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ABSTRACT 

Quality Control sampling plans are normally chosen by using 

industrial and military standards. These standards do not 

involve economic considerations, and usually fail to meet cost 

considerations. 

The Information Economic approach presented in this paper 

suggests an easy to use methodology which determines the optimal 

plan for a given situation of a quality control Common 

quality control attributes like, AQL, LTPD, Operating 

Characteristics Curves and Quality Control Plans are shown as 

special cases of Information Economic Models. Theorems involving 

dominance among various of Quality Control plans are proved. The 

Blackwell Theorem on the relationship "Generally More 

Informativew is modified to accommodate to the Quality Control 

case. 

The major results of the paper include new algorithm to optimize 

the expected utility of decision makers. The value of 

information in Quality Control systems is assessed, and 

cost/effective analysis is carried out. 

Key Words: 

Quality Control, Information Economics, Value of Information, 

Informativeness 
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1. ~ntroduction 

The purpose of Quality Control activities is to provide assurance 

that goods or services conform to specific standards [Monks, 

1982, Ch.141. The Quality Control process is one of the most 

important activities in manufacturing as well as in service 

organizations, 

During the last ten years, it was proved that adequate use of 

Quality Control (hereafter - Q.C.) tools can save incredible 

amounts of resources [Kaplan, 19831. 
L 

Common Q.C. practices such as MIL STD 105D [Duncan, 19651, do not 

account for the costs of the Q.C. process and sometimes it might 

yield to waste of resources. 

By applying the Information Economic model [McGuire, 19721 to 

Q.C. we shall be able to answer the following questions: 

1) What is the normative value of the information provided 

by a Q.C. sample? 

2) Are there Q.C. plans that predominate other plans? 

3) How can one determine the optimal Q. C. plan for a given 

situation? 

Section 2 of this paper reviews the Information Structure Model 

which will later be modified to solve the problems mentioned 

above. 

In sectionr 3 we define the Q,C. system as ~r qpecial case of the 

Information Economic Model. 
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Section 4 ranks order Information Structures of sample Q.C. plans 

in a "Generally More InformativeN order. 

Section 5 shows the relationship between the Operating 

Characteristics Curves and the Information Structures of plans. 

Section 6 derives theorems on the "generally more Informative" 

relationship of Information Structures. 

Section 7 defines the wuniversally Generally More Informativew 

order and shows that such an order does not exist in Q.C. plans. 
6 

In section 8 we discuss the special and useful case of 2x2 

Information Structures, and prove some theorems regarding this 

case. 

Section 9 derives the relationship between a sample matrix and a 

plan matrix. 

Section 10 shows the relationship between the informativeness of 

a sample and the sample size. 

Section 11 proposes a normative process of maximizing the value 

of information in Q.C. problems. 

Section 12 draws the conclusions. 
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2. The Information Structure Model: A Review. 

This section briefly reviews the Information Structures Model. 

For further details the reader is referred to [McGuire 1972], or 

Let E be a finite set of events (states) of nature 

E = { el, ...,  en^ 1 
a 

Let If be the vector of a priori probabilities associated with the 

events in E. 

Where t represents the transpose operation. 

Let Z be a finite set of signals 

Z = { Z1, ...I Znz 1 

An Information Structure or Information Matrix Q is an n~ x nz 

Markov (stochastic) matrix of the conditional probabilities in 

which signals of the set Z will be displayed at the occurrence of 

events in E. Thus, qij of Q is the probability that for a given 

event ei, signal Zj will be displayed. (If Q contains only 1 or 

0 elements, then it is a noiseless structure). 

Let A be a finite set of feasible actions to be taken by the 

decision maker 

A = { all ...,  an^ 1 

A cardinal payoff function, U, is defined from A x E to the real 

numbers, R, associating payoffs to pairs of actions and events, 

The function U can be depicted by an nA x nE matrix, U, whose 
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elements reflect the payoff gained under any combination of 

action ai of A an event ej of E. 

The decision maker does not observe the events, but only the 

signals, and chooses actions according to signals he or she 

observes, The decision maker's strategy can be described by an 

nz x n~ Markov Matrix D, which contains the probabilities of 

taking some actions after being stimulated by some signals. 

