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Abstract 

Most research on rule-based inference under uncertainty has 

focused on the normative validity and efficiency of various 

belief-update algorithms. In this paper we shift the attention 

to the inputs of these algorithms, namely, to the degrees of 

beliefs elicited from domain experts. Classical methods for 

eliciting continuous probability functions are of little use in a 

rule-based model, where propositions of interest are taken to be 

causally related and, typically, discrete, random variables. We 

take the position that the numerical encoding of degrees of 

belief in such propositions is somewhat analogous to the 

measurement of physical stimuli like brightness, weight, and 

distance. With that in mind, we base our elicitation techniques 

on statements regarding the relative likelihoods of various clues 

and hypotheses. We propose a formal procedure designed to (a) 

elicit such inputs in a credible manner, and, (b) transform them 

into the conditional probabilities and likelihood-ratios required 

by Bayesian inference systems. 
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1. Introduction 

Most rule-based expert systems fall in the category of deductive, 

inexact, classification models: given a set of observable clues, 

MI G M, an inference engine algorithm attempts to discern a set 

of hypotheses, H ' G  H, which provides the best explanation to MI. 

M and H are sets of propositions related to each other through 

inexact inference rules. For example, consider the following 

reasoning chain: the act of smoking (a disposition) increases the 

likelihood of a heart disease (an hypothesis), which, in turn, is 

sometimes manifested through a chest ache radiating to the left 

arm (a manifestation). This line of reasoning is plausible, but 

not necessarily categorical; many smokers will not develop any 

heart problems; likewise, chest ache is not a unique 

manifestation of heart disease. Hence, although causal 

information is indeed useful, any inference drawn from it must be 

qualified by the impreciseness of the underlying rules. 

During the past decade, a number of models were put forward to 

represent and carry out rule-based inference under uncertainty. 

are rule-based belief-update algorithms (Duda 

and Shortliffe, 1977), influence diagrams (Howard and Matheson, 

1981), and belief networks (Pearl, 1986). These models are 

closely related to each other at the elicitation level, requiring 

human experts to specify a coherent set of degrees of belief 

reflecting the uncertainty associated with inference rules. This 

elicitation task, which is normally delegated to a knowledge 
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engineer, is the focus of this paper. Throughout the paper, we 

use the belief network paradigm as our working environment; at 

the same time, our results are equally applicable to any 

inference model involving inexact rules. 

A belief network is an acyclic, directed graph, consisting of 

propositional nodes and causal arcs. The directed arc (x,y) 

emanating from node x to node y represents our belief that x 

causes y directly. The strength of this causal relationship is 

modeled through the conditional probability P(y1x). If a node y 

has multiple causes, {xl, ...,xn), the degree of belief associated 

with this complex relationship is the conditional probability 

tensor ~ ( y l x ~ ,  ..., xn). 

A belief network can be encoded as a set of inexact inference 

rules. In the rule-based terminology, an arc (x,y) and its 

label ~ ( y / x )  correspond to the rule IF x THEN y WITH DEGREE OF 

BELIEF ~(ylx). These rules are elicited from human experts. 

Automatic inference is carried out by following reasoning chains 

from the observable evidence, M1, back to its possible 

explanations, HI. This backward reasoning process is 

accompanied by a belief-update algorithm designed to order the 

prospective hypotheses h'E HI in terms of the posterior beliefs 

P(h1 ]MI). Unfortunately, this belief-update procedure is 

exponential in the size of the network, and, in general, is NP- 

hard (Cooper, 1987). If, however, the topology of the network 
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meets certain criteria, posterior beliefs may be computed 

efficiently (Pearl, 1986) . 

