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Abstract 

Much recent research in the database community focuses on ways to 
expand the modelling capabilities of database management systems. The 
driving force behind this research is the growing size and sophistication 
of the user community, whose needs and applications seem to always be 
several steps ahead of the technology. One of the areas where considerable 
progress has been made in this regard is in the extension of existing data 
models to represent and manage the temporal dimension of data. In this 
paper we examine how these enhanced modelling capabilities will increase 
the fibnctionality of the database management systems of tomorrow. We 
also introduce the notion of Temporal Representation Transparency as the 
appropriate abstraction mechanism for providing this increased functional- 
ity with minimum burden to the user. 
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I. Introduction 

Information has become a primary resource for many large organizations, 

and the Database Management System (DBMS) has become, in turn, a cen- 

tral tool for managing this critical resource. The earliest DBMS's, based 

on network or hierarchical models of information organization, emphasized 

the physical level of access mechanisms and file design. Unfortunately these 

systems, as, products of their time, paid little attention to the user interface. 

The Relational Model of Data, first defined in 1970 [I], was proposed as a 

model which would liberate the end user from the details of the computer 

implementation of files and access paths, allowing the user instead to con- 

centrate on logical interconnections among the information by means of the 

simple interface of data stored in tables. 

The Relational Model represented a significant advance over the first 

generation of DBMS's. While early criticisms of RM focussed on the ineffi- 

ciencies, real or perceived, in the first implementations of relational systems, 

today such systems as as IBM7s DB2 and SQL/DS and Relational Technol- 

ogy's INGRES in the mainframe environment, and DBASE-I11 and PARA- 

DOX in the microcomputer environment, are currently enjoying widespread 

and growing success. Current criticisms of RM, and indeed of all of the cur- 

rent generation of DBMS's, are directed more at the underlying models on 

which they are based. These models are now seen as inherently too weak 

to support the increasingly sophisticated needs of database users. 
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A major shortcoming of all of the so-called "three great data models" 

- network, hierarchical, and relational - is their ignorance of any notion 

of time and its relationship to information. None of these models has any 

built-in notion of time, and as a result the user either is encouraged to think 

of the database as a repository of only "recent" information, or else is forced 

to develop ad-hoe techniques for managing information across time. These 

techniques invariably involve some combination of the most recent versions 

being managed in some fashion in the disk database, and earlier versions 

being stored in archival tapes. Two problems with this are the need to 

design special-purpose application software to handle the temporal scheme 

adopted in the disk database, and the managerial headache of coordinating 

the disk and tape databases. Clearly many applications, from traditional 

employee record-keeping, inventory control, and accounts payable and re- 

ceivable, to more sophisticated computer-aided design, decision support 

and expert system applications, could all benefit from a DBMS with built- 

in features for organizing information across time and for accessing that 

information in time-dependent ways. 

1.1. The Research Perspective 

Much recent research, for example [2], [3], [4], [5], 161, [7] and [8], has 

addressed this very issue, focusing in particular on the design of general, 

application-independent modelling structures and operations for providing 

temporal information management within the DBMS. A survey done in 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87- 114 



1982 [9] found nearly 100 articles on the subject, and well over 100 more 

have appeared since then. Many recent database conferences have devoted 

an entire session to the issue of temporal data management, and a recent 

conference [lo] was entirely devoted to the subject. 

The research in the area varies across a wide range of styles, applica- 

tions, and methodologies. At the recent conference on Temporal Aspects 

of Information Systems [lo] the research areas presented and discussed in- 

cluded the following cross-section of topics: 

Relational Data Model Extensions 

Non-Relational Data Model Extensions 

Conceptual Data Modelling 

Object Oriented Models and Time 

Temporal Integrity Constraints 

Information System Specification 

Temporal User Interfaces 

Implement ation and Access Methods 

Applications 

- Office Automation 

- Medicine 
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- Engineering 

- Software Engineering 

- Law 

- Scientific 

- Manufacturing 

Artificial Intelligence 

With so much interest, it can be expected that in the near future we 

will see both historical extensions to existing Relational DBMS's, as well 

as entirely new Historical Relational DBMS's. In this article we present 

an overview of the issues involved in historical database management, with 

particular emphasis on its practical implications. Because of its growing 

importance, not only by virtue of its role as the vehicle for most new re- 

search developments in the database field, but also because of its position 

as the leading edge in commercial DBMS, the relational model will be used 

throughout this paper to illustrate the points being made. 

2. A Fkamework for Historical Data Man- 
agement 

In developing a DBMS to provide a general treatment of the temporal 

dimension of information, it is useful to consider the "roots" of today's 
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DBMS's and the goals that motivated their development. Figure 1 illus- 

trates the standard ANSI/SPARC view of the "levels of abstraction" which 

a DBMS is supposed to provide for the user [Ill. The motivation for pro- 

viding these levels is to provide both physical and logical data transparency 

- that is, to free the end users of the system from having to know details 

about the physical representation of the data, and about someone else's 

view of what data is represented. Similarly, when database systems were 

expanded to provide for distributed database management, it became neces- 

sary to handle both fragmented relations and replicated relations properly. 

