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Abstract 
Flexible representations are required in order to understand and generate expert behavior. 

While production rules with quantifiers can encode experiential knowledge, they often have 
assumptions implicit in them, making them brittle in problem scenarios where these 
.c--umptionrr do not hold. Qualitative models achieve flexibility by representing the domain 
entities and their interrelationships explicitly. However, in problem domains where 
assumptions underlying such models change periodically, i t  is necessary to be able to synthesize 
and maintain qualitative models in response to the changing assumptions. In this paper, we 
argue for a representation that  contains partial model components that  are synthesized into 
qualitative models containing entities and relationships relevant to the domain. The model 
components can be replaced and rearranged in response to changes in the task environment. 
We  have found this .model constructor" to be useful in synthesizing models that  explain and 
generate expert behavior, and have explored its ability to support decision-making in the 
problem domain of business resource planning, where reasoning is based on models that  evolve 
in response to changing external conditions or internal policies. 
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1. Introduction 

A major decision for an expert system builder is one of how expert knowledge is to be represented. The 

representational framework adopted can play an important role in how subsequent data  are obtained, 

interpreted, and assimilated into the framework. Some researchers argue that  expert knowledge is best 

encoded as rules. Others argue that qualitative models are a more accurate and/or robust representation 

of such knowledge. 

In this paper, we argue for a more fundamental unifying representation, of which rules and qualitative 

models are particular expressions. The primitive elements of the underlying representation are model 

components which can be synthesized to compose interpretations that  explain observed behavior, and 

exhibit expert behavior in problem solving situations. Rules can then be viewed as summaries of model 

behavior, summaries which may derive from assumptions about unknown conditions in the problem 

domain. 

The representation we describe is based on the results of a collaborative research project with a 

computer manufacturing company aimed a t  understanding the problem of business resource planning, so 

that  a computer-based model might be designed to support the planning problem. In attempting to 

understand the reasoning processes of experienced planners, we constructed several computer models to 

simulate expert behavior. The earlier models, which Se re  "run* on real cases against experts, were rule- 

based, developed in 0 P S 5  (Forgy, 1981) and then AhlORD (de Kleer et. al, 1977). The brittleness of such 

models led us to investigate alternative, qualitative model representations - which served as the point of 

departure for the existing scheme, implemented as a computer model called PLANET (Dhar, 1984). 

In a manufacturing environment, the object of interest is a manufacturing system which is a structural 

arrangement of activities with flows of materials, designed to produce certain outputs while taking 

cognizance of resource constraints such as capital, space and labor. In the planning stages, the structure 

is hypothetical, based on assumptions about the future. Given the uncertainties involved, a important 

part of a planner's job centers around the dynamics of the structure. The dynamics are of two types. The 

first involves reasoning about parametric changes (i.e. what happens if the output needs to be doubled) 

with a given structure. The second involves dealing with assumption changes in the task environment, 

which can require etructural modifications to the model in order to achieve the desired goals, given 

certain resource constraints. 
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2. Representations for understanding and generating expert 
behavior 

During the earlier phases of this investigation, we attempted to model expertise involved in planning as 

rules. This turned out to be inadequate for a variety of reasons, which we discuss below. This discussion 

also motivates the need for an alternative representation scheme which we describe in the remainder of 

the paper. 

2.1. Production Rules With Quantifiers and Certainty Factors 

It has been argued that the basic advantage of the rule based representation scheme is the modularity 

rules provide (Forgy and McDermott, 1977; Davis and King, 1977) and the simple uniform interpretative 

procedure that  is often sufficient in rule based systems (Duda and Shortliffe, 1985). 

Within the rule-based paradigm, the probabilistic approach has been commonly used for modeling 

uncertain knowledge (Shortliffe, 1976; Duda et.al, 1979). As an example of a propositional rule 

incorporating probabilistic information, consider the following example from a manufacturing context: 

IF : 1. There is increased throughput of mater ia l  
THW: 2.  It is  l i k e l y  (0.8) t h a t  add i t i ona l  l abo r  is requi red .  

- 
Here, the numeric weight (0.8) is intended to express the rule-author's degree of belief in the consequent, 

given that  the antecedent is shown to be true. Such numeric weights are often referred to as *certainty 

factors*, after Shortliffe (1976). More recently, Heckerman (1986) has argued that these factors can be 

interpreted as a special case of probabilities. 