A belief network is constructed through an elaborate knowledge 

elicitation procedure involving domain experts and knowledge 

engineers. Now, humans are normally good at suggesting causal 

relationships between evidence and hypotheses. At the same time, 

humans have serious problems in estimating the uncertainty 

associated with such conjectures. For example, a physician can 

swiftly suggest that the cause of swollen ankles (m) might be a 

certain heart disease (h). However, this same expert might be 

at loss when asked to estimate the subjective probability 

associated with this rule, ~(mlh). When pressed to do so, the 

expert will probably produce a number, but the validity of this 

estimate is clearly questionable. We propose a global approach 

to elicitation which minimizes the guesswork and yields a 

credible set of degrees of belief. 

2. The Problem 

Unlike early rule-based architectures, the belief network model 

has a sound interpretation on deductive as well as on 

probabilistic grounds. From a deductive standpoint, the 

network's nodes are viewed as propositions, and the network's 

topology reflects causal relationships among these propositions. 

From a probabilistic standpoint, these nodes are viewed as random 

variables associated with an unknown joint probability 
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distribution function (PDF). The network's topology is analogous 

to a set of independence assumptions imposed on the PDF. 

Generally speaking, if two nodes are not connected, the random 

variables that they represent are assumed independent. These 

assumptions simplify the PDF considerably; hence, they also 

place an explicit constraint on the family of PDF's that might be 

modeled as belief networks. 

Consider, for example, the simple network depicted in Figure 1, 

taken from the domain of diagnosing heart diseases. This network 

has the following interpretation: the disease h may be caused by 

either cl, c2, or both. h, in turn, manifests itself through 

subsets of the symptoms {ml,m2,m3). These relationships are 

taken to be inexact. For example, it is possible that both cl 

and c2 obtain but h does not obtain. Likewise, it is possible 

(but not likely) that h obtains and none of the m's obtain. 

Fiqure 1 
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Hypothesis: Predispositions: 

h: heart disease cl: high Cholesterol count 
c2: smoking 

Symptoms : 

ml: chest ache radiating to the left arm 
m2: swollen ankles 
m3: shortness of breathing 

How can we elicit and represent the PDF P(cl,c2,h,ml,m2,m3)? one 

naive approach is to set up a global contingency table which 

specifies the joint frequencies of all possible combinations of 

propositions. Clearly, this is not a practical solution. 

Alternatively, if the propositions in question are arranged in a 

network like Figure 1, one can interpret the topology of the 

network as a graph-theoretic definition of the PDF: 

This derivation is based on a standard theorem in probability, 

the "chain rule," along with a set of marginal and conditional 

independence assumptions imposed on the PDF by the network's 

topology (Pearl, 1986) . Pearl has shown that a PDF like (1) is 

suspectable to an efficient belief-update algorithm which is 

consistent with probability theory. This algorithm computes 

posterior beliefs in hypotheses given any subset of observable 

clues (terminal nodes in the network), in time linear to the 

network's size. The algorithm involves only local computations, 
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and, in principle, can proceed in parallel. 

We now turn to the elicitation problem: in order to fully 

specify the belief network associated with a PDF like (I), the 

knowledge engineer must elicit three types of probabilities: 

(a) marginal probabilities associated with nodes with no 
parents, e.g. P(c1) and P(c2). 

(b) conditional probability tensors associated with multi- 
cause relationships, e.g. P(hlcl,c2)- 

(c) elementary conditional probabilities, e.g. P(mllh), 
~(m2lh), and ~(m3lh). 

The elicitation of conditional probability tensors is largely 

impractical, as the number of questions that one is required to 

ask grows exponentially with the number of propositions following 

the conditioning bar. There exist heuristic techniques, though, 

designed to approximate ~(hlc~,...,c~) from the set of elementary 

probabilities ~(hlc~), ..., P(hlcn) (Kim and Pearl, 1987). Hence, 

we see that the elicitation problem is primarily one of assessing 

elementary conditional probabilities. Therefore, we'll restrict 

our attention for now to the bottom tier of Figure 1, focusing on 

the relationships among h and its 3 manifestations. Our analysis 

can be easily extended to any number n>3 of propositions, so 

we'll sometimes use n=3 for brevity. 
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3. Two Propositions on Elicitation 

Our approach to elicitation is motivated by two key propositions 

regarding the direction and ratio-scale properties of implicit 

degrees of belief. These propositions are briefly discussed 

below. 