A. primary goal of the development of distributed DBMSs was to provide 

location transparency and replication transparency to the end users. 

A major goal of historical database should thus be to provide what I 

have called Temporal Representation Transparency (in presentation at [lo]), 

that is, to shield the end users from the details of the temporal representa- 

tion scheme utilized by the DBMS and also by the designer of the particular 

database application. The user should not be required to know how the 

temporal dimension of the data in the HDBMS is modelled or represented. 

The temporally transparent HDBMS should therefore allow the user to ac- 

cess data with explicit or implicit temporal reference in his or her own view 

of this dimension. While it is not yet clear exactly how best to provide this 

transparency, it is clear that a temporally transparent s y s t e m  will need to 

provide the following kinds of features: 

a rich set of well-defined database structures for handling historical 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87- 114 



Figure I: Layers in a DBMS 
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data 

knowledge about a wide variety of inter-related temporal domains 

such as seconds, days, and weeks 

the ability to map between different user views of time points, inter- 

vals, and sets 

a rich set of operations to access and rnanipulate both time-series 

data and the temporal domains themselves 

One component of the HDBMS, therefore, must be a subsystem which 

can translate, whenever possible, between the user's temporal references 

into the representation scheme used in the database, 

An example will help to illustrate the difficulties to be surmounted. 

Figure 2 shows two time-series values, one for SALARY and one for SALES 

figures. 

Examples of operations a user might want to perform on a database 

containing these values for the at tributes SALARY and S ALES-VOLUME 

are the following: 

1. Restrict attention to a particular day, say January 2, 1982 

2. Select only those objects with a SALARY value of 30K in February 

1983 
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3. Select only those objects with a SALES-VOLUME value of 600 on 

January 13, 1982 

4. Correlate in time (join together) these SALARY and SALES-VOLUME 

time-series values 

Operation 1 illustrates a major difficulty: neither attribute has a value 

explicitly represented for the date supplied by the user. Operation 2 requires 

that the system understand something about the standard calendric system, 

in particular the boundaries and sizes of the months. Operation 3 requires 

that the system recognize different types of time-value associations, in this 

instance recognizing that a SALES-VOLUME is an aggregate value over an 

interval of time, and therefore cannot be associated with a single time point 

within the interval. Finally operation 4 requires the ability to correlate 

different types of values associated in different ways with different units of 

time. 

This example should serve to illustrate some of the complexities of 

adding a general time-handling facility into a DBMS, and particularly of 

adding them while maintaining Temporal Representation Transparency. In 

the remaining sections of this paper we will discuss these issues in more 

detail, and describe several current approaches to handling them. 
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3. An Example Database 

In order to illustrate the issues involved in providing historical data mod- 

els and database management systems, we will need to utilize a simple 

database application. Perhaps the best-known database is the familiar 

world of SUPPLIERS, PARTs and SHIPMENTS; simple as it is, it will suf- 

fice for illustrating the need for DBMS facilities to manage the temporal 

dimension. 

3.1. The Conceptual Model 

The diagram in Figure 3 shows the conceptual model of the suppliers 

database as an entity-relationship diagram. A standard, static relational 

database based on this model is shown in Figure 4. 

The standard use of existing database systems models information as 

it changes over time by keeping only the latest version of the data. This 

version can be queried using a standard query language such as SQL, and 

can be maintained using the Data Manipulation capabilities of the system, 

generally including such operations as insert, delete, and replace. In doing 

so, however, any record of the past state of the enterprise is obliterated. 

Figure 4, for example, might represent the "current" state of the enterprise's 

information about PARTs. An SQL query asking about the color of part 

P3 would be expressed as: 
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SALARY 

TIME AMOUNT 
1/5/82 -+ $30000 
2/19/83 -+ $31000 
1/7/84 -+ $32000 1 

SALES-VOLUME 

TIME QUANTITY 
1/82 -+ 300 

Figure 2: Example Time Series Values 

Figure 3: Entity-Relationship Diagram I 
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SUPPLIER 
SNUM 
S 1 
S2 
S3 

SUPPLIES 
SNUM 
Sl 
S1 
S 1 
S2 
S 2 
S2 

Figure 4: Example Static Relational Database 

SNAME 
Smith 
Jones 
Blake 

PART 
PNUM 
P1 
P2 
P3 
P4 
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PNUM 
P1 
P2 
P3 
P I  
P2 
P2 

STATUS 
20 
10 
30 

QTY 
300 
200 
400 
300 
400 
200 

PNAME 
Nut 
Bolt 
Screw 
Screw 

CITY 
London 
Paris 
Paris 

COLOR 
Red 
Green 
Blue 
Red 

WEIGHT 
12 
17 
17 
14 

CITY 
London 
Paris 
Rome 
London 



SELECT COLOR 

FROM PARTS 

WHERE PNUM = 'P3' 

In this static database there is no mention of time; in many applications, 

of course, this approach would be inadequate. Suppose then, that instead 

of only keeping track of the latest value of all of this information we are 

interested in keeping a record of the history of this information over time. 