Thus, dij of D is the probability that for a given signal Zit 
L 

action aj will be taken. (If D contains only 1 or 0 elements, 

then D is a pure strategy). 
A 

Let3 be a square matrix containing the elements of in its main 

diagonal, and zeros elsewhere 
C 

Then the expected payoff of the combination of an information 

structure, Q, a decision rule (strategy) D, a payoff matrix U, 
A 

and a probabilities vector 3 would be ~~(QDUZ), where tr 

represents the trace operator [McGuire 19721, Optimization is 

reached by finding a Markov matrix D* out of all possible nz x n~ 

Markov matrices to maximize tr ( ) .  

Let us define 
lli A 

F(Q, U, h )  = max {~~(QDuT)} 

Let us define the relationship 
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QA ) QB (QB is not better than QA regarding U andT) if 

QA is regarded as generally more informative than QB (denote 

QA)/QB ) if QB is not better than QA for all payoff matrices U and 

all probability vectors . 
The Blackwell Theorem (McGuire 1972) states that QA ) QB if and 
only if QAWQBt where L is a Markov matrix with the appropriate 

dimensions. This ordering is only a partial ordering of the set 

of finite information structures operating on a given-tate-of- 

the world set. 

The gross value of information is always a relative number 

comparing the expected payoff gained by using different 

information structures. 

For example, assuming that the utility is a linear function of 

the payoff, and QA is not better than QB, then the value of the 
L II 

information of QA over QB is F(QA,U,b) - F(QBtUt 4) with an 

appropriate calibration. 

There are few extensions and applications of the Information 

Structure Model presented by McGuire [McGuire, 19721. 

For instance, Ahituv [Ahituv, 19811 introduced some behavioristic 

aspects into McGuirefs model. His assumption was that 

individuals often tend to stick to rigid decision rules, 

particulary when they are trained to respond with conditioned 

reactions. Optimizing the expected utility according to the 

"Rigid Decision Rulew yields rank ordering of Information 

Structures different from the Blackwell Theorem. 
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3. Oualitv Control Systems as Information Structures 

Examples of Quality Control problems using the Information 

Structure model were demonstrated by Wallock and Adams [Wallock 

and Adams, 19631 and Demski [Demski, 19721. Further research 

held by Moskowitz and Berry suggested a method to find an optimal 

sample [Moskowitz and Berry, 19761. This paper suggests a 

complete methodology for selection and comparison of Q.C. plans. 

This complete methodology was not done so far, using the 
(I 

Information Economic models. 

This paper applies Information Economic methodology to Quality 

Control problems, and uses it to improve the selection of Q.C. 

plans. In order to do so, we first define some of the Q.C. 

basics, and the fundamentals of our terminology. 

Definition 3.1 - Samwle Plan: Decision rule which specifies how 
large a sample (n) should be and the maximum allowable 

measurement number, or percentage (c) of defectives in the 

sample. (Monks, 1982, ch. 14). A plan is therefore specified by 

(n, C) 

For example, the plan ( 5 0 , 2 )  reads as follows: Select a random 

sample of 50 units and count the number of defectives. If the 

number of defectives is equal to or lower than 2, accept the lot; 

otherwise reject it. 

Note: in this work we will deal with attribute plans, where items 

are inspected dichotomically such as good or bad, acceptable or 

not acceptable (for further details see [Duncan, 19651). 

An attribute plan of n units can display n+l different results 
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(hereafter called signals) which correspond to the possible 

numbers of defectives identified by the inspection, i. e. , 
0,1,2,...n defectives. 

