
proposes a modeling language based on And-Or graphs. Some Itrestricted 
natural languagett interfaces have also been developed. Binbasioglu 
and Jarke [I9861 develop a simple wactivity-resourcet~ language for 
specifying problems in the area of manufacturing production, 
Greenberg [I9871 has developed a restricted natural language system 
for interpreting LP models and results. A number of systems, 
effective for small applications, integrate optimization with the 
spreadsheet paradigm (Bodily [1986]). Finally, we have built a 
prototype system, LPFORM, to help modelers formulate linear 
programming (LP) models (Murphy and Stohr [I9861 and Ma [1988]). 
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LPFORM provides a graphic interface which uses icons to represent real 
world objects such as inventories, machines and transportation 
networks. The interface is described in Ma et a1 [I9861 and has been 
improved and tested by Asthana [1988]. 

The great diversity of existing and proposed modeling systems makes a 
comparative analysis worthwhile. Our objective is to review these 
systems from the point-of-view of the interface presented to the user. 
In particular, we wish to investigate the merits of various methods 
for representing problems. In the space available, we can only review 
some major alternatives: non-procedural programming languages, 
graphics-oriented interfaces and database representations. We have 
chosen some typical systems in each of these categories in an attempt 
to discover their advantages and disadvantages in terms of the two 
goals of user friendliness and machine efficiency. Since all viable 
representations must lead to unambiguous model statements, it should 
be possible for a system to transform from one representation to 
another and to achieve both goals simultaneously. The paper outlines 
the steps needed to perform some of these transformations. 

Useful representations for management science problems must help users 
cope with the complexity of real world applications. The paper 
introduces wcompactw forms for some existing graphic representations 
and illustrates several simplifying principles including direct 
representation of real world objects through the use of graphic 
"icons", hierarchical problem decomposition, and a wpiecemealn 
approach which supports simultaneous top-down and bottom-up strategies 
during problem definition. 

Section 2 provides a general framework for comparing different 
representation schemes. Section 3 introduces an example that will be 
used to illustrate the different approaches and also discusses some 
traditional representations including algebraic languages. Sections 4 
through 8, respectively, cover Activity-Constraint Graphs, Netforms, 
Structured  odel ling, database representations, and the iconic approach 
used in LPFORM. The paper ends with some brief conclusions and 
suggestions for future research. 

2. REPRESENTATION SCHEMES IN MODELING 

In this section, we discuss the objectives of advanced modeling 
systems and the role of problem definition languages in helping to 
achieve these objectives. 

A typical design for a modeling system is shown in Figure 1. Most 
current systems contain all of the subsystems shown in the figure in, 
at least, a rudimentary form. Ideally, the interface module handles a 
variety of input and output presentation modes. The Model Processor 
accepts the user's input and produces a statement of the model in a 
form suitable for a standard optimizer such as LINDO (Schrage [1984]) 
or IBM's MPSX [1975]. A Solution Analyzer (e.g. Analyze, Greenberg 
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[1983]) accepts the solution from the Optimizer, performs analyses, 
and provides reporting and online query facilities for the user. The 
Model Management and Database Management components provide 
information, access and maintenance facilities for models and data 
respectively (see Blanning [I9821 and Date [I9871 for a discussion of 
these components). 

[FIGURE 1 ABOUT HERE] 

The following are some objectives of a good modeling system: 

(1) Provide a rigorous conceptual framework for problem 
formulation. 

(2) Allow the representation of a broad range of model types. 

( 3 )  Reduce the complexity of the modeling process. 

(4) Support all phases of the development and use of models. 

(5) provide model-data independence. 

(6) Provide model-solver independence. 

(7) Check the validity of models. 

(8) Employ modern interface techniques. 

(9) Integrate modeling with modern database techniques. 

(lo) Provide powerful computational features to help generate the 
data. 

(11) Facilitate the reuse of previously developed models and 
their combination into larger models. 

(12) Provide automated documentation of models. 

(13) ~xplain model structure and interpret model results. 

(14) Accumulate domain dependent knowledge over time. 

The above includes the list of desirable features given by Geoffrion 
[1987]. The items in this list are self-explanatory except for items 
(5) and (6). Model-data independence, implies a separation of the 
statement of the structure of the model from the data that is to be 
used in it. Thus, the sizes of sets and values of data items can vary 
from run to run without changing the statement of the model. 
Similarly, model-solver independence implies that the statement of the 
model is in a format that does not depend on the requirements of any 
one solver or class of model. 
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In considering the role of representation schemes in the achievement 
of these goals, it is important to distinguish between external and 
internal representations. An external representation scheme is used 
by the modeler to define models and to express queries to be answered 
by the model. Objectives (1) through (3) simply cannot be achieved 
without a good external representation scheme. In addition, goals (4) 
through (8) are critically affected, and the remaining objectives 
somewhat affected, by the choice of external representation. 

On the other hand, an internal representation scheme is usually 
invisible to the user. It is used by the system to support all of the 
goals on the above list. In particular, the use of knowledge 
representation schemes from artificial intelligence can facilitate the 
attainment of goals (13) and (14). The internal representation is 
used to generate a problem statement for the optimizer, to document 
the model and to act as a database for online queries concerning the 
structure and objectives of the model. 

~lthough the internal and external representations are naturally 
related, there is every reason to believe that they should be 
different. The purpose of an external representation is to help the 
user. The formulation of models involves a mapping between real world 
objects and relationships and symbolic (usually mathematical) objects 
and relationships. This process is painful even for experts as it 
involves minute attention to detail. Usually, the correctness of a 
model can only be ascertained by trial runs involving much data 
processing. For nonexperts, the translation process is almost 
impossible because of their poor understanding of mathematical 
concepts such as variables and indices (Orlikowski and Dhar, [1986]). 
A major theme of current research is that a good external 
representation scheme helps users visualize the real world in 
conceptual terms and thereby facilitates the generation of correct 
models (Shneiderman [1987]). The system itself should 
automatically translate from the external to the internal 
representation scheme. 

~epresentation schemes can be discussed in terms of four dimensions: 
generality, concreteness, labor-intensiveness, and interface 
potential. Generality refers to the applicability of the technique to 
a range of management science models (both within and beyond LP). The 
other three dimensions are aspects of what is generally referred to as 
#*user friendliness. 

