
HISTORICAL DATABASES - IT'S ABOUT TIME!

James Clifford

Information Systems Area
Graduate School of Business Administration

New York University
90 Trinity Place

New York, N.Y. 10006

November 1987

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I68
GBA #87-114

Center for Digital Economy Research
Stem School of Business
\&lorking Paper IS-87- 114

Abstract

Much recent research in the database community focuses on ways to
expand the modelling capabilities of database management systems. The
driving force behind this research is the growing size and sophistication
of the user community, whose needs and applications seem to always be
several steps ahead of the technology. One of the areas where considerable
progress has been made in this regard is in the extension of existing data
models to represent and manage the temporal dimension of data. In this
paper we examine how these enhanced modelling capabilities will increase
the fibnctionality of the database management systems of tomorrow. We
also introduce the notion of Temporal Representation Transparency as the
appropriate abstraction mechanism for providing this increased functional-
ity with minimum burden to the user.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

I. Introduction

Information has become a primary resource for many large organizations,

and the Database Management System (DBMS) has become, in turn, a cen-

tral tool for managing this critical resource. The earliest DBMS's, based

on network or hierarchical models of information organization, emphasized

the physical level of access mechanisms and file design. Unfortunately these

systems, as, products of their time, paid little attention to the user interface.

The Relational Model of Data, first defined in 1970 [I], was proposed as a

model which would liberate the end user from the details of the computer

implementation of files and access paths, allowing the user instead to con-

centrate on logical interconnections among the information by means of the

simple interface of data stored in tables.

The Relational Model represented a significant advance over the first

generation of DBMS's. While early criticisms of RM focussed on the ineffi-

ciencies, real or perceived, in the first implementations of relational systems,

today such systems as as IBM7s DB2 and SQL/DS and Relational Technol-

ogy's INGRES in the mainframe environment, and DBASE-I11 and PARA-

DOX in the microcomputer environment, are currently enjoying widespread

and growing success. Current criticisms of RM, and indeed of all of the cur-

rent generation of DBMS's, are directed more at the underlying models on

which they are based. These models are now seen as inherently too weak

to support the increasingly sophisticated needs of database users.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

A major shortcoming of all of the so-called "three great data models"

- network, hierarchical, and relational - is their ignorance of any notion

of time and its relationship to information. None of these models has any

built-in notion of time, and as a result the user either is encouraged to think

of the database as a repository of only "recent" information, or else is forced

to develop ad-hoe techniques for managing information across time. These

techniques invariably involve some combination of the most recent versions

being managed in some fashion in the disk database, and earlier versions

being stored in archival tapes. Two problems with this are the need to

design special-purpose application software to handle the temporal scheme

adopted in the disk database, and the managerial headache of coordinating

the disk and tape databases. Clearly many applications, from traditional

employee record-keeping, inventory control, and accounts payable and re-

ceivable, to more sophisticated computer-aided design, decision support

and expert system applications, could all benefit from a DBMS with built-

in features for organizing information across time and for accessing that

information in time-dependent ways.

1.1. The Research Perspective

Much recent research, for example [2], [3], [4], [5], 161, [7] and [8], has

addressed this very issue, focusing in particular on the design of general,

application-independent modelling structures and operations for providing

temporal information management within the DBMS. A survey done in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

1982 [9] found nearly 100 articles on the subject, and well over 100 more

have appeared since then. Many recent database conferences have devoted

an entire session to the issue of temporal data management, and a recent

conference [lo] was entirely devoted to the subject.

The research in the area varies across a wide range of styles, applica-

tions, and methodologies. At the recent conference on Temporal Aspects

of Information Systems [lo] the research areas presented and discussed in-

cluded the following cross-section of topics:

Relational Data Model Extensions

Non-Relational Data Model Extensions

Conceptual Data Modelling

Object Oriented Models and Time

Temporal Integrity Constraints

Information System Specification

Temporal User Interfaces

Implement ation and Access Methods

Applications

- Office Automation

- Medicine

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

- Engineering

- Software Engineering

- Law

- Scientific

- Manufacturing

Artificial Intelligence

With so much interest, it can be expected that in the near future we

will see both historical extensions to existing Relational DBMS's, as well

as entirely new Historical Relational DBMS's. In this article we present

an overview of the issues involved in historical database management, with

particular emphasis on its practical implications. Because of its growing

importance, not only by virtue of its role as the vehicle for most new re-

search developments in the database field, but also because of its position

as the leading edge in commercial DBMS, the relational model will be used

throughout this paper to illustrate the points being made.

2. A Fkamework for Historical Data Man-
agement

In developing a DBMS to provide a general treatment of the temporal

dimension of information, it is useful to consider the "roots" of today's

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

DBMS's and the goals that motivated their development. Figure 1 illus-

trates the standard ANSI/SPARC view of the "levels of abstraction" which

a DBMS is supposed to provide for the user [Ill. The motivation for pro-

viding these levels is to provide both physical and logical data transparency

- that is, to free the end users of the system from having to know details

about the physical representation of the data, and about someone else's

view of what data is represented. Similarly, when database systems were

expanded to provide for distributed database management, it became neces-

sary to handle both fragmented relations and replicated relations properly.

A. primary goal of the development of distributed DBMSs was to provide

location transparency and replication transparency to the end users.

