
RULEBASED VERSUS STRUCTURE-BASED MODELS

FOR EXPLAINING AND GENERATING EXPERT BEHAVIOR

Vasant Dhar
Department of Information Systems

Graduate School of Business Administration
New York University

and

Harry E. Pople
Decision Systems Laboratory

University of Pittsburgh

March 1987

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

This paper appears in the Communications of the ACM, June 1987

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

RULE-BASED VERSUS STRUCTURE-BASED MODELS
FOR EXPLAINING AND GENERATING EXPERT BEHAVIOR

Vasant Dhar
Department of Information Systems, New York University

Harry E. Pople

Decision Systems Laboratory, University of Pittsburgh

This paper appears in the Com~~zzlnications of t h e ACM, S e p t e m b e r 1987.

We would like to acknowledge htfarilyn Stelzner and anonymous referees for their comments
and suggestions which have contributed significantly in sharpening the presentation of this
paper.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Abstract
Flexible representations are required in order to understand and generate expert behavior.

While production rules with quantifiers can encode experiential knowledge, they often have
assumptions implicit in them, making them brittle in problem scenarios where these
.c--umptionrr do not hold. Qualitative models achieve flexibility by representing the domain
entities and their interrelationships explicitly. However, in problem domains where
assumptions underlying such models change periodically, i t is necessary to be able to synthesize
and maintain qualitative models in response to the changing assumptions. In this paper, we
argue for a representation that contains partial model components that are synthesized into
qualitative models containing entities and relationships relevant to the domain. The model
components can be replaced and rearranged in response to changes in the task environment.
We have found this .model constructor" to be useful in synthesizing models that explain and
generate expert behavior, and have explored its ability to support decision-making in the
problem domain of business resource planning, where reasoning is based on models that evolve
in response to changing external conditions or internal policies.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

1. Introduction

A major decision for an expert system builder is one of how expert knowledge is to be represented. The

representational framework adopted can play an important role in how subsequent data are obtained,

interpreted, and assimilated into the framework. Some researchers argue that expert knowledge is best

encoded as rules. Others argue that qualitative models are a more accurate and/or robust representation

of such knowledge.

In this paper, we argue for a more fundamental unifying representation, of which rules and qualitative

models are particular expressions. The primitive elements of the underlying representation are model

components which can be synthesized to compose interpretations that explain observed behavior, and

exhibit expert behavior in problem solving situations. Rules can then be viewed as summaries of model

behavior, summaries which may derive from assumptions about unknown conditions in the problem

domain.

The representation we describe is based on the results of a collaborative research project with a

computer manufacturing company aimed a t understanding the problem of business resource planning, so

that a computer-based model might be designed to support the planning problem. In attempting to

understand the reasoning processes of experienced planners, we constructed several computer models to

simulate expert behavior. The earlier models, which Se re "run* on real cases against experts, were rule-

based, developed in 0 P S 5 (Forgy, 1981) and then AhlORD (de Kleer et. al, 1977). The brittleness of such

models led us to investigate alternative, qualitative model representations - which served as the point of

departure for the existing scheme, implemented as a computer model called PLANET (Dhar, 1984).

In a manufacturing environment, the object of interest is a manufacturing system which is a structural

arrangement of activities with flows of materials, designed to produce certain outputs while taking

cognizance of resource constraints such as capital, space and labor. In the planning stages, the structure

is hypothetical, based on assumptions about the future. Given the uncertainties involved, a important

part of a planner's job centers around the dynamics of the structure. The dynamics are of two types. The

first involves reasoning about parametric changes (i.e. what happens if the output needs to be doubled)

with a given structure. The second involves dealing with assumption changes in the task environment,

which can require etructural modifications to the model in order to achieve the desired goals, given

certain resource constraints.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

2. Representations for understanding and generating expert
behavior

During the earlier phases of this investigation, we attempted to model expertise involved in planning as

rules. This turned out to be inadequate for a variety of reasons, which we discuss below. This discussion

also motivates the need for an alternative representation scheme which we describe in the remainder of

the paper.

2.1. Production Rules With Quantifiers and Certainty Factors

It has been argued that the basic advantage of the rule based representation scheme is the modularity

rules provide (Forgy and McDermott, 1977; Davis and King, 1977) and the simple uniform interpretative

procedure that is often sufficient in rule based systems (Duda and Shortliffe, 1985).

Within the rule-based paradigm, the probabilistic approach has been commonly used for modeling

uncertain knowledge (Shortliffe, 1976; Duda et.al, 1979). As an example of a propositional rule

incorporating probabilistic information, consider the following example from a manufacturing context:

IF : 1. There is increased throughput of mater ia l
THW: 2. It is l i k e l y (0.8) t h a t add i t i ona l l abo r is requi red .