When the temporal dimension of this information is considered, even so 

simple an example as the suppliers database in Figure 3 - surely the most 

famous and by now (one would have thought) most thoroughly understood 

database conceivable - exhibits shortcomings and ambiguities. The most 

obvious way to handle these problems within existing database systems 

is to add an additional attribute, say TIME, to each relation scheme; for 

example, Figure 5 shows the SUPPLIERS relation in such an extended 

scheme. 

There are several problems with this ad-hoc approach to modelling time. 

Chief among them axe that it puts the burden of handling this dimension 

of the data onto the user - either the end user or the applications program- 

mer - rather than allowing the system itself to handle this. For in this 

approach the DBMS itself knows nothing about the the attribute TIME 

and so can provide no facilities for interpreting its interactions with the 

other attributes. 
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Another problem with this approach is visible in Figure 5. Whereas 

in the static relational model all of the information about an "object" was 

located in a single construct, the tuple, with this approach locating all of the 

information about any given SUPPLIER is a difficult task, since it could 

be represented anywhere in the relation. For instance, in Figure 5, the 

information about supplier S2 is located in the third and the fifth tuples. 

Extrapolating this situation to a relation with hundreds or even thousands 

of tuples, and with information pertaining to many points in time, it is 

obvious that this met hod of incorporating time presents difficulties. In 

particular, the user must always remember to sort each relation on the 

combined key and TIME fields if this representation is to be meaningful. 

The other commonly used ad hoc approach to including time is to pre- 

determine, for each attribute, the mazimum number of time points for 

which data is to be maintained. Figure 6 illustrates this strategy for the 

SUPPLIER relation, where the design allows for the maintenance of the 

three most recent values of the STATUS field. The problems with this 

approach are similar, stemming from the overall problem that it is the 

user, and not the DBMS, which has the knowledge of the semantics of 

this representation. In the first place, it is not known to the DBMS which 

attribute represents the most recent STATUS value. In addition, there is 

no explicit representation of time values, only the relative ordering of these 

recent three. Finally, such a representation, as seen in Figure 6, requires the 

use of null values for "objects" which have fewer than the schema-defined 
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typical number of values, and in addition to its obvious shortcoming both 

in requiring the discarding of any values in excess of this number and in 

requiring the shifting of values into prior "positions" whenever a new value 

is added. 

Relationships, such as "supplies" in Figure 3, are somewhat more com- 

plicated. Because their existence is more ephemeral, being the "coming 

together" of entities which already exist in time, their temporality is rich 

and at this point not thoroughly understood. Such temporal information 

as when the relationship was "established", when it was "broken off," etc., 

are crucial to its understanding. Consider again, for a moment, the "sup- 

plies" relationship as represented in Figure 4. What exactly does it mean? 

With no reference to its temporal dimension, it is not clear whether the 

shipments are actual! or merely planned. Had the designer considered the 

temporal dimension of this relationship, and had an historical DBMS and 

design methodology been available, something more like the relation in Fig- 

ure 8 would perhaps have resulted, with explicit reference to two temporally 

anchored properties of the "supplying" relationship. 

Obviously such temporal issues are ubiquitous in our processing of in- 

formation. Time is a feature of all information, and so it is appropriate 

that a general treatment of its structure and properties be placed into the 

DBMS itself, thereby providing a general mechanism for its handling across 

a diversity of applications. Figure 7 illustrates these two modes of providing 

the needed temporal data management. In (a) the temporal data is encoded 
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in some ad hoe fashion into the underlying static database system, and the 

temporal semantics and operations are provided by a combination of DML 

and applications programming. By contrast, in (b) the general temporal 

information structures, temporal operators, and temporal constraint man- 

agers built into the HDBMS provide all of these features automatically with 

no additional programming. 

The remaining sections of this paper will discuss the issues involved 

in providing general-purpose time-handling capabilities in an Historical 

Database Management System (HDBMS) in the framework illustrated in 

Figure 7; the example "historical" relation in Figure 8 will be used to pro- 

vide illustrations. For purposes of reference, the example queries, updates 

and constraints are described, together with the major issues that each 

illustrates, in Table Tabl. 

3.2. Query and Application Examples 

In a database which records information over time, the DBMS must be able 

to respond to queries and update requests which make explicit or implicit 

reference to the temporal dimension. Because of the lack of historical data, 

such operations are not allowed in a static database and, indeed, facilities 

for handling them are not incorporated into the DML. In this section we 

illustrate some of the kinds of queries which ought to be handled by the 

query and constraint enforcement subsystems of an HDBMS. 
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Table 1: Example Queries, Updates and Constraints 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87- 114 