The concreteness dimension measures how closely real world objects are 
captured. External representation schemes should be concrete in the 
sense that they should closely mirror the real world. Internal 
representation schemes may be abstract since they portray the symbolic 
representation of the model and must, of necessity, include 
mathematical concepts. Evidence concerning the desirability of icons 
and other concrete objects that can be directly manipulated by users 
is quite strong (Shneiderman [1988]). Graphs can provide more 
concrete representations for modelers because they can reveal hidden 
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facts and relationships and stimulate human thinking (Shepherd 
[1987]). A study by Carlson et a1 [1977], showed that decision makers 
seem to rely on conceptualizations and that graphs and visual 
scenarios helped improve decision making. The advent of low cost 
computer graphics technology makes interactive systems possible. For 
these reasons, our research has emphasized graphic representation 
schemes. 

~abor-intensiveness (the amount of detailed book-keeping work required 
from the user) is a function of the complexity of the representation 
and is especially important for large problems. While graphics can 
help on the concreteness dimension, graphical representations can be 
too complex both to draw and to understand for the large mathematical 
programming models found in practice. We need to invent methods of 
computer support that allow users to draw high-level diagrams of major 
model relationships while hiding the messy details. How to provide 
useful forms of hierarchical abstraction that help, rather than 
hinder, users is a challenging area for research. 

The final dimension, interface potential, measures how well the 
representation form lends itself to advanced computer interface 
techniques. In the final analysis, it is the combination of the 
representation scheme with support for the dynamics of the user 
interaction that is important. Thus, the interface should provide not 
only a good medium for expression of ideas, but also support problem 
solving strategies and other features that can help users. These 
include: 

(1) Hierarchical definition of the problem through top-down 
refinement. 

(2) Piece-wise model development (bottom-up development) with a 
submodel integration capability. 

(3) Reuse of previously developed models and model fragments. 

(4) Consistency and validity checking during (as well as 
subsequent to) the model construction phase. 

(5) Memory aids. 

(6) Good interface characteristics including fast response and 
easy revision and modification of previous work. 

Of the above, we need elaborate only on item (2). By this, we mean 
that users should be able to define small pieces of their models in 
any order, The need to organize work in a strict order, to formally 
define objects before they are used, and to follow a rigid syntax, 
places an unnecessary burden on the user. As illustrated later, it 
seems preferable for the computer to perform the necessary steps to 
infer missing problem components and to construct a properly ordered, 
consistent internal problem representation. 
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To summarize, we are interested in concrete, graphic and simple 
representation schemes that cover a wide range of model types and that 
can be incorporated in interfaces that provide a broad array of 
supporting features. 

3. SAMPLE PROBLEM AND ALGEBRAIC REPRESENTATIONS 

To compare the different languages for representing models, a sample 
problem has been taken from Schrage [1987]. This is a small problem 
but has sufficient complexity to illustrate most of the issues 
involved in developing internal and external representation schemes. 
The problem statement is as follows: 

"A farmer has 120 acres which can be used for growing wheat or corn. 
The yield is 55 bushels per acre per year of wheat or 95 bushels of 
corn. Any fraction of the 120 acres can be devoted to growing wheat 
or corn. Labor requirements are 4 hours per acre per year plus 0.15 
hour per bushel of wheat and 0.70 hour per bushel of corn produced. 
Cost of seed, fertilizer, etc., is 20 cents per bushel of wheat 
produced and 12 cents per bushel of corn produced. Wheat can be sold 
for $1.75 per bushel and corn for $0.95 per bushel. Wheat can be 
bought for $2.50 per bushel and corn for $1.50 per bushel. 

In addition, the farmer may raise pigs and/or poultry. The farmer 
sells the pigs or poultry when they reach the age of one year. A pig 
sells for $40. He measures the poultry in terms of coops. (One coop 
brings in $40 at the time of sale). One pig requires 25 bushels of 
wheat and or 20 bushels of corn. One coop of poultry requires 25 
bushels of corn or 10 bushels of wheat, plus 40 hours of labor, and 15 
square of floor space. 

The farmer has 10,000 square feet of floor space. He has available 
2,000 hours of his own time and another 2,000 hours from his family. 
He can hire labor at $1.50 per hour. However, for each hour of hired 
labor, 0.15 hour of the farmer's time is required for supervision. 
How much land should be devoted to corn and how much to wheat, and in 
addition, how many pigs and/poultry should be raised to maximize the 
farmer's profits?" 

The formulation of this problem in wtableaull format is shown in Figure 
2 using numeric data. 

[FIGURE 2 ABOUT HERE] 

We now formalize the problem somewhat by defining symbolic names for 
the data. Since we are concerned with the language used for the 
external representation, the conventions used to name the objects in 
the model are important. In general, long (descriptive) names, short 
mnemonics, and comments are all essential to good modeling practice. 
Short names are useful in algebraic statements. Also, brief mnemonic 
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names (no longer than 8 characters) have to be supplied for the row 
and column labels of data coefficients in the input to many 
optimizers, e.g. those using MPS format. These labels can be composed 
by concatenating together the short names for variables, indices and 
data coefficients. Devising unique, meaningful short names and labels 
is a tedious job which lends itself well to computer assistance. 
Asthana [I9881 suggests a suitable set of naming conventions. It is 
assumed that the user supplies the "longw names for all the basic 
objects in the model. The computer then suggests short names for the 
objects and data coefficients and also provides some limited help in 
generating descriptive comments. Figure 3 illustrates these 
conventions for the Farmer's Problem. 

[FIGURE 3 ABOUT HERE] 

Using the definitions in Figure 3, the conventional algebraic 
representation for the Farmer's Problem is: 

(1) Maximize: 

Subject to: 

C HAT .H < AS 
g g g -  

HLLT.HL - C RLTa.Ra - C HLT .H < LS 
a 4 g g -  

C FAT .F - R a =  0, 
g g,a g,a 

g in Grains 

(Acres Usage) 

(Labor Usage) 

 r rain Balance) 

a in Animals (Animal Balance) 

(Floor Usage) 

where HL HLS. 