2.2. Hidden assumptions in production rule models 

MThile this type of knowledge structure provides a good general idea about the relationships among 

certain variables of a problem, there is a danger associated with asking an expert to art.iculate knowledge 

in this form. If forced, the expert might specify such a rule and certainty numbers. However this is likely 

to be accompanied by appropriate qualifications and/or remarks to the effect that such a rule is difficult 

to express in the abstract, that is, i t  is conditional on various circumstances. For example, if pressed, the 

manufacturing plant expert would say that extra labor might not be required if the work rules could be 

changed, or  if the plant were laid out kore  efficiently, or if part of the production could be offloaded to 

another plant, etc. Massaging all such qualifications into a numeric estimate may be possible, but  of 

questionable value in that i t  is likely to force out important contextual knowledge surrounding the rule. 

Yet, this contextual knowledge may play an important role in the actual reasoning process of the expert 

in a problem solving situation. 
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2.3. M a k i n g  Exceptions Explicit 

An alternative approach toward modeling uncertainty, which has its origins in Stallman and Sussman's 

dependency directed reasoning paradigm, is the "reasoned assumptions" approach of Doyle (1983) which 

handles the treatment of uncertainty in non-statistical terms while leaving the propositional information 

unchanged. A discussion of the details is beyond the scope of this paper and can be found in Doyle 

(1983). The basic difference is that conditionals of a problem situation (defaults or exceptions to general 

propositions) are recognized explicitly instead of being "homogenized" into certainty scores as in the 

probabilistic approach. For example, a rule that takes explicit cognizance of exceptions and/or defaults 

might be 

'IF there is an increase in throughput, THEN increase direct labor UNLESS you offload part of the 

manufacturing process to  another facility, or UNLESS ...." 

As Doyle points out, eliciting knowledge in this manner requires carrying the knowledge acquisition a 

step further: 
"One cannot simply reformulate probabilistic rules as reasons according to  their certainty 

factors. T o  re-express a database of expertise, we require the knowledge acquisition process 
carried a bit further than usual. The approach of reasoned assumptions supposes that  
numerical judgements of certainty often hide more specific information not yet made explicit 
by the expert informant, When the expert says "IF' A, THEN i t  is likely (0.3) that C," this 
really means that many exceptional cases art? familiar to  the expert. One might ask the 
informant to  list these exceptions as a set B, in order to qualify the rule by writing i t  as A 11 B 
11- C (which means A &thout B gives C or conclude every sentence i n  C if every eentence i n  
A has been concluded and no eentence i n  B has been concluded), but i t  is often as difficult to 
think of exceptions offhand as i t  is to  think of ordinary heuristic rules. Instead, we apply the 
same technique to  articulating expertise as that already practiced, namely the informant 
expresses what is clear, and then formulates and reformulates the missing cases, exceptions, 
and generalizations by repeatedly examining the system's performance on test problems. A t  
bottom, we always have rules of the form "Usually, IF A, THEN C m  or "Usually, IF A, THEN 
-C," which we express as defeasible or default reasons, m d  we express the intermediate 
degrees of uncertainty by case analysis and reasons stating exceptions to  generalities." (Doyle, 
1983. Parenthesized explanation added.) 

T o  summarize, the non probabilistic approach encourages eliciting information about conditionalities 

explicitly. Doyle's argument is that via repetitive case analyses, i t  should be possible to get the expert to 

articulate the exceptions and defaults instead of "losing informat,ionm via an implicit translation of these 

into numerical scores. Implicit to the argument is the position that defaults are knowable in principle as 

opposed to unknowable because of randomness in the phenomenon being investigated. 

Doyle's analysis assumes that the "knowledge engineer* will ult.imat.ely converge on the right set of 

rules along with their associated exceptions and defaults. However, this approach sacrifices parsimony in 

representation by opening up the the possibility of admitting large numbers of defaults and exceptions, 
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leading to large numbers of rules which can become particularly difficult, to keep uptc tda te  in problem 

domains characterized by a changing reality. Many exceptions can arise in situations with a significant 

number of degrees of freedom. For example, if the throughput rule mentioned in the last section has as  its 

underlying context a complex model of the manufacturing process with a large number of interrelated 

entities, the effects of increased throughput could be assessed in many different ways, each depending on 

t he  conditions o r  constraints attached to the various parts of the manufacturing process. For such 

problems, rather than try to explicate all the defaults and exceptions, i t  is more fruitful to think in terms 

of a more parsimonious model that  represents explicitly, the primitive entities and relationships of 

interest. Under changing conditions, the model must be maintained to reflect the changing reality. 