Issue 
Time Selection 
Relative Time 
When question 
Correlation of Time Series 

Complex Operations 

Trend analysis 

Correlated trend analysis 

Forecasting 

Update as Addition 
Retroactive change 

Proactive change 
Selective update 

Time Demons 

Dynamic constraint 

Timelvalue constraint 

Multiple time reference 

Event reference 

Q1 
Q2 
Q3 
Q4 

Q5 

Q6 

Q7 

Q8 

U1 
U2 

U3 
U4 

U5 

C1 

C2 

C3 

C4 

Example 
What was the city address of supplier S2 on 8/25/86? 
What was the status of supplier S2 two years ago? 
When was the city of supplier S3 London? 
What was the status of Supplier $1 when the last shipment 
of part P3 was made? 
How many shipments from Supplier S3 were sent more than 
one week after they were ordered? 
How has the quantity of shipments of part P 5  changed 
over the past year? 
Compare the quantity of shipments of parts P5 and P6 
over the past year? 
Assuming a steady 10% growth rate, what will our orders 
with Supplier S2 look like over the next five years? 
Supplier S3 is now located in Amsterdam. 
Part P5 was moved to the warehouse in London at the 
beginning of last month. 
Supplier S2 will have status 30 starting next week. 
Upgrade the status of every supplier who has delivered 
all orders within 2 weeks. 
Initiate a standing order of 600 Widgets from Supplier S2 
every week. 
No supplier can be downgraded in status by more than 
10 units. 
No supplier can be downgraded in status by more than 
10 units in any given month. 
No supplier can be located in Amsterdam if they were 
ever located in Berlin. 
No supplier can be re-instated as a client more than 
three times. 



Historical query I: What was the CITY address of supplier S2 on 

8/25/86? 

Query 1 is perhaps the most basic type of historical query an HDBMS 

should support, namely allowing the user to focus attention on the data 

as it was relevant at a particular point in time. To answer it the system 

must be able to perform a kind of temporal "selection" based upon the 

user-supplied time value. 

Historical query 2: What was the status of supplier S2 two years ago? 

To handle this type of query, involving relative time, the system needs 

to have knowledge of the standard calendric system and of the kind of 

temporal values utilized in the STATUS field of the Supplier relation, and 

be able to perform arithmetic on these values. 

Historical query 3: When was the CITY of supplier S3 London? 

Query 3 is another basic kind of temporal query. To answer it the system 

must be able to decompose a time-series value and tell the user which times 

are associated with a given value or values. 

Historical query 4: What was the status of Supplier S1 when the last 

shipment of part P3 was made? 

This kind of query involves more than one time-series value. It is a kind of 

nested query in which the system, as in query 3, must first determine when 

something occurred, and then relate this answer to some other time-series 

value. 
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Historical query 5: How many shipments from Supplier S3 were sent 

more than one week after they were ordered? 

This query also involves a combination of operations, including the de- 

termination of when something happened ("they were ordered"), as well 

as arithmetic ("one week after"), temporal selection ("shipments" at that 

time) and counting ("HOW many") operations. 

Historical query 6: How has the quantity of shipments of part P5 

changed over the past year? 

This kind of "trend analysis" query is very important in Decision Sup- 

port Systems. To handle it the system should be able to provide graphical 

output and perhaps statistical analysis of time-series data. 

Historical query 7: Compare the quantity of shipments of parts P5 and 

P6 over the past year? 

Similar to Query 6, this trend analysis query requires a correlation of the 

values of two different time series. 

Historical query 8: Assuming a steady lowhat will our orders with Sup- 

plier S2 look like over the next five years? 

One of the major roles of the Decision Support System is to aid in forecast- 

ing the future based upon past experience and projected situations. An 

historical database is ideally suited to this kind of application, and this 

example represents the kind of "parameterized query" (the "lorate being 

the parameter") which should be included in the DML of an HDBMS to 

support these applications. 
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3.3. Update Examples 

In addition to handling more complex queries which contain explicit or 

implicit reference to the temporal dimension, an HDBMS has an entirely 

different view of updates from the view of a "static" DBMS. The basic 

philosophy of the HDBMS must be that all updates to the database, with 

rare exception, are simply addztions of more recent information. They are 

thus treated as insertions of a data value and an associated time. The 

examples in this section illustrate this point and some of the other nuances 

associated with updating in an HDBMS environment. 

Historical Update 1: Supplier S3 is now located in Amsterdam. 

Even Simple updates like this one are handled differently than in static 

databases, for in an historical database this update must be handled as an 

insertion rather than a modification. That is, the HDBMS would implement 

this update by adding a new piece of data into the database, namely a new 

<time,data-value>. 

Historical Update 2: Part P5 was moved to the warehouse in London 

at the beginning of last month. 

This kind of update involves a "retroactive change," i.e., a change made 

now about a fact in the past. It might be handled in several different ways, 

depending on how many time dimensions the database was supporting. 

If the database had only one time dimension (data time), this operation 

would cause a change to the database, basically rectifying an "error" in 
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the stored data. If, however, the database were supporting both data time 

and transaction time, this operation would result in the insertion of a new 

triple <transaction-time,data-time,value> with a transaction time of now, 

a data-time of the beginning of the month, and a value "London." 

Historical Update 3: Supplier S2 will have status 30 starting next week. 