-
Here, the numeric weight (0.8) is intended to express the rule-author's degree of belief in the consequent,

given that the antecedent is shown to be true. Such numeric weights are often referred to as *certainty

factors*, after Shortliffe (1976). More recently, Heckerman (1986) has argued that these factors can be

interpreted as a special case of probabilities.

2.2. Hidden assumptions in production rule models

MThile this type of knowledge structure provides a good general idea about the relationships among

certain variables of a problem, there is a danger associated with asking an expert to art.iculate knowledge

in this form. If forced, the expert might specify such a rule and certainty numbers. However this is likely

to be accompanied by appropriate qualifications and/or remarks to the effect that such a rule is difficult

to express in the abstract, that is, i t is conditional on various circumstances. For example, if pressed, the

manufacturing plant expert would say that extra labor might not be required if the work rules could be

changed, or if the plant were laid out kore efficiently, or if part of the production could be offloaded to

another plant, etc. Massaging all such qualifications into a numeric estimate may be possible, but of

questionable value in that i t is likely to force out important contextual knowledge surrounding the rule.

Yet, this contextual knowledge may play an important role in the actual reasoning process of the expert

in a problem solving situation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

2.3. M a k i n g Exceptions Explicit

An alternative approach toward modeling uncertainty, which has its origins in Stallman and Sussman's

dependency directed reasoning paradigm, is the "reasoned assumptions" approach of Doyle (1983) which

handles the treatment of uncertainty in non-statistical terms while leaving the propositional information

unchanged. A discussion of the details is beyond the scope of this paper and can be found in Doyle

(1983). The basic difference is that conditionals of a problem situation (defaults or exceptions to general

propositions) are recognized explicitly instead of being "homogenized" into certainty scores as in the

probabilistic approach. For example, a rule that takes explicit cognizance of exceptions and/or defaults

might be

'IF there is an increase in throughput, THEN increase direct labor UNLESS you offload part of the

manufacturing process to another facility, or UNLESS"

As Doyle points out, eliciting knowledge in this manner requires carrying the knowledge acquisition a

step further:
"One cannot simply reformulate probabilistic rules as reasons according to their certainty

factors. T o re-express a database of expertise, we require the knowledge acquisition process
carried a bit further than usual. The approach of reasoned assumptions supposes that
numerical judgements of certainty often hide more specific information not yet made explicit
by the expert informant, When the expert says "IF' A, THEN i t is likely (0.3) that C," this
really means that many exceptional cases art? familiar to the expert. One might ask the
informant to list these exceptions as a set B, in order to qualify the rule by writing i t as A 11 B
11- C (which means A &thout B gives C or conclude every sentence i n C if every eentence i n
A has been concluded and no eentence i n B has been concluded), but i t is often as difficult to
think of exceptions offhand as i t is to think of ordinary heuristic rules. Instead, we apply the
same technique to articulating expertise as that already practiced, namely the informant
expresses what is clear, and then formulates and reformulates the missing cases, exceptions,
and generalizations by repeatedly examining the system's performance on test problems. A t
bottom, we always have rules of the form "Usually, IF A, THEN C m or "Usually, IF A, THEN
-C," which we express as defeasible or default reasons, m d we express the intermediate
degrees of uncertainty by case analysis and reasons stating exceptions to generalities." (Doyle,
1983. Parenthesized explanation added.)

T o summarize, the non probabilistic approach encourages eliciting information about conditionalities

explicitly. Doyle's argument is that via repetitive case analyses, i t should be possible to get the expert to

articulate the exceptions and defaults instead of "losing informat,ionm via an implicit translation of these

into numerical scores. Implicit to the argument is the position that defaults are knowable in principle as

opposed to unknowable because of randomness in the phenomenon being investigated.

Doyle's analysis assumes that the "knowledge engineer* will ult.imat.ely converge on the right set of

rules along with their associated exceptions and defaults. However, this approach sacrifices parsimony in

representation by opening up the the possibility of admitting large numbers of defaults and exceptions,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

leading to large numbers of rules which can become particularly difficult, to keep uptc tda te in problem

domains characterized by a changing reality. Many exceptions can arise in situations with a significant

number of degrees of freedom. For example, if the throughput rule mentioned in the last section has as its

underlying context a complex model of the manufacturing process with a large number of interrelated

entities, the effects of increased throughput could be assessed in many different ways, each depending on

t he conditions o r constraints attached to the various parts of the manufacturing process. For such

problems, rather than try to explicate all the defaults and exceptions, i t is more fruitful to think in terms

of a more parsimonious model that represents explicitly, the primitive entities and relationships of

interest. Under changing conditions, the model must be maintained to reflect the changing reality.