A number of systems have been developed which accept problem 
statements in algebraic form. As mentioned earlier, these include 
GAMS, GXMP, AMPL and CAMPS. LINDO (Schrage [1984]) allows a 
restricted form of algebraic input in extended coefficient form (no 
summations or indices). The following partial problem representation 
follows the syntax of GAMS and is sufficient to give the flavor of 
fully algebraic systems: 

SETS 
G grains /WHEATI CORN/ 
A animals /HENS, PIGS/ ; 

SCAIARS 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-88-93 



HLLT effective labor hours per hired labor hour /0.85/ 

FS floor supply (sq. ft.) /10000/ 
PARAMETERS 

RFT(A) sq. ft. of flooring used per animal 
/ HENS 40 
PIGS 25/; 

VARIABLES 
B (GI buy grain 

R (A) raise animals (units) ; 
EQUATIONS 

ACRES use of land for crops 

GRAINS (G) balance equation for grains of type G; 

ACRES . . SUM (G, HAT (G) *H (G) L AS 

GRAINS . . B(G) + H(G) - SUM(A, F(G,A)) - S(G) =E= 0 
MODEL FARMERS /ALL/; 
SOLVE FARMERS USING LP MAXIMIZING Z; 

In the above, the model components such as Sets, Parameters (data), 
Variables and Equations are specified in a fixed order using a fairly 
rigid syntax. The text in small letters represents optional comments. 
The meaning of the problem statement should be clear to any one versed 
in management science. In fact, this is a major advantage of algebraic 
notation as an external representation scheme. In addition, algebraic 
statements are nonprocedural, compact (not labor-intensive) and easily 
parsed by a computer. Most importantly, they provide the potential 
for both model-data and model-algorithm independence. In the case of 
GAMS, these advantages are somewhat nullified because the data values 
and algorithm type are compiled with the model statement. It would 
be advantageous to support the input of data values as a separate 
process so that the same model can be run with different data 
instances. 

The use of algebraic languages is a major step forward. Nevertheless, 
they involve abstract rather than concrete concepts. For this reason, 
their use is probably restricted to a small group of management 
scientists. Students with one course in LP for instance, had a very 
hard time formulating LPs in algebraic notation (~rlikowski and Dhar 
[1986]). preliminary results from an experiment which directly 
compared groups of users formulating LP problems using the graphical 
and algebraic languages provided by LPFORM, show that the former group 
obtained a higher percentage of correct solutions in a shorter time 
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and were more satisfied with their experience (Asthana [1988]). The 
relative advantage of the graphics package increased with the 
complexity of the problem. 

An additional disadvantage of algebraic representation schemes is that 
they do not contain information on the physical structure of the 
underlying problem. Such information can be gleaned, after the fact, 
from the generated matrix, and used to determine the reasons for 
infeasibilities (if they exist) and to explain the results of the 
model (Greenberg [1983]). However, if structural information is input 
directly as part of the model statement, the user's comprehension of 
the model can be enhanced and there are additional opportunities for 
the system to analyze the correctness of the model during the 
development process (Murphy et a1 [1987]). 

4. ACTIVITY-CONSTRAINT GRAPHS 

An Activity-Constraint (A-C) graph for the Farmer's Problem is shown 
in Figure 4 (adapted from Schrage [I987 p.1191). 

[FIGURE 4 ABOUT HERE] 

Any LP can be represented in this form. There are two types of nodes. 
~ctivity nodes representing decision variables are depicted by open 
boxes. Constraint nodes are shown as circles. The arrows represent 
the effect of the activities on the resource levels associated with 
the constraints. If the arrow points to a constraint the associated 
activity provides an input to the constraint and conversely. The 
numerical coefficients on the arrows provide the values for the 
transformations. Thus, if the resource is an input (output), its 
level in the constraint is lowered (raised) by the value of the 
coefficient when the activity level is increased by one. Exogenous 
supply and demand values for resources are written in the circles. 
constraint nodes with zero values represent flow balance equations. 

An A-C graph provides an intuitively appealing representation that can 
help users understand, construct and check a problem formulation. The 
graph can be translated in a straight-forward manner into an LP matrix 
for input to a Solver. The coefficients on the arcs associated with 
each activity form the nonzero elements in its column, while the 
values in the constraint nodes form the RHS for the problem. However, 
it is usually more convenient to formulate the constraints one-at-a- 
time. The constraint corresponding to a constraint node is formed by 
adding together terms involving each activity to which it is 
connected. Each term is formed by multiplying the coefficient on the 
arc by the symbol for the variable. We follow the convention that 
terms on incoming (supply) arcs are positive while those on outgoing 
(demand) arcs are negative. 

The major disadvantage of such graphs is that they are very labor- 
intensive, even for small problems such as that in Figure 4. (Note 
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that the connections to the money resource in the objective function 
were omitted to simplify the graph). A problem with 3,000 constraints 
and 10,000 variables would occupy approximately one half million 
square feet of paper if drawn to the scale of Figure 4! 

The obvious way to reduce the complexity of the graph is to replace 
coefficient values by array names and to use set notation to portray 
activity and resource types as in Figure 5a. 

[FIGURE 5 ABOUT HERE] 

To reduce the visual complexity, objective function coefficients are 
written beside their associated activities. Also, explicit upper and 
lower bounds on resource levels and activities are shown symbolically 
(rather than graphically) by including symbols for the upper and lower 
limits in square brackets at the relevant nodes. This is illustrated 
in Figure 5 for the Floor constraint and the Use-Acres activity. 
Finally, the index sets for the coefficients have been omitted. These 
can be computed as the union of the sets associated with the Activity 
and Constraint at either end of the arc (singleton sets are treated as 
null for this purpose). Note that the indices of coefficients are 
simply identifiers for particular values. The dimensions of the sub- 
matrices corresponding to the coefficients in the larger LP matrix are 
determined by the number of constraint and activity rows. Thus, the 
coefficient, FAT ,, represents four non-zero values, but forms a (2 x 
4) array in the Zableau of Figure 2. 

When there are relationships between elements with different values in 
the same set (as occurs with time in planning and inventory problems), 
it is necessary to replicate the A-C graph for a sufficient number of 
consecutive index values to reveal the underlying pattern. It might 
also be necessary to show the pattern for both the starting and ending 
conditions. Thus, in a finite horizon planning problem, one might 
depict all constraint and activity nodes for time periods 1, t-1, t 
and T. 

Most practical LPs include a number of "side constraintsw arising 
from policy or other requirements. Examples are generalized bounds on 
variables and constraints on ratios of variables such as: 

and E: H > HUB 
g g - 

Fcorn, hens O O Fwheat, hens 

Figure 5b shows the additions to the A-C graph to accommodate these 
constraints. Constraints (2) are represented by the wBushelsll 
constraint node. A lower bound constraint can be represented as a 
demand node and an upper bound as a supply node. When the two are 
merged as in the figure, the arrow becomes bi-directional. Note that 
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the same coefficient applies to both directions of a bi-directional 
arrow since constraints with the same RHS index sets must have the 
same LHS (Murphy et a1 [1987]). The "Ratiosw node in the figure 
indicates that there is a 2 0 constraint for each member of the 
animals set. Using the rules given above, the coefficient R for 
variable F is indexed by (Grains, Animals); the values needed to 
capture constraints (3) are given in Figure 11 below. 