Proposition 1: some questions are easier to answer if you turn 
them around. 

Consider the rule <IF m THEN h WITH DEGREE OF BELIEF d(m,h)>. 

This is sometimes referred to as llabductivell or nbackwardll 

reasoning. That is, although the causal relationship between 

the hypothesis h and its manifestation m is h->m, we are 

typically faced with the problem of assessing the likelihood of 

the unknown h in light of the observable fact m. The 

interpretation of the belief function d(.l.) depends on our 

choice of a belief language. Most of these languages, though, 

are wunidirectional." That is, they consist of either diasnostic 

or causal inference, but not of both. For example, the certainty 

factors calculus and the Dempster-Shafer model require the expert 

to specify diagnostic degrees of belief in terms of C~(hlm) and 

~el(h/m), respectively. Conversely, the Bayesian belief network 

specifies the causal relationship "h causes mm directly, 

requiring the expert to estimate the causal degree of belief 

~(mlh), P being a probability. 

Indeed, there exist a growing body of literature suggesting that 
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humans find it easier to "think forward in reverse," preferring 

causal on diagnostic explanations of evidential reasoning 

(Einhorn and Hogarth, 1987, Shachter and Heckerman, 1987). These 

findings clearly render cognitive justification to the Bayesian 

belief network formalism. At the same time, the insistence that 

in any given situation human reasoning is confined to proceed in 

only one direction seems to be overly restrictive. For example, 

consider the rule <IF x smokes THEN it is likely that x will 

develop a heart disease>. Denote this rule by S -> HD. Which 

subjective probability is more credibly available from a human 

expert, P (HD ( S) or P (S I HD) ? 

The answer seems to depend largely on the experience of the 

expert, and, in particular, on his or her ability to retrieve 

examples from the S and HD populations. If the expert knows 

relatively far more smokers than she knows people with heart 

diseases, it is probably safer to use the smokers population as a 

reference group (Figure 2-a) and go on to assess P(HD[S). If, 

alternatively, we force this expert to specify P(S/HD), she will 

have to resort, in her mind, to a small sample (Figure 2-b), 

yielding a highly unreliable estimate of P(S/HD). The situation 

changes if the expert happens to be a heart disease specialist. 

 his latter expert will probably find it easier to assess 

P(S~HD), due to the large sample of people with heart disease 

that she can retrieve from her clinical work experience. 
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Fiaure 2-a Fiaure 2-b 

We see that the factors that influence implicit beliefs are both 

availability and representativeness (Tversky and Kahneman, 

1974). The availability heuristic leads the expert to focus on 

the population which is more salient or vivid in his mind. 

Strictly speaking, this heuristic is beneficial only if it 

coincides with a larger population. If the selected background 

population is small, most people will still be willing to use it 

as a representative image of the overall population. This 

insensitivity to sample size, or the Itlaw of small numbers,If is a 

manifestation of the well-known representativeness bias. To 

debias this flaw, the expert should be encouraged to retrieve as 

many examples as possible from both populations. The larger 

sample should then be selected as the conditioning assumption. 

Hence, we wish to support experts who are willing to express 

their reasoning using diagnostic inference instead of or in 

tandem with causal inference. 
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Proposition 2: relative degrees of belief are more credibly 
available then absolute degrees of belief. 