Thus, a Q.C.  plan can be regarded as an Information Structure 

whose domain is the real quality of a lot, and whose range is a 

set of n+l signals. We will now formulate this in a more 

rigorous definition, 

Definition 3.2 - Information Matrix of a Sam~le A M is defined as 

an Information Matrix of an n size sample if it is a Markov 

matrix as follows: 

(3-2.1) M = { mij i=ll *..I "E 

j=ll ,.., n+l 
(3.2.2) The number of rows is equal to number of states of nature 

which are the possible ratios of defective items, i.e., 

E={ Plr . . . I  PnE ) 

(3.2.3) The of columns -is equal to the number of signals, which 

are the possible amounts of defective items in the sample 

y = O,l, ... ,n 
Thus M is a n~ x n+l matrix as follows: 

y=O, y=1, ..., y=n 
p1 I I 

I I 
M = I 1 

P n ~  I I 
(3.2.4) mij = Pr(y=j-l/P=Pi) i=l, . . . , nE 

j=l, ..., n 
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For convenience, the states of nature will be arranged in an 

ascending order, so that 

PI < P2 < ... < PnE 

This sorting will not change the generality of the problem (see 

Example 3.1 

Let M be a sample matrix representing a 3 item sample and 

suppose there are two possible states of nature: 

Assuming that the failure probability is Binomial [Duncan, 19651 

the information system of this sample, M, is 

y=O y=l y=2 y=3 

I I 
M = P0=0.02 1 .9412 .0576 .0012 0 I 

I I 
P1=0.05 1 .8574 ,1354 .0071 ,00011 

I I 
for example, mil was calculated by using the Binomial 

distribution - 

Po and P1 can normally represent AQL and LTPD levels of quality, 

as defined below: 
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Definition 3.3: AOL (Accewted Oualitv Levell is "the quality 

level of a "goodw lot. It is the percentage of defectives that 

can be considered satisfactory as a process average and 

represents a level of quality which the producer wants accepted 

with a high probability of acceptancew [Monks, 1982, ch.141. 

Po can be chosen as the desired AQL. 

Definition 3.4: LTPD (Lot Tolerance Percent Defective) is **the 

quality level of a '*badw lot. It represents a level of quality 

which the consumer wants accepted with a low probability of 

acceptanceN [Monks, 1982, ch.141. 

P1 can be the desired LTPD. 

Definition 3.5 - Information Matrix of a Q.C Plan: 
An n~ x 2 Markov matrix whose rows represent states of nature Pi, 

i=l, . . . , n~ and the columns are the aggregated signals y \( c 
and y > c (where c is the acceptance number, 0 4 c  5 n; n is the 
sample size) is called the Information Matrix of a Q.C Plan, 

The element of an Information ~atrix are: 

qil = Pr[y c/P=Pi] i = I, . . . ,  "E 
qi2 = Pr[y>c/P=Pi] i = 1, . , . ,  n~ 

Example 3.2 

We will now show an Information Structure of a Q.C plan having 2 

states of nature: AQL and LTPD. 
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The matrix represents the relations between the states of nature 

and the signals; in this example, a lot having a percentage of 

defects equal to AQL is considered a "goodw lot, and a lot having 

P = LTPD defectives is considered a "badw lot. 

This presentation enables us to elaborate on two more Q.C terms: 

Definition 3.6 - Producer's Risk (ao: 

&= Pr(reject a lot / the lot is "goodtg) 

d.= Pr( y>c / P=AQL ) , 
where y is the number of defectives. 

Definition 3.7 - Consumer's Risk (A) :  
p = Pr(do not reject a lot / the lot is "badg1) 

p = Pr ( y+ / P=LTPD) 

Thus, the presentation in example 3.2 enables us to present all 

the elements of a Q. C plan (AQL, LTPD, n, c, .(, and P ) in a 

single matrix by relying on the Information Economics (IE) 

approach. 

It is obvious to show that every Q.C plan can be presented as an 

Information Structure. 

Definition 3.8 - Decision Matrix of a Sam~le: D will be a 

decision matrix of an n item sample if it is an n+l x 2 Markov 

matrix that associates signals with decisions. 

The signals are the number of defectives (y=O through y=n) and 

the decisions are "acceptw or "rejectw a whole lot. 

Example 3.3 

Assume a 5 item sample; one of the feasible decision matrices is 
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Accept Reject 

y=o I 1 0 I 
y=l ( 1 0 I 
y=2 I 1 0 I 

D = y=3 I 0 I 1 

y=4 I 0 1 I 
y=5 I 0 1 I 

The strategy presented in this matrix is - "take a 5 item sample, 
accept the lot if the number of defectives is tw6 or less; 

otherwise - reject ittt. This matrix is , in fact equivalent to 
the plan (5,2) . 
Definition 3.9 - Decision Matrix of a Plan: 
D will be called a "Decision Matrix of a Q.C Planw if it is a 2x2 

Markov matrix that associates aggregated signals with decisions. 