3. Generating detailed behavior via qualitative models of 
manufacturing 

Several detailed accounts of qualitative representations, all in domains involving simple physical 

systems, appear in a special issue of the AI Journal (December 1984). Because of the recency of such work 

and the diversity of the ontological primitives used in characterizing the domains, there is no standard set 

of conventions o r  notation for describing qualitative models. The basic approach, however, can be 

characterized as follows: 
*...in order to understand a physical system, the description of a system's behavior must be 

derivable from the strucltrre of the system. The term structure refers to the components of 
the analysis, component behaviors, and the connections between components.' (Bobrow, p.1, 
1984, italics added). 

Understanding the behavior of such a system in response to a change requires starting at the point where 

the  change is induced, and propagating its effects through the connections. Depending on the task that  

the system is addressing, the behavior that  results can be used for purposes such as prediction/simulation 

(Forbus, 1984), envisioning (de Kleer and Brown, 1984), and diagnosis (Davis 1984; Genesereth, 1984). 

Our concerns center around two kinds of changes, described a t  the outset of the paper: the first involve 

a simulation within an existing model structure whereas the second type involve restructuring the model 

itself. The latter functionality calls for synthesizing qualitative models from model parts represented a t  

various levels of abstraction. Before considering how these changes can be accomodated, let us consider 

how a qualitative model in the manufacturing context is synthesized in the first place. 

3.1. Model synthesis f r o m  partial model  components 

Assume that  some computer manufacturing process is partitioned into areas that  deal with major 

components of the computer such as modules, kernels, subassemblies, cables and harnesses, peripherals, 

and various customer-specific options. Each of these areas involves performing certain broad functions 
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which in turn involve several lower level activities. There is a certain logic for organizing activities in 

various configurations. For example, if a module has been assembled, i t  makes sense to pass i t  through an 

activity tha t  tests it for faults (typically open and short circuits) that  might have been induced as a 

consequence of the ~ssembly process. In effect, knowing that assembled modules have to be processed 

establishes the need for a test activity, and a t  the same time establishes constraints on where assembled 

modules can be directed in the overall manufacturing process. Let us denote the activity that  tests for 

faults as Manu jacturing Induced Faults Test (MIF-Test). Following such a test, i t  is necessary to ensure 

that  each component of the module is junctional, that is, performs within tolerance limits. We call this 

Functional test or F-test for short. Finally, since functional modules must perform satisfactorily as a 

whole under conditions they will have to endure in the finished product, another testing stage can be 

expected. This testing, sometimes referred to as "testing modules a t  speed," we refer to simply as Speed 

test (STest). Thus, the overall module-check function could involve the configuration of activities 

shown in Figure 1. Such an arrangement can be considered a "typical* arrangement of activities in the 

same way a molecule is a typical structural arrangement of atoms. There can be several typical 

arrangements of activities corresponding to a function. 

In laying out  the rationale behind the configuration outlined above, we have in effect performed a 

synthesis of components (in this case, activities) in arriving at a coherent, more comprehensive 

conceptualization. This conceptualization denotes part of the overall qualitative model (which we also 

term the synthetic model), which can be compoged by integrating other model components into 

increasingly elaborated "task complexes8 (Pople, 1982). A visual representation of the qualitative model 

then begins to resemble that  shown in figure 2. The connections among the activities are material flows, 

which connect various parts of the model. An activity can have multiple inputs and outputs. Also, certain 

materials can be processed by several activities, as indicated in table 1. In the planning context, the 

qualitative model such as that  in figure 2 is one among many that  might have been synthesized. This is 

because the synthesis task is inherently underconstrained, requiring consideration of sets of alternatives in 

the various parts of the task environment and making choices from among them. This flexibility in what. 

selections will be made in various parts of the task environment makes i t  possible to have many 

structural arrangements, one of which in schematized in figure 2. The nest.ed boxes in figure 1 and 2 show 

the various model components. Each of the components of the model can be conceptualized as an instance 

of an object which is defined in terms of a set of properties. For example, the method object (labeled 4 in 

the figures) can be defined as the tuple 

<id, i/o, direct-labor, indirectlabor, capital, space> 

where the first property designates a method's identity, i/o is a set of algebraic input/output relationships 

among the volumes of materials flowing through the activity, and the next four are numerical amounts of 
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FIGURE 1 
A schematic of a configuration of activities that comprise the module-check function. 