3. Generating detailed behavior via qualitative models of
manufacturing

Several detailed accounts of qualitative representations, all in domains involving simple physical

systems, appear in a special issue of the AI Journal (December 1984). Because of the recency of such work

and the diversity of the ontological primitives used in characterizing the domains, there is no standard set

of conventions o r notation for describing qualitative models. The basic approach, however, can be

characterized as follows:
*...in order to understand a physical system, the description of a system's behavior must be

derivable from the strucltrre of the system. The term structure refers to the components of
the analysis, component behaviors, and the connections between components.' (Bobrow, p.1,
1984, italics added).

Understanding the behavior of such a system in response to a change requires starting at the point where

the change is induced, and propagating its effects through the connections. Depending on the task that

the system is addressing, the behavior that results can be used for purposes such as prediction/simulation

(Forbus, 1984), envisioning (de Kleer and Brown, 1984), and diagnosis (Davis 1984; Genesereth, 1984).

Our concerns center around two kinds of changes, described a t the outset of the paper: the first involve

a simulation within an existing model structure whereas the second type involve restructuring the model

itself. The latter functionality calls for synthesizing qualitative models from model parts represented a t

various levels of abstraction. Before considering how these changes can be accomodated, let us consider

how a qualitative model in the manufacturing context is synthesized in the first place.

3.1. Model synthesis f r o m partial model components

Assume that some computer manufacturing process is partitioned into areas that deal with major

components of the computer such as modules, kernels, subassemblies, cables and harnesses, peripherals,

and various customer-specific options. Each of these areas involves performing certain broad functions

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

which in turn involve several lower level activities. There is a certain logic for organizing activities in

various configurations. For example, if a module has been assembled, i t makes sense to pass i t through an

activity tha t tests it for faults (typically open and short circuits) that might have been induced as a

consequence of the ~ssembly process. In effect, knowing that assembled modules have to be processed

establishes the need for a test activity, and a t the same time establishes constraints on where assembled

modules can be directed in the overall manufacturing process. Let us denote the activity that tests for

faults as Manu jacturing Induced Faults Test (MIF-Test). Following such a test, i t is necessary to ensure

that each component of the module is junctional, that is, performs within tolerance limits. We call this

Functional test or F-test for short. Finally, since functional modules must perform satisfactorily as a

whole under conditions they will have to endure in the finished product, another testing stage can be

expected. This testing, sometimes referred to as "testing modules a t speed," we refer to simply as Speed

test (STest). Thus, the overall module-check function could involve the configuration of activities

shown in Figure 1. Such an arrangement can be considered a "typical* arrangement of activities in the

same way a molecule is a typical structural arrangement of atoms. There can be several typical

arrangements of activities corresponding to a function.

In laying out the rationale behind the configuration outlined above, we have in effect performed a

synthesis of components (in this case, activities) in arriving at a coherent, more comprehensive

conceptualization. This conceptualization denotes part of the overall qualitative model (which we also

term the synthetic model), which can be compoged by integrating other model components into

increasingly elaborated "task complexes8 (Pople, 1982). A visual representation of the qualitative model

then begins to resemble that shown in figure 2. The connections among the activities are material flows,

which connect various parts of the model. An activity can have multiple inputs and outputs. Also, certain

materials can be processed by several activities, as indicated in table 1. In the planning context, the

qualitative model such as that in figure 2 is one among many that might have been synthesized. This is

because the synthesis task is inherently underconstrained, requiring consideration of sets of alternatives in

the various parts of the task environment and making choices from among them. This flexibility in what.

selections will be made in various parts of the task environment makes i t possible to have many

structural arrangements, one of which in schematized in figure 2. The nest.ed boxes in figure 1 and 2 show

the various model components. Each of the components of the model can be conceptualized as an instance

of an object which is defined in terms of a set of properties. For example, the method object (labeled 4 in

the figures) can be defined as the tuple

<id, i/o, direct-labor, indirectlabor, capital, space>

where the first property designates a method's identity, i/o is a set of algebraic input/output relationships

among the volumes of materials flowing through the activity, and the next four are numerical amounts of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

FIGURE 1
A schematic of a configuration of activities that comprise the module-check function.

MODULES VITH MODULES NOT
FUNCTIONAL FUNCTIONING AT
DEFECTS SPEE D

LEGEND

AM ASSEMBLED MODULES
MDTM* MODULES PASSING M IF TEST
MDTM- MODULES f A l L I N t MIF TEST
TTM+ MODULES PASSING FUNCTIONAL TEST
TTM- MODULES FAILING FUNCTIONAL TEST
STM* MODULES PASSING SPEED TEST
STM- MODULES FAILING SPEED TEST

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

resources (in appropriate units) or algebraic relationships for calculating resource requirements, expressed

in terms of the material flows through the activity. An activity (labeled 3 in the figures) can be described

by the tuple

<id, choice-set, method, inputs, outputs>

which consists of properties indicating the identity of an activity, the set of potential methods tha t can be

used, the method chosen, the inputs, and the outputs to the activity. The configuration and function

objects are described in terms of similar properties which we illustrate shortly. In summary, instances of

functions, configurations, activities, and methods constitute sets of primitive model components, subsets

of which can be selected in synthesizing the complete model.