The signals are : 

y e  and y>c 

The decisions are : 

"accept the whole lot88 and "reject the whole lotN. 

Example 3.4 

The matrix of example 3.3 , corresponding to the plan (5,2) can 

be also presented as the following decision matrix 

88Acceptw "Rej ectIt 

Y$c I 1 0 I 
D = I I 

Y>C I 0 1 I 
Note that some strategies are not needed to be considered in the 
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first place. For instance, strategies that always accept or 

reject the lot. Undoubtedly, this case would not require 

information system (a sample), since the decision is never 

affected by any of the signals. 

Strategies for which dij = { 0.1 } are labelled Itpure 

strategies1*. When at least one of the elements is neither one 

nor zero, the strategy is called a "mixed strategyw. 

Definition 3.10 - Prior Probabilitv Vector: 
The prior probability vector is a vector , 

whose elements are the prior probabilities of the n ] ~  states of 

nature, P1, . . . , PnE, (where P1 < P2 < . . . < P,E). 

Note: is defined for both matrices - plan and sample. 
Definition 3.11 - The Payoff Matrix: 
The Payoff Matrix U is an 2xnE matrix whose each element uki 

displays the payoff related to a decision k ("acceptw or 

"rejectw) and an occurrence of state of nature i. 

Note: The payoffs can be expressed in terms of costs, that are 

estimated by the decision maker or derived from historical data 

stored in the information system of the organization. Some 

corporations which have adopted the "Quality Costsw concepts 

[Sullivan, 19831 can construct the payoff matrix almost 

immediately by extracting data from this data base. 
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Example 3.5 

Suppose a "goodw lot is considered a lot having 2% defectives, 

and a "badw lot is one having 5% defectives. 

Suppose the a-priori probabilities of those states of nature are: 

T t  = (.9 .l) 

The payoff matrix is: 

"goodtt lot "badtt lot 

Accept lot I 0 -1,000 1 
U = I I 

Reject lot 1 -100 O I 
Two Q.C plans are considered: 

A = (158,4) and B = (184,5). 

Assuming that the testing costs are equal for the two plans, 

which one is preferred? 

Solution: 

Let QA and QB be the Information Matrices for plans A and B 

respectively. According to section 3: 
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The optimal decision rule for QA and QB turns out to be 

and the expected payoffs are 
A 

max {~~(RDu')} = -28.9 

and 

max {tr(QDU$)} = -25.3 

It is seen that under these particular circumstances plan B 

(represented by Q) is more informative than A, and, therefore, 

preferred.Suppose plan A was in use, then the switch over to plan 

B improves the performance by 

-25.3 - (-28.9) = 3.6 
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4. Rankina 0.C Plans in a ttGenerallv More Informativew Order 

Let QA and QB be the Information Matrices of plans A and B 

respectively. QA will be generally more informative than QB if 

there exists a Markov matrix R that satisfies the equation 

(4.1) QB '=: QAL 

This is a result of the Blackwell Theorem [McGuire,1972]. 

Exam~le 4.1 

Suppose the following two Q.C plans are given: 

A = (32,l) 

B = (200,7) 

The states of nature are: 

AQL = .02 

LTPD = .08 

The Information Structures will be: 

1 .87 .13 1 

QA = I 1 
1 .26 .74 1 

1 .95 .05 1 

QB = 1 I 
1 .08 .92 1 

B is generally more informative than A because there exists L, 

1 -91 .09 1 
L = I I 

1 .21 .79 1 
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that satisfies (4.1) . 
This will imply that the expected value of the payoffs gained by 

using plan B will never be less than those obtained by plan A, 

regardless of the values of the payoff matrix and the a-priori 

probabilities. Thus, plan B dominates plan A. 

In real life situations, we usually make incoming inspection on 

items that are intended for several users to be used in different 

projects. Thus, payoff matrices cannot be easily assessed. 