We take the position that the numerical encoding of degrees of 

belief is somewhat analogous to the measurement of such physical 

stimuli as brightness, weight, and distance. Can you specify the 

aerial distances between New York, Tokyo, Cairo, and Seattle 

with good confidence? probably not. It seems obvious that you 

would rather prefer a statement like: Tokyo is about twice as far 

away from New York as Cairo is. In general, people find it 

easier to express differences between physical quantities (as 

well as preferences) using relative, pair-wise judgement, rather 

than a cardinal scale of measurement (Stevens, 1957, Stevens and 

Galanter, 1964, Krantz, 1973). Going back to the previous 

question, let's take New York as our point of departure, and 

consider the following pair-wise distance comparisons: 

Cairo 

Seattle 

New York 

Tokyo 

The entries in this table read as follows: from New York, Tokyo 

is 2 times as far as Cairo, and 3 times as far as Seattle. Also, 

Cairo is 2 times as far as Seattle. Note that these judgement 

are not only inaccurate but also inconsistent, as is normally the 

case with human inputs (the inconsistency may be resolved, for 

Tokyo Cairo Seattle 

1 2 3 
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example, by setting the third entry in the second row to 1.5). 

How can we synthesize this set of n(n-1)/2 pair-wise comparisons 

into a vector of n weights reflecting the true distances implicit 

in the human's answers? Several such methods have been proposed, 

e.g. least squares (Cogger and Yu, 1983), and logarithmic least 

squares (De Graan, 1980). However, perhaps the only method 

capable of synthesizing inconsistent inputs in a credible manner 

is the Eigenvector method proposed by T.L. Saaty (1980). This 

method is illustrated in the next section. 

3. One-Way Elicitation 

TO restate the elicitation problem, consider an hypothesis h and 

a series of related manifestations {ml, ..*,mn). Our goal is to 

estimate the probabilities vector ~=<~(m~lh), ...,P(mnlh)> using 

pair-wise comparisons, elicited from a human expert. That is, 

rather than asking the expert to specify the absolute 

probabilities p(mi 1 h) and p(mj 1 h) , we ask her to estimate the 
extent to which mi is more likely than mj in light of h. These 

local judgments, which are likely to be inconsistent, will be 

further synthesized into a ratio-scale of probabilities. 

To illustrate, consider the following set of questions: 

Assume that a person X has a heart disease (h). 
Now consider the following two observations: 
X suffers from a chest ache radiating to the left arm (ml) 
X suffers from swollen ankles (m2). 

In your opinion, which observation (ml,m2) is more likely in 
light of h? (assume the expert answered ml) 
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To what extent is 
you think that ml 
number 1. If you 

ml more likely than m2? For example, if 
and m2 are equally likely, enter the 
think that ml is twice as likely as m2, 

enter the number 2. Feel free to enter any number greater 
than 1 that you think describes the extent to which ml is 
more likely than m2: 

With n manifestations, we have to ask the expert n(n-1)/2 such 

questions. The expert's answers are recorded in an nxn 

likelihood matrix, A, in which aij=P(milh)/~(m~lh). This 

approach is similar to Gupta and Wilson's (1987), who had 

experts express their opinions regarding the performance of 

competing forecast models. These inputs were recorded in a 

matrix A in which the element aij was the perceived odds that 

forecast model i will outperform forecast model j. 

The cognitive complexity of the elicitation may be somewhat 

mitigated if we ask the expert to first rank-order the 

manifestations in terms of decreasing perceived likelihoods, 

yielding (without loss of generality) an ordered set <ml, ..., mn> 
with p(mi 1 h) >p(mj 1 h) if i<j . This order sets up (an empty) 

likelihood matrix A in which (a) only the entries above the 

diagonal have to be specified, (b) all of these entries must be 

greater than or equal to 1, and, (c) the relation aij<aik must 

obtain for all i and jck. 

The resulting matrix, A, is positive reciprocal, with aij>0 and 

aij=l/aji. We are thus in the familiar domain of Saaty's 
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analytic hierarchy process, and we can proceed to compute the 

principal Eigenvector of A, denoted W. The crux of this approach 

is the notion that W is "ratio equivalentw to the unknown PI with 

wi/wj=~(miih)/~(mj1h) for all pairs <i,j>~{l, ..., n)x{l,..., n). 