A major goal of historical database should thus be to provide what I

have called Temporal Representation Transparency (in presentation at [lo]),

that is, to shield the end users from the details of the temporal representa-

tion scheme utilized by the DBMS and also by the designer of the particular

database application. The user should not be required to know how the

temporal dimension of the data in the HDBMS is modelled or represented.

The temporally transparent HDBMS should therefore allow the user to ac-

cess data with explicit or implicit temporal reference in his or her own view

of this dimension. While it is not yet clear exactly how best to provide this

transparency, it is clear that a temporally transparent s y s t e m will need to

provide the following kinds of features:

a rich set of well-defined database structures for handling historical

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Figure I: Layers in a DBMS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

data

knowledge about a wide variety of inter-related temporal domains

such as seconds, days, and weeks

the ability to map between different user views of time points, inter-

vals, and sets

a rich set of operations to access and rnanipulate both time-series

data and the temporal domains themselves

One component of the HDBMS, therefore, must be a subsystem which

can translate, whenever possible, between the user's temporal references

into the representation scheme used in the database,

An example will help to illustrate the difficulties to be surmounted.

Figure 2 shows two time-series values, one for SALARY and one for SALES

figures.

Examples of operations a user might want to perform on a database

containing these values for the at tributes SALARY and S ALES-VOLUME

are the following:

1. Restrict attention to a particular day, say January 2, 1982

2. Select only those objects with a SALARY value of 30K in February

1983

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

3. Select only those objects with a SALES-VOLUME value of 600 on

January 13, 1982

4. Correlate in time (join together) these SALARY and SALES-VOLUME

time-series values

Operation 1 illustrates a major difficulty: neither attribute has a value

explicitly represented for the date supplied by the user. Operation 2 requires

that the system understand something about the standard calendric system,

in particular the boundaries and sizes of the months. Operation 3 requires

that the system recognize different types of time-value associations, in this

instance recognizing that a SALES-VOLUME is an aggregate value over an

interval of time, and therefore cannot be associated with a single time point

within the interval. Finally operation 4 requires the ability to correlate

different types of values associated in different ways with different units of

time.

This example should serve to illustrate some of the complexities of

adding a general time-handling facility into a DBMS, and particularly of

adding them while maintaining Temporal Representation Transparency. In

the remaining sections of this paper we will discuss these issues in more

detail, and describe several current approaches to handling them.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

3. An Example Database

In order to illustrate the issues involved in providing historical data mod-

els and database management systems, we will need to utilize a simple

database application. Perhaps the best-known database is the familiar

world of SUPPLIERS, PARTs and SHIPMENTS; simple as it is, it will suf-

fice for illustrating the need for DBMS facilities to manage the temporal

dimension.

3.1. The Conceptual Model

The diagram in Figure 3 shows the conceptual model of the suppliers

database as an entity-relationship diagram. A standard, static relational

database based on this model is shown in Figure 4.

The standard use of existing database systems models information as

it changes over time by keeping only the latest version of the data. This

version can be queried using a standard query language such as SQL, and

can be maintained using the Data Manipulation capabilities of the system,

generally including such operations as insert, delete, and replace. In doing

so, however, any record of the past state of the enterprise is obliterated.

Figure 4, for example, might represent the "current" state of the enterprise's

information about PARTs. An SQL query asking about the color of part

P3 would be expressed as:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

SALARY

TIME AMOUNT
1/5/82 -+ $30000
2/19/83 -+ $31000
1/7/84 -+ $32000 1

SALES-VOLUME

TIME QUANTITY
1/82 -+ 300

Figure 2: Example Time Series Values

Figure 3: Entity-Relationship Diagram I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

PART SUPPLIER ,

SUPPLIER
SNUM
S 1
S2
S3

SUPPLIES
SNUM
Sl
S1
S 1
S2
S 2
S2

Figure 4: Example Static Relational Database

SNAME
Smith
Jones
Blake

PART
PNUM
P1
P2
P3
P4

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

PNUM
P1
P2
P3
P I
P2
P2

STATUS
20
10
30

QTY
300
200
400
300
400
200

PNAME
Nut
Bolt
Screw
Screw

CITY
London
Paris
Paris

COLOR
Red
Green
Blue
Red

WEIGHT
12
17
17
14

CITY
London
Paris
Rome
London

SELECT COLOR

FROM PARTS

WHERE PNUM = 'P3'

In this static database there is no mention of time; in many applications,

of course, this approach would be inadequate. Suppose then, that instead

of only keeping track of the latest value of all of this information we are

interested in keeping a record of the history of this information over time.

When the temporal dimension of this information is considered, even so

simple an example as the suppliers database in Figure 3 - surely the most

famous and by now (one would have thought) most thoroughly understood

database conceivable - exhibits shortcomings and ambiguities. The most

obvious way to handle these problems within existing database systems

is to add an additional attribute, say TIME, to each relation scheme; for

example, Figure 5 shows the SUPPLIERS relation in such an extended

scheme.

There are several problems with this ad-hoc approach to modelling time.