Similar to Update 2, this kind of "proactive " update in an HDBMS sup- 

porting both transaction time and data time allows the user to post infor- 

mation now about information which will hold in the real world at some 

future point in time. A typical example of this kind of update would be a 

"raise" in salary which was decided upon at some time before it was ac- 

tually to take effect. For budgetary planning and other purposes it might 

be very useful to record the intended raise before its effective date. As in 

Update 2, a new <transaction-time,data-time,value> triple is added to the 

database to implement this transaction. 

Historical Update 4: Upgrade the status of every supplier who has de- 

livered all orders within 2 weeks. 

This type of "selective" update involves a nested query to select just those 

"objects" meeting the selection criteria. It then performs the same type 

of update, a calculation of the new status and the addition of a new 

<tirne,value> pair to all of these objects. 

Historical Update 5: Initiate a standing order of 600 Widgets from 

Supplier S2 every week. 

Update 5 illustrates a type of update requiring a "time demon" in the 
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HDBMS whose job it is to accept and store requests for database updates 

and, with knowledge of the periodicity of time, initiate the desired updates 

(additions) at the appropriate times until the request is cancelled. 

3.4. Constraint Examples 

Many of the familiar classes of constraints for the relational model, notably 

functional and multi-valued dependencies (FDs and MVDs, respectively), 

appear to have exact counterparts in the various historical relational models 

which have appeared in the literature. (121, for example, discusses FDs 

and MVDs in their historical data model.) However, in a database which 

records information as it changes over time, the possibility presents itself 

for expressing and enforcing constraints more powerful than these familiar 

constraints of the static relational model. 

Constraint 1: No supplier can be downgraded in status by more than 10 

units. 

With this simple constraint, often called a "dynamic constraint ," the user 

requests that the new value be compared with the old value and the update 

be made only if a specified property holds between them (here, that their 

difFerence be no more than 10.) This type of constraint is even expressible 

in "static" models using, for instance, QUEL or SQL and keywords such as 

OLD and NEW to refer to these two distinguished values. 

Constraint 2: No supplier can be downgraded in status by more than 10 
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units in any given month. 

In a slight variation on the previous constraint, Constraint 2 refers not sim- 

ply to the most recent value in the database, but also to the time associated 

with this value. 

Constraint 3: No supplier can be located in Amsterdam if they were ever 

located in Berlin. 

Although fanciful for the example application, this type of constraint, rep- 

resenting again only a slight modification to the first example, requires an 

examination of all past values of an attribute, and cannot be handled with 

the simple OLD and NEW technique. 

Constraint 4: No supplier can be re-instated as a client more than three 

times. 

This constraint makes explicit reference to certain application "event s7' 

which the HDBMS should be able to record and access through some mech- 

anisrn for maintaining the "lifespan" of its objects. This constraint then, 

is satisfied by any employee objects who have no more than three disjoint 

intervals in their "lifespan." 

4. The Nature of Time 

One of the major issues involved in designing a data model that will have a 

built-in notion of time and its properties is, just what is the nature of time 

and what are its properties? This is a question with a long philosophical 
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tradition, but a somewhat shorter history vis-a-vis the database realm. 

Three basic issues have been studied. 

4.1. The Time Elements 

An essential issue when considering a model or system for handling the 

temporal dimension of data is the nature of the time dimension itself. Ba- 

sically this issue boils down to whether time should be modelled as discrete 

elements (such as the integers) or as densely packed elements (as the ra- 

tionals or the reds). While there are proponents of both types of time, it 

appears that the use of discrete time points is more widespread. A related 

issue concerns whether to associate data values with points in time or with 

intervals. Clearly this issue evaporates when using discrete time, since then 

the two representation schemes are equivalent. 

4.2. Relative Time 

Most of the research in HDBMS has focused on modelling and managing 

absolute t ime in some form; that is, exact time points or intervals are as- 

sociated with each data value. In A1 research, however, a great deal of 

attention has been placed on relative times; for example, in natural lan- 

guage understanding and story understanding systems, where phrases like 

"last week" and "a year ago" abound. Clearly an HDBMS will have to 

address this issue in order to provide a representational ly transparent user 
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interface. 

4.3. Periodic Time 

The final overall issue with respect to the nature of time, and one that is 

particularly important in a scheduling context such as might take place in 

an office automation or job scheduling environment, is that of periodic time. 

A temporally transparent HDBMS should be able to respond appropriately 

to queries and updates which refer to the periodicity of the familar time 

units of weeks, months, etc., and also allow for user-defined periods such 

as work-weeks, weekends, payroll periods, etc. 

5. The Interaction of Time and Information 

While at first glance it may appear that the interaction of time and infor- 

mation is straightforward and only needs to be added to existing DBMSs 

to provide the needed facilities, the considerable body of research into this 

problem has shown that time interacts with information in a variety of dif- 

ferent ways, not all of which are as yet well understood. In this section 

various aspects of this interaction are discussed and illustrated. 
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5.1. Attribute Types 

There appear to be three primary relationships that can exist between 

time and the values of an attribute. Some attributes are constant over 

time, for example NAME and SEX; key attributes are assumed to be of 

this type. Other attributes are time-varying, taking on different values 

at different moments in time, such as STATUS or CITY. Finally some 

attributes take on values which are themselves times, for instance BIRTH- 

DATE or PROMOTION-DATE. 