Having one plan that dominates the other, regardless of the 

payoff matrix, helps in selecting the right plan. In addition, 

sometimes we test a "brand newt1 item, for which it is very 

difficult to estimate the prior probability vector. Choosing a 

plan that is not dominated by any other plan assures that the 

test results and payoffs are not inferior to outcomes that could 

have been obtained by another plan, even if the expected payoff 

is not accurately computed due to fuzzy a-priori probabilities. 

5. O~eratins Characteristic Curves and Information Structures of 

Plans 

An Operating Characteristic Curve (hereafter OCC) is a curve that 

shows, for a given plan, the probability of acceptance versus the 

percent of defective parts in the lot [Monks, 1982, ch.141. 

Figure 5.1 shows an OCC of the plan (200,7). 

Insert Figure 5.1 about here. 
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One can derive many Information Structures from a given OCC, 

depending on the states of nature selected. For example, for the 

following states of nature 

AQL = 2% 

LTPD = 8% 

The 1.S of (200,7) will be 

1.95 .051 

QA= I I 
1.08 .921 

If we choose 

AQL = 1% 

LTPD = 5% 

we will get another I.S., QB as follows: 

1.9967 .00331 

QB= I I 
1.0896 .91041 

The components of QA and QB can be derived from figure 6.1 or can 

be calculated directly. 

Theorem 5.1 

(a) For a given Q.C plan (n,c) and a given set of states of 

nature there exists only one 1,s. 

(b) For a given set of states of nature different from P=O and 

P=l, there is one to one relationship between a Q.C plan and an 

OCC. 

Proof 

(a) It can be seen directly that we draw the OCC by using the 
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same calculations that we derive the corresponding I.S. and 

therefore the formal proof is considered trivial. 

(b) The same argument can apply here. We leave the formal proof 

to the reader. 

Thus, we have shown that our terminology and methodology can not 

only incorporate terms as AQL, LTPD, o(, and p ,  but also the 
Operating Characteristics Curves. Those relationship will enable 

us to show in the next section the informatineness of d . ~  plans. 

6. Some Theorems On "Generally More Informativew Of 0.C Plans. 

We would like now to identify the conditions that turn a certain 

Q.c plan (nltcl) to be generally more informative than another 

one (n2,c2). 

Definition 6.1: Generally More Informative Order of Q-C Plans: 

Plan (nl,cl) will be called generally more informative than plan 

(n2, c2) for a given set of states of nature (pl, . . . , PnE) I when 
the Q.C plan matrix corresponding to (nl,cl) is generally more 

informative than the matrix corresponding to (n2,c2). 

The following theorem will compare the informativeness of two Q.C 

plans having the same sample size (n) or the same acceptance 

number (n) : 

Theorem 6.1 

Let (nl,cl) and (nl,c2) be two Q.C plans, based on the same 

sample size (nl). Neither of the two plans can be considered 
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generally more informative than the other one, for all sets of 

states of nature. 

Proof: 

Let A = (nl,c2) and B = (nl,cl) be two Q.C plans such that c2 cl. 

Graphically, the OCC of plan A will always be above the OCC of 

plan B [Juran and Gryna, 19801. Figure 7.1 shows that 

relationship. 

Insert Fig. 6.1 about here I 

Now we will choose randomly two states of nature P1 and P2. Let 

QA and QB be the plan matrices for A and B. Assume P1 and P2 are 

the states of nature pertaining to this case. 

Since c2>cl and A is drawn above B 

and 
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Thus, the plan A cannot be generally more informative than B, and 

vice versa, according to the Blackwell Theorem. 

Theorem 6.2 

Let (nl,cl) and (n2,cl) be two Q.C plans having the same 

acceptance number (cl) . Neither of the two plans can be 

considered generally more informative than the other for all sets 

of states of nature. 

The proof follows the same sequence of reasoning as in the 

previous theorem. L 

Theorem 6.3 

Let (nl,cl) and (n2,c2) be two Q.C plans such that nl)/n2 and 

~ 1 4 ~ 2  Neither of the two plans can be generally more 

informative than the other one for all sets of states of nature. 