Chief among them axe that it puts the burden of handling this dimension

of the data onto the user - either the end user or the applications program-

mer - rather than allowing the system itself to handle this. For in this

approach the DBMS itself knows nothing about the the attribute TIME

and so can provide no facilities for interpreting its interactions with the

other attributes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Another problem with this approach is visible in Figure 5. Whereas

in the static relational model all of the information about an "object" was

located in a single construct, the tuple, with this approach locating all of the

information about any given SUPPLIER is a difficult task, since it could

be represented anywhere in the relation. For instance, in Figure 5, the

information about supplier S2 is located in the third and the fifth tuples.

Extrapolating this situation to a relation with hundreds or even thousands

of tuples, and with information pertaining to many points in time, it is

obvious that this met hod of incorporating time presents difficulties. In

particular, the user must always remember to sort each relation on the

combined key and TIME fields if this representation is to be meaningful.

The other commonly used ad hoc approach to including time is to pre-

determine, for each attribute, the mazimum number of time points for

which data is to be maintained. Figure 6 illustrates this strategy for the

SUPPLIER relation, where the design allows for the maintenance of the

three most recent values of the STATUS field. The problems with this

approach are similar, stemming from the overall problem that it is the

user, and not the DBMS, which has the knowledge of the semantics of

this representation. In the first place, it is not known to the DBMS which

attribute represents the most recent STATUS value. In addition, there is

no explicit representation of time values, only the relative ordering of these

recent three. Finally, such a representation, as seen in Figure 6, requires the

use of null values for "objects" which have fewer than the schema-defined

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

typical number of values, and in addition to its obvious shortcoming both

in requiring the discarding of any values in excess of this number and in

requiring the shifting of values into prior "positions" whenever a new value

is added.

Relationships, such as "supplies" in Figure 3, are somewhat more com-

plicated. Because their existence is more ephemeral, being the "coming

together" of entities which already exist in time, their temporality is rich

and at this point not thoroughly understood. Such temporal information

as when the relationship was "established", when it was "broken off," etc.,

are crucial to its understanding. Consider again, for a moment, the "sup-

plies" relationship as represented in Figure 4. What exactly does it mean?

With no reference to its temporal dimension, it is not clear whether the

shipments are actual! or merely planned. Had the designer considered the

temporal dimension of this relationship, and had an historical DBMS and

design methodology been available, something more like the relation in Fig-

ure 8 would perhaps have resulted, with explicit reference to two temporally

anchored properties of the "supplying" relationship.

Obviously such temporal issues are ubiquitous in our processing of in-

formation. Time is a feature of all information, and so it is appropriate

that a general treatment of its structure and properties be placed into the

DBMS itself, thereby providing a general mechanism for its handling across

a diversity of applications. Figure 7 illustrates these two modes of providing

the needed temporal data management. In (a) the temporal data is encoded

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

in some ad hoe fashion into the underlying static database system, and the

temporal semantics and operations are provided by a combination of DML

and applications programming. By contrast, in (b) the general temporal

information structures, temporal operators, and temporal constraint man-

agers built into the HDBMS provide all of these features automatically with

no additional programming.

The remaining sections of this paper will discuss the issues involved

in providing general-purpose time-handling capabilities in an Historical

Database Management System (HDBMS) in the framework illustrated in

Figure 7; the example "historical" relation in Figure 8 will be used to pro-

vide illustrations. For purposes of reference, the example queries, updates

and constraints are described, together with the major issues that each

illustrates, in Table Tabl.

3.2. Query and Application Examples

In a database which records information over time, the DBMS must be able

to respond to queries and update requests which make explicit or implicit

reference to the temporal dimension. Because of the lack of historical data,

such operations are not allowed in a static database and, indeed, facilities

for handling them are not incorporated into the DML. In this section we

illustrate some of the kinds of queries which ought to be handled by the

query and constraint enforcement subsystems of an HDBMS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Table 1: Example Queries, Updates and Constraints

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Issue
Time Selection
Relative Time
When question
Correlation of Time Series

Complex Operations

Trend analysis

Correlated trend analysis

Forecasting

Update as Addition
Retroactive change

Proactive change
Selective update

Time Demons

Dynamic constraint

Timelvalue constraint

Multiple time reference

Event reference

Q1
Q2
Q3
Q4

Q5

Q6

Q7

Q8

U1
U2

U3
U4

U5

C1

C2

C3

C4

Example
What was the city address of supplier S2 on 8/25/86?
What was the status of supplier S2 two years ago?
When was the city of supplier S3 London?
What was the status of Supplier $1 when the last shipment
of part P3 was made?
How many shipments from Supplier S3 were sent more than
one week after they were ordered?
How has the quantity of shipments of part P 5 changed
over the past year?
Compare the quantity of shipments of parts P5 and P6
over the past year?
Assuming a steady 10% growth rate, what will our orders
with Supplier S2 look like over the next five years?
Supplier S3 is now located in Amsterdam.
Part P5 was moved to the warehouse in London at the
beginning of last month.
Supplier S2 will have status 30 starting next week.
Upgrade the status of every supplier who has delivered
all orders within 2 weeks.
Initiate a standing order of 600 Widgets from Supplier S2
every week.
No supplier can be downgraded in status by more than
10 units.
No supplier can be downgraded in status by more than
10 units in any given month.
No supplier can be located in Amsterdam if they were
ever located in Berlin.
No supplier can be re-instated as a client more than
three times.