For example, suppose n=3 and the true probabilities vector 

~=<~(mllh),P(m2/h),P(m31h)> is as follows: 

Had we had access to an expert whose judgement are perfectly 

calibrated with reality, we would end up with the following 

matrix: 

Each entry aij in the matrix represents the degree to which the 

manifestation mi is more likely than the manifestation mj in 

light of h, in the expert's mind. For example, 

Since A in the above ideal example is consistent, its principal 

Eigenvector is given by any of its columns. Thus, focusing for 
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example on the last column, we obtain the following weights 

vector: 

Due to A's consistency, the true probabilities vector P (2) and 

the weights vector W (3) are ratio-identical. In reality, 

though, the vector P is unknown, and the matrix A  is 

inconsistent. That is, the set of answers to the n(n-1)/2 

questions presented to the expert will yield intransitive 

responses, with 

P (mi 1 h) P(mj lh) ------- * ------- P (mi 1 h) ------- 
P (mj I h) P (mk / h) P(mkfh) 

Hence, in the general case, we have to deal with an inconsistent 

matrix. To illustrate, refer to the A  matrix, and assume that 

the expert's above-diagonal judgement alar a13, and a23 were 

+25%, -25% and +50% off mark (with respect to A ) ,  respectively, 

yielding the following inconsistent matrix: 

The normalized principal Eigenvector of this matrix is: 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-88-95 



Where do we proceed from here? the key assumption underlying our 

approach is that in spite of A's inconsistency, W' is still a 

good "ratio-estimatew of the unknown probabilities vector P. 

Thus, had we had a-priori knowledge, say, that ~(m~lh)=0.2, we 

could have used it as an anchor to compute the following estimate 

P' of P: 

The difference between this result and the true probabilities 

vector P=<0.8,0.2,0.1> stems from the inconsistency of A t  and the 

imperfect knowledge that it represents. However, considering the 

expert's biasdeness and inconsistency, this result is 

surprisingly good, illustrating the robustness of the normalized 

Eigenvector to data perturbations. 

Of course, the ability to construct PI hinges on our a-priori 

knowledge of any one of its underlying probability elements. In 

some situations, we may anticipate this requirement ex-ante and 

augment the initial set of manifestation <ml, ..., mn> with an 
additional clue, m*, whose conditional probability ~(m*/h) is 

either known or can be credibly estimated. For example, in the 
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above heart disease scenario, m* might be the fact that the 

underlying patient is a male, the assumption being that the 

probability ~(malefheart disease) is well-known. 

There exist situations, however, in which we have no prior 

knowledge of any one of the underlying degrees of belief. In 

these cases, we can use an extension of the above technique in 

order to estimate the likelihood-ratio vector 

<~(m~jh)/~(m~lh),...,P(m~lh)/~(m~l~)>, - h being "not h." Methods 

to compute such vectors for dichotomous and multi-valued 

propositions are described in the next section. We conclude the 

present section with a brief comment regarding the scale of 

measure used throughout the paper. 

Our approach to elicitation is based on the assumption that 

humans are capable of describing relative likelihoods using 

numbers. This controversial assumption was challenged by many, 

not the least of them is H.R. Haldeman, Chief of Staff of 

President Nixon. Describing Kissingerls persistent concern about 

a Russian attack on China, Haldeman recalls how used to tease 

him about his use of percentages. He would say there was a 60% 

chance of a Soviet strike on China, for example, and I would say: 

why 60, Henry? Couldnlt it be 65% or 58%? (Kotz and Stroup, 

1983). Clearly, Haldeman's point is well taken. Although there 

exist evidence that people find it easier to assess odds rather 

than probabilities, the credibility of any numeric measure of 
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intuitive judgement is an open question. 

