
COMPOSITION RULES FOR BUILDING
LINEAR PROGRAMMING MODELS

FROM COMPONENT MODELS

Frederic H. Murphy
School of Business
Temple University

Philadelphia, Pensylvania

Edward A. Stohr
New York University

Leonard N. Stern School of Business
Department of Information Systems, 0266

44 West 4th Street, Room 9-170
NewYork,NY 10012-1126

(2 12) 998-0800

Pai-chun MA
College of Business Administration

University of Delaware
Newark, Delaware

Revised March 1990

Working Paper Series
STERN #IS-87-30

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-87-30

Abstract

This paper describes some rules for combining component models

into complete linear programs. The objective is to lay the

foundations for systems that give users flexibility in designing

new models and reusing old ones, while at the same time,

providing better documentation and better diagnostics than

currently available. The results presented here rely on two

different sets of properties of LP models: first, the syntactic

relationships among indices that define the rows and columns of

the LP, and second, the meanings attached to these indices.

These two kinds of information allow us to build a complete

algebraic statement of a model from a collection of components

provided by the model builder.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

1. INTRODUCTION

Recent hardware and algorithmic advances are providing order of

magnitude improvements in the computer time needed to solve large

linear programming (LP) models. Consequently, a smaller

proportion of the costs of building and running models is being

spent on the solution phase and a larger proportion on the

building and interpretation phases. There is a corresponding

need to develop more sophisticated model management techniques to

aid in formulating, documenting, managing and interpreting LPts.

At the same time, there have been enhancements in computer

interfaces, allowing more options in the design of software

systems.

The need for improved model building techniques and the

development of new approaches to computer interfaces have led to

a renewed interest in model building technologies. Example

systems include PLANET (Breightman and Lucas, 1987), which is

used for various planning problems in General Motors; GAMS

(Brooke, Kendrick and Meeraus, 1988), AMPL (Fourer, Gay and

Kernighan, 1988), LPL (Hurliman, 1989), and MODLER (Greenberg,

1989), which are algebraically oriented; PAM (Welsh,1987) and

MATHPRO (Hirshfeld, 1988), which are block-structure/table

oriented approaches, and an emerging class of graphically

oriented systems such as LPFORM (Ma, Murphy and Stohr, 1989) and

GIN (Sharda and Steiger, 1989).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

Large linear programs almost always consist of a collection of

linked small models. From the algorithmic perspective,

discovering the "embeddedw networks leads to faster techniques

for solution. From the modeling perspective, looking at the

model as a network containing non-network components allows us to

break down the problem of formulation into separate,

comprehensible pieces. In this paper, we describe a method for

taking component parts and combining those parts into a complete

LP matrix. The same method also allows us to combine different

problems or subproblems together. For example, a modeler might

separately develop a production model and a transportation model

and at a later time want to combine them to form a more

comprehensive model. The modeler need only look at one part of

the problem at a time and then is given considerable assistance

in combining the component models.

Traditional matrix generator languages such as OMNI and Dataform

support the strategy of building models from more elementary

components. In these systems, the model can be decomposed into a

series of separately generated data tables which are then linked

together to form the complete LP model by a program written in

these languages. Matrix generation for the Project Independence

Evaluation System (PIES), on which one of the authors worked,

provides an extreme example of this approach in that it involved

managerial divisions as well as data and software segmentation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

Each staff member who was responsible for a specific energy

sector was assigned the task of generating condensations of

activities in the form of coefficient tables for that sector.

The sector specific tables were then combined into the complete

LP by a matrix generator that also added transportation links.

The person in charge of matrix generation had to coordinate the

flow of information. Any change in the model, such as a change

in the number of replications of a submodel, quickly turned into

a major coordination problem. The communication burden was

enormous, leading to serious personnel and model management

problems (see Murphy, Conti, Sanders and Shaw, 1988).

What was needed in this system, and is needed in others, were

methods for eliminating common errors in model component

coordination and recognizing incompatibilities prior to the major

expenditure incurred in matrix generation. To provide a

perspective on our approach to this problem, we start with the

steps in building an LP model (see Figure 1).