While such constraints can be represented by simple extensions to the 
formalism, the resulting graph becomes less "concretew since the 
physical flow analogy is lost. Complicated policy relationships 
between more than two variables add further clutter to the graphs. 
However, these are problems that have to be faced by any 
representation scheme. 

Many physically large problems have a simple enough underlying 
structure to be represented conveniently by A-C graphs using the above 
conventions. In fact, automated interfaces to optimization packages 
that are based on such techniques can be developed using computer 
graphics techniques similar to those used in CAD (computer-aided 
design) applications (see Section 8 below). 

5. NETFORM GRAPHS 

Every LP model can be represented by an A-C graph because activities 
and constraints are logically paired by the technology coefficients. 
When the underlying real world problem has a network representation, 
there is only one arc entering and leaving each activity node. Thus, 
the activity nodes can be dropped without losing the uniqueness of the 
representation. Glover [I9871 has studied such problems extensively 
and has developed modeling approaches for a broad variety of 
applications as well as a coherent set of graphical conventions. 
Figure 6 illustrates these conventions for a network representing a 
modified version of the Farmer's problem in which the Labor and Floor 
constraints are disconnected (omitted from the problem) to obtain a 
network subproblem of the original problem. 

[FIGURE 6 ABOUT HERE] 

In the Netform representation, activities are denoted by arcs while 
constraints are denoted by circles as before. The activities have 
associated upper and lower bounds (enclosed in parentheses), costs, 
and both head and tail multipliers. Unit values for multipliers and 
lower and upper bounds of (0,oo) on activity values are not shown 
explicitly. Networks with integer-valued activities (indicated by a # 
sign on the arc) are admissible. Omitting the non-network elements, 
Figure 6 is obtained simply from Figure 5. Multipliers at the heads 
of activities in the Netform representation correspond to activity 
output coefficients in the Resource/~ctivity diagram, while those at 
the tails correspond to activity input coefficients. Exogenous 
supplies and demands are shown as "danglinglV arcs since they can be 
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thought of as constant activities. 

Experience with the Netform approach to modeling has been very 
positive, (Glover [1987]), confirming the value of graphical 
representations in the modeling process. A surprisingly large number 
of important integer and non-integer problems can be represented as 
networks. Many problems involving a time element, such as inventory 
and cash management applications, have a quite simple network 
representation. The rules for converting a Netform graph to an 
algebraic statement are straightforward being practically identical to 
those for an A-C diagram, In practical applications, side conditions, 
which do not adhere to the network restriction, may be present. These 
can be handled either by adopting the A-C representation for a part of 
the network, or by adding constraints/activities by hand to the 
algebraic statement of the network (see Glover [I9871 for details). 

Network diagrams which attempt to represent every activity and node 
are impractical for problems of even small to moderate size. Often, 
it is sufficient to develop a typical pattern of connections using a 
small number of graphical elements as an aid to writing down the 
equations in the problem statement. Figure 7 shows how the use of 
symbol names and set notation can simplify a Netform diagram and 
provide an excellent format for a computer interface. 

[FIGURE 7 ABOUT HERE] 

6. STRUCTURED MODELING 

Structured  odel ling (Geoffrion [1987]) represents a major effort 
towards building a sound basis for modeling theory and practice. 
Because of space limitations we can provide only a brief overview and 
illustration. The objective of structured modeling (SM) is to develop 
a comprehensive framework to unambiguously represent all the essential 
elements of a variety of management science models. This framework of 
definitions is to be represented in the computer and to be used to 
define and generate problem statements for the Solver, to test that a 
computable, consistent problem statement has been produced, to provide 
documentation for subsequent users of the model, to afford model-data 
and model-solver independence and to allow information about parts of 
the model and their relationships to be retrieved and displayed. Thus 
the emphasis in SM is on internal representation rather than interface 
design. 

The elements in a structured model are as follows (from Geoffrion 
[1987]) : 

(1) primitive Entity (PE): has no associated value and represents a 
thing or concept postulated as a primitive of the model (e.g. the 
"hensw element in the Farmer's problem). 
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(2) Compound Entity (CE): has no associated value and represents a 
thing or concept defined in terms of other things or concepts 
(e.g. a link between two locations in a transportation problem). 

(3) Attribute (A): has a constant value and represents the value of a 
property of a thing or concept (e.g. the coefficients UALT, HLT, 
etc.) . 

(4) Variable ~ttribute (VA): similar to an Attribute except that its 
value is computed by the model (e.g. the variables UA, BG, etc.). 

(5) Function (F): has a value that can be computed from the other 
values in the model.(e.g. the term Z HATg.Hg). 

g 
(6) Test (T): similar to a function but the result must be either 

true or false (e.g. a test to see if a constraint is 
satisfied) . 

These model elements are related because (except for the primitive 
entities) each of the above groups of elements (I1generaw) is defined 
in terms of elements from one or more of the preceding groups. This 
observation leads to the graph in Figure 8 in which the arcs 
(conventionally directed from PEts towards TEST'S) can be interpreted 
as "the tail item is used in the definition of the head itemw. The 
wGenus"f graph in Figure 8 is one of two principal types of graphs used 
in Structured  odel ling. The other graph is a "Modular Treew which 
depicts a hierarchical grouping of related element groups. A modular 
decomposition of the Farmer's Problem is indicated in Figure 8 but a 
Modular Tree is not shown. 

[FIGURE 8 ABOUT HERE] 

Roughly speaking, the relationship between the items in Figure 5 and 
those in Figure 8 is as follows: 

(1) The Sets (and sets that have single elements) of Figure 5 
are the PEs in Figure 8. 

(2) The coefficients are the Fixed Attributes (FAs). 

(3) The Activity Nodes are the Variable Attributes (VAs). 

(4) Each link from a Constraint node to an Activity node in 
Figure 5 presents a term in the LP which is a Function (F) 
represented by a point in Figure 8. 

(5) Each constraint node in Figure 5 is replaced in Figure 8 by 
a Test node and one or more Function nodes (one of the 
Function nodes gathers all the terms in each constraint 
together to define the LHS of the constraint). 