MODULES VITH MODULES NOT 
FUNCTIONAL FUNCTIONING AT 
DEFECTS SPEE D 

LEGEND 

AM ASSEMBLED MODULES 
MDTM* MODULES PASSING M IF TEST 
MDTM- MODULES f A l L I N t  MIF TEST 
TTM+ MODULES PASSING FUNCTIONAL TEST 
TTM- MODULES FAILING FUNCTIONAL TEST 
STM* MODULES PASSING SPEED TEST 
STM- MODULES FAILING SPEED TEST 
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resources (in appropriate units) or algebraic relationships for calculating resource requirements, expressed 

in terms of the material flows through the activity. An activity (labeled 3 in the figures) can be described 

by the tuple 

<id, choice-set, method, inputs, outputs> 

which consists of properties indicating the identity of an activity, the set of potential methods tha t  can be 

used, the method chosen, the inputs, and the outputs to the activity. The configuration and function 

objects are  described in terms of similar properties which we illustrate shortly. In summary, instances of 

functions, configurations, activities, and methods constitute sets of primitive model components, subsets 

of which can be selected in synthesizing the complete model. 

Functions - > module-check 

Materials 

module-repair kernel-check 

(F-test S tes t )  

Table 1 
This table indicates activities (lists inside the cells) in the different functions (on the 

horizontal axis) tha t  can process the various materials (on the vertical axis). The materials and 
activities are from figure 2. Each of the activities in the cells has an  associated 
mtransformation functionm (defined in the text) tha t  indicates the relationships among their 
inputs and outputs. 

3.2. Reasoning using the synthesi~ed model 

Let us assume that an interpretative model has been assembled by means of a model building program 

(described in the next section), and that the current state of the computer model includes components 

indicated in figure 2. 

Reasoning about the "what if volume is doubled* situation using such a model becomes somewhat 

different than in the rule-based model described previously. To  see how, consider an activity such as F- 
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Test in modulecheck (which we refer to as module-check:F-Test) as being represented in terms of a 

structured object da t a  structure that  incorporates knowledge about the method employed and the types 

and proportions of material flows through it, as follows: 

( a c t i v i t y  
i d :  module-check:F-Test 
method : FC-333 
i n p u t s :  ((MDTM+ 110 module-check:MIF-Test)) 
o u t p u t s  : ((FTM+ 100 module-check : S-Test) (FTM- 10 module-repair : F - ~ e p a i r ) )  

3 

where the inputs and outputs are lists of triples indicating the type of material, the amount, and source 

(of input) or  destination (of output). The numbers are the results of solving certain algebraic 

input/output relationships that  are specifiable in the data  structure corresponding to its method object. 

Resource requirements for the activity also depend on the method used, in this example, the requirements 

of the FC-333 method (illustrated shortly). A different choice of method for this activity might entail a 

different set of resource requirements. 

Assessing the impacts of doubling the volume requires running a simulation initiated a t  the activity 

where an input or output is changed, with the resulting changes (assuming for the moment that  

proportions of materials through the activity are maintained) being propagated to connected activities. 

For  example, in a model corresponding to figure 2, if the input material to the activity module- 

check:=-test is doubled, its outputs to the two activities i t  is connected to, namely modu1echeck:F-Test - 
and module-repair:MIF-Repair increases in the proportion determined by certain inputloutput 

relationships. These increased flows carry forward to all related activities. In the small model fragment of 

figure 2, this would involve recomputing the increased flows for each of the ten activities. The 

corresponding resource requirements can then be computed for the revised flows. The results of this 

process may o r  may not differ from those of the rule-based model depending on the assumptions about 

the manufacturing process embodied in that  model. Specifically, the accuracy of the rule-based model 

would depend on the correctness of its hidden assumptions for this particular problem scenario. 

The effect of changing certain types of assumptions underlying the qualitative model can be more 

dramatic. For example, if there were an organizational policy change to offload part  of the module 

production to another facility, there might be no need for the module-check function at all. This requires 

a structural modification - removing certain components of the model and their dependencies and 

establishing new connections among a new set* of model components. For such a change, par t  of the 

relevant model might appear as in figure 3, which has no module-check function. ln our system, this type 

of restructuring (i.e. the decision not to have module-check) is initiated by the user, with the system 

assisting with the maintenance or  establishment of appropriate dependency relationships among the 

l l n  this example, the new set is a subset of the old one. The new set  eso also be larger. 
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various components of the model. 