The proof is similar to the one in Theorem 6.1 

Corollar~ 

For any given Q.C plans (nl,cl) and (n2,c2), a necessary 

condition that (nl,cl) will be generally more informative than 

the other plan is 

.IS,, and c1>3c2. 

For example, if we have to coose between the following plans: 

A = (250,5) 

B = (300,4) 

there is no way that for any given set of states of nature one 

plan will be generally more informative than the other, since the 

conditions stated above (n3n2 and c17/cZ) do not exist. 
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7. "Universallv Generally More Inf~rmative~~ Order of 0.C plans 

So far we have discussed the informativeness of an Information 

structure for a given set of states of nature. The question is 

whether there might be an order (defined hereafter as 

lsUniversally Generally More Informativett) that enables us to say 

that a certain plan is always more informative than the other, 

regardless of the prior probabilities and the states of nature. 

In other words, is it conceivable that a certain plan (nl,cl) is 

generally more informative than another plan (n2,c2i) for 

states of nature? We will call this order "Universally Generally 

More Informativew order. 

Definition 7.1 

Q. C plan (nl, cl) is called ttUniversally Generally More 

Informativew than (n2,c2) if plan (nl,cl) is generally more 

informative than plan (n2,c2) for everv given set of states of 

nature. 

We will show now that such a relationship cannot exist. 

Theorem 7.1 

Let (nl,cl) and (n2,c2) be Q.C plans. (nl,cl) can never be 

unversally generally more informative than (n2,c2) and vice 

versa. 

Proof 

The relationship between (nl,cl) and (n2,c2) can be as follows: 

(a) OCC of (nl,cll is always above that of (n2.c2). 

In this case, according to Theorems 6.1 and 6.2, the relationship 

of "Generally More Informativett does not hold. 
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(b) OCCs of (nl.cll_ and (n2.c21_ intersect in the open interval 

(0,l). 

Figure 7.1 portrays this situation . 
................................................................ 

Insert Figure 7.1 about here. 

For the states of nature bounded by the interval [el,e2], the OCC 

of (n1,cl) will always be above that of (n2,c2), thefrefore (as 

implied by part (a) of this theorem) the order of universally 

generally more informative cannot apply. The same argument 

disables the states of nature bounded by [rl,r2],to be 

universally generally more informative. Since one can always 

find two states of nature that are in those intervals, the 

relationship of Universally Generally More Informative does not 

hold. 

Q.E.D 
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8. Dominance of 0 . C  Plans Havinq Two States of Nature. 

The most common use of Q.C plans is in the case of two states of 

nature: AQL and LTPD [Duncan,1965]. The conditions for one Q.C 

plan to be generally more informative than the other one is 

provided in the following theorem. 

Theorem 8.1 

Let Q and R be two information structures of Q.C plans operating 

on a common set of states of nature (AQL and LTPD). Let qij and 
). 

rij be the elements of those matrices, R is generally more 

informative than Q if and only if 

rll 911 and I21 \( 921 
Proof 

According to the Blackwell Theorem (McGuire, 1972), QA is 

generally more informative than QB if and only if there exists a 

Markov matrix L that satisfies 

QAL = QB 

thus, 

I  SAll l-q~ll I I 111 1-111 1 I  9B11 l-qB11 I  
I I I I = I  I  
1 9 ~ 2 1  l-9~21 I  1 121 1'121 1 I qB2l l-qB2l I 

Solving those equations yields 
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based on the properties of a Q.C plan, q ~ l l  9~21, and q ~ l l  9 ~ 2 1  

(since the states of nature are arranged in a descending order). 

Thus, it is easy to show that the conditions 

9 ~ 1 1  > q ~ l l  and 9 ~ 2 1  $9~21 

yield 

q 1 1 1 e  and 0Fl12$lr 

which means that L can be presented as a Markov matrix, and the 

Blackwell Theorem is in effect. 

Q.E.D 

Interpretations of Theorem 8.1 

Theorem 8.1 can be interpreted in two ways: 

a Interpretation bv **error tvpesl* considerations. 
The matrices Q and R can be rewritten as 

where g B ,  O(~A are the **producer's risk1* of plans Qg ana QA 

respectively (or statistically speaking, they are the errors of 

type 1) 

The condition qA1l>&B1l yields thataqA<%B, which means that the 
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"producer's riskw in QA plan is less than the one in QB plan. 