Functions - > module-check

Materials

module-repair kernel-check

(F-test S tes t)

Table 1
This table indicates activities (lists inside the cells) in the different functions (on the

horizontal axis) tha t can process the various materials (on the vertical axis). The materials and
activities are from figure 2. Each of the activities in the cells has an associated
mtransformation functionm (defined in the text) tha t indicates the relationships among their
inputs and outputs.

3.2. Reasoning using the synthesi~ed model

Let us assume that an interpretative model has been assembled by means of a model building program

(described in the next section), and that the current state of the computer model includes components

indicated in figure 2.

Reasoning about the "what if volume is doubled* situation using such a model becomes somewhat

different than in the rule-based model described previously. To see how, consider an activity such as F-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Test in modulecheck (which we refer to as module-check:F-Test) as being represented in terms of a

structured object da t a structure that incorporates knowledge about the method employed and the types

and proportions of material flows through it, as follows:

(a c t i v i t y
i d : module-check:F-Test
method : FC-333
i n p u t s : ((MDTM+ 110 module-check:MIF-Test))
o u t p u t s : ((FTM+ 100 module-check : S-Test) (FTM- 10 module-repair : F - ~ e p a i r))

3

where the inputs and outputs are lists of triples indicating the type of material, the amount, and source

(of input) or destination (of output). The numbers are the results of solving certain algebraic

input/output relationships that are specifiable in the data structure corresponding to its method object.

Resource requirements for the activity also depend on the method used, in this example, the requirements

of the FC-333 method (illustrated shortly). A different choice of method for this activity might entail a

different set of resource requirements.

Assessing the impacts of doubling the volume requires running a simulation initiated a t the activity

where an input or output is changed, with the resulting changes (assuming for the moment that

proportions of materials through the activity are maintained) being propagated to connected activities.

For example, in a model corresponding to figure 2, if the input material to the activity module-

check:=-test is doubled, its outputs to the two activities i t is connected to, namely modu1echeck:F-Test -
and module-repair:MIF-Repair increases in the proportion determined by certain inputloutput

relationships. These increased flows carry forward to all related activities. In the small model fragment of

figure 2, this would involve recomputing the increased flows for each of the ten activities. The

corresponding resource requirements can then be computed for the revised flows. The results of this

process may o r may not differ from those of the rule-based model depending on the assumptions about

the manufacturing process embodied in that model. Specifically, the accuracy of the rule-based model

would depend on the correctness of its hidden assumptions for this particular problem scenario.

The effect of changing certain types of assumptions underlying the qualitative model can be more

dramatic. For example, if there were an organizational policy change to offload part of the module

production to another facility, there might be no need for the module-check function at all. This requires

a structural modification - removing certain components of the model and their dependencies and

establishing new connections among a new set* of model components. For such a change, par t of the

relevant model might appear as in figure 3, which has no module-check function. ln our system, this type

of restructuring (i.e. the decision not to have module-check) is initiated by the user, with the system

assisting with the maintenance or establishment of appropriate dependency relationships among the

l l n this example, the new set is a subset of the old one. The new set eso also be larger.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

various components of the model.

The results of running the simulation on this model are likely to be different from those of the model

corresponding to figure 2; obviously, no additional labor or other resources would be required for

assembling and checking modules as in the previous situation because the module-check activities no

longer exist. Resource requirements for the other activities can be computed in the same way as described

above. If the expert were to try to articulate this situation in terms of rules, he might be forced to

modify the previous ones, or worse still, provide new rules to handle the qualitatively different model

corresponding to the changed problem scenario. The important point to note is that if we consider an

evolving structure of the type we have described as an underlying reality and rules being summary

descriptions of the behavior of such a system, i t is not surprising to find experts articulating different

rules for seemingly identical problem situations. For a knowledge engineer attempting to model the expert

knowledge as rules, converging on the *rightm set of rules can become virtually impossible.

In concluding this section, we should point out that we do not regard rules as being inherently limited in

their representational ability compared to other types of representations. Rather, rule-based models

frequently compile domain knowledge into heuristics. Encouraging the expert t o articulate the 'rules of

the domainm can have the effect of forcing out important contextual knowledge surrounding the rule,

leading to differences between the behavior of the system and the expert on real cases. In the case of the -
planning problem, we found the rules articulated b y the expert to be summary descriptions of reasoning

based on a more detailed model of the task environment that involved explicit knowledge about primitive

entities and relationships in the task environment. What appeared as exceptions to rules (leading to more

rules) were easily understood in terms of a structural representation of the task environment, which we

describe next.