The results of running the simulation on this model are likely to be different from those of the model 

corresponding to figure 2; obviously, no additional labor or other resources would be required for 

assembling and checking modules as in the previous situation because the module-check activities no 

longer exist. Resource requirements for the other activities can be computed in the same way as described 

above. If the expert were to try to articulate this situation in terms of rules, he might be forced to 

modify the previous ones, or worse still, provide new rules to handle the qualitatively different model 

corresponding to the changed problem scenario. The important point to note is that  if we consider an 

evolving structure of the type we have described as an underlying reality and rules being summary 

descriptions of the behavior of such a system, i t  is not surprising to find experts articulating different 

rules for seemingly identical problem situations. For a knowledge engineer attempting to model the expert 

knowledge as rules, converging on the *rightm set of rules can become virtually impossible. 

In concluding this section, we should point out that we do not regard rules as being inherently limited in 

their representational ability compared to other types of representations. Rather, rule-based models 

frequently compile domain knowledge into heuristics. Encouraging the expert t o  articulate the 'rules of 

the domainm can have the effect of forcing out important contextual knowledge surrounding the rule, 

leading to differences between the behavior of the system and the expert on real cases. In the case of the - 
planning problem, we found the rules articulated b y  the expert to be summary descriptions of reasoning 

based on a more detailed model of the task environment that involved explicit knowledge about primitive 

entities and relationships in the task environment. What appeared as exceptions to rules (leading to more 

rules) were easily understood in terms of a structural representation of the task environment, which we 

describe next. 

4. Synthesizing and managing the qualitative model 

The qualitative model we have described encodes several types of knowledge. Its fundamental building 

blocks are the model components and the relationships among them, and a procedural component that 

threads the components into complete models (or modifies existing models in response to changes). 

4.1. Model components as a hierarchy of objectis 

In the model synthesis program implemented by Dhar (1984, 1986), synthesis is a design task that  

involves making choices from among competing alternatives (called choice sets) in different parts of the 

task environment. Each alternative is represented as an instance of a structured object data type. The 

instance variables of the object type correspond to the attributes used to characterize the object. 
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Each object corresponds to a certain level of abstraction. As indicated in figures 1 and 2, there are four 

levels a t  which choices are made. These levels are shown in figure 4 where each entity at the bottom end 

of a line corresponds to an alternative with respect to the entity at the top end of the line. In effect, each 

line represents a part-of relationship. When a model is synthesized, an object can be chosen as part of a 

higher level object connected to it. Arrows in figure 4 indicate material flows (corresponding to the double 

arrows of figures 1,2 and 3). 

The structure and role of the objects can be described by considering the model segment of figure 2, 

which is an instantiation of an object hierarchy, such as the one in figure 4. The model segment is a 

topdown 'projectionmof this hierarchy. For example, the module-check function within this model 

segment is represented as follows: 
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( func t ion  
i d :  module-check 
choice-se t :  ( in tegra ted-d iagnos t ics  d i s t r ibu ted-d iagnos t ics )  
c o n f i g u r a t i o n :  

3 

( con f igu ra t i on :  
i d :  i n t eg ra t ed -d i agnos t i c s  
d i r e c t - l a b o r :  h igh  
ind-labor:  low 
space :  low 

a c t i v i t y l :  
a c t i v i t y 2 :  
a c t i v i t y 3 :  

3 

( a c t i v i t y :  ( a c t i v i t y :  ( a c t i v i t y :  
i d :  S-Test i d :  F-Test i d :  MIF-Test 
choice-se t :  (FC-333,QV.L-200) choice-se t :  (FC-333.QV,L-200) choice-set :  

(shorts /opens)  
i npu t s :  ((FTM+ 150 module-check: i n p u t s :  . . .  i n p u t s :  . . .  

F-Test)) 
o u t p u t s :  ((STM+ 130 ou tpu t s :  . . .  o u t p u t s :  . . .  

kernel-check:Box-Test) 
(STM- 20 
module-repair:F-Test)) 

method : 

I ?  
(method : 

i d :  QV 
d i r ec t - l abo r :  2*FTM+ 
ind-labor:  0.5*FTM- 
c a p i t a l :  5 0 K  
space :  400 s q . f t  
i / o :  ( FTM+ = O.Q*MDTM+ 

FTM- = 0 . l*MDTM+ 
STM+ = O.Q*FTM+ 
STM- = 0 .1  *FTM+ 

1 
3 

{method : 
i d :  FC-333 
d i rec t - labor  : 3*MDTM+ 
ind-labor:  1 
c a p i t a l :  25K 
space :  600 s q . f t  

110: . . .  
+ O.l*FTM- o 

0 

0 

0 

3 

method : 

(method : 
i d :  shorts /opens 
d i r ec t - l abo r  : 2 
ind-labor:  0 
c a p i t a l :  5 K  
space :  300 s q . f t  
i / o :  . . .  