The second condition (qAZleB2 implies that the ltcustomert s 

riskw of plan QA is smaller than the one of plan QB. Thus, QA is 

generally more informative than QB, if and only if both the 

wproducer's riskw and the "customer's riskw of QA are less than 

those of QB. Thus plan QA will always yield a greater expected 

payoff value than QB, regardless of the prior probabilities or 

the payoff matrix. 

2) ~nter~retation by OCC I 

The graphical interpretation of Theorem 8.1 is shown in Fig. 8.1 

............................................................... 
Insert Figure 8.1 about here 

The relationship of generally more informative between QA and QB 

occurs if two conditions are satisfied: 

(a) The two corresponding 0CC8s must intersect. 

(b) The point of intersection is between the values of AQL 

and LTPD. 

Result: The relationship of Generally More Informative order can 

exist only if there are two states of nature. 

Whenever there exist three or more states of nature, it can be 

shown that either two or three states are on one side of the 

intersection, thus by Theorem 8.1 they cannot be rank ordered 

under the relationship generally more informative. 
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9. The Relationshiw Between a Samwle Matrix and a Plan Matrix 

In the previous sections we have defined two different 

Information Structures: An Information Structure of a Sample (a 

Sample Matrix) and an Information Structure of a Plan (a Plan 

Matrix). In this section we will show and prove the relationship 

between those matrix. 

Theorem 9.1 

Let E = {el, ...,  en^ ) be a given set of states of nature. Let 

item matrix, and let 

structure of the plan (n.c); both matrices are defined on the 

same set of states of nature. Then, there exists a matrix D such 

that 

Q = MD 

and D is an nE+2 matrix, D = {dij) 

dij = 

Proof 

By definition, Q is an n~ x 2 matrix, and M is an n~ x (n+l) 

matrix. Therefore, any D that satisfies the equation 

Q = MD 

must be an (n+l) x 2 matrix. 

The general element of M (the sample matrix) is 
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The general element of Q is 

c n 

qil = Pr( y e  / P'Pi) =r y ~ i ~ * ( l - ~ i ) n - ~  

y=o 

changing the indeces e=y+l yields 

and 

and therefore D (as designated above) satisfies 
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Results 

1. D is the Decision Matrix of the Sample Matrix M, and will look 

like the following structure: 

Accept Reject 

y=o I 1 0 I 

I  1 0 I 
I  1 0 I 

y=c I 1 0 I 
y=c+l I 0 1 I 

I 0 1 I 
I 0 1 I 

y=n I  o 1 I 
2. Every Q.C plan matrix can be presented as a multiplication of 

a sample matrix and a decision matrix. A Q.C plan aggregates the 

signals (y) into two groups : y@ and y>c. We saw now that this 

aggregation was done by multiplying the sample matrix (M) with 

the decision matrix (D) . 
3. THis theorem covers also the two degenerated strategies: 

I1Accept AlwaysM and "Reject Alwaysl1. Those strategies can be 

presented by appropriate decision matrices. For instance, the 

"Accept Alwaysm strategy can be presented by the following 

Decision matrix: 

I 1  0 1  

I *  * I  
I *  * I  
I 1  0 1  
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10. The Informativeness of a Q.C Sam~le and the sam~le Size 

Is an n+l sample lot generally more informative than an n sample 

lot? Intuitively, the bigger the lot is, the more information we 

get. But, according to Theorem 10.1, certain Q . a  plan matrices 

can be derived from the same sample matrix. Thus, should the 

expected payoff that we can get from the optimal plan derived 

from the n+l sample will yield a better expected payoff? 

For example, assume that we have a 100 item sample, Assume also 

that for a given payoff matrix and given prior probabi'lities the 

optimal plan is (100,7). Will a 101 item sample yield more 

information? Should the Q.C plan (101,7) be better than (100,7)? 

Should (101,6), (101,8), or (101,7) yield better expected payoff 

than (100,7)? 