The graph for even a small problem is quite complicated and is time- 
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consuming to draw by hand. The main specification medium for SM is 
text with a rigorously defined syntax similar to a programming 
language; it is also necessary for users to order their definitions 
carefully. Presumably, SM software will generate the graph 
automatically from the textual inputs. In terms of the concreteness 
dimension described earlier, SM graphs are highly abstract. Indeed, 
it is hard to discern the structure of the underlying AC network in 
the graph of Figure 8. 

For the reasons outlined in the preceding paragraph, SM does not 
provide an ideal external representation for model specification, It 
is however, a good internal representation scheme because it relates 
all the parts of a model in a consistent and complete fashion. SM is, 
in fact, used as an internal representation scheme by Krishnan [1988]. 
This aspect of the SM model will be further elaborated in the next 
section. 

7. DATABASE REPRESENTATION SCHEMES 

The need to gather and process large quantities of data during the 
model building phase and to interpret the voluminous results obtained 
from large models, has prompted research directed towards the 
integration of modern database technology with mathematical 
programming systems (Dolk [1986], Geoffrion El9871 and Choobineh and 
Sena [1988]) . 
There are two separate but related requirements. First, there is a 
need to record information about the structure of the model. Second, 
it is necessary to provide for the storage and manipulation of the 
data of the problem and of the results that are obtained from the 
optimizer. while model structure is probably handled best by data 
structures based on artificial intelligence techniques (Elam and 
~onsynski [1987]), the power of modern database management systems and 
query languages makes them attractive for the data manipulation 
aspects of modeling. In the following, a database approach (Date 
[1987]) will be used to illustrate the main issues for both 
requirements. 

Figure 9 gives a conceptual view of the essentials of the graph in 
Figure 5 using the notation of the Entity-Relationship model (Chen 
[1977]). An E-R diagram depicts the things of interest to the system 
as entities (boxes) and relationships between entities (diamonds). 
~ntities and relationships represent classes of objects whose 
individual instances are distinguished by the values of their 
associated attributes or properties. 

[FIGURE 9 ABOUT HERE] 

Figure 9 states that each ~ctivity entity is related to one or more 
(!IN") Constraint entities and each Constraint entity is related to one 
or more ( W W )  Activity entities. The Activity-Constraint relationship 
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serves to relate the individual instances of the two entity sets and 
can carry information on the mathematical transformations linking each 
activity to each constraint. Also shown in Figure 9 are two entities 
used to record the results of the optimization for each activity and 
constraint. 

Figure 10 gives a realization of this conceptual data model for the 
Farmer's Problem. We will call this the Model Schema. 

[FIGURE 10 ABOUT HERE] 

For a particular model, the model schema contains information that 
is useful in the following processing activities: 

(1) Generation of the schema (skeletal outline) for the data 
tables that will store the data and results for the problem. 

(2) Generation of both the algebraic representation of the 
problem and the MPS problem statement for input to the 
optimizer. 

( 3 )  Updating the model when structural relationships are 
changed. 

The ~ctivity, Constraint and Transform relations (data tables) in 
Figure 10 capture all the information in ~igure 5. The Sets relation 
in the figure is redundant in the sense that it can be computed from 
the former three tables. However, it will obviously help speed 
processing. 

The Model Schema in Figure 10 contains almost the same information as 
the Structured Modeling Genus Graph in Figure 8. The Sets relation in 
the Model Schema records the mappings between the PE's and the FA'S 
and VA's in the Genus Graph. The Activities, Constraints and 
~ctivities-Constraints relations record information concerning the F's 
and Tests in the SM representation. As shown in Murphy et a1 [1988], 
this is all the information needed to generate the algebraic form of 
the model in the case of LP's. To represent non-linear and other 
types of models, the Model Schema can be expanded, along the lines of 
the SM graph, to include an additional Function object to store the 
algebraic form. A desirable feature of the schema in Figure 10 as an 
internal representation, is that it contains information on the 
network structure underlying the model. To do this, it uses the 
information contained in the Upper- and Lower-bound and Input-Output 
fields. As an aside, this information can be derived from the SM 
framework using the approach developed by Bradley and Clemence [1987]. 

Figure 11 shows a Data Schema and its instantiation with actual data 
values for the Farmer's Problem. Each set has been assigned a table 
of the same name to record set memberships. Similarly, each 
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data coefficient has been assigned a database relation whose name is 
the name of the coefficient. The key (unique identifier for tuples in 
the relation) is the set of indices that describe the array position 
of the data coefficient in the LP matrix. Scalar objects have been 
treated as single element tables for uniformity of representation 
although they might be gathered together into a single table in an 
actual implementation. 

[FIGURE 11 ABOUT HERE] 

The Data Schema can be generated automatically from an analysis of the 
Model Schema (Asthana [1988]). The skeleton outlines for each Set 
table can be generated first and filled with element values, either 
interactively by the user, or automatically from knowledge stored 
previously in the system. Once the set memberships are known, it is 
possible to automate, or partially automate, the generation of the 
keys for the data elements in the coefficient tables. Finally, the 
data coefficient values can be filled-in, either automatically or by 
interaction with the user. It should be noted that data elements with 
unit values do not have to be stored if they can be implied from the 
algebraic statement. 

The Data Schema in Figure 11 differs from the "Elemental Data Tables" 
that are used for the same purpose in Structured Modeling (see Figure 
12). In the former, each set and data element is represented by its 
own database table. In the latter, there is a data table for each 
Primitive and Compound Entity (i.e. for the sets); the coefficients 
are represented by database attributes and the elements of the sets by 
values in the same relation. It is difficult to decide between the 
two representations. The SM representation is much more compact, but 
the data schema in Figure 11 may be more flexible especially when data 
is to be shared between different models and modelers. Using the 
concept of database views (Date [1987]), it is possible to use one 
representation as the basis for the design of the physical database 
and to afford users the other view of the data depending on their 
tastes. 

