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Abstract 

This paper describes some rules for combining component models 

into complete linear programs. The objective is to lay the 

foundations for systems that give users flexibility in designing 

new models and reusing old ones, while at the same time, 

providing better documentation and better diagnostics than 

currently available. The results presented here rely on two 

different sets of properties of LP models: first, the syntactic 

relationships among indices that define the rows and columns of 

the LP, and second, the meanings attached to these indices. 

These two kinds of information allow us to build a complete 

algebraic statement of a model from a collection of components 

provided by the model builder. 
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1. INTRODUCTION 

Recent hardware and algorithmic advances are providing order of 

magnitude improvements in the computer time needed to solve large 

linear programming (LP) models. Consequently, a smaller 

proportion of the costs of building and running models is being 

spent on the solution phase and a larger proportion on the 

building and interpretation phases. There is a corresponding 

need to develop more sophisticated model management techniques to 

aid in formulating, documenting, managing and interpreting LPts. 

At the same time, there have been enhancements in computer 

interfaces, allowing more options in the design of software 

systems. 

The need for improved model building techniques and the 

development of new approaches to computer interfaces have led to 

a renewed interest in model building technologies. Example 

systems include PLANET (Breightman and Lucas, 1987), which is 

used for various planning problems in General Motors; GAMS 

(Brooke, Kendrick and Meeraus, 1988), AMPL (Fourer, Gay and 

Kernighan, 1988), LPL (Hurliman, 1989), and MODLER (Greenberg, 

1989), which are algebraically oriented; PAM (Welsh,1987) and 

MATHPRO (Hirshfeld, 1988), which are block-structure/table 

oriented approaches, and an emerging class of graphically 

oriented systems such as LPFORM (Ma, Murphy and Stohr, 1989) and 

GIN (Sharda and Steiger, 1989). 
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Large linear programs almost always consist of a collection of 

linked small models. From the algorithmic perspective, 

discovering the "embeddedw networks leads to faster techniques 

for solution. From the modeling perspective, looking at the 

model as a network containing non-network components allows us to 

break down the problem of formulation into separate, 

comprehensible pieces. In this paper, we describe a method for 

taking component parts and combining those parts into a complete 

LP matrix. The same method also allows us to combine different 

problems or subproblems together. For example, a modeler might 

separately develop a production model and a transportation model 

and at a later time want to combine them to form a more 

comprehensive model. The modeler need only look at one part of 

the problem at a time and then is given considerable assistance 

in combining the component models. 

Traditional matrix generator languages such as OMNI and Dataform 

support the strategy of building models from more elementary 

components. In these systems, the model can be decomposed into a 

series of separately generated data tables which are then linked 

together to form the complete LP model by a program written in 

these languages. Matrix generation for the Project Independence 

Evaluation System (PIES), on which one of the authors worked, 

provides an extreme example of this approach in that it involved 

managerial divisions as well as data and software segmentation. 
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Each staff member who was responsible for a specific energy 

sector was assigned the task of generating condensations of 

activities in the form of coefficient tables for that sector. 

The sector specific tables were then combined into the complete 

LP by a matrix generator that also added transportation links. 

The person in charge of matrix generation had to coordinate the 

flow of information. Any change in the model, such as a change 

in the number of replications of a submodel, quickly turned into 

a major coordination problem. The communication burden was 

enormous, leading to serious personnel and model management 

problems (see Murphy, Conti, Sanders and Shaw, 1988). 

What was needed in this system, and is needed in others, were 

methods for eliminating common errors in model component 

coordination and recognizing incompatibilities prior to the major 

expenditure incurred in matrix generation. To provide a 

perspective on our approach to this problem, we start with the 

steps in building an LP model (see Figure 1). 

3 .  
1. 2. Input 

Formulation Construction to Solver ----------- > Model ------------ > Complete ---------- > MPS 
Components Model Statement 

Figure 1 
Steps in the Formulation of Input to a Solver 

Step 1 can be performed interactively, while steps 2 and 3 are 

automated by the modeling system and may not be distinct in that 

the MPS statement can be the only statement of the complete 

model. The MPS input format is a standard followed by all major 
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LP solvers. Activities (columns) and constraints (rows) are 

given 8 letter names; nonzero data values at each row and column 

intersection are explicitly written as a long list of triples 

(row label, column label, coefficient value). The three classes 

of modeling,systems mentioned above all produce an MPS file in 

step 3, but take different approaches with regard to steps 1 and 

2. In table-driven systems, formulation focuses on the data 

tables containing the coefficient values; these are the Model 

Components which are then linked to form the complete model prior 

to the generation of the MPS file. In algebraic systems, the 

user writes the model in algebraic form; the Model Components are 

the algebraic equations plus the data tables. In graphic 

systems, the modeler conceives the problem as a network with 

embedded non-network components. The Model Components are then 

the graphic objects together with the data tables. 