5.2. Object Identification Across Time 

A primary component of any information management system is the need 

to be able to provide unique and unambiguous identification of the objects 

being represented; this is the purpose of the key in database terminology. In 

an historical DBMS object identification takes on an added dimension since 

it is now necessary to recognize that an object currently under examination 

is in fact the same as some other object already known to the database. 

Thus there is the need for a time-invariant key - provided either by the 

user or perhaps by the system - to insure that a single real-world object is 

represented only once in the database, together with all of its time-varying 

properties. 
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5.3. Object Birth and Death 

Unlike "static" databases which record information about only the current 

objects of interest, an historical database maintains a more-or-less perma- 

nent record of objects that are now or were ever of interest to an enterprise. 

Over time, in fact, some objects may come in and out of interest (employees 

may be hired, leave, and subsequently be re-hired; business with a supplier 

may be discontinued only to be reinstated at some later date, etc.) These 

"birth" and "death" events in the real world need to be adequately repre- 

sented in an HDBMS, for several reasons: to keep track of when objects 

are actively of interest, to be able to identify objects across time, to record 

multiple "incarnations" of the same object, and to save storage space when 

objects are inactive. 

5.4. Tuple or Attribute Time-Stamping 

Another controversy exists within the research community relating to the 

level in the database at which the temporal dimension should be incor- 

porated. In relational terms, this has taken basically two forms: time- 

stamping at the tuple level or at the attribute level. Tuple time-stamping 

is somewhat more restrictive, in that it requires all attributes of a tuple to 

have the same temporal properties and time span. At tribute time-stamping 

allows for greater flexibility by allowing for locality of changes (to a single 

value rather than an entire tuple), control at the attribute level over such 
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temporal properties as rate of change over time, function interpolation, and 

aggregate values, some or all of which can also contribute to greater stor- 

age efficiency. Moreover representing attribute values as time-series data is 

generally thought to be closer to the view of most users. 

5.5. Continuous vs. Discrete Changes 

Some information changes discretely at a precise moment in time; for ex- 

ample, the STATUS of a supplier might change from 20 to 30 at 9:OOam on 

a particular day. Other information is changing continuously, and is only 

monitored occasionally, when discrete updates are made to the database. 

Although these real-world situations are quite different, in both cases they 

are reflected by discrete state changes in the database. In order to properly 

represent the real world distinction between these two situations, there- 

fore, the DBMS must know for any attribute which type of changes it is 

representing. 

5.6. Interpolation 

There are two instances when some kind of interpolation of a time-series 

function by the system is necessary. One occurs when the system uses a 

compressed method of storage at the physical level (representing only the 

points of change); the other occurs when the system models a continuous 

function with discrete sampling points. 
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5.7. Aggregation and Disaggregation 

Some time-varying attributes represent aggregate values while others do 

not. Those that do may or may not be disaggregatable. Moreover, for long 

past data it might be convenient for the system to automatically utilize 

some aggregation function (with a computable inverse or at least acceptable 

approximate inverse) in the interests of saving storage.) 

5.8. Data Time and Transaction Time 

A major aspect of the relationship between time and information is that 

there are multiple such relationships. The two which have received the 

most attention have been called "data tirne" - i.e., the real-world t ime at 

which an attribute took on a particular value - and "transaction time" - 

i.e., the time when this fact was recorded in the database. Some systems 

in the literature have supported only one of these two times (generally the 

data time), while others have supported both. In 1121 this issue has been 

generalized to a model supporting n-dimensions of tirne (or other indices). 

5.9. Events 

In contrast to time-varying properties such as SALARY or ADDRESS, 

another way in which time interacts with information is to record the oc- 

currence of some "event" which takes place in real time. Rather than a 

property which can take on different values over the course of tirne, an 
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event is a LLone-shot deal" that has a starting point and an ending point, 

never to occur again. 

5.10. Periodicity and Duration 

In many environments it is necessary to have an awareness of the periodic- 

ity of time - any application that involves scheduling or the regular perfor- 

mance of certain functions or procedures would find this built-in knowledge 

useful. In order to support this aspect of time the system would need to 

have knowledge of the standard calendric periods (hours, days, months, 

etc.) and perhaps the ability to support user-defined periods (work-week, 

weekend, etc.). Furthermore, the system would need knowledge of the du- 

ration of these units and how to convert between units at any level. Finally, 

the system should support operations with these units, including activation 

of transactions when a specified period begins or has elapsed, as well as 

arithmetic on periods (next week, n days ago,...), in other words, "relative 

time" should be supported. 

5.11. Evolving Schemas 

A final aspect of the way in which time interacts with information con- 

cerns the relationship between time and the database schema itself. When 

one considers the two components of the database, the data itself and the 

metadata (the information about the data) it is clear that both of these 
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components may evolve over time. While the subject of schema evolution 

has received some study in its own right, except for a few researchers (no- 

tably [13] and 1141) this aspect of historical data management has received 

little attention. [14] incorporate both notions, that of the "lifespan" of an 

object and the "lifespan" of its attributes, into their historical algebra in a 

uniform manner. 