[FIGURE 12 ABOUT HERE] 

From a relational database viewpoint, the matrices and higher 
dimensional arrays that are traditionally used by management 
scientists to represent the data of mathematical programs, are 
unnecessary. The relation for a coefficient stores only the non-zero 
elements in the array representation. Thus, it is a sparse 
representation that conforms closely to the MPS format used for input 
by most Optimizers. There is one table entry in Figure 11 for each 
non-zero entry in the LP matrix. Conceptually, all that is necessary 
to transform the database in Figure 11 into an MPS statement, is to 
replace the values of the keys in the relations by the appropriate 
(Row-label, Column-label) pairs. There is no need to generate arrays 
in the traditional sense unless the modeler prefers to view his/her 
model in this way. 
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In summary, the Model Schema is primarily an internal representation 
while the Data Schema is both an external and internal representation. 
Since the latter involves data rather than model structure, it can be 
used in conjunction with any of the other representation schemes 
discussed in the paper. ~aking a different approach, Choobineh and 
Sena [1988], suggest some extensions to the popular SQL database query 
language (Astrahan and Chamberlin [1988]) to support the expression of 
algebraic constraints. This has the advantage of providing a unified 
language for both the model definition and data manipulation phases of 
modeling. The disadvantages are as listed above for algebraic 
languages; the main drawbacks are that such languages are abstract 
rather than concrete and not as amenable to advanced interface support 
as the graphic representation schemes discussed earlier. 

8. AN ICONIC REPRESENTATION SCHEME 

The ~ctivity-Constraint and Netform graphs are the most concrete 
(closest to the real world) representations reviewed so far. However, 
the nodes and arcs correspond directly to mathematical objects (the 
rows and columns of the model tableau) and only incidently to real 
world entities. The arguments in Section 2, and the success of 
"iconic*' interfaces in many applications (Shneiderman [1987], Ch. 5), 
suggest the desirability of interfaces with more concrete images. 
Furthermore, even in their compact forms, the A-C and Netform graphs 
can be quite complicated implying the need for some form of 
hierarchical aggregation to simplify the problem for the user. 
The LPGRAPH (Asthana [1988]) interface to the LPFORM system attempts 
to satisfy both of these goals. It has been implemented on an IBM 
PC/AT class machine using a set of graphics tools written in the "CM 
programming language (EVA [1988]). 

The iconic representation of an LP problem in LPGRAPH consists of a 
hierarchy of networks which depict the problem in increasing detail. 
~t each level in the hierarchy, the network consists of one or more 
wblocksM connected by directed arcs. The blocks contain collections 
of zero or more LP activities. There are two kinds of directed arcs 
connecting the blocks. A "logical linkw (shown by a thin line) 
indicates a flow that exists in the real world but is not modeled by 
an LP activity. An example is the flow of grains to animals in the 
farm problem, i.e. a material flow from one production point to 
another in a fixed sequence. A "flow linkw (shown by a thick line) 
represents a flow that is modeled by an LP activity. A transportation 
activity is the commonest example. Icons are placed within the blocks 
to specify the existence of activities. In addition to a completely 
general activity icon, more specialized inventory and resource icons 
are provided for convenience. The idea of using activity icons during 
the formulation process first appears in Dantzig [1963]. 

We use the Farmer's Problem to illustrate the main ideas. The top 
level graph consists of a single wFarm-Problemw block. The 
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representation at the second level of the hierarchy is shown in Figure 
13. 

[FIGURE 13 ABOUT HERE] 

The operation of the farm is visualized as four separate functions 
(~dministration, Crops, Husbandry and Marketing) each of which 
consists of a number of activities and is represented by a block on 
the diagram. Non-transportation links (logical links) between the 
blocks indicate the connections. As each activity icon is placed in 
its parent block, the user completes a fill-in-the-blank Activity 
screen. These are summarized in Figure 14. The user defines the 
activity index set and the input and output sets for each activity. 
To illustrate, HARVEST has "Grainsgg as its activity index set (i.e. 
there is a separate decision variable for each type of grain); its 
input sets are "AcresM, "Laborw and wDollarsg' (each of which is a 
singleton) and its output set is tgGrainsw. As each input or output 
set is named, the system suggests a short name for the associated data 
coefficient according to the conventions in Asthana [1988]. These 
names are shown after the colons in Figure 14. They can be changed by 
the user (as has occurred for the unit coefficients in the figure). 

[FIGURE 14 ABOUT HERE] 

After the user has supplied the information in Figures 13 and 14, the 
Model Schema (Figure 10) and Data Schema (Figure 11 without the data 
values) are constructed internally. The algebraic statement (1) is 
generated and displayed using an algebraic language similar to that 
used by GAMS (see Section 3). The index matching rules provided in 
Murphy et a1 119871 guarantee the completeness of the resulting model. 
Set memberships and the values of data coefficients must be specified 
at some point prior to running the model. 

An entirely different strategy for defining the Farmer's Problem in 
LPFORM is to take a constraint- rather than an activity-oriented 
viewpoint. There are two ways of doing this. The first uses 
Constraint Screens that are, in a sense, the g'duals" of the Activity 
screens outlined in Figure 14. Each constraint is defined in terms of 
the activities with which it interacts and the associated coefficient 
names. This approach avoids the use of mathematical notation by using 
the linearity property of LPts and certain relationships between index 
sets, to automatically generate the algebraic problem statements. The 
second method is to input the algebraic form of the problem statement 
directly using a language similar to that provided by GAMS. It is 
often useful to combine the activity- and constraint-oriented 
approaches because actual applications often require that additional 
constraints be added to standard models defined from an activity 
perspective. Thus, a user might prefer to enter the ratio constraint 
(3) directly rather than by the method indicated in Figure 14. 

comparing Figure 5 and Figure 14 as alternative input representations 
for a computerized system, we see that only the activities have been 
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defined in LPGRAPH; the user is not required to define either the 
Constraint Nodes nor the connections between the Activities and 
Constraints. This is an example of the ltpiecemealw approach to 
problem specification mentioned earlier. Its advantage is that the 
user does less work (supplies the same information in less redundant 
form) and does not have to follow a rigid input sequence. The 
disadvantages are that users may feel uncomfortable about leaving 
things "up to the computerN and may not obtain as detailed an 
understanding about the way the model components relate. As mentioned 
earlier, preliminary results on the use of the graphics interface of 
LPGRAPH versus (its own) algebraic language are encouraging. 

To illustrate some other features of iconic modeling, we use the 
following example: 

"Warehouses purchase and store Raw-Materials prior to their 
transportation to Factories. The Factories maintain Raw-Materials and 
Products inventories. They use Raw-Materials to produce Products 
using a production process that has been modeled previously. Finally, 
Products are transported to Markets where they are sold." 