0 

0 

0 

0 

3 

The structured object descriptions are enclosed within braces. The top level object, in this case the 

modulecheck function, contains the choice set of alternative configurations. When a configuration is 

selected, i t  becomes part of the function object (indicated by the pointer). The configuration contains 

qualitative descriptions of resource requirements (the role of which will be described shortly), and activity 

objects that  are par t  of it. When a method is selected for an activity, an object corresponding to this 

method becomes part of the activity. The method objects contain specific resource requirements, inputs 

that they can process, and the relationships between their inputs and outputs. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87-27 



Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87-27 



A complete qualitative model is composed of several such topdown instantiations corresponding to 

different parts of the task environment. Each choice set involves one or more part-o f relationship between 

an object and lower level objects, one of which can become included in it; in effect, in a completely 

formulated model, one such relationship is instantiated for each choice set relevant to the task 

environment. In the remainder of this section, we describe how these choices become part of the synthetic 

model. 

4.2. Constraints 

There are two types of constraints that  must be considered in synthesizing the model. The first type are 

qualitative constraints, which express dependency relationships between alternatives in the different choice 

sets. Structurally, such constraints are similar to production rules. In our system, a qualitative constraint 

is represented as a two part list structure. The left hand side consists of a set (list) of identifiers of choice 

set alternatives. Each identifier is of the form obj:alt-id where obj is an object (which may contain lower 

level objects as choices) containing the alternative identified by all-id. The right hand side consists of a 

single negated or  non-negated identifier. For example, the constraint "((module-check:F-Test:FG333) -> 
module-check:STest:-FG333)* states that  the method FG333  (the alt-id of the F G 3 3 3  object) cannot 

be employed simultaneously by the F-Test and S T e s t  activities in the module-check function. 

A choice set alternative identifier obj:alt-id in aqualitative constraint is satisfied if the alternative 

identified by alt-id has been selected in object obj. If the identifier is negated, then i t  is satisfied if some 

other alternative has been selected in the object obj. We say that  a qualitative constraint is satisfied as 

long as i t  is not violated. A violation occurs when each item in the left hand side of the constraint is 

satisfied and the right hand side is not satisfied. 

The second type of constraint is the quantitative constraint which affects choice somewhat more 

indirectly. Simple quantitative constraints are expressed in the form <alg-ezp tel-op alg-ezp> * where 

alg-ezp is an algebraic expression defined over problem variables (these variables designate resources such 

as labor, capital, or space or can be exogenous variables defined by a user) and rel-op is a relational 

operator. Simple quantitative constraints can be combined into more complex ones using the boolean 

operators AND, OR, and NOT. Each quantitative constraint is a boolean function that  returns the value 

false when the constraint is violated and true otherwise. 

In our system, each quantitative constraint is translated into a form consisting of a predicate followed 

by forms corresponding to the algebraic expressions. For example, the following expression in Lisplike 

prefur notation states that  the capital requirements of the F-Test activity in module-check is less than 

$100K: *(less (capital module-check:F-Test) $100K)* where capital designates a function that  returns the 

value of the capital required by its argument, in this case the F-Test activity. less is a predicate that  
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returns false if the value of its first form is greater than that of its second form, and true otherwise. 

4.3. Inter-object communication in model synthesis 

Objects have associated 'message typesN defined over them.* By representing design components as 

objects capable of sending and receiving messages, the responsibility for assimilating a change becomes 

distributed. For example, if as a consequence of a qualitative constraint i t  is determined that  FG333 

method should be established as a choice in some activity as a consequence of a qualitative constraint, a 

message is dispatched t o  that  activity object which is responsible for establishing i t  as the choice and 

performing any associated book-keeping. Similarly, the responsibility for effecting a high level change 

such as that  involving offloading module-checking to another facility is accomplished by dispatching a 

message to the module-check object to eliminate itself, which also removes the lower level objects within 

it. 