6. Temporal Information Structures 

In order to support the temporal dimension of information in a DBMS, 

certain storage structures must be defined to serve as the repository of 

this time-stamped data. In the various proposals for historical database 

models, two primary mechanisms have been utilized. One approach is to 

add some kind of time-stamping at tribute or set of at tributes to the schema 

of a relation and requiring that each tuple have, in addition to its "regular" 

values, a value or values for the temporal attribute(s). An example of this 

approach is seen in Figure 5. The other approach is to view the temporal 

component as a property of each value stored in the database. This view 

leads to a structure such as that depicted in Figure 8. In [12] the latter 

approach is generalized to allow multiple "indexical" dimensions beyond 

time (e.g., space, observer, etc.), leading to relations such as that shown in 

Figure 9. 

While these two approaches are the most common, it is not yet clear 
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whether some new approach, perhaps building on the network or hierar- 

chical models, or perhaps upon some entirely new model growing out of 

the specific needs of historical data management, might in fact prove to be 

more appropriate. 

7. Temporal Operations 

In addition to providing structures capable of representing historical in- 

formation, an HDBMS must provide operators capable of providing the 

functionality required of an historical database. To date most of the re- 

search in this area has focussed on the development of query languages for 

an HDBMS, and analogous to the work on relational query languages, this 

research has explored the definition of an extended relational algebra and 

an extended relational calculus. 

7.1. Relational Algebra Extensions 

[14], 171, and [15] have all explored extensions to the standard relational 

algebra for historical relational databases. Because of the different struc- 

tures of their models, and to some extent the different functionality that 

they provide, these algebras are somewhat different. Nevertheless they are 

similar enough that they can be discussed as a group., Essentially all of 

these extensions provide the standard algebraic operations of Project , Se- 

lect and Join, extended where necessary to handle the historical relations 
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of their model, and then add an additional "Time Slice" operator whose 

function is to provide a kind of "temporal selection," allowing the user to 

focus on only temporally relevant sections of the database. 

7.2. Relational Calculus Extensions 

SQL is rapidly becoming the standard user-level query language for rela- 

tional databases. [3] therefore investigated extensions to SQL to include 

the ability to reference the temporal dimension of historical databases in 

an SQL-like manner. 

Analogous to the work on extending SQL, [4] has developed an exten- 

sion to QUEL, called TQUEL, to provide similar functionality. Finally, 

there has been some research into incorporating certain standard st atisti- 

cal operators directly into the query language of an historical DBMS [16]. 

Further research is needed to identify the necessary operators for these and 

other types of access to historical information. 

8. The User Interface to Historical Databases 

8. I. Extended Relational Languages 

We have already noted that there have been a number of proposals to take 

standard relational query languages (the algebra, QUEL and SQL) and ex- 

tend them to provide temporal functionality. Another approach has taken 
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the Query-By-Example mode of access and incorporated a temporal dimen- 

sion [17] into the graphical query structure and the concept of "example 

queries" from [I 81. 

8.2. Graphical Interfaces 

131, recognizing that temporally oriented information is richer than static 

information and, in fact, intrinsically "dynamic" in nature, was the first to 

explore the use of graphics in the user interaction with historical databases 

as a means of more effectively conveying this dynamism to the user. Much 

additional work needs to be done in this area. 

9. The Physical Implementation of Histori- 
cal Databases 

9.1. Early Ad-Hoe Systems 

Early information systems which handled time-varying data developed their 

own specific storage and access strategies based upon the specific needs of 

their application. [19] is a noteworthy example, being perhaps the earliest 

published account of such a system. Chief among these techniques was an 

indexed file structure for each attribute, with a primary key of the time 

field. Undoubtedly many of the techniques developed in these pioneering 

systems will be adopted by tomorrow's general-purpose Historical DBMSs, 
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as in the case of the migration of early file structures and access methods 

into today's DBMSs. Additional file structuring techniques await further 

research, as prototype Historical DBMSs begin to be built. 

9.2. Optical Disks 

A major obstacle to the development of Historical DBMS has always been 

the tremendous storage requirements that their underlying philosophy - 

never throw any data away - implies. Many corporate static databases, 

storing only the latest values of their attributes, utilize scores of today's 

magnetic disk packs. Contemplation of the orders of magnitude more stor- 

age required by treating such databases as "historical" would be daunting 

on current technology. The development of optical disk technology presents 

a technological development analogous to the development of the random 

access magnetic disk which laid the necessary technological foundation for 

today's DBMS. 1201 is one of the early works to explore new file access 

techniques appropriate to this new device. Doubtless the perfection and 

widespread adoption of readlwrite optical disks will hasten this research 

and lead to new access methods which will support the development of 

historical DBMS. 
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10. Summary and Conclusions 

In this paper we have presented the need for a new data model with built- 

in facilities to handle the ubiquitous temporal dimension of information. 

We believe that the long neglect of this dimension, occasioned by the lack 

of the technology to support the huge databases which such a model will 

engender, will no longer be tolerated by the database user community. 