The different types of entities and activities in the above problem 
are each represented, in a fairly obvious way, by an icon in Figure 
15. Given this graph, the system requests the user to fill-in forms 
for the buy and sell activities, each inventory activity, each 
transportation flow and the production model. The input screens for 
the activities are used mainly to define their inputs and outputs (as 
described above for the Farmer's Problem). The input screen for the 
previously stored production model asks the user to match the names 
stored in the template model to the names for the same objects in the 
new model. 

[FIGURE 15 ABOUT HERE] 

The Flow, Inventory and Resource icons represent specialized kinds of 
activities and trigger user interactions which result in the addition 
of appropriate constraints to the model (see Ma [I9881 for details). 
Resource icons are used to represent physical entities such as plant 
and equipment which are used by activities rather than consumed as 
with inventories. Other examples of LPGRAPH formulations are given in 
Ma [1988], Ma et a1 El9871 and Asthana [1988]. 

Note that several, more complicated, graphs could be drawn to 
represent the above problem. First, one could draw a detailed 
transportation network showing individual warehouses, factories and 
markets together with all of the individual transportation routes. It 
is usually easier, however, to stop the drawing at the stage shown in 
Figure 15 and to let the detailed network connections be defined 
through the data. As a second alternative, one could draw an A-C 
graph using the conventions in Figure 5. However, this graph would be 
quite complicated as the model involves flows in both space and time. 
In effect, the LPGRAPH system automatically recognizes the network 
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substructure of the problem and implicitly makes the connections of 
the underlying A-C graph as it generates the algebraic representation. 
The detailed connections of the transportation network are obtained 
from the data when the MPS format of the problem is generated. 

The above paragraphs illustrate several features which should help the 
modeler. These include a simple, non-mathematical representation, 
hierarchical problem definition (only the top-most graph was drawn in 
this instance), bottom-up construction of the model (use of the 
previously developed production model) and a piecemeal approach to 
problem definition (it was not necessary to adhere to a rigid order in 
defining the problem to the computer nor even to supply all the detail 
concerning interrelationships between model elements). Users are 
however, required to maintain consistent naming conventions so that 
the system can sort and assemble the components of the problem (see 
Murphy et a1 [1987], for a detailed description of how the model 
components can be generated and assembled). 

An LPFORM graph (c.f. Figure 13) can be viewed as an aggregated form 
of A-C graph (c.f. Figure 5). An A-C graph can be simulated in LPFORM 
by making the following correspondences: use LPFORM blocks containing 
a single activity to represent A-C Activity nodes, blocks containing 
no activities to represent A-C! Constraint nodes, and wlogicalw flows 
connecting the appropriate blocks to represent the arcs in the A-C 
graph. Note that the data coefficients appear with the activities in 
LPFORM rather than on the arcs as in an A-C graph. 

If there are no submodel icons, the steps to transform an LPFORM graph 
into an equivalent compact A-C graph are as follows: 

(1) For each LPFORM Activity, Inventory or Resource icon, attach 
a node to the tail end of each of its input arcs and to the 
head of each of its output arcs. In the A-C diagram, these 
will represent constraints on the inputs and outputs of 
resources to activities. Replace the LPFORM activity icon by 
its open box representation in the A-C graph. 

(2) For each LPFORM block, add its index sets to the index sets 
of its activities and to the index sets of the resource nodes 
constructed in step (1). Discard the block icon. 

(3) Replace each LPFORM flow activity (arc) by an A-C activity 
icon connected to the appropriate output resource node in the 
block at the tail of the LPFORM arc and the appropriate input 
resource node in the block at the head of the LPFORM arc. 

(4) Complete the A-C graph by replacing multiple instances of 
the same constraint nodes by single instances while 
maintaining all connections. 

~hus, we can translate from one representation scheme to another 
except that we lose information on the hierarchical structure if we go 
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from the iconic representation to the A-C diagram and back. 

In the special case where the model is a pure or generalized network 
problem, there is an LPFORM graph which is equivalent to the Netform 
graph for the problem. In this graph, the LPFORM blocks and flows 
correspond, respectively, to the NETFORM resource nodes and arcs, The 
major difference between the two graphs is that exogenous supplies and 
demands are shown as blocks in LPFORM rather than as dangling arcs as 
in Netform. 

TO summarize, iconic representation schemes can provide an elegant 
method for specifying large LPfs. The ability to define the problem 
piece-wise and in non-algebraic terms should also be helpful to both 
experts and nonexperts. In any case, we believe that it is fruitful 
to provide a number of different, interchangeable, representation 
schemes within a common framework. The LPGRAPH interface therefore 
combines elements from the Activity-Constraint graph, Netform, 
database and algebraic representation schemes. 

9.  CONCLUSIONS 

The microcomputer revolution has increased computer literacy and 
familiarity with models (at least of the spreadsheet variety) beyond 
the wildest dreams of only a few years ago. The current proliferation 
of powerful desk-top workstations in all forms of office and 
professional work provides a tremendous opportunity for management 
science. The algorithms and analytic techniques developed over the 
last forty years can now influence policy makers in a much broader 
array of applications and situations. The challenge is to develop 
software environments that will improve the productivity of the 
modeling process, the quality of the models produced and, most 
importantly, the quality of the decisions based on the use of these 
models. 

 his paper has reviewed some methods for representing mathematical 
problems in graphical and/or textual formats that avoid the use of 
algebra or other essentially mathematical representations. As we have 
tried to show, the representations are largely equivalent in that 
transformations exist from one form into another. We believe however, 
that they differ in terms of the amount of work, skill and 
understanding that is required from users. Thus, we need both 
external and internal representations that take into account the 
cognitive limits of human beings. Because of the importance we attach 
to this issue, the paper has introduced wcompacttt forms of both A-C 
graphs and Netforms. The iconic representations in the previous 
section go one step further in the sense that they are aggregated 
forms of the A-C graphs. 

In section 2, we proposed four dimensions for characterizing external 
representation schemes: generality (the applicability of the technique 
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to a range of management science models), concreteness (how closely 
real world objects are represented), labor-intensiveness (a function 
of the complexity of the representation) and interface potential (how 
well the representation lends itself to advanced computer interface 
techniques). From the discussion in this paper it is apparent that no 
representation scheme dominates the others on all of these dimensions. 
In fact, we believe that an optimal modeling system will employ more 
than one form of model representation. 