The qualitative model can be synthesized from scratch or modified. If i t  is designed from scratch, the 

choice process proceeds in a top-down fashion. If a modification is required, parts of the model are first 

removed along with their dependencies (explained shortly), and revised choices made in these parts of the 

model. In making these choices, the system alternates between two modes of operation which, following 

Stefik (1980), we term constrained and heuristic modes. In the constrained mode, qualitative constraints 

determine (or preclude) choices from specified choi& sets. The heuristic mode becomes operative when 

propagation of choices comes to a halt. In this situation, a choice must be made from some choice set in 

order for problem solving to continue. The choice can be specified directly by the user, or  made 

automatically by the system based on an evaluation function defined over the choice set attributes, that  

is, the resource categories. The order in which choice sets are examined is based on a prioritization of the 

choice sets which reflects the user's view of the importance associated with the decisions corresponding to 

them. 

If the evaluation of alternatives within a choice set is made across low level alternatives where detailed 

resource requirements are available, a numeric evaluation function is used. If the comparison involves the 

more abstract pieces of the model where only qualitative values are available (such as high, medium or  

low), the evaluation is heuristic, involving combination of these values into overall ratings. 

It can be the case that  a violation of either a qualitative or  quantitative constraint occurs before the 

model is fully formulated. If a constraint violation occurs while the system is in the constrained mode, i t  

becomes necessary to revise a previously made choice in some choice set, and then to continue forward 

*1n object oriented programming, these are often referred to as *methodse. Since we use the term method to denote rr model 
object as opposed to a procedure, we refer to the procedural knowledge component as s message type. 
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from that  point. Specifically, a heuristic mode choice and its dependents are discarded. A revised choice 

is then made from the choice set containing that last heuristic mode choice and problem solving 

continues. The process of determining the most appropriate "culprit* choice set, which is not of central 

interest here, is described in Dhar (1986) and Dhar and Quayle (1985). 

If a constraint violation occurs while in the heuristic mode as a consequence of a choice made from a 

choice set, a new choice is made from that  choice set if possible. However, if all choices from a choice set 

have been tried unsuccessfully, then, as in the case above, a previous heuristic mode choice is discarded, 

and a revised choice made from the choice set containing that heuristic mode choice. 

4.4. M a i n t a i n i n g  dependencies  a m o n g  choices 

M'henever a choice is made, a two part structure called a node is created. The first par t  of the structure 

consists of the identifier of the choice, and the second part consists of the reasons for making the choice 

(similar to Doyle's "set of support" (Doyle, 1978)). If the choice is made as the consequence of a 

constraint relationship becoming satisfied, the node corresponding to the choice has a *deduction 

justification*, which consists of identifiers of other choices (the left hand side of a constraint relationship). 

MThen made heuristically, the justification for the choice is the preference function that  was used in 

making the choice; these heuristic choices become candidates for retraction in backtracking situations. 

Deductively established choices can be retracted only when all their supporting choices are retracted. 

The primary use of the dependency network is to enable incremental modifications to the qualitative 

model. If a change requires some existing choice to be retracted (i.e. "no FG333*), the choice is removed 

from whatever support sets i t  appears in. Choices whose supports have become empty are then retracted, 

and the deductive-heuristic choice cycle described above comes into play, resulting a modified qualitative 

model. In this way, the qualitative model always reflects the current set of choices made from different 

parts of the task environment, and the dependency network reflects the relationships among the choices. 

4.6. RoIes of t h e  s y n t h e t i c  model  

In summarizing this section, i t  is worth restating the motivations that  have shaped the model synthesis 

system described above, and the methodological considerations that  a knowledge engineer must be 

cognizant of in trying to explicate a model of expertise. 

In attempting to understand the decision-making processes of the expert analyzed in this research, we 

began in a classical knowledge engineering fashion where the expert was encouraged to articulate the 

*rulesm about the domain, Several prototype systems based of these rules were run on real cases against 

the expert. These systems were found to be inadequate in matching the behavior of experts who often 
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resorted to reasoning based on deeper domain knowledge in explaining or rationalizing a case. This led us 

to postulate tha t  the deeper contextspecific models were being synthesized on the fly from finer grained 

knowledge components, and that this synthetic model was then used to rationalize the data, that  is, the 

data were interpreted to "fitm the model. 

A second observation during the initial knowledge acquisition exercise was that different experts, or  the 

same expert at different times in the knowledge acquisition process, articulated different rules about 

identical problem scenarios. Such an observation might cause a knowledge engineer to speculate whether 

the expert is being inconsistent. While this is possible, we found that the different rules often derived 

from differences in the assumptions, that is, the different contexts underlying these rules. In the planning 

context, where decisions change often, a decision maker may have considerable latitude in the 

assumptions (choices) introduced into the synthetic model, leading to different rules being articulated in 

similar cases. In such cases, rules may be adduced as being summary descriptions of behavior, where the 

structure of the model underlying the behavior may not be apparent. 