Note that algebraic systems such as GAMS, AMPL and MODLER provide 

a row perspective to the modeler in that the information is 

ordered by constraint, while the traditional matrix generators 

such as DATAFORM, GAMMA and OMNI use a column orientation. Each 

approach has advantages. The row orientation is consistent with 

the way Westerners read and facilitates constraint generation in 

integer programming. On the other hand, since columns typically 

have fewer elements than rows, practitioners often find that a 

column perspective facilitates model comprehension and that with 

large models it is easier to break the model into separate blocks 
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of activities that are later linked. Also, activities are more 

likely to change than rows (see Beale, 1968). 

In LPFORM we combine graphic-, row- and column-oriented 

perspectives. In addition to drawing a graph of the major system 

components, one can define activities directly by their inputs 

and outputs (column perspective) or directly enter constraints in 

a standard algebraic notation (row perspective). The Model 

Components produced by step 1 in LPFORM consist of graphic 

objects, activity representations, "piecesw of algebraic 

statements (see below) and data tables. During the construction 

phase, the graphic and tabular information is used to produce a 

complete and consistent set of algebraic pieces. These are then 

combined to form a complete model in standard algebraic format. 

We do not discuss the formulation step further in this paper. 

Rather, we concentrate on the construction step starting from the 

point at which the model components in step 1 have been generated 

as algebraic fragments. Our discussion, therefore, applies to 

other modeling systems as well as to LPFORM. Our objective is to 

provide flexibility with respect to the construction of complete 

models from their component models and submodels. At the same 

time, we want to ensure the consistency of the formulation and to 

provide meaningful diagnostics when mistakes occur. 
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2. INTRODUCTORY CONCEPTS AND OVERVIEW 

To illustrate these concepts, we need the following definitions. 

A term is either the product of a coefficient and a variable or a 

right-hand-side (RHS) coefficient. An algebraic piece is a term 

on the left-hand side (LHS) of a constraint together with its 

associated summations (if any) or an RHS coefficient with its 

equality or inequality relation. 

Our goal is to construct the complete algebraic statement of a 

model starting from a collection of either algebraic terms or 

pieces. For example, if we have the following three model 

pieces: 

X CjXj,j:Jaij Xj, and < bi i&I, 
j &J 

we know intuitively that they fit together to form the LP: 

min C Cj Xj 
j&J 

subject to: 

Xj 2 0 j&J. 

More formally, we know that (2) is correct because there are no 

unsummed indices in the objective function and the only unsummed 

index in the constraint matches the index on the right-hand side. 

We consider three possible characterizations of the initial pool 
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of terms and pieces: 

(a) A complete collection of pieces (as in (1)). 

(b) A complete collection of terms i.e. we know all the 
activities and coefficients plus the RHS pieces and need to 
infer the summations to construct the pieces. 

(c) A complete collection of LHS pieces i.e. we need to infer the 
RHS pieces in order to complete the model. 

In practice, we need to be able to handle all three cases and 

mixtures of them. We also need to be able to handle cases where 

the information is not complete (perhaps by formulating queries 

to elicit the required information). However, this is beyond the 

scope of this paper. 

If we have all of the pieces (case a), together with some 

semantic information, there is a simple mechanical process to 

define the model. This is described in the next section. If we 

have the complete collection of terms (case b), we can still 

construct the complete algebraic model but we need more 

information. The added information describes the physical nature 

of the system being modeled. This is captured by the meaning of 

indices - whether they represent wformw, "timett or "placeM (i.e. 
ltwhatn, "when1* and "wherew). Section 4 discusses the generation 

of summation information from terms and some of the problems in 

dealing with form indices. Section 5 shows how semantic 

information (form, time and place) can be used to circumvent 

these problems. Section 6 describes a procedure for constructing 

models from terms. This procedure is illustrated in section 7. 

7 
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In Section 8 we provide a brief outline of case c in which RHS 

coefficients are inferred from the existence of other 

information. We do not cover case c in detail for want of space; 

however many of the principles developed for case b apply also to 

case c. In the last section, we describe other work that has been 

done in this area and outline further avenues for research. 