Historical query I: What was the CITY address of supplier S2 on

8/25/86?

Query 1 is perhaps the most basic type of historical query an HDBMS

should support, namely allowing the user to focus attention on the data

as it was relevant at a particular point in time. To answer it the system

must be able to perform a kind of temporal "selection" based upon the

user-supplied time value.

Historical query 2: What was the status of supplier S2 two years ago?

To handle this type of query, involving relative time, the system needs

to have knowledge of the standard calendric system and of the kind of

temporal values utilized in the STATUS field of the Supplier relation, and

be able to perform arithmetic on these values.

Historical query 3: When was the CITY of supplier S3 London?

Query 3 is another basic kind of temporal query. To answer it the system

must be able to decompose a time-series value and tell the user which times

are associated with a given value or values.

Historical query 4: What was the status of Supplier S1 when the last

shipment of part P3 was made?

This kind of query involves more than one time-series value. It is a kind of

nested query in which the system, as in query 3, must first determine when

something occurred, and then relate this answer to some other time-series

value.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Historical query 5: How many shipments from Supplier S3 were sent

more than one week after they were ordered?

This query also involves a combination of operations, including the de-

termination of when something happened ("they were ordered"), as well

as arithmetic ("one week after"), temporal selection ("shipments" at that

time) and counting ("HOW many") operations.

Historical query 6: How has the quantity of shipments of part P5

changed over the past year?

This kind of "trend analysis" query is very important in Decision Sup-

port Systems. To handle it the system should be able to provide graphical

output and perhaps statistical analysis of time-series data.

Historical query 7: Compare the quantity of shipments of parts P5 and

P6 over the past year?

Similar to Query 6, this trend analysis query requires a correlation of the

values of two different time series.

Historical query 8: Assuming a steady lowhat will our orders with Sup-

plier S2 look like over the next five years?

One of the major roles of the Decision Support System is to aid in forecast-

ing the future based upon past experience and projected situations. An

historical database is ideally suited to this kind of application, and this

example represents the kind of "parameterized query" (the "lorate being

the parameter") which should be included in the DML of an HDBMS to

support these applications.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

3.3. Update Examples

In addition to handling more complex queries which contain explicit or

implicit reference to the temporal dimension, an HDBMS has an entirely

different view of updates from the view of a "static" DBMS. The basic

philosophy of the HDBMS must be that all updates to the database, with

rare exception, are simply addztions of more recent information. They are

thus treated as insertions of a data value and an associated time. The

examples in this section illustrate this point and some of the other nuances

associated with updating in an HDBMS environment.

Historical Update 1: Supplier S3 is now located in Amsterdam.

Even Simple updates like this one are handled differently than in static

databases, for in an historical database this update must be handled as an

insertion rather than a modification. That is, the HDBMS would implement

this update by adding a new piece of data into the database, namely a new

<time,data-value>.

Historical Update 2: Part P5 was moved to the warehouse in London

at the beginning of last month.

This kind of update involves a "retroactive change," i.e., a change made

now about a fact in the past. It might be handled in several different ways,

depending on how many time dimensions the database was supporting.

If the database had only one time dimension (data time), this operation

would cause a change to the database, basically rectifying an "error" in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

the stored data. If, however, the database were supporting both data time

and transaction time, this operation would result in the insertion of a new

triple <transaction-time,data-time,value> with a transaction time of now,

a data-time of the beginning of the month, and a value "London."

Historical Update 3: Supplier S2 will have status 30 starting next week.

Similar to Update 2, this kind of "proactive " update in an HDBMS sup-

porting both transaction time and data time allows the user to post infor-

mation now about information which will hold in the real world at some

future point in time. A typical example of this kind of update would be a

"raise" in salary which was decided upon at some time before it was ac-

tually to take effect. For budgetary planning and other purposes it might

be very useful to record the intended raise before its effective date. As in

Update 2, a new <transaction-time,data-time,value> triple is added to the

database to implement this transaction.

Historical Update 4: Upgrade the status of every supplier who has de-

livered all orders within 2 weeks.

This type of "selective" update involves a nested query to select just those

"objects" meeting the selection criteria. It then performs the same type

of update, a calculation of the new status and the addition of a new

<tirne,value> pair to all of these objects.

Historical Update 5: Initiate a standing order of 600 Widgets from

Supplier S2 every week.

Update 5 illustrates a type of update requiring a "time demon" in the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

HDBMS whose job it is to accept and store requests for database updates

and, with knowledge of the periodicity of time, initiate the desired updates

(additions) at the appropriate times until the request is cancelled.

3.4. Constraint Examples

Many of the familiar classes of constraints for the relational model, notably

functional and multi-valued dependencies (FDs and MVDs, respectively),

appear to have exact counterparts in the various historical relational models

which have appeared in the literature. (121, for example, discusses FDs

and MVDs in their historical data model.) However, in a database which

records information as it changes over time, the possibility presents itself

for expressing and enforcing constraints more powerful than these familiar

constraints of the static relational model.

Constraint 1: No supplier can be downgraded in status by more than 10

units.

With this simple constraint, often called a "dynamic constraint ," the user

requests that the new value be compared with the old value and the update

be made only if a specified property holds between them (here, that their

difFerence be no more than 10.) This type of constraint is even expressible

in "static" models using, for instance, QUEL or SQL and keywords such as

OLD and NEW to refer to these two distinguished values.