It was this motivation which led to Saaty's (1980) 1 to 9 scale, 

which is often accompanied with a verbal interpretation. This 

scale can be slightly modified to suit our elicitation context, 

as follows: 

1 - propositions p and q are equally likely 
3 - p is weakly more likely than q 
5 - p is strongly more likely than q 
7 - p is very strongly more likely than q 
9 - p is absolutely more likely than q 
The numbers 2,4,6, and 8 are used to express intermediate 
judgement between adjacent scale values. 

This scale has been justified by Saaty on analytical, 

psychological, and experimental grounds. In a similar vein, 

Lichtenstein and Newman (1967) have shown empirically that verbal 

descriptions of uncertainty may be mapped on ranges of 

probabilities. These findings are especially relevant to the 

Eigenvector method, which is insensitive to the type of scale 

being used. As Harker and Vargas (1987) argue, "One scale may be 

appropriate for one application and may not be appropriate for 

another. In this situation, a different scale could and should 

be chosen for each application." For example, in situations 

where little is known about a particular set of hypotheses, a 1 

to 3 scale might be used. Clearly, the freedom to modify the 

scale of measure or develop a totally new one adds significant 

flexibility to the elicitation task. 
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4. Two-way Elicitation 

Most realistic inference problems involve multi-valued 

propositions. For example, the dichotomous "heart diseasew 

hypothesis can be made finer by considering the following 

possibilities: 

hl: X is likely to suffer a fatal stroke 
h2: X is likely to suffer a mild stroke 
h3: X has no heart disease 

From a logical perspective, to say that h assumes one of the 

values in H={hl,hZ,h3} is equivalent to assigning truth values to 

the three dichotomous propositions hl, h2, and h3. We will 

assume henceforth that H enumerates all the possible values that 

h can attain and that these values are mutually exclusive. 

Using the techniques described in the previous section, we can 

condition our set of causal elicitation questions on each value 

of h, yielding three matrices and three weight vectors Whl, Wh2, 

and Wh3, where Whi is conditioned by the background hypothesis 

hi. Now, these three matrices and respective vectors are 

disjoint: one cannot use them to calculate likelihood-ratios 

across competing hypotheses. That is, although we can calculate 

the ratios, say, P(mi 1 hl)/p(mj 1 hl) and p(mi 1 h2)/p(mj / h2) within 

the vectors Whl and Wh2 there is no sufficient information to 

compute the more useful likelihood-ratios ~(rn~lh~)/~(m~lh~) and 

~ ( m j  1hl)/p(mj lh2). These ratios were termed by Alan Turing the 

'Iweights of evidencew carried by mi and mj, respectively, to the 
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statement Ifhl is preferred on h2" (Good, 1950). These weights of 

evidence play an important role in many Bayesian belief-update 

algorithms. 

Recall that the ultimate objective of any belief-update 

algorithm is to compute the posterior beliefs in the competing 

hypotheses H in light of {m lr.*.rmn). If these manifestations 

are ratio-independent with respect to H (Grosof, 1986), the 

posterior odds favoring hi on hj is given in terms of Bayes rule, 

as follows: 

This formula has the following tfmechanicalw interpretation: in 

the absence of any relevant evidence, the posterior odds are set 

to the prior odds, P(hi)/P(hj). When we know that a certain 

manifestation is present, say mk, we multiply these odds by the 

likelihood-ratio p(mklhi)/p(mk/hj). As more manifestations 

become available, the posterior odds are updated in a similar 

fashion. 

Hence, what we are after are likelihood-ratio vectors of the form 
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These vectors must be specified for all pairs of competing 

hypotheses <hi,hj>eH~H. 

How do we go about computing these vectors? we propose a 

solution, called two-way elicitation. The first stage of this 

procedure is identical to the one-way elicitation described in 

the previous section. Having completed this line of causal 

questions, we ask the expert to go through a second stage of 

diaanostic questions, The expert's answers are then synthesized 

into a set of n(n-1)/2 likelihood-ratio vectors like (5). For 

now, we assume that the second stage involves roughly the same 

number of questions as the first stage. As we'll see shortly, 

the second stage is far less demanding. 