3. CONSTRUCTING A COMPLETE MODEL FROM ALGEBRAIC PIECES 

Given that we are presenting procedures for building an LP from 

its components, it is important to provide a definition for the 

validity of the resulting model. We assume that all the 

coefficients and variables have been named consistently for the 

problem at hand. That is, if various components have originated 

in different models then their names have been "mappedn into 

those for the new model (see Ma, Murphy and Stohr, 1989). The 

definition of validity has to be limited in the sense that it 

cannot account for mistakes by the model builder. We use the 

following: 

Model Validity: A model is valid if the index set on each 
LHS piece matches the index set on its associated RHS piece 
and only one model can be formed from the terms or pieces 
that are given. 

This is not a rigorous definition in that one could form multiple 

models by first building a model and then dropping off pieces. 

However, we presume that if a piece exists, it must be used, 

ruling out this possibility. Once we have introduced the 
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semantics of form, time and place in Section 5, we will be in a 

position to say something about whether a piece should exist or 

not. 

If we have all the pieces for the model, the only task is to 

assemble them into the correct rows in the final algebraic 

statement. To do this, we first need to name the rows uniquely. 

Because the same constant value (say zero) can appear in many 

rows, we assume that the RHS pieces are distinguished by their 

indices and that constant values are stored along with their 

indices. To illustrate, the b in (2) is simply a placeholder for 

the coefficient, while the index i distinguishes the rows. We 

call the collection of indices on an RHS piece an index set. 

Next, we need to determine the row to which each LHS piece should 

be assigned. We do this by determining the index set for the 

piece. We define an index set to be a set of index symbols. For 

example, the two indices i and j on the coefficient a in (2) 

constitute its index set {i,j). We define the index set for a 

term to be the union of the index sets for the variable and 

coefficient. 

The index set for a piece is computed from the index set for the 

term. The effect of a summation is to remove the summed index 

from the term index set. For example, in (2) the index j is 

removed from the index set {i,j) for aijxj to arrive at the index 
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set (i) for the piece, Caijxj. If there is a partial sum, that 

is, an index is summed over a subset of elements in the set it 

indexes, then an index is added to the index set to denote the 

subset over which the sum is taken. Suppose, for example, in a 

multiperiod model the available capacity in period t is equal to 

the sum of all capacity acquired in period t and prior periods. 

That is, we have a piece: 

In this case, the index set for the piece is found by dropping 

the index j and adding the index t that indicates the different 

subsets that are formed by the summations. 

Sometimes an index is a function and not just a simple symbol. 

For example, suppose we can make an investment i in any year t 

that provides a return of rit+n in period t+n. Then the cash 

flow constraint in period t+n includes a term rit+nxit. Thus, we 

have both the index t on the variable and the index function t+n 

on the coefficient. If we establish the convention that the 

index function on the coefficient determines the appropriate 

index for the piece index set, then we know that the appropriate 

index on the variable is the inverse of the function of the 

coefficient index. This is illustrated by the index on the 

coefficient r in (4) in the next section. 

It is possible to define an index function implicitly. For 
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example, the cash flow coefficient could be defined as ritn 

without the function t+n explicit. That is, a third subscript 

could be used to define the cash flows. We, therefore, need the 

following requirement: 

Index function requirement: All index functions must be 
stated explicitly. 

Given our convention, this leads to the following rule: 

Index function rule: When an index that is not summed 
appears as the independent variable in an index function on 
a coefficient, use the function value to compute the element 
of the index set for the piece and treat the occurrences of 
different index functions on terms with the same variable as 
if they had different variables. 

That is, the value of an index function replaces the index even 

if the domain index appears in the variable index set, eg. t+n 

appears in the index set for rit+nXit. 

We assume that the model builder has placed enough indices on the 

variable or coefficient (including constants) of every LHS term 

so that the index set of every term contains the index set of 

every row with which the variable intersects. Note that indices 

are often dropped from coefficients to simplify data entry when 

the same values are used for different variables. The above 

assumption merely requires that a record be kept of all potential 

coefficient indices. We can then pattern match using 

Row Construction Rule: For a given RHS piece, select all 
LHS pieces whose row index sets match the index set of the 
RHS piece. 
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The validity of this rule can be seen immediately. Assume we 

have a piece that should not be used in a row where there is a 

match in index sets. Then this piece cannot be used elsewhere 

since there is only one RHS piece with a matching index set. By 

the uniqueness of the index sets on the RHS pieces, there is only 

one row for each piece and the model is unique. Because of the 

added information on coefficient indices, this rule is an 

extension of domain checking as implemented in GAMS. 