4. Synthesizing and managing the qualitative model

The qualitative model we have described encodes several types of knowledge. Its fundamental building

blocks are the model components and the relationships among them, and a procedural component that

threads the components into complete models (or modifies existing models in response to changes).

4.1. Model components as a hierarchy of objectis

In the model synthesis program implemented by Dhar (1984, 1986), synthesis is a design task that

involves making choices from among competing alternatives (called choice sets) in different parts of the

task environment. Each alternative is represented as an instance of a structured object data type. The

instance variables of the object type correspond to the attributes used to characterize the object.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Each object corresponds to a certain level of abstraction. As indicated in figures 1 and 2, there are four

levels a t which choices are made. These levels are shown in figure 4 where each entity at the bottom end

of a line corresponds to an alternative with respect to the entity at the top end of the line. In effect, each

line represents a part-of relationship. When a model is synthesized, an object can be chosen as part of a

higher level object connected to it. Arrows in figure 4 indicate material flows (corresponding to the double

arrows of figures 1,2 and 3).

The structure and role of the objects can be described by considering the model segment of figure 2,

which is an instantiation of an object hierarchy, such as the one in figure 4. The model segment is a

topdown 'projectionmof this hierarchy. For example, the module-check function within this model

segment is represented as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

(func t ion
i d : module-check
choice-se t : (in tegra ted-d iagnos t ics d i s t r ibu ted-d iagnos t ics)
c o n f i g u r a t i o n :

3

(con f igu ra t i on :
i d : i n t eg ra t ed -d i agnos t i c s
d i r e c t - l a b o r : h igh
ind-labor: low
space : low

a c t i v i t y l :
a c t i v i t y 2 :
a c t i v i t y 3 :

3

(a c t i v i t y : (a c t i v i t y : (a c t i v i t y :
i d : S-Test i d : F-Test i d : MIF-Test
choice-se t : (FC-333,QV.L-200) choice-se t : (FC-333.QV,L-200) choice-set :

(shorts /opens)
i npu t s : ((FTM+ 150 module-check: i n p u t s : . . . i n p u t s : . . .

F-Test))
o u t p u t s : ((STM+ 130 ou tpu t s : . . . o u t p u t s : . . .

kernel-check:Box-Test)
(STM- 20
module-repair:F-Test))

method :

I ?
(method :

i d : QV
d i r ec t - l abo r : 2*FTM+
ind-labor: 0.5*FTM-
c a p i t a l : 5 0 K
space : 400 s q . f t
i / o : (FTM+ = O.Q*MDTM+

FTM- = 0 . l*MDTM+
STM+ = O.Q*FTM+
STM- = 0 .1 *FTM+

1
3

{method :
i d : FC-333
d i rec t - labor : 3*MDTM+
ind-labor: 1
c a p i t a l : 25K
space : 600 s q . f t

110: . . .
+ O.l*FTM- o

0

0

0

3

method :

(method :
i d : shorts /opens
d i r ec t - l abo r : 2
ind-labor: 0
c a p i t a l : 5 K
space : 300 s q . f t
i / o : . . .

0

0

0

0

3

The structured object descriptions are enclosed within braces. The top level object, in this case the

modulecheck function, contains the choice set of alternative configurations. When a configuration is

selected, i t becomes part of the function object (indicated by the pointer). The configuration contains

qualitative descriptions of resource requirements (the role of which will be described shortly), and activity

objects that are par t of it. When a method is selected for an activity, an object corresponding to this

method becomes part of the activity. The method objects contain specific resource requirements, inputs

that they can process, and the relationships between their inputs and outputs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

A complete qualitative model is composed of several such topdown instantiations corresponding to

different parts of the task environment. Each choice set involves one or more part-o f relationship between

an object and lower level objects, one of which can become included in it; in effect, in a completely

formulated model, one such relationship is instantiated for each choice set relevant to the task

environment. In the remainder of this section, we describe how these choices become part of the synthetic

model.

4.2. Constraints

There are two types of constraints that must be considered in synthesizing the model. The first type are

qualitative constraints, which express dependency relationships between alternatives in the different choice

sets. Structurally, such constraints are similar to production rules. In our system, a qualitative constraint

is represented as a two part list structure. The left hand side consists of a set (list) of identifiers of choice

set alternatives. Each identifier is of the form obj:alt-id where obj is an object (which may contain lower

level objects as choices) containing the alternative identified by all-id. The right hand side consists of a

single negated or non-negated identifier. For example, the constraint "((module-check:F-Test:FG333) ->
module-check:STest:-FG333)* states that the method FG333 (the alt-id of the F G 3 3 3 object) cannot

be employed simultaneously by the F-Test and S T e s t activities in the module-check function.