Constraint 2: No supplier can be downgraded in status by more than 10

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

units in any given month.

In a slight variation on the previous constraint, Constraint 2 refers not sim-

ply to the most recent value in the database, but also to the time associated

with this value.

Constraint 3: No supplier can be located in Amsterdam if they were ever

located in Berlin.

Although fanciful for the example application, this type of constraint, rep-

resenting again only a slight modification to the first example, requires an

examination of all past values of an attribute, and cannot be handled with

the simple OLD and NEW technique.

Constraint 4: No supplier can be re-instated as a client more than three

times.

This constraint makes explicit reference to certain application "event s7'

which the HDBMS should be able to record and access through some mech-

anisrn for maintaining the "lifespan" of its objects. This constraint then,

is satisfied by any employee objects who have no more than three disjoint

intervals in their "lifespan."

4. The Nature of Time

One of the major issues involved in designing a data model that will have a

built-in notion of time and its properties is, just what is the nature of time

and what are its properties? This is a question with a long philosophical

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

tradition, but a somewhat shorter history vis-a-vis the database realm.

Three basic issues have been studied.

4.1. The Time Elements

An essential issue when considering a model or system for handling the

temporal dimension of data is the nature of the time dimension itself. Ba-

sically this issue boils down to whether time should be modelled as discrete

elements (such as the integers) or as densely packed elements (as the ra-

tionals or the reds). While there are proponents of both types of time, it

appears that the use of discrete time points is more widespread. A related

issue concerns whether to associate data values with points in time or with

intervals. Clearly this issue evaporates when using discrete time, since then

the two representation schemes are equivalent.

4.2. Relative Time

Most of the research in HDBMS has focused on modelling and managing

absolute t ime in some form; that is, exact time points or intervals are as-

sociated with each data value. In A1 research, however, a great deal of

attention has been placed on relative times; for example, in natural lan-

guage understanding and story understanding systems, where phrases like

"last week" and "a year ago" abound. Clearly an HDBMS will have to

address this issue in order to provide a representational ly transparent user

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

interface.

4.3. Periodic Time

The final overall issue with respect to the nature of time, and one that is

particularly important in a scheduling context such as might take place in

an office automation or job scheduling environment, is that of periodic time.

A temporally transparent HDBMS should be able to respond appropriately

to queries and updates which refer to the periodicity of the familar time

units of weeks, months, etc., and also allow for user-defined periods such

as work-weeks, weekends, payroll periods, etc.

5. The Interaction of Time and Information

While at first glance it may appear that the interaction of time and infor-

mation is straightforward and only needs to be added to existing DBMSs

to provide the needed facilities, the considerable body of research into this

problem has shown that time interacts with information in a variety of dif-

ferent ways, not all of which are as yet well understood. In this section

various aspects of this interaction are discussed and illustrated.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

5.1. Attribute Types

There appear to be three primary relationships that can exist between

time and the values of an attribute. Some attributes are constant over

time, for example NAME and SEX; key attributes are assumed to be of

this type. Other attributes are time-varying, taking on different values

at different moments in time, such as STATUS or CITY. Finally some

attributes take on values which are themselves times, for instance BIRTH-

DATE or PROMOTION-DATE.

5.2. Object Identification Across Time

A primary component of any information management system is the need

to be able to provide unique and unambiguous identification of the objects

being represented; this is the purpose of the key in database terminology. In

an historical DBMS object identification takes on an added dimension since

it is now necessary to recognize that an object currently under examination

is in fact the same as some other object already known to the database.

Thus there is the need for a time-invariant key - provided either by the

user or perhaps by the system - to insure that a single real-world object is

represented only once in the database, together with all of its time-varying

properties.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

5.3. Object Birth and Death

Unlike "static" databases which record information about only the current

objects of interest, an historical database maintains a more-or-less perma-

nent record of objects that are now or were ever of interest to an enterprise.

Over time, in fact, some objects may come in and out of interest (employees

may be hired, leave, and subsequently be re-hired; business with a supplier

may be discontinued only to be reinstated at some later date, etc.) These

"birth" and "death" events in the real world need to be adequately repre-

sented in an HDBMS, for several reasons: to keep track of when objects

are actively of interest, to be able to identify objects across time, to record

multiple "incarnations" of the same object, and to save storage space when

objects are inactive.

5.4. Tuple or Attribute Time-Stamping

Another controversy exists within the research community relating to the

level in the database at which the temporal dimension should be incor-

porated. In relational terms, this has taken basically two forms: time-

stamping at the tuple level or at the attribute level. Tuple time-stamping

is somewhat more restrictive, in that it requires all attributes of a tuple to

have the same temporal properties and time span. At tribute time-stamping

allows for greater flexibility by allowing for locality of changes (to a single

value rather than an entire tuple), control at the attribute level over such

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

temporal properties as rate of change over time, function interpolation, and

aggregate values, some or all of which can also contribute to greater stor-

age efficiency. Moreover representing attribute values as time-series data is

generally thought to be closer to the view of most users.