A typical diaanostic question has the following form: 

Assume that a person X suffers from swollen ankles (m2). 
Now consider the following two possibilities: X will suffer 
a mild heart attack (h2), X has no heart disease (h3). 

In your opinion, which possibility (h2,h3) is more likely in 
light of m2 (assume the expert answered h2) 

To what extent is h2 more likely than h3? For example, 
if you think that h2 and h3 are equally likely, enter the 
number 1. If you think that h2 is twice as likely as h3, 
enter the number 2. Feel free to enter any positive real 
number that you think describes the extent to which h2 is 
more likely than h3: 

With the manifestation m2 fixed, three such pair-wise comparisons 

are required to construct a likelihood matrix and a diagnostic 

weight vector, denoted Wm2. Wm2 is taken to be ratio-equivalent 
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to the probabilities vector <P(hllm2),~(h21m2),~(h31m2)>. Two- 

way elicitation thus consists of two independent elicitation 

stages: in the first stage (described in the previous section), 

the three causal weight vectors WhlrWh2,Wh3 are computed. The 

second stage yields the three diagnostic vectors WmllWm2,Wm3. 

The restriction of n=3 can be easily lifted, and the number of 

hypotheses and manifestations need not be equal. We now show how 

these disjoint sets of vectors can be synthesized into the 

n(n-1)/2 likelihood-ratio vectors (5). 

The data gathered in the two-way elicitation procedure can be 

represented in two related, directed graphs (Figure 3). The 

nodes Mij and Hij represent the unknown probabilities p(rnilhj) 

and P (hi / mj ) , respectively. The directed arcs (Mi j ,Mkl) and 

(HijI Hkl) are labeled Mijk- and Hijkl , respectively. Each 

triangle Hk in the causal graph represents the causal weights 

vector WhkI k=1,2,3, with M ~ ~ ~ ~ = P  (mi I hk) /P (mj 1 hk) . As was argued 

earlier, these ratios are not particularly useful in their 

present form, and we are more interested in the likelihood-ratios 

~ ~ ~ ~ ~ ' ~ ( m ~ l h ~ ) / ~ ( m ~ l h ~ )  , measuring the degree to which the 

manifestation mi serves to discriminate between the hypotheses hj 

and hk. In Figure 3, Mijik is the label of the "externalH arc 

connecting Mij and Mik across the two triangles Hj and Hk. 
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Causal graph Diagnostic graph 

Fiaure 3 

Let's focus on the following two sets of labels: 

Mij ik=P (mi I hj ) /P (mi I hk) (external, causal arcs) ( 6 )  

Hj iki'P(hj 1 mi) /P (hkl mi) (internal, diagnostic arcs) ( 7 )  

Also, denote the prior odds favoring hypothesis hk on hj by: 

okj = P(hk)/P(hj) (8) 

Given this notation, (6), (7), and (8) are related through Bayes 

rule: 

Hence, we see that the two graphs mirror each other. That is, 

every cro~s-trianqle arc Mijik at the causal graph is 

proportionally related to a within-trianale arc Hjiki at the 
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diagnostic graph. For example, the bold circuit (triangle M2) of 

the diagnostic graph is the "dual imagetf of the external circuit 

connecting a11 M2k nodes, k=1,2,3 across all triangles in the 

diagnostic graph. Hence, had we had access to a prior weights 

vector W0=<wlr...,wn> which is ratio-equivalent to the prior 

probabilities vector <P(hl), ..., P(h3)>, we could have used (9) 
to compute the desired likelihood-ratio vectors 

<~(m~lh~)/~(m~lhj) ,...fP(mnlhi)/P(mnlhj)> for any pair of 

competing hypotheses <hi,hj> HxH. 