A choice set alternative identifier obj:alt-id in aqualitative constraint is satisfied if the alternative

identified by alt-id has been selected in object obj. If the identifier is negated, then i t is satisfied if some

other alternative has been selected in the object obj. We say that a qualitative constraint is satisfied as

long as i t is not violated. A violation occurs when each item in the left hand side of the constraint is

satisfied and the right hand side is not satisfied.

The second type of constraint is the quantitative constraint which affects choice somewhat more

indirectly. Simple quantitative constraints are expressed in the form <alg-ezp tel-op alg-ezp> * where

alg-ezp is an algebraic expression defined over problem variables (these variables designate resources such

as labor, capital, or space or can be exogenous variables defined by a user) and rel-op is a relational

operator. Simple quantitative constraints can be combined into more complex ones using the boolean

operators AND, OR, and NOT. Each quantitative constraint is a boolean function that returns the value

false when the constraint is violated and true otherwise.

In our system, each quantitative constraint is translated into a form consisting of a predicate followed

by forms corresponding to the algebraic expressions. For example, the following expression in Lisplike

prefur notation states that the capital requirements of the F-Test activity in module-check is less than

$100K: *(less (capital module-check:F-Test) $100K)* where capital designates a function that returns the

value of the capital required by its argument, in this case the F-Test activity. less is a predicate that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

returns false if the value of its first form is greater than that of its second form, and true otherwise.

4.3. Inter-object communication in model synthesis

Objects have associated 'message typesN defined over them.* By representing design components as

objects capable of sending and receiving messages, the responsibility for assimilating a change becomes

distributed. For example, if as a consequence of a qualitative constraint i t is determined that FG333

method should be established as a choice in some activity as a consequence of a qualitative constraint, a

message is dispatched t o that activity object which is responsible for establishing i t as the choice and

performing any associated book-keeping. Similarly, the responsibility for effecting a high level change

such as that involving offloading module-checking to another facility is accomplished by dispatching a

message to the module-check object to eliminate itself, which also removes the lower level objects within

it.

The qualitative model can be synthesized from scratch or modified. If i t is designed from scratch, the

choice process proceeds in a top-down fashion. If a modification is required, parts of the model are first

removed along with their dependencies (explained shortly), and revised choices made in these parts of the

model. In making these choices, the system alternates between two modes of operation which, following

Stefik (1980), we term constrained and heuristic modes. In the constrained mode, qualitative constraints

determine (or preclude) choices from specified choi& sets. The heuristic mode becomes operative when

propagation of choices comes to a halt. In this situation, a choice must be made from some choice set in

order for problem solving to continue. The choice can be specified directly by the user, or made

automatically by the system based on an evaluation function defined over the choice set attributes, that

is, the resource categories. The order in which choice sets are examined is based on a prioritization of the

choice sets which reflects the user's view of the importance associated with the decisions corresponding to

them.

If the evaluation of alternatives within a choice set is made across low level alternatives where detailed

resource requirements are available, a numeric evaluation function is used. If the comparison involves the

more abstract pieces of the model where only qualitative values are available (such as high, medium or

low), the evaluation is heuristic, involving combination of these values into overall ratings.

It can be the case that a violation of either a qualitative or quantitative constraint occurs before the

model is fully formulated. If a constraint violation occurs while the system is in the constrained mode, i t

becomes necessary to revise a previously made choice in some choice set, and then to continue forward

*1n object oriented programming, these are often referred to as *methodse. Since we use the term method to denote rr model
object as opposed to a procedure, we refer to the procedural knowledge component as s message type.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-27

from that point. Specifically, a heuristic mode choice and its dependents are discarded. A revised choice

is then made from the choice set containing that last heuristic mode choice and problem solving

continues. The process of determining the most appropriate "culprit* choice set, which is not of central

interest here, is described in Dhar (1986) and Dhar and Quayle (1985).

If a constraint violation occurs while in the heuristic mode as a consequence of a choice made from a

choice set, a new choice is made from that choice set if possible. However, if all choices from a choice set

have been tried unsuccessfully, then, as in the case above, a previous heuristic mode choice is discarded,

and a revised choice made from the choice set containing that heuristic mode choice.

4.4. M a i n t a i n i n g dependencies a m o n g choices

M'henever a choice is made, a two part structure called a node is created. The first par t of the structure

consists of the identifier of the choice, and the second part consists of the reasons for making the choice

(similar to Doyle's "set of support" (Doyle, 1978)). If the choice is made as the consequence of a

constraint relationship becoming satisfied, the node corresponding to the choice has a *deduction

justification*, which consists of identifiers of other choices (the left hand side of a constraint relationship).