Actual experience with the representation schemes discussed in this 
paper in real work environments will be necessary before their 
usefulness in promoting more effective use of modeling in 
organizations can be properly evaluated. In the final analysis, the 
choice of a particular representation scheme will depend on the 
circumstances and on the tastes of users as each method has its 
advantages and disadvantages. It is possible to build systems that 
avoid unfortunate trade-offs between user convenience, generality of 
representation and machine efficiency. Thus, one can have mixed 
representations at the user interface that allow iconic, network and 
algebraic techniques to be used to define different parts of the same 
model. The resulting external specification can then be translated 
automatically into an unambiguous and valid statement that is stored 
and analyzed internally using, for example, the techniques of 
Structured Modeling. Note that the iconic representation and 
Structured Modeling have a natural fit in their hierarchical 
structuring of problems since a block in the former is equivalent to a 
module in the latter. 

Much research remains to be done in the area of modeling interfaces. 
In our view, the greatest problem facing designers of languages to 
support the modeling process involves the trade-off between the need 
to present a precise, unambiguous input to the optimizer and the 
limited cognitive capabilities of human beings. There is a great need 
for improvement in our understanding of the issues in this area. For 
example, we have proposed: 

(1) Multiple methods for representing problems and parts of the same 
problem. 

(2) Graphic representation schemes including the use of icons. 

(3) ~ynamic support for problem solving strategies such as 
hierarchical decomposition and piece-wise composition. 

The effectiveness of the above interface features is a matter for 
research. Certainly, no prima facie argument can prove their 
desirability. For example, multiple representation schemes may be 
confusing to users. Furthermore, the domain in which graphical 
representations are natural and easy to understand without training in 
operations research, is somewhat limited. In some applications, the 
entities represented by such graphs are far from concrete in the sense 
that we have been using the term. For example, in a network 
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representing a cash flow application, the nodes represent time periods 
and the arcs represent cash flows both within a period and between 
periods, Thus, there is a need to develop and experiment with 
graphical representations for more abstract entities and, in 
particular, to extend the techniques to include nonlinear and integer 
programming. Finally, we need a better understanding of the problem 
solving strategies of expert modelers so that we can build systems 
that can truly extend their capabilities. 

The power of modern computers, their graphic capabilities, new forms 
of man-machine communication (other than typing at a keyboard), and 
the emergence of artificial intelligence techniques, all point to an 
exciting period of research and development which will result in 
modeling workstations of tremendous power and versatility. New 
problem representation techniques will play an essential role in this 
evolution and represent an important new area of management science 
research. 
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LONG SHORT 
NAlw NAME D B r n P r I O N  ......................................... 
BUY B (g) w grain g (bushels) 
I-Elm-LABOR HL Hire labor  (hours) 
HlmVEST H (g) Harvest grain g (bushels) 
FEED F(g,a) Feed grain g an imd l  a (bushels) 
S U  s (g) S e l l  grain g (bushels) 
RAISE R (a) Raise animals a (uni ts)  

LONG SHORT 
NAME NAME D E C R I P r I O N  ............................................... 
ACRES-USAGE AU Acres balance equation (acres)  
LABOR-USAGE LLT Labor usage (acres) 
(24ux-UCE GB ( 4  G r a i n s  balance equations (acres)  
ANlMX-BALANCE AB(a) Animals balance equations (un i t s )  
FIXOR-USAGE FU Floor usage (sq. f t .  ) 

NAIVE TzxIJl3 D E S c R I r n O N  .................................. 
HLC 1.50 Hire-labor Cost 
E ( g )  2.50 1.50 W r y G r a i n s  Cost 
HC(g) 0.20 0.10 Harvest G r a i n s  Cost 
SP(g) 1.75 0.95 S e l l  G r a i n s  P r o f i t  
RP(a) 40 40 Raise Animdls P r o f i t  

NAME TzxIJl3 DEScRIPrION 
- ---- 

AS 120 Acres supply (acres)  
H I S  13,333 Hire-Labor supply ( ( H m )  
LS 4,000 Labor supply (hours) 
FS 10,000 Floor supply (sq. ft. ) 

LllNG INDEX 
NAr-E VALUE DEScRIPrION NAME NAME q P  .................................................. .............................. 
HLm? 0.85 Hire-Labor/labor Technology ~rains g {wheat, corn) 
HAT ( 9  1/55 1/95 Harvest/Rcres Technology Animals a {hens, p igs )  

(9) 0.15 0.70 Harvest/Labor Technology 
FAT(g,a) 1 0.1 0.04 1 ~eed/Animals Technology 

1 0.04 0.05( 
luz! (a) 40 25 Raise/Labor Technology 

(a)  15 25 Raise/Floor Technology 

Figure 3 
DATA DEFINITIONS FOR FAFMEE'S PROBLEM 
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(3RAINs ------ 
Wheat 
Corn 

AN' IMxs  ------- 
Hens 
Pigs 

(2RAINS ANIMALS --------------- 
W h e a t  Hens 
Wheat Pigs 
Corn  Hens 
Corn Pigs 

HAT Harvest/Acres Technology HLCC Hawest/Labor Technology HC Hawest Grains Cost EC W?y ~ r a h  Cost 

GRAINS VALUE ------------- 
Wheat 1/55 
Corn 1/95 

GRAINS VAUJE GRAINS !RlxE ----------- 
Wheat 0.20 
corn 0.12 

GRAINS VALUE 

Wheat 0.15 
Corn 0.7Q 

Wheat 2.50 
Corn 1.50 

SP Se l l  Grains Prof i t  REP Raise/Ldbor Technology RFT Raise/Floor Technology RP Raise/Animals 
Prof its 

GRAINS VALUE ANIMAIS VAUJE ------------ 
Hens  4 0 
Pigs 2 5 

GRAINS VALUE ----------- 
Hens 15 
Pigs 25 

GRAINS lnLul3 ----------- 
Hens 40 
pigs 40 

W h e a t  1.75 
Corn 0.95 

FACC Feed/Animals Technology R Feed/Ratios Hire-Labor/Labor Technology HLC Hire-Labor Co 

GRAINS ANIMALS vzimE GRAINS z-uUMx3 v?mm VALUE 
-e--------------------- ---- 
Wheat H e n s  -0.20 0.85 
W h e a t  Pigs -0.30 
Corn Hens 1 
Corn Pigs 1 

- - - - - - - - - - 

Wheat Hens 0.10 
Wheat Pigs 0.04 
Corn H e n s  0.04 
Corn Pigs 0.05 

Ilrs Hire-Iabor Supply LS Labor Supply FLS Floor Supply 

VALUE VALUE ------ 
10,000 

Figure 11 
RF:LATIONAL DATA BASE FOR FARMER'S PROBLEM 
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