It turns out that one half of the two-way elicitation procedure 

can be cut down considerably, due to some favorable graph 

properties. To illustrate, consider Figure 3. Once we 

nconstruct" any one triangle in the diagnostic graph, we can 

compute its dual external circuit in the causal graph, through 

(9). And, due to the topology of the causal graph, any such 

single circuit makes the entire causal graph connected, meaning 

that there is a path between any two given nodes. Let us define 

the "intensitytt of a directed path as the product of all the 

labels along the path. We immediately get, from the label's 

definition, that this is a telescopic product. For example, the 

intensity of the path <(M31,Mll), (Mll,M21) , (M2ltM22) , (M22,M32)> 

is: 

P(m3 1 hl) p p (6) p-2, P (m3 1 hl) 
,,-,,,,, * -------- * -------- * -------- = -------- 
P ~ )  p W 1 )  P ( F 2  ) P(m3 / h2) P(m3 1 h2) 
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Similarly, the intensity of a loop is 1. This implies that the 

intensities of all the paths connecting a given pair of nodes 

are the same. This is true because the paths are directed, and 

the only difference between two paths with the same end-points is 

that one might consist of one or more loops. However, the 

intensity of these loops is 1, so they have no effect on the 

overall path intensity. 

Let us illustrate the relevance of this analysis to the 

elicitation problem. Suppose that we have gone through the first 

stage of the elicitation procedure, yielding the three triangles 

HI, HZ, and 8 3 .  We now turn to the diagnostic, second stage of 

the elicitation. After reviewing the various manifestations, we 

find out that M2, say, is the most reliable background population 

(recall proposition 2). Therefore, we proceed to compute the 

diagnostic weight vector WmZI which is represented by the bold 

triangle M2 in Figure 3. At that stage, if we have access to the 

prior weights vector, Wo, we can proceed to construct the 

circuit connecting all M2k nodes, k=1,2,3, in the causal graph. 

By llconstruct'v we mean that we can now compute the circuit's 

labels {M2122,M2223,M2321), which, in turn, allow us to compute 

any likelihood-ratio pertaining to m2. Moreover, we can now 

proceed to compute other desired likelihood-ratio 

Mikil=P (mi I hk) /P (mi 1 hl) , by simply taking the intensity of any 
path connecting the nodes Mik and Mil. Since the causal graph is 
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connected, at least one such path must exist. And due to the 

intensity uniqueness, this solution is also unique. 

Estimating prior probability vectors: We now turn to discuss the 

elicitation of the prior weights vector Wo=<wl, ..., wn> which is 
assumed to be ratio-identical to the prior probability vector 

<P(hl), -..,P(h,)>. In some situations, e.g. when the {hi} 

represent well-known diseases, this vector can be estimated from 

textbook information, field records, or other relevant background 

knowledge. In other situations, though, we have to elicit Wo 

from a domain expert. In the latter case, we can simply use the 

one-way elicitation procedure described in Section 3. That is, 

the expert will be asked to compare the relative likelihoods of 

all pairs <hi,hj> E HxH, forming a likelihood matrix. The 

desired vector, Wo, will then be taken to be the Eigenvector of 

this matrix. 

5. conclusion 

Our elicitation approach relies heavily on the Eigenvector 

method, the cornerstone of Saatyts Analytic Hierarchy Process 

(AHP) . As Harker and Vargas (1987) put it, the AHP framework is 

designed to cope with intuitive, rational, and irrational 

judgement, with and without certainty. It is thus natural, in 

our opinion, to apply it to the problem of eliciting degrees of 

belief, where rational knowledge is often combined with intuitive 

guts feeling and, on occasion, with inconsistent judgement. It 
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was argued by Fischhoff et a1 (1980) that it is inappropriate to 

think of a person's opinion about a set of events as existing 

within that person in a precise, fixed fashion, just waiting to 

be measured. And yet, asking experts to provide numeric degrees 

of belief and adding this information verbatim to a knowledge- 

base is a common practice among many knowledge engineers. We 

think that the elicitation problem deserves a more serious 

treatment. This paper is a step in this direction. 
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