MThen made heuristically, the justification for the choice is the preference function that was used in

making the choice; these heuristic choices become candidates for retraction in backtracking situations.

Deductively established choices can be retracted only when all their supporting choices are retracted.

The primary use of the dependency network is to enable incremental modifications to the qualitative

model. If a change requires some existing choice to be retracted (i.e. "no FG333*), the choice is removed

from whatever support sets i t appears in. Choices whose supports have become empty are then retracted,

and the deductive-heuristic choice cycle described above comes into play, resulting a modified qualitative

model. In this way, the qualitative model always reflects the current set of choices made from different

parts of the task environment, and the dependency network reflects the relationships among the choices.

4.6. RoIes of t h e s y n t h e t i c model

In summarizing this section, i t is worth restating the motivations that have shaped the model synthesis

system described above, and the methodological considerations that a knowledge engineer must be

cognizant of in trying to explicate a model of expertise.

In attempting to understand the decision-making processes of the expert analyzed in this research, we

began in a classical knowledge engineering fashion where the expert was encouraged to articulate the

*rulesm about the domain, Several prototype systems based of these rules were run on real cases against

the expert. These systems were found to be inadequate in matching the behavior of experts who often

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

resorted to reasoning based on deeper domain knowledge in explaining or rationalizing a case. This led us

to postulate tha t the deeper contextspecific models were being synthesized on the fly from finer grained

knowledge components, and that this synthetic model was then used to rationalize the data, that is, the

data were interpreted to "fitm the model.

A second observation during the initial knowledge acquisition exercise was that different experts, or the

same expert at different times in the knowledge acquisition process, articulated different rules about

identical problem scenarios. Such an observation might cause a knowledge engineer to speculate whether

the expert is being inconsistent. While this is possible, we found that the different rules often derived

from differences in the assumptions, that is, the different contexts underlying these rules. In the planning

context, where decisions change often, a decision maker may have considerable latitude in the

assumptions (choices) introduced into the synthetic model, leading to different rules being articulated in

similar cases. In such cases, rules may be adduced as being summary descriptions of behavior, where the

structure of the model underlying the behavior may not be apparent.

In summary, based on the initial knowledge acquisition exercise and subsequent case analyses, we were

drawn toward exploring the reasons for the divergence between the rule models articulated by the expert,

and the deeper reasoning process that seemed to emerge with real case data. What gradually became

apparent was that the hidden assumptions that typically went unarticulated during knowledge

acquisition, often played a central role in case analy&. Further, because of these hidden assumptions, i t

often appeared that different rules were being articulated on different occasions for identical problem

scenarios. Trying to identify the complete set of exceptions and defaults for every rule was cumbersome

and yielded too many rules that were difficult to maintain. This experience made i t clear that reasoning

about planning situations was really based on synthetic evolutionary models that are highly sensitive to

problem context. This led us to believe that the challenging part of the decision maker's job is

formulation, that is, maintaining the integrity of the model under changing conditions so that i t can be

used for reasoning. The model synthesis system we have designed has been shaped by these concerns.

5. Practical uses of the model synthesis system

Since a pragmatic goal of this research is to provide planning managers with a knowledge based support

tool, i t is worth summarizing some of the uses of our modeling system for decision support, as well as its

potential for supporting other aspects of group modeling situations in large organizations.

The process of model building in large organizations involves a necessary diffusion of responsibility

among several individuals or groups within the organization. When a large problem is decomposed in this

way, i t is the responsibility of the groups to generate feasible alternatives with respect to the part of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

task environment for which they are responsible. I t is then the job of a coordinator to synthesize aome of

these alternatives into a coherent whole, keeping in mind the relationships among the different parts of

the task environment and other constraints such as those on resources. In synthesizing the whole, only a

small subset of the alternatives actually considered make their way into the whole. In effect, the plodeling

exercise involves a successive elimination of the degrees of freedom that characterize the initially open-

ended problem situation. Simon (1973) provides a general description of this type of modeling in the

context of architectural design.

The system we have designed corresponds to parts of the above characterization of the modeling

process. Specifically, once the alternatives with respect to various decisions have been generated, the

system can synthesize alternative models in collaboration with a user, while taking cognizance of the

problem constraints. By preserving the sets of alternatives generated, the system can also serve as a

repository of the process knowledge that is associated with the modeling exercise. Although the system

can not derive new alternatives with respect to the choice points, i t does allow for modification of choice

sets and constraint relationships, and can change the models in light of this evolving knowledge. In

summary, because of its ability to bring into the fore previously foreclosed options or newly specified

ones, the system provides a window into the inherently underconstrained problem situation out of which

the specific models (instantiations) are synthesized.