Note that two constraints that are upper and lower limits on the 

same LHS do not cause a problem in the application of the row 

construction rule or the uniqueness of row names. We need only 

require uniqueness up to the point where the LHS is different. 

The row construction rule breaks down if the pieces are not 

assigned sufficiently explicit index sets during the formulation 

process. For example, when representing resources that last more 

than one period such as labor or equipment, we often generate two 

rows in the model, one row to account for the availability of the 

resource and another for its utilization. Thus, the following is 

a typical formulation for a manpower planning problem: 

ht = number of employees hired at the beginning of period 
t 

ft = number of employees fired at the beginning of 
period t 

et = number of employees available in period t 

xjt = amount of product j produced in period t 
rt+l = fraction of employees that return in period t+l from 

period t (do not quit at the end of the period) 

aj = number of employees required to produce a unit of j 
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Availability: rtet-1 + ht - ft - et = 0 - et < 0. 
( 4 )  

utilization: X ajXjt 
j 

The availability row determines the amount of resource available 

in each period and the utilization row describes how the 

available resource is used. Both rows have the same index, t. 

(If in the model there were other inputs besides labor in the 

production process, we would add a labor index indicating that 

these two rows measure labor at time t.) 

Given just the 5 pieces listed above and attempting to apply the 

row construction rule, we would assign the two et terms to 

different rows, but would not know what to do with the other 

pieces without further information. In practice, and 

particularly when using traditional matrix generators, model 

builders make the rows uniquely identifiable by including an 

index that differentiates availability from utilization. If the 

applicable value of this index is included in each of the LHS and 

RHS pieces, the index function and row construction rules can be 

used to give the correct result. However, we need the following: 

Instance Rule: When a piece uses an instance of an index 
rather than the index, the instance of that index must 
appear in all pieces in the constraint. 

Note that the above solution places a requirement that semantic 

information be included (eg. to differentiate instances from 

indices) in the algebraic terms generated from the formulation 

stage. 
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4. GENERATING PIECES FROM TERMS 

We now consider case b from Section 2, where we have the terms 

for the problem and need to construct the algebraic statement by 

determining the appropriate summations for each LHS term as well 

as assigning it to the appropriate row. This is somewhat like 

the standard textbook modeling exercise in which students are 

presented with data (equivalent to our coefficients and their 

index sets) together with some descriptive text which helps 

determine the activities. The results presented here are an 

extension of the rules used in Welsh (1987) for combining tables 

to complete a model. In this section, the completeness 

requirement in the statement of case a in section 2 is relaxed 

slightly, because we are able to generate some pieces from a 

knowledge of other terms. 

To generate a model from terms rather than pieces we must first 

construct the pieces. We begin by showing how LHS pieces for 

bound rows can be generated knowing only the RHS limits. Then we 

consider the more general problem. 

In traditional matrix generators, variable names are simply 

concatenations of symbols. Thus, the x in xj is not 

differentiated from the j by the matrix generator. Variable 

names simplify algebraic statements, however, because we 
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eliminate the need to indicate the relevant subset of variables 

on the right-hand-side of each equation. Of course, the semantic 

reason for differentiating variable names from indices is that 

variables represent actions and indices specify instances of 

these actions. Conversely, the rows of an LP usually describe 

what is being acted upon. However, the rows can also be used to 

place bounds on the actions. If we know that an RHS coefficient 

represents a bound on a variable, (and we know which variable is 

bounded) we can easily generate the LHS piece. This is the 

variable itself in the case of simple upper or lower bounds. 

More generally, we have the following: 

Bounds construction Rule: Given that an RHS piece 
represents a bound row, form the LHS piece by summing all 
indices on the variable that are not in the index set of the 
RHS piece. 

Again, the formulation phase has to generate the appropriate 

semantic information; in this case the variable name to be 

associated with the RHS bound piece. 

We now turn to the more general case. A simple piece 

construction rule would be as follows: 

False piece construction rule: If the index set of a LHS 
term contains the index set of a RHS piece, sum over all of 
the indices on the term that are not on the RHS piece and 
place the piece so constructed in the row. Repeat for all 
terms. 

We now provide two examples where it is not clear how to 

construct a piece from a term or other pieces using this rule in 
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the absence of further information. Suppose we have the terms 

lijkxijk and aijkxijk and three rows with indices i, j, k. Can 

we formulate a model from this information using the above rule? 

The answer is no. The rule would give us the following 

formulation: 

But, suppose we are formulating a transportation model where we 

ship a product from i to j by transportation mode k, with a 

capacity of ck for mode k, and each unit we ship takes aijk units 

of capacity. In this case the correct formulation is: 

One form of semantic information that can resolve ambiguities 

such as the above is units analysis, also known as dimensional 

analysis (see Bradley and Clemence, 1988, for an approach to 

including units and related information in a GAMS style modeling 

system). Each LHS coefficient has units of "something per unit 

of activity." In the multimodal transportation problem above, 

suppose the units on the first two rows are "tonsM and the units 

on the third row are ~~vehicles." Using the following units rule, 
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we would have formulated this model correctly given all of the 

pieces. 

Units Rule: All terms that appear in a row have the 
same units as the row. 

However, if our vehicle capacities were also measured in tons, 

our units analysis would not help us. Before resolving this 

issue, we present another problem. 

In this example the index we wish to sum is on the coefficient 

and not the variable. Say we have the following pieces: 

These fit into rows with index sets {h,i) and {h,j). Suppose we 

have determined that there is another row with index set {h) in 

the problem but have no LHS terms. We might try to construct a 

piece: 

Our tentative piece construction rule fails again because we do 

not know whether to construct the new piece by summing over i in 

the (7a) piece or j in the (7b) piece, or, alternatively, whether 

we should ask the user to supply the coefficient name and values 

for (8). 
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In the next section we show how the problems raised by these 

examples can be resolved by further information that ascribes 

meaning to the symbols. 

5. USING FORM, TIME AND PLACE INFORHATION 

Linear programs represent physical actions on physical things 

that are described by three dimensions: what they are, where 

they are and when they are there. Analogous to the notion of 

state in dynamic programming, we can say that a row defines some 

state, that is, something, somewhere at some time. The right- 

hand side defines the starting level of the state and activities 

that intersect this row change the level of the state. Each 

state includes three generalized dimensions of form, time and 

place. We say "generalizedw because we may use several indices 

to define a dimension, e.g. city and state to define location. 

For convenience we treat a generalized dimension as a single 

index in the remainder of the paper. To complete the definition 

of the state for a row, we add a generalized "attributew index. 

This allows us to differentiate, for example, utilization from 

availability in (5) or to indicate input or product attributes 

such as octane in a blending model. 

Activities can be described by the states (or a subset of states) 

changed. We add a dimension to an activity, which we refer to as 

a "modew index since it indicates alternative ways of changing 
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the levels of states using inputs in different mixes, 

Every LP constraint describes a restriction on something and is 

measured in units of that something. Thus, it has either an 

explicit or implicit index for form. Time and place indices 

enumerate occurrences of the form index. Rarely can we construct 

a meaningful constraint by summing terms over all values of the 

form index, and when we can, we wind up defining a new index for 

form. An example occurs in a feedmix problem when we sum over 

all of the different kinds of grain to get a more abstract entity 

(say) Itanimal feedw which we recognize as a new form index. 

Form indices can also take on a dual role. They can not only 

indicate form but also instances of transformations. The 

simplest case occurs in the product mix problem (e.g. (2)) where 

j is not only a form index indicating products but also indicates 

different activities. The distinction seems academic but is 

crucial to a resolution of the problem in (6). To determine if a 

form index indicates form, note that each coefficient represents 

a rate of change of something. Consequently, there is some state 

whose level is changed by the term. We use this as the form 

index for the term. Thus, in (2), i becomes the form index in 

the row index set for the term aijxj. 

We are now in a position to formulate the multimodal 

transportation problem (6) correctly. First, we add an index, p, 
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that is the form index for product (or is an instance of the form 

index if there is only one product) to all terms and the first 

two RHS pieces. We know that the states for the first two 

constraints are different locations for products, the state for 

the third is vehicles and that p is the form index associated 

with lijkpXijkp and k with aijkpxijkp Then it is clear that 

lijkxijkp should be associated with 2 Sip and 2 dip and 

aijkpxijkp with < Ck. 

To resolve the problem (7) and (8), if h is the form index 

associated with ahkxk, then i and j enumerate instances and we 

can sum either bhik over i or dhjk over j to compute ahk. Note 

that since the terms are summed in fixed proportion one new 

object is constructed for each activity, ie. an instance. We 

then place a symbol indicating the instance on each piece in (8), 

denoting what is formed from the sum of the inputs. 

We can now define two rules for forming pieces from terms. In 

the first rule we only consider the case where the indices to be 

summed are on the variable. That is, we are avoiding the problem 

of constructing new terms that appears in (7) and (8) . 

Piece Construction Rule 1: If the index set of a term 
contains the index set of a RHS piece and the form indices 
on the term and RHS piece are the same, then construct a 
piece from the term by summing the indices not in the index 
set of the RHS piece. 

Rule 1 may generate pieces for use in other rules. 
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From our resolution of the issue associated with (7) and (8), we 

also have the following: 

Piece Construction Rule 2: If there is a form index on a 
term that is an element of a set denoting the constituents 
of an object, sum over the elements of this set and add the 
instance of an index that denotes the new object. 

An example of an object is animal feed in the feed-mix constraint 

mentioned above (=Cgrains) . 

These two rules allow us to form new pieces from existing terms 

or pieces. The potential for working with pieces occurs if the 

model builder specifies pieces instead of terms from the 

beginning but does not identify all of their variations. 

Piece construction rules 1 and 2 do not treat cases where partial 

sums are involved. Here we have an index (say t) in the index 

set of the RHS piece that is not in the index set of the term. 

We need to know that some index on the term should be summed over 

a subset indicated by the t index in the index set of the RHS 

piece. There are two equivalent ways of learning this 

information. The first is to input all partial sums directly. 

That is, if a term should appear in a partial sum, the piece with 

the partial summation indicated, should be generated during the 

formulation phase. The other way is to include semantic 

information with the piece that leads directly to the partial 

sum. An example of the latter would be information of the form 

21 
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**capacity added in years t-n, ..., t is available in year t." For 

algorithmic simplicity, we assume that all partial sums are given 

directly. 

6. AN ALGORITHM FOR COMPOSING AN LP FROM ITS PIECES AND TERMS 

Suppose we have the following information: 

1. All LHS terms for regular (not bound) rows, all RHS 
pieces and all pieces with partial sums. 

2. Knowledge on all indices as to whether they represent 
form, time, place, mode or added attribute, and knowledge of 
the row form index (if there is more than one form index on 
a term). 

3 .  All abstractions that allow us to sum over form 
indices. 

We also repeat the assumptions we made in Section 3: 

1. The variables, terms and indices are named appropriately 
for the model being constructed. 

2. The RHS pieces are uniquely identified by their index 
sets and instances of indices (up to upper and lower limits 
on the same constraint). 

3. If pieces and terms exist, they should be used. 

4. Each index set on a term either contains the index set 
of each row set it must intersect, or is an element of a 
subset whose index (or instance) is on a RHS piece. 

5. All index functions are known. 

The following algorithm constructs an LP where there is never 

more than one piece for a given variable and row combination and 

each piece generated belongs in the row to which it is added. 

1. For each bound constraint, form from the associated variable 
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the LJ3S piece of the bound using the bounds construction rule as 
follows: 

a. For each index on the variable that is not in the row 
index set and not involved in a partial sum, sum over the 
whole range of the index. For each instance of an index on 
the RHS piece, replace the index on the variable with its 
instance. 

b. If the row index set contains indices that enumerate the 
subsets for partial sums, determine the associated subsets 
and sum the variable over these subsets. (Note that 
controlling indices for partial sums are not part of the 
variable index set, and, therefore can be recognized easily 
in the case of bounds.) 

The remaining rows are constructed as follows: 

2. For each RHS piece find all terms and pieces with partial 
sums whose index sets contain the RHS index set and where the 
instances of indices match. 

a. Apply construction rules 1 and 2 in order. 

b. Assign all matches of LHS pieces to the row associated 
with the RHS piece. 

It is clear from the above discussion that only one piece is 

generated from each term or piece for each row/activity 

combination. If two terms with the same variable generate pieces 

for a single row, then the pieces have identical coefficient 

values. Note that the only way for an extraneous piece to be 

generated for a row is that there is a match in form, time and 

place, plus any attribute indices. Since the semantics are 

consistent, there must be a missing attribute on the constraint 

that would rule out one of the transformations, i.e there was an 

error made when the terms were constructed. Thus, we have met 

our restricted definition of model validity. More importantly, 

the model makes sense semantically. The form indices match and 
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all instances of terms with matching form indices are used. Any 

term, that, by its semantics, affects the level of some state is 

included in the row that defines that state. 

Note that an LP formed by the above procedure is valid in the 

sense that all of the pieces are combined properly. If the 

modeler leaves out a term or piece that cannot be inferred from 

existing terms or pieces and the LP is fully connected, there is 

no way to identify the missing piece in general. Also, if a row 

index set is missing, this cannot be identified unless there is 

an unusable fragment. Domain knowledge concerning constraints 

that are often required can be used to suggest possible problems 

and model refinements to the user thereby addressing both of 

these limitations. However, this is outside the scope of this 

paper. 

7. AN EXAMPLE ILLUSTRATING THE PROCEDURE 

In this section, we construct a multiperiod production/ 

distribution model from indices, terms, RHS pieces, and one piece 

with a partial sum. For notational convenience, we use lower 

case letters to indicate indices and the corresponding upper case 

letter to indicate the set. When we use an upper case letter for 

an index, it indicates an instance of the index. 

Indices : 

j = product 
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jt= subset of products Jt< J 
m = material inputs 
r = resource inputs (machinery and labor) R = {K,L) 
t = time periods 
i = time periods 
f = factories 
w = warehouses 
v = vehicles 
U = utilization (instance of an index) 
A = availability (instance of an index) 

Note that the form indices are j, j t ,  m, r, and v. 

Variables: 

xj ft = produce 
Y ~ f i  = acquire machine capacity in year i 
e ~ f t  = employ labor 
hLft = hire labor 
dLft = dismiss labor 
sj fwvt = ship 
ijwt = inventory 

Left-hand side terms (the form index is in ( )  and the index set 
in { I ) :  

a ~ j  f tXj f t = use of machinery in production (K) {K,j , f ,t} 
a~jftuxjft = use of labor in production (L) {L, j ,f ,t,U) 
amjftxjft = use of materials in production (m) {m,j,f,t} 
-1LftueLft = labor utilization (L) {L, f, t ,U) 
l ~ f t ~ ~ ~ f t  = labor availability (L) {L, f, t,A) 
-lLft~e~ft-.l = labor availability (L) {L,f,t,A) 
-lLftAhLft = labor hired (L) {L, f, t,A} 
l ~ f t ~ ~ ~ f t  = labor dismissed (L) {L, f, t,A} 
-Ijftxjft = production amount (j) {j,f,t} 
ljfwtSjfwvt = quantity shipped (j) {j,f,w,v,t} 
llwtl jwt = inventory at end of period t (j) {j,w,t} 
- jwtljwt-l = inventory at end of period t-1 (j) {j ,w,t) 
rjfwvtSjfwt = capacity miles by vehicle type and trip (v) 

{jtfr~,~,t) 

Partial sum piece: 

Right-hand side pieces: 

E ~ f t  = existing capacity (K) {K, f , t} 
I OLft- = labor utilization (L) {L, f ,t,U} 
= OLft~ = labor availability (L) {L, f ,t,A} 
I Mmft = material availability (m) {m, f ,t) 
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5 Cmt = total material input limit (m) {m,t) 
= Oaft =productbalance (j) {j,f,t) 
< -Ajwt = demand (j) {j,w,t) 
5 Rtv = ton mile capacity of vehicles (v) {t,v) < Bxj ~ f t  = bound on products in subset J' by factory (x) 

{~,j',f,t) 
< Bxft = bound on total units of output in each factory 

(XI {frt) 

Constraints: 

Using the first rhs piece the indices on one term (applying piece 

construction rule 1) and the partial-sum piece match (step 2b), 

we define a capacity constraint: 

The next two constraints on labor have distinguished indices 

other than form, time or place indices (steps 2a and 2b): 

We also have a constraint on the materials (step 2): 

In the next constraint we use piece construction rule 1 and sum 

over all factories to limit the total use of each raw material: 
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We have a material balance constraint linking factories and 

warehouses (step 2) : 

We next have a demand constraint where we use the index function 

rule on the inventory activity. Note that the index function 

rule leads to two pieces with the same variable in the 

constraint: 

Our last regular constraint is a limit on vehicle capacity: 

The following two sets of bound rows are then constructed (steps 

lb and la respectively) : 

In this example we did not use composition rule 2: the 

situations where this applies are relatively infrequent in 

practice. Note also that all terms that contained the RHS 

indices of an RHS piece were used in the corresponding rows. 
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8. GENERATING RHS PIECES 

A variation on the above is inferring the existence of RHS pieces 

(case c from Section 2). This is especially important when we 

need to combine different submodels because it will often be the 

case that the output from one model will be the input to another. 

If we start with LHS pieces, inferring the existence of a row is 

simple. The normal forms of constraints are material balances, 

and constraints where demand is restricted to be less than or 

equal to supply (or supply greater than equal to demand). 

However, there are, for example, policy constraints where one 

specifies a minimum supply reversing the normal inequality. 

Thus, the relation cannot be determined with certainty by an 

automated system. If, instead of starting with LHS pieces, we 

start with LHS terms and pieces with partial sums, we can infer 

the limited set of possibilities for RHS pieces by noting that 

the index sets on RHS pieces are subsets of term index sets. 

The rows in an LP problem can be regarded as regulators of flows. 

Thus, every time there is an input to one activity that is an 

output from another activity, there must be a row in the LP to 

link the flows. When a flow is either just an input or output to 

the activities but not both, there is a corresponding nonzero RHS 

with an inequality or equality relation. When there are both 

inputs and outputs, one can have a material balance with a zero 
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on the RHS. 

As discussed above, we cannot in general determine the direction 

of the inequality. However, in an important special case, we can 

add new rows (balance equations) to our model while at the same 

time guaranteeing that the signs of the pieces are correct. This 

occurs when we are combining two or more component models to form 

a larger model. In essence, the sign of the flow is determined 

by the semantics of the original models. As long as we can match 

the inputs to one model with the outputs from the other model, we 

can determine the links, 

We do not have the space to cover the detailed mechanics involved 

in combining different models here. However, the following 

provides an overview of our approach. For simplicity, we assume 

that two models are to be combined and that the names of the 

objects in the two models are consistent. The combination of the 

models can be complicated by the fact that they may each contain 

representations of the same LP activities or use the same 

supplies and sources. The initial combined pool of pieces from 

which we build the model will therefore contain duplicate pieces. 

If we eliminate the duplicates, and further assume that the same 

resource (say money) occurs in the objective function of each 

model, the basic idea in combining two models is quite simple: 

one combines the rows from the two models where the index sets 

match and both rows have the same form indices. In order to 
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recognize all common flows, it is useful to include variable 

nonnegativity constraints explicitly in each model, treating them 

as terms from which one constructs pieces. An example where this 

is necessary occurs when a product-mix model is combined with a 

transportation model; the outflow of products is implicit in the 

former (captured by the non negativity condition) but explicit 

(as a supply constraint) in the latter. We need to combine the 

nonnegativity constraint from the product mix with the supply 

constraint of the transportation problem, keeping the signs 

consistent, to obtain a material balance equation. The objective 

functions of the two models can be simply combined with 

appropriate changes in the signs of the coefficients if one 

problem is a maximization and the other a minimization. 

The current version of LPFORM has a primitive capability for 

combining models (Ma, Murphy and Stohr, 1989). We believe that 

this is an important model management feature that can be 

developed further. One of the major reasons behind our use of 

algebraic pieces as fundamental building blocks in the 

construction phase is to facilitate the reuse of models in this 

fashion. 

9. CONCLUDING COMMENTS 

In this paper, we have shown how a complete algebraic statement 

of an LP problem can be composed from its component algebraic 
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pieces. This capability is necessary in a system like LPFORM, 

which translates graphic components into algebraic fragments that 

then have to be linked together. In algebraic systems such as 

GAMS in which users input complete algebraic statements in the 

first place, the techniques developed in this paper can be used 

to compose new models from previously developed submodels. 

The focus of this paper has been on the relatively narrow area of 

model construction (Figure 1). While this is central to our 

objective of building truly flexible systems, there are a wide 

range of modeling and model management issues that we have not 

covered. Within the construction area we have not discussed the 

representation of indices and sets in any detail (see Hurliman, 

1989, and Geoffrion, 1989). Nor have we touched on the many 

current developments in other areas of model development and use. 

Some research directions that should be mentioned are as follows. 

Starting with the formulation stage, there is a growing 

literature on graphical approaches to modeling (Glover, Klingman 

and ~hillips, 1990, Jones, 1990, Ma, Murphy and Stohr, 1989, and 

Sharda and Steiger, 1989), model reuse (Bhargava, Kimbrough and 

Krishnan, 1989), model building systems (Hurliman, 1989, Lucas 

and Mitra, 1988, Dhar and Jarke, 1989, and Greenberg, 1989), and 

structured modeling (Geoffrion, 1987). In the area of model 

interpretation and use, there has been work on the development of 

model management systems (Bhargava and Kimbrough, 1989) and on 

model diagnosis and analysis (Greenberg, 1989). 
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Our own research is aimed at providing automated assistance for 

the formulation process. Our goal is to expand the classes of 

semantic information utilized in the formulation process to 

include information about problem types and corresponding problem 

structures. We are attempting to form a semantic net of model 

types for use as component models. By knowing problem 

characteristics, we can let the system suggest the appropriate 

representation for a model component. 

Even a brief survey such as the above reveals a broad range of 

research efforts that would not even have been contemplated five 

years ago. There is a continuing need to formalize our knowledge 

about LP models to enhance the capabilities of model management 

systems. 
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