The next theorem will show that an n+l item sample is always 

generally more informative than an n item sample, and the optimal 

plan derived from it - (for a given situation) will yield an 

expected payoff not smaller than the maximal expected payoff 

derived from an n size sample, 

Theorem 10.1 

An Information Structure of an n+l size sample is generally more 

informative than an Information Structure of an n size sample. 

Proof 

Let E be a set of states of nature 

E = {  el, ...,  en^ 
and Mn+l be an information matrix of an n+l item sample defined 

on E. Let Mn be an information matrix of an n item sample 
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defined on E. According to the Blackwell Theorem [McGuire, 19721 

M,+~ will be generally more informative than Mn if and only if 

there exists a Markov Matrix R that satisfies 

Mn = Mn+l*R 

Where R is an (n+2) x(n+l) Markovian matrix. 

Using the Bayes Theorem it can be shown that the general element 

of R, r i j  is 

j = 1 for every j , so R is a Markov matrix. 

Q.E.D 
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11. A Normative Process of Maximizins the Value of Information 

in Q.C Problems. 

We will devise now the normative process to maximize the value of 

the information provided by a Q.C plan. We will show how to 

choose the most appropriate plan: 

11.1 S t e ~  1 - Effectiveness of Sam~linq 
11.1.1 Choose appropriate n ] ~  states of nature (as a default, 

k 

unless otherwise specified, determine n~ = 2, where Po = AQL and 

P1 =: LTPD) , 

11,1.2 Assess payoff matrix U. 

11.1.3 Check whether ~ ~ 1 6 ~ ~ ~ .  If u l l ~ 2 1  - do no sample. 
Reject the lot. End. 

11.1.4 Check if u ~ ~ ~ $ u ~ ~ ~ *  If true - do not sample, 
Accept the lot. End. 

11.2 S t e ~  2 - Determininu the lot size 

11.2.1 Determine prior probabilities for all states of nature. 

11.2.2 ~etermine function for the cost of testing the sample. 

f = f (n) 

where f is a non-decreasing monothonic function of the sample 

size. 

11.2.3 Determine the value of the maximal expected payoff 

without sampling (EMVmax). 
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11.2.4 Calculate the Expected Value of Perfect Information (EVPI, 

see [Raiffa, 19681) by subtracting the Emmax from the Expected 

Profit with Perfect Information (EPWPI, see [Raiffa, 19681). 

EVPI = EPWPI - EMVmaX 
11.2.6 Find the maximal value of n (n=n*) that solves the 

I 

equation 

n* is the upper bound for the sample size. 

11.2.7 To find the optimal sample size optimize 

MAX {tr( MntDU) - f (nf)) Q$l% n* 

nf,D 

where Mnr is an n size sample matrix over the given states of 

nature. 

Optimization can be obtained by exercising several searching 

methods (i.e., Fibonacci, see [Avriel, 1976, Ch.81). 
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12. Conclusions 

In this paper we have dealt with the normative value of 

information derived from Q.C sampling. 

The major results and contribution of this paper can be 

summarized as follows: 

1. Information Economic model was applied to Q.C. problems 

providing a complete and closed application to the theory 

developed. A full terminology was defined to fit Q.C. problems 

into the model. Terms as Structures of Plans and Samples, 

Decision Matrix of Q.C, Plans and Samples, Payoff Matrix and 

Prior Vector were defined and analyzed, All the existing terms 

(e.g., AQL, LTPD, OCC etc.) can be identified and used in the 

proposed terminology. 

2. The new terminology enables simply and clearly to apply a 

Baysian approach to the Q.C. problem, Thus it is convenient to 

incorporate costs considerations into sampling. 

3. An easy to use algorithm for determining the optimal sample 

size is proposed. 

4. The methods and terminology defined in the paper enables to 

assess in a quick way the value of information derived by any 

sampling in any given situations. 

5, The theorems on the dominance of one sampling plan over the 

other (in a generally more informative order) may lead to better 

and more cost effective sampling. 
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FIGURE 7.1 
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2 DEFECTIVE 

FIGURE 5.1: 

OPERATING C W C T E R I S T I C  CURVE OF PLAN (200, 7)  

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87-08 



FIGURE 8.1 
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