The system can also be useful for situations in whicTi groups of people are involved in modeling because

of its potential to enhance communication and coordination across the multiple parties involved in the

modeling exercise. Specifically, i t can make explicit the impacts of decision changes in one part of the task

environment on other parts. For example, i t can highlight to a high level manager or coordinator, the

repercussions of local changes in choices on the overall model - an activity which is currently time

consuming and prone to error. By using the system as an intelligent assistant that is familiar with all

parts of the model, the user has the ability to explore variations of the model that might not be practical

to investigate otherwise.

In conclusion, our view of the role of models for explaining expert behavior and for management

decision support is that i t is unwise to expend great time and effort at,tempting to engineer the 'correct

modelu when in fact such a model might be tentative. We regard the model as a tentative structure

assembled in a specific context from the underlying primitives of the task domain. Although further

evidence is needed to generalize our framework to other types of planning problems, our observations in

this research have led us to believe that a central concern of decision makers in problems such as planning

is one of preserving the faithfulness of models under changing conditions, particularly when the

projections generated from them involve large amounts of resources. If we recognize that much of the use

of models in business organizations occurs in changing scenarios, i t is necessary to have systems that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

synthesize models that reflect the changing reality. This problem of 'getting the model rightm and

maintaining i t in light of changing conditions is an important responsibility of a manager or his support

staff that can benefit greatly from knowledge based support. The model formulation and synthesis

system described here can undertake some of this responsibility, effecting a balanced division of

responsibility between the decision-maker and the system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

REFERENCES
Bobrow, D., Qualitative Reasoning about Physical Systems: An Introduction, Artilicial

Intelligence, vol. 24, nos 1-3, 1984.

Davis, R., Diagnostic Reasoning Based on Structure and Behavior, Artificial Intelligence,
vol. 24, nos 1-3, 1984.

Davis, R., and King, J., An Overview of Production Systems, in Machine Intelligence, 8,
Elcock and Michie (eds), John Wiley and Sons, New York, 1977.

de Kleer, J., Doyle, J., Steele, G. and Sussman, G., AMORD : Explicit Control of
Reasoning, Proceedings of the Symposium on Artificial Intelligence and Programming
Languages, 1977.

de Kleer, J., and Brown, J.S., A Qualitative Physics Based on Confluences, Artificial
Intelligence, vol. 24, nos 1-3, 1984.

Dhar, V., PLAnTET: An Intelligent Decision Support System for the Formulation and
Investigation of Formal Planning Models, Ph.D Thesis, University of Pittsburgh, 1984.

Dhar, V., and Quayle, C., An Approach to Dependency Directed Backtracking Using Domain
Specific Knowledge, Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, Los Angeles, CA, August 1985.

Dhar, V., Using Knowledge Generated in Heuristic Search for Non-Chronological
Backtracking, Journal of Computational Intelligence, volume 2, number 3, 1986.

Doyle, Jon., A Truth Maintenance System, AI Laboratory Memo 521, MIT, 1978.

Duda, R., and Shortliffe, E., Expert Systems Research, Science, January 1985.

Duda, R.O., Gashnig, J., & Hart, P., A Computer-Based System for Mineral Exploration in
Experts Systems in the Microelectronic Age by Michie (ed), Edinburgh Press, 1979.

Forbus, K., Qualitative Process Theory, Arti jicial Intelligence, vol. 24, nos 1-3, 1984.

Forgy, L., OPS5 Users Manual, Technical Report, Department of Computer Science,
Carnegie-Mellon University, 1981.

Forgy, L., and McDermott, J., OPS: A Domain-Independent Production System, Proceedings
of the Fifth International Conference on Artificial Intelligence, 1977.

Genesereth, M.R., The Use of Design Descriptions in Automated Diagnosis, Artificial
Intelligence, vol. 24, nos 1-3, 1984.

Heckerman, D., Probabilistic Interpretation for hflCtIN's Certainty Factors, in Uncertainty
i n Artificial Intelligence, Lemmer, J.F. and Iianal, L (eds), North Holland, 1986.

McDermott, J., R1: A Rule-Based Configurer of Computer Systems, Arti ficial Intelligence,
vol 19, no. 1, 1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

Pople, Harry, E., Heuristic Methods for Imposing Structure on Ill-Structured Problems: The
Structuring of Medical Diagnostics, Artificial Intelligence in Medicine, Peter Szolovits (ed),
Westview Press, Boulder, Colorado, 1982.

Shortliffe, E., MYCIN: Computer Based Medical Consultation, American Elsevier, 1976.

Simon, Herbert., The Structure of Ill-Structured Problems, Arti jicial Intelligence, volume 4,
number 3, 1973.

Stallman, Richard. and Sussman, Gerald., Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis, Artificial Intelligence,
volume 9, No.2, October 1977, pp 135-196.

Stefik, Mark., Planning With Constraints, Ph.D Thesis, Department of Computer Science,
Stanford University, 1980.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-27