5.5. Continuous vs. Discrete Changes

Some information changes discretely at a precise moment in time; for ex-

ample, the STATUS of a supplier might change from 20 to 30 at 9:OOam on

a particular day. Other information is changing continuously, and is only

monitored occasionally, when discrete updates are made to the database.

Although these real-world situations are quite different, in both cases they

are reflected by discrete state changes in the database. In order to properly

represent the real world distinction between these two situations, there-

fore, the DBMS must know for any attribute which type of changes it is

representing.

5.6. Interpolation

There are two instances when some kind of interpolation of a time-series

function by the system is necessary. One occurs when the system uses a

compressed method of storage at the physical level (representing only the

points of change); the other occurs when the system models a continuous

function with discrete sampling points.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

5.7. Aggregation and Disaggregation

Some time-varying attributes represent aggregate values while others do

not. Those that do may or may not be disaggregatable. Moreover, for long

past data it might be convenient for the system to automatically utilize

some aggregation function (with a computable inverse or at least acceptable

approximate inverse) in the interests of saving storage.)

5.8. Data Time and Transaction Time

A major aspect of the relationship between time and information is that

there are multiple such relationships. The two which have received the

most attention have been called "data tirne" - i.e., the real-world t ime at

which an attribute took on a particular value - and "transaction time" -

i.e., the time when this fact was recorded in the database. Some systems

in the literature have supported only one of these two times (generally the

data time), while others have supported both. In 1121 this issue has been

generalized to a model supporting n-dimensions of tirne (or other indices).

5.9. Events

In contrast to time-varying properties such as SALARY or ADDRESS,

another way in which time interacts with information is to record the oc-

currence of some "event" which takes place in real time. Rather than a

property which can take on different values over the course of tirne, an

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

event is a LLone-shot deal" that has a starting point and an ending point,

never to occur again.

5.10. Periodicity and Duration

In many environments it is necessary to have an awareness of the periodic-

ity of time - any application that involves scheduling or the regular perfor-

mance of certain functions or procedures would find this built-in knowledge

useful. In order to support this aspect of time the system would need to

have knowledge of the standard calendric periods (hours, days, months,

etc.) and perhaps the ability to support user-defined periods (work-week,

weekend, etc.). Furthermore, the system would need knowledge of the du-

ration of these units and how to convert between units at any level. Finally,

the system should support operations with these units, including activation

of transactions when a specified period begins or has elapsed, as well as

arithmetic on periods (next week, n days ago,...), in other words, "relative

time" should be supported.

5.11. Evolving Schemas

A final aspect of the way in which time interacts with information con-

cerns the relationship between time and the database schema itself. When

one considers the two components of the database, the data itself and the

metadata (the information about the data) it is clear that both of these

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

components may evolve over time. While the subject of schema evolution

has received some study in its own right, except for a few researchers (no-

tably [13] and 1141) this aspect of historical data management has received

little attention. [14] incorporate both notions, that of the "lifespan" of an

object and the "lifespan" of its attributes, into their historical algebra in a

uniform manner.

6. Temporal Information Structures

In order to support the temporal dimension of information in a DBMS,

certain storage structures must be defined to serve as the repository of

this time-stamped data. In the various proposals for historical database

models, two primary mechanisms have been utilized. One approach is to

add some kind of time-stamping at tribute or set of at tributes to the schema

of a relation and requiring that each tuple have, in addition to its "regular"

values, a value or values for the temporal attribute(s). An example of this

approach is seen in Figure 5. The other approach is to view the temporal

component as a property of each value stored in the database. This view

leads to a structure such as that depicted in Figure 8. In [12] the latter

approach is generalized to allow multiple "indexical" dimensions beyond

time (e.g., space, observer, etc.), leading to relations such as that shown in

Figure 9.

While these two approaches are the most common, it is not yet clear

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

whether some new approach, perhaps building on the network or hierar-

chical models, or perhaps upon some entirely new model growing out of

the specific needs of historical data management, might in fact prove to be

more appropriate.

7. Temporal Operations

In addition to providing structures capable of representing historical in-

formation, an HDBMS must provide operators capable of providing the

functionality required of an historical database. To date most of the re-

search in this area has focussed on the development of query languages for

an HDBMS, and analogous to the work on relational query languages, this

research has explored the definition of an extended relational algebra and

an extended relational calculus.

7.1. Relational Algebra Extensions

[14], 171, and [15] have all explored extensions to the standard relational

algebra for historical relational databases. Because of the different struc-

tures of their models, and to some extent the different functionality that

they provide, these algebras are somewhat different. Nevertheless they are

similar enough that they can be discussed as a group., Essentially all of

these extensions provide the standard algebraic operations of Project , Se-

lect and Join, extended where necessary to handle the historical relations

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

of their model, and then add an additional "Time Slice" operator whose

function is to provide a kind of "temporal selection," allowing the user to

focus on only temporally relevant sections of the database.

7.2. Relational Calculus Extensions

SQL is rapidly becoming the standard user-level query language for rela-

tional databases. [3] therefore investigated extensions to SQL to include

the ability to reference the temporal dimension of historical databases in

an SQL-like manner.

Analogous to the work on extending SQL, [4] has developed an exten-

sion to QUEL, called TQUEL, to provide similar functionality. Finally,

there has been some research into incorporating certain standard st atisti-

cal operators directly into the query language of an historical DBMS [16].

Further research is needed to identify the necessary operators for these and

other types of access to historical information.

8. The User Interface to Historical Databases

8. I. Extended Relational Languages

We have already noted that there have been a number of proposals to take

standard relational query languages (the algebra, QUEL and SQL) and ex-

tend them to provide temporal functionality. Another approach has taken

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

the Query-By-Example mode of access and incorporated a temporal dimen-

sion [17] into the graphical query structure and the concept of "example

queries" from [I 81.

8.2. Graphical Interfaces

131, recognizing that temporally oriented information is richer than static

information and, in fact, intrinsically "dynamic" in nature, was the first to

explore the use of graphics in the user interaction with historical databases

as a means of more effectively conveying this dynamism to the user. Much

additional work needs to be done in this area.

9. The Physical Implementation of Histori-
cal Databases

9.1. Early Ad-Hoe Systems

Early information systems which handled time-varying data developed their

own specific storage and access strategies based upon the specific needs of

their application. [19] is a noteworthy example, being perhaps the earliest

published account of such a system. Chief among these techniques was an

indexed file structure for each attribute, with a primary key of the time

field. Undoubtedly many of the techniques developed in these pioneering

systems will be adopted by tomorrow's general-purpose Historical DBMSs,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

as in the case of the migration of early file structures and access methods

into today's DBMSs. Additional file structuring techniques await further

research, as prototype Historical DBMSs begin to be built.

9.2. Optical Disks

A major obstacle to the development of Historical DBMS has always been

the tremendous storage requirements that their underlying philosophy -

never throw any data away - implies. Many corporate static databases,

storing only the latest values of their attributes, utilize scores of today's

magnetic disk packs. Contemplation of the orders of magnitude more stor-

age required by treating such databases as "historical" would be daunting

on current technology. The development of optical disk technology presents

a technological development analogous to the development of the random

access magnetic disk which laid the necessary technological foundation for

today's DBMS. 1201 is one of the early works to explore new file access

techniques appropriate to this new device. Doubtless the perfection and

widespread adoption of readlwrite optical disks will hasten this research

and lead to new access methods which will support the development of

historical DBMS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

10. Summary and Conclusions

In this paper we have presented the need for a new data model with built-

in facilities to handle the ubiquitous temporal dimension of information.

We believe that the long neglect of this dimension, occasioned by the lack

of the technology to support the huge databases which such a model will

engender, will no longer be tolerated by the database user community.

The growing body of research in this area, along with the parallel research

into so-called Knowledge-Base Management Systems, clearly point to the

development of a new generation of more "intelligent" Information Systems,

an intelligence that is sure to include general knowledge about time and its

inter-relationships with information.

We have argued that the notion of Temporal Representation Trans-

parency, an extension of the ANSI/SPARC DBMS levels, should serve

as the framework within which historical database systems and informa-

tion systems are developed. An HDBMS exhibits Temporal Representa-

tion Transparency when it can respond to a user's reference to the data's

temporal dimension regardless of the representation scheme adopted by the

system, The extent to which such transparency can be provided is still an

open question, but it should be the goal of the user interface to provide it.

Finally, we have indicated that research into all aspects of historical data

management is progressing rapidly, and there is therefore much reason to

be optimistic that the era of database systems which "forget" is drawing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

to a close.

References

[I] E.F. Codd. A relational model of data for large shared data banks.

C o m m . of the A C M , 13(6):377-387, June 1970.

[2] J. Clifford and D.S. Warren. Formal semantics for time in databases.

A C M 2'rans. o n Database Systems, 6(2):214-254, June 1983.

[3] G. Ariav. Preserving the T i m e Dimension in Information Systems.

Technical Report DS-WP 83-12-06, Decision Sciences Dept . , Univ. of

Penn., December 1983. (Ph.D. Thesis).

[4] R. Snodgrass. The temporal query language tquel. In Proceedings

of the 9rd A C M S I G A CT-S IGMOD Symp. o n Principles of Database

Systems, pages 204-212, Waterloo, Ontario, Canada, April 1984.

[5] M.R. Klopprogge. Term: an approach to include the time di-

mension in the entity-relationship model. In P.P.S. Chen, editor,

Entity-Relationship Approach t o Information Modeling and Analysis,

pages 477-512, E R Institute, 1981.

[6] J. Ben-Zvi. T h e T i m e Relational Model. PhD thesis, Dept. of Com-

puter Science, University of California, Los Angeles, 1982. (Unpub-

lished).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

[7] S. K. Gadia and J. Vaishnav. A query language for a homogeneous

temporal database. In Proc. of The Fourth Annual ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, pages 51-56,

1985.

[8] A. U. Tansel. Adding time dimension to relational model and extend-

ing relational algebra. Information Systems, 11(4):343-355, 1986.

[9] A. Bolour, T. L. Anderson, L. J. Ileketser, and H. K. T Wong. The role

of time in information processing: a survey. ACM SIGMOD Record,

12(3):28-48, April 1982.

[lo] AFCET. Temporal Aspects in Information Systems, May 1987.

[ll] ANSI/X3/SPARC. Study group on database management systems:

interim report. FDT (Bulletin of ACM SIGFIDET, 7(2), February

1975.

[12] J Clifford. Indexical Databases. Technical Report, Dept . of Informa-

tion Systems, New York Univ., 1987. (To appear).

[13] J. Shiftan. Assessing The Temporal Digerentiation of Attributes as an

Implementation Strategy for a Temporally Oriented Relational DBMS.

PhD thesis, Dept. of Information Systems, New York Univ., December

1986.

[14] J. Clifford and A. Croker. The historical relational data model (hrdm)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

and algebra based on lifespans,. In Proc. Third International Confer-

ence o n Data Engineering, IEEE, Los Angeles, February 1987.

1151 A. U. Tansel. An extension of relational algebra to handle time in

relational databases. In A CM-SIGMO D International Conference o n

Hanagement of Data, Austin, May 1985.

[16] A. U. Tansel. A Statistical Interface for Historical Relationak

Databases. Technical Report, Bernard Baruch College, City University

of New York, February 1986.

(171 A. U. Tansel and M.E. Arkun. Time-By-Example Query Language for

Historical Databases. Technical Report, Bernard Baruch College, City

University of New York, 1986.

[18] M. Zloof. Query by example. In Proceedings of the A F I P S 1975 Spring

Conference, pages 431-438, AFIPS Press, Arlington, Va, 1975.

[19] G. Wiederhold, J.F. Fries, and S. Weyl. Structured organization of

clinical databases. In Proceedings of the NCC, pages 479-485, AFIPS

Press, Montvale, N.J., 1975.

[20] D. Maier. Using Write-Once Memory for Database Storage. Technical

Report, Dept. of Computer Science, SUNY at Stony Brook, 1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

Figure 5: Example Time-Stamped Relation

TIME
9/1/87
9/3/87
8/31/87
8/05/87
8/25/87
8/06/87

Figure 6: Example of Pre-determined Slots

SNUM
S1
S1
S2
S3
S2
S3

SNUM
S 1
S 2
S3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

SNAME
Smith
Smith
Jones
Blake
Jones
Blake

SNAME
Smith
Jones
Blake

STATUS
20
20
10
30
10
30

STATUS-1
20

CITY
London
London
Paris
Paris
Paris
Paris

STATUS-2
21
10

STATUS-3
23
15
30

CITY
London
Paris
Paris

(b)

Figure 7: Ad-Hoc versus HDBMS Approaches

USER *

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

D
M
L

f \
L I - HDB
f 7

Figure 8: Example Historical Relation

SNUM

S 1

S1

S l

S2

S2

S2

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

PNUM

P I

P2

P3

p

P2

QTY-ORDERED QTY-SHIPPED

9/10/87 -+ 300
9/10/87 -+ 300 9/15/87 -+ 300
10/5/87 -+ 500 1016187 -+ 500

9/10/87 -+ 100 9/12/87 + 100

I
8/31/87 -+ 5001 [9/1/87 -+ 5001

1015187 - 200 10/5/87 -+ 200
8/1/87 -+ 200

9 1 / 8 7 + l o o] [10/5/87 - 500
8/10/87 -+ 5001
9/10/87 -+ 300

[9/1/87 -+ 300]
9/10/87 - 300

9/12/87 -+ 50
8/6/87 -+ 4001

10/2/87 -+ 600

8/5/87
[9/10/87 I:

10/10/87 -+ 500 [8/12/87 -+ 500]
9/13/87 -+ 300
9/10/87 -+ 300

[9/15/87 -+ 100
9/30/87 -+ 200

9/16/87 -+ 50

I
[8/9/87 -+ 4001

10/20/87 -+ 600

Figure 9: Relation With Multiple Indices

PROJECT

Watergate Break-In

Watergate Coverup

Ellsberg Break-In

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 114

APPROVER: <Observer, Rec-Time, Data-Time>

Dec -+ Mitchell
Jan 4 Mitchell
Feb 4 Nixon
Dec 4 Nixon
Jan 4 Nixon
Feb 4 Nixon 1

I - -
Dec 4 Mitchell
Jan 4 Mitchell
Feb 4 Mitchell
Dec -+ Mitchell
Jan -+ Mitchell
Feb -+ Mitchell ..

-

Halderman -+

Ehrlichman -+

-

F

Jan 4

Feb 4

Jan -+

Feb 4

-

Halderman -+

-
Jan -+

Dee 4 Mitchell -
Jan -+ Mitchell
Feb -+ Nixon
Dec 4 Nixon

I - - -
-

Ehrlichman -4

Feb +

Jan 4

Feb 4 -

Jan -+ Nixon
Feb 4 Nixon
Dec 4 Mitchell I!.
Jan 4 Mitchell
Feb 4 Mitchell
Dec 4 Mitchell
Jan -+ Mitchell
Feb -* Mitchell ..

-

Halderman 4

Ehrlichman -+

-

- d -

-
Jan -+

Feb -+

Jan 4

Feb 4

- -

-
Dee 4 Mitchell
Jan 4 Mitchell
Feb 4 Nixon
Dec 4 Nixon
Jan 4 Nixon
Feb 4 Nixon I - . I - -
Dec -+ Mitchell
Jan 4 Mitchell
Feb 4 Mitchell
Dec -* Mitchell
Jan -+ Mitchell
Feb -+ Mitchell -