3 .
1. 2. Input

Formulation Construction to Solver ----------- > Model ------------ > Complete ---------- > MPS
Components Model Statement

Figure 1
Steps in the Formulation of Input to a Solver

Step 1 can be performed interactively, while steps 2 and 3 are

automated by the modeling system and may not be distinct in that

the MPS statement can be the only statement of the complete

model. The MPS input format is a standard followed by all major

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

LP solvers. Activities (columns) and constraints (rows) are

given 8 letter names; nonzero data values at each row and column

intersection are explicitly written as a long list of triples

(row label, column label, coefficient value). The three classes

of modeling,systems mentioned above all produce an MPS file in

step 3, but take different approaches with regard to steps 1 and

2. In table-driven systems, formulation focuses on the data

tables containing the coefficient values; these are the Model

Components which are then linked to form the complete model prior

to the generation of the MPS file. In algebraic systems, the

user writes the model in algebraic form; the Model Components are

the algebraic equations plus the data tables. In graphic

systems, the modeler conceives the problem as a network with

embedded non-network components. The Model Components are then

the graphic objects together with the data tables.

Note that algebraic systems such as GAMS, AMPL and MODLER provide

a row perspective to the modeler in that the information is

ordered by constraint, while the traditional matrix generators

such as DATAFORM, GAMMA and OMNI use a column orientation. Each

approach has advantages. The row orientation is consistent with

the way Westerners read and facilitates constraint generation in

integer programming. On the other hand, since columns typically

have fewer elements than rows, practitioners often find that a

column perspective facilitates model comprehension and that with

large models it is easier to break the model into separate blocks

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

of activities that are later linked. Also, activities are more

likely to change than rows (see Beale, 1968).

In LPFORM we combine graphic-, row- and column-oriented

perspectives. In addition to drawing a graph of the major system

components, one can define activities directly by their inputs

and outputs (column perspective) or directly enter constraints in

a standard algebraic notation (row perspective). The Model

Components produced by step 1 in LPFORM consist of graphic

objects, activity representations, "piecesw of algebraic

statements (see below) and data tables. During the construction

phase, the graphic and tabular information is used to produce a

complete and consistent set of algebraic pieces. These are then

combined to form a complete model in standard algebraic format.

We do not discuss the formulation step further in this paper.

Rather, we concentrate on the construction step starting from the

point at which the model components in step 1 have been generated

as algebraic fragments. Our discussion, therefore, applies to

other modeling systems as well as to LPFORM. Our objective is to

provide flexibility with respect to the construction of complete

models from their component models and submodels. At the same

time, we want to ensure the consistency of the formulation and to

provide meaningful diagnostics when mistakes occur.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

2. INTRODUCTORY CONCEPTS AND OVERVIEW

To illustrate these concepts, we need the following definitions.

A term is either the product of a coefficient and a variable or a

right-hand-side (RHS) coefficient. An algebraic piece is a term

on the left-hand side (LHS) of a constraint together with its

associated summations (if any) or an RHS coefficient with its

equality or inequality relation.

Our goal is to construct the complete algebraic statement of a

model starting from a collection of either algebraic terms or

pieces. For example, if we have the following three model

pieces:

X CjXj,j:Jaij Xj, and < bi i&I,
j &J

we know intuitively that they fit together to form the LP:

min C Cj Xj
j&J

subject to:

Xj 2 0 j&J.

More formally, we know that (2) is correct because there are no

unsummed indices in the objective function and the only unsummed

index in the constraint matches the index on the right-hand side.

We consider three possible characterizations of the initial pool

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

of terms and pieces:

(a) A complete collection of pieces (as in (1)).

(b) A complete collection of terms i.e. we know all the
activities and coefficients plus the RHS pieces and need to
infer the summations to construct the pieces.

(c) A complete collection of LHS pieces i.e. we need to infer the
RHS pieces in order to complete the model.

In practice, we need to be able to handle all three cases and

mixtures of them. We also need to be able to handle cases where

the information is not complete (perhaps by formulating queries

to elicit the required information). However, this is beyond the

scope of this paper.

If we have all of the pieces (case a), together with some

semantic information, there is a simple mechanical process to

define the model. This is described in the next section. If we

have the complete collection of terms (case b), we can still

construct the complete algebraic model but we need more

information. The added information describes the physical nature

of the system being modeled. This is captured by the meaning of

indices - whether they represent wformw, "timett or "placeM (i.e.
ltwhatn, "when1* and "wherew). Section 4 discusses the generation

of summation information from terms and some of the problems in

dealing with form indices. Section 5 shows how semantic

information (form, time and place) can be used to circumvent

these problems. Section 6 describes a procedure for constructing

models from terms. This procedure is illustrated in section 7.

7

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

In Section 8 we provide a brief outline of case c in which RHS

coefficients are inferred from the existence of other

information. We do not cover case c in detail for want of space;

however many of the principles developed for case b apply also to

case c. In the last section, we describe other work that has been

done in this area and outline further avenues for research.

3. CONSTRUCTING A COMPLETE MODEL FROM ALGEBRAIC PIECES

Given that we are presenting procedures for building an LP from

its components, it is important to provide a definition for the

validity of the resulting model. We assume that all the

coefficients and variables have been named consistently for the

problem at hand. That is, if various components have originated

in different models then their names have been "mappedn into

those for the new model (see Ma, Murphy and Stohr, 1989). The

definition of validity has to be limited in the sense that it

cannot account for mistakes by the model builder. We use the

following:

Model Validity: A model is valid if the index set on each
LHS piece matches the index set on its associated RHS piece
and only one model can be formed from the terms or pieces
that are given.

This is not a rigorous definition in that one could form multiple

models by first building a model and then dropping off pieces.

However, we presume that if a piece exists, it must be used,

ruling out this possibility. Once we have introduced the

8

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

semantics of form, time and place in Section 5, we will be in a

position to say something about whether a piece should exist or

not.

If we have all the pieces for the model, the only task is to

assemble them into the correct rows in the final algebraic

statement. To do this, we first need to name the rows uniquely.

Because the same constant value (say zero) can appear in many

rows, we assume that the RHS pieces are distinguished by their

indices and that constant values are stored along with their

indices. To illustrate, the b in (2) is simply a placeholder for

the coefficient, while the index i distinguishes the rows. We

call the collection of indices on an RHS piece an index set.

Next, we need to determine the row to which each LHS piece should

be assigned. We do this by determining the index set for the

piece. We define an index set to be a set of index symbols. For

example, the two indices i and j on the coefficient a in (2)

constitute its index set {i,j). We define the index set for a

term to be the union of the index sets for the variable and

coefficient.

The index set for a piece is computed from the index set for the

term. The effect of a summation is to remove the summed index

from the term index set. For example, in (2) the index j is

removed from the index set {i,j) for aijxj to arrive at the index

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

set (i) for the piece, Caijxj. If there is a partial sum, that

is, an index is summed over a subset of elements in the set it

indexes, then an index is added to the index set to denote the

subset over which the sum is taken. Suppose, for example, in a

multiperiod model the available capacity in period t is equal to

the sum of all capacity acquired in period t and prior periods.

That is, we have a piece:

In this case, the index set for the piece is found by dropping

the index j and adding the index t that indicates the different

subsets that are formed by the summations.

Sometimes an index is a function and not just a simple symbol.

For example, suppose we can make an investment i in any year t

that provides a return of rit+n in period t+n. Then the cash

flow constraint in period t+n includes a term rit+nxit. Thus, we

have both the index t on the variable and the index function t+n

on the coefficient. If we establish the convention that the

index function on the coefficient determines the appropriate

index for the piece index set, then we know that the appropriate

index on the variable is the inverse of the function of the

coefficient index. This is illustrated by the index on the

coefficient r in (4) in the next section.

It is possible to define an index function implicitly. For

10

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

example, the cash flow coefficient could be defined as ritn

without the function t+n explicit. That is, a third subscript

could be used to define the cash flows. We, therefore, need the

following requirement:

Index function requirement: All index functions must be
stated explicitly.

Given our convention, this leads to the following rule:

Index function rule: When an index that is not summed
appears as the independent variable in an index function on
a coefficient, use the function value to compute the element
of the index set for the piece and treat the occurrences of
different index functions on terms with the same variable as
if they had different variables.

That is, the value of an index function replaces the index even

if the domain index appears in the variable index set, eg. t+n

appears in the index set for rit+nXit.

We assume that the model builder has placed enough indices on the

variable or coefficient (including constants) of every LHS term

so that the index set of every term contains the index set of

every row with which the variable intersects. Note that indices

are often dropped from coefficients to simplify data entry when

the same values are used for different variables. The above

assumption merely requires that a record be kept of all potential

coefficient indices. We can then pattern match using

Row Construction Rule: For a given RHS piece, select all
LHS pieces whose row index sets match the index set of the
RHS piece.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

The validity of this rule can be seen immediately. Assume we

have a piece that should not be used in a row where there is a

match in index sets. Then this piece cannot be used elsewhere

since there is only one RHS piece with a matching index set. By

the uniqueness of the index sets on the RHS pieces, there is only

one row for each piece and the model is unique. Because of the

added information on coefficient indices, this rule is an

extension of domain checking as implemented in GAMS.

Note that two constraints that are upper and lower limits on the

same LHS do not cause a problem in the application of the row

construction rule or the uniqueness of row names. We need only

require uniqueness up to the point where the LHS is different.

The row construction rule breaks down if the pieces are not

assigned sufficiently explicit index sets during the formulation

process. For example, when representing resources that last more

than one period such as labor or equipment, we often generate two

rows in the model, one row to account for the availability of the

resource and another for its utilization. Thus, the following is

a typical formulation for a manpower planning problem:

ht = number of employees hired at the beginning of period
t

ft = number of employees fired at the beginning of
period t

et = number of employees available in period t

xjt = amount of product j produced in period t
rt+l = fraction of employees that return in period t+l from

period t (do not quit at the end of the period)

aj = number of employees required to produce a unit of j

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

Availability: rtet-1 + ht - ft - et = 0 - et < 0.
(4)

utilization: X ajXjt
j

The availability row determines the amount of resource available

in each period and the utilization row describes how the

available resource is used. Both rows have the same index, t.

(If in the model there were other inputs besides labor in the

production process, we would add a labor index indicating that

these two rows measure labor at time t.)

Given just the 5 pieces listed above and attempting to apply the

row construction rule, we would assign the two et terms to

different rows, but would not know what to do with the other

pieces without further information. In practice, and

particularly when using traditional matrix generators, model

builders make the rows uniquely identifiable by including an

index that differentiates availability from utilization. If the

applicable value of this index is included in each of the LHS and

RHS pieces, the index function and row construction rules can be

used to give the correct result. However, we need the following:

Instance Rule: When a piece uses an instance of an index
rather than the index, the instance of that index must
appear in all pieces in the constraint.

Note that the above solution places a requirement that semantic

information be included (eg. to differentiate instances from

indices) in the algebraic terms generated from the formulation

stage.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

4. GENERATING PIECES FROM TERMS

We now consider case b from Section 2, where we have the terms

for the problem and need to construct the algebraic statement by

determining the appropriate summations for each LHS term as well

as assigning it to the appropriate row. This is somewhat like

the standard textbook modeling exercise in which students are

presented with data (equivalent to our coefficients and their

index sets) together with some descriptive text which helps

determine the activities. The results presented here are an

extension of the rules used in Welsh (1987) for combining tables

to complete a model. In this section, the completeness

requirement in the statement of case a in section 2 is relaxed

slightly, because we are able to generate some pieces from a

knowledge of other terms.

To generate a model from terms rather than pieces we must first

construct the pieces. We begin by showing how LHS pieces for

bound rows can be generated knowing only the RHS limits. Then we

consider the more general problem.

In traditional matrix generators, variable names are simply

concatenations of symbols. Thus, the x in xj is not

differentiated from the j by the matrix generator. Variable

names simplify algebraic statements, however, because we

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

eliminate the need to indicate the relevant subset of variables

on the right-hand-side of each equation. Of course, the semantic

reason for differentiating variable names from indices is that

variables represent actions and indices specify instances of

these actions. Conversely, the rows of an LP usually describe

what is being acted upon. However, the rows can also be used to

place bounds on the actions. If we know that an RHS coefficient

represents a bound on a variable, (and we know which variable is

bounded) we can easily generate the LHS piece. This is the

variable itself in the case of simple upper or lower bounds.

More generally, we have the following:

Bounds construction Rule: Given that an RHS piece
represents a bound row, form the LHS piece by summing all
indices on the variable that are not in the index set of the
RHS piece.

Again, the formulation phase has to generate the appropriate

semantic information; in this case the variable name to be

associated with the RHS bound piece.

We now turn to the more general case. A simple piece

construction rule would be as follows:

False piece construction rule: If the index set of a LHS
term contains the index set of a RHS piece, sum over all of
the indices on the term that are not on the RHS piece and
place the piece so constructed in the row. Repeat for all
terms.

We now provide two examples where it is not clear how to

construct a piece from a term or other pieces using this rule in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

the absence of further information. Suppose we have the terms

lijkxijk and aijkxijk and three rows with indices i, j, k. Can

we formulate a model from this information using the above rule?

The answer is no. The rule would give us the following

formulation:

But, suppose we are formulating a transportation model where we

ship a product from i to j by transportation mode k, with a

capacity of ck for mode k, and each unit we ship takes aijk units

of capacity. In this case the correct formulation is:

One form of semantic information that can resolve ambiguities

such as the above is units analysis, also known as dimensional

analysis (see Bradley and Clemence, 1988, for an approach to

including units and related information in a GAMS style modeling

system). Each LHS coefficient has units of "something per unit

of activity." In the multimodal transportation problem above,

suppose the units on the first two rows are "tonsM and the units

on the third row are ~~vehicles." Using the following units rule,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

we would have formulated this model correctly given all of the

pieces.

Units Rule: All terms that appear in a row have the
same units as the row.

However, if our vehicle capacities were also measured in tons,

our units analysis would not help us. Before resolving this

issue, we present another problem.

In this example the index we wish to sum is on the coefficient

and not the variable. Say we have the following pieces:

These fit into rows with index sets {h,i) and {h,j). Suppose we

have determined that there is another row with index set {h) in

the problem but have no LHS terms. We might try to construct a

piece:

Our tentative piece construction rule fails again because we do

not know whether to construct the new piece by summing over i in

the (7a) piece or j in the (7b) piece, or, alternatively, whether

we should ask the user to supply the coefficient name and values

for (8).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

In the next section we show how the problems raised by these

examples can be resolved by further information that ascribes

meaning to the symbols.

5. USING FORM, TIME AND PLACE INFORHATION

Linear programs represent physical actions on physical things

that are described by three dimensions: what they are, where

they are and when they are there. Analogous to the notion of

state in dynamic programming, we can say that a row defines some

state, that is, something, somewhere at some time. The right-

hand side defines the starting level of the state and activities

that intersect this row change the level of the state. Each

state includes three generalized dimensions of form, time and

place. We say "generalizedw because we may use several indices

to define a dimension, e.g. city and state to define location.

For convenience we treat a generalized dimension as a single

index in the remainder of the paper. To complete the definition

of the state for a row, we add a generalized "attributew index.

This allows us to differentiate, for example, utilization from

availability in (5) or to indicate input or product attributes

such as octane in a blending model.

Activities can be described by the states (or a subset of states)

changed. We add a dimension to an activity, which we refer to as

a "modew index since it indicates alternative ways of changing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

the levels of states using inputs in different mixes,

Every LP constraint describes a restriction on something and is

measured in units of that something. Thus, it has either an

explicit or implicit index for form. Time and place indices

enumerate occurrences of the form index. Rarely can we construct

a meaningful constraint by summing terms over all values of the

form index, and when we can, we wind up defining a new index for

form. An example occurs in a feedmix problem when we sum over

all of the different kinds of grain to get a more abstract entity

(say) Itanimal feedw which we recognize as a new form index.

Form indices can also take on a dual role. They can not only

indicate form but also instances of transformations. The

simplest case occurs