The growing body of research in this area, along with the parallel research 

into so-called Knowledge-Base Management Systems, clearly point to the 

development of a new generation of more "intelligent" Information Systems, 

an intelligence that is sure to include general knowledge about time and its 

inter-relationships with information. 

We have argued that the notion of Temporal Representation Trans- 

parency, an extension of the ANSI/SPARC DBMS levels, should serve 

as the framework within which historical database systems and informa- 

tion systems are developed. An HDBMS exhibits Temporal Representa- 

tion Transparency when it can respond to a user's reference to the data's 

temporal dimension regardless of the representation scheme adopted by the 

system, The extent to which such transparency can be provided is still an 

open question, but it should be the goal of the user interface to provide it. 

Finally, we have indicated that research into all aspects of historical data 

management is progressing rapidly, and there is therefore much reason to 

be optimistic that the era of database systems which "forget" is drawing 
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to a close. 
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Figure 5: Example Time-Stamped Relation 

TIME 
9/1/87 
9/3/87 
8/31/87 
8/05/87 
8/25/87 
8/06/87 

Figure 6: Example of Pre-determined Slots 

SNUM 
S1 
S1 
S2 
S3 
S2 
S3 

SNUM 
S 1 
S 2 
S3 
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SNAME 
Smith 
Smith 
Jones 
Blake 
Jones 
Blake 

SNAME 
Smith 
Jones 
Blake 

STATUS 
20 
20 
10 
30 
10 
30 

STATUS-1 
20 

CITY 
London 
London 
Paris 
Paris 
Paris 
Paris 

STATUS-2 
21 
10 

STATUS-3 
23 
15 
30 

CITY 
London 
Paris 
Paris 



(b) 

Figure 7: Ad-Hoc versus HDBMS Approaches 

USER * 
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D 
M 
L 

f \ 
L I - HDB 
f 7 



Figure 8: Example Historical Relation 

SNUM 

S 1 

S1 

S l  

S2 

S2 

S2 
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PNUM 

P I  

P2 

P3 

p 

P2 

QTY-ORDERED QTY-SHIPPED 

9/10/87 -+ 300 
9/10/87 -+ 300 9/15/87 -+ 300 
10/5/87 -+ 500 1016187 -+ 500 

9/10/87 -+ 100 9/12/87 + 100 

I 
8/31/87 -+ 5001 [9/1/87 -+ 5001 

1015187 - 200 10/5/87 -+ 200 
8/1/87 -+ 200 

9 1 / 8 7  + l o o ]  [ 10/5/87 - 500 
8/10/87 -+ 5001 
9/10/87 -+ 300 

[ 9/1/87 -+ 300 ] 
9/10/87 - 300 

9/12/87 -+ 50 
8/6/87 -+ 4001 

10/2/87 -+ 600 

8/5/87 
[9/10/87 I: 

10/10/87 -+ 500 [ 8/12/87 -+ 500 ] 
9/13/87 -+ 300 
9/10/87 -+ 300 

[ 9/15/87 -+ 100 
9/30/87 -+ 200 

9/16/87 -+ 50 

I 
[8/9/87 -+ 4001 

10/20/87 -+ 600 



Figure 9: Relation With Multiple Indices 

PROJECT 

Watergate Break-In 

Watergate Coverup 

Ellsberg Break-In 
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APPROVER: <Observer, Rec-Time, Data-Time> 

Dec -+ Mitchell 
Jan 4 Mitchell 
Feb 4 Nixon 
Dec 4 Nixon 
Jan 4 Nixon 
Feb 4 Nixon 1 

I - -  
Dec 4 Mitchell 
Jan 4 Mitchell 
Feb 4 Mitchell 
Dec -+ Mitchell 
Jan -+ Mitchell 
Feb -+ Mitchell .. 

- 

Halderman -+ 

Ehrlichman -+ 

- 

F 

Jan 4 

Feb 4 

Jan -+ 

Feb 4 

- 

Halderman -+ 

- 
Jan -+ 

Dee 4 Mitchell - 
Jan -+ Mitchell 
Feb -+ Nixon 
Dec 4 Nixon 

I - - -  
- 

Ehrlichman -4 

Feb + 

Jan 4 

Feb 4 - 

Jan -+ Nixon 
Feb 4 Nixon 
Dec 4 Mitchell I!. 
Jan 4 Mitchell 
Feb 4 Mitchell 
Dec 4 Mitchell 
Jan -+ Mitchell 
Feb -* Mitchell .. 

- 

Halderman 4 

Ehrlichman -+ 

- 

- d -  

- 
Jan -+ 

Feb -+ 

Jan 4 

Feb 4 

- - 

- 
Dee 4 Mitchell 
Jan 4 Mitchell 
Feb 4 Nixon 
Dec 4 Nixon 
Jan 4 Nixon 
Feb 4 Nixon I - .  I - -  
Dec -+ Mitchell 
Jan 4 Mitchell 
Feb 4 Mitchell 
Dec -* Mitchell 
Jan -+ Mitchell 
Feb -+ Mitchell - 