In summary, based on the initial knowledge acquisition exercise and subsequent case analyses, we were 

drawn toward exploring the reasons for the divergence between the rule models articulated by the expert, 

and the deeper reasoning process that seemed to emerge with real case data. What gradually became 

apparent was that  the hidden assumptions that typically went unarticulated during knowledge 

acquisition, often played a central role in case analy&. Further, because of these hidden assumptions, i t  

often appeared that  different rules were being articulated on different occasions for identical problem 

scenarios. Trying to identify the complete set of exceptions and defaults for every rule was cumbersome 

and yielded too many rules that were difficult to  maintain. This experience made i t  clear that reasoning 

about planning situations was really based on synthetic evolutionary models that  are highly sensitive to 

problem context. This led us to believe that the challenging part of the decision maker's job is 

formulation, that is, maintaining the integrity of the model under changing conditions so that i t  can be 

used for reasoning. The model synthesis system we have designed has been shaped by these concerns. 

5. Practical uses of the model synthesis system 

Since a pragmatic goal of this research is to provide planning managers with a knowledge based support 

tool, i t  is worth summarizing some of the uses of our modeling system for decision support, as well as its 

potential for supporting other aspects of group modeling situations in large organizations. 

The process of model building in large organizations involves a necessary diffusion of responsibility 

among several individuals or groups within the organization. When a large problem is decomposed in this 

way, i t  is the responsibility of the groups to generate feasible alternatives with respect to the part of the 
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task environment for which they are responsible. I t  is then the job of a coordinator to synthesize aome of 

these alternatives into a coherent whole, keeping in mind the relationships among the different parts of 

the task environment and other constraints such as those on resources. In synthesizing the whole, only a 

small subset of the alternatives actually considered make their way into the whole. In effect, the plodeling 

exercise involves a successive elimination of the degrees of freedom that characterize the initially open- 

ended problem situation. Simon (1973) provides a general description of this type of modeling in the 

context of architectural design. 

The system we have designed corresponds to parts of the above characterization of the modeling 

process. Specifically, once the alternatives with respect to various decisions have been generated, the 

system can synthesize alternative models in collaboration with a user, while taking cognizance of the 

problem constraints. By preserving the sets of alternatives generated, the system can also serve as a 

repository of the process knowledge that is associated with the modeling exercise. Although the system 

can not derive new alternatives with respect to the choice points, i t  does allow for modification of choice 

sets and constraint relationships, and can change the models in light of this evolving knowledge. In 

summary, because of its ability to bring into the fore previously foreclosed options or newly specified 

ones, the system provides a window into the inherently underconstrained problem situation out of which 

the specific models (instantiations) are synthesized. 

The system can also be useful for situations in whicTi groups of people are involved in modeling because 

of its potential to  enhance communication and coordination across the multiple parties involved in the 

modeling exercise. Specifically, i t  can make explicit the impacts of decision changes in one part of the task 

environment on other parts. For example, i t  can highlight to a high level manager or coordinator, the 

repercussions of local changes in choices on the overall model - an activity which is currently time 

consuming and prone to error. By using the system as an intelligent assistant that is familiar with all 

parts of the model, the user has the ability to explore variations of the model that might not be practical 

to investigate otherwise. 

In conclusion, our view of the role of models for explaining expert behavior and for management 

decision support is that i t  is unwise to expend great time and effort at,tempting to engineer the 'correct 

modelu when in fact such a model might be tentative. We regard the model as a tentative structure 

assembled in a specific context from the underlying primitives of the task domain. Although further 

evidence is needed to generalize our framework to  other types of planning problems, our observations in 

this research have led us to believe that a central concern of decision makers in problems such as planning 

is one of preserving the faithfulness of models under changing conditions, particularly when the 

projections generated from them involve large amounts of resources. If we recognize that much of the use 

of models in business organizations occurs in changing scenarios, i t  is necessary to have systems that  
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synthesize models that  reflect the changing reality. This problem of 'getting the model rightm and 

maintaining i t  in light of changing conditions is an important responsibility of a manager or  his support 

staff that can benefit greatly from knowledge based support. The model formulation and synthesis 

system described here can undertake some of this responsibility, effecting a balanced division of 

responsibility between the decision-maker and the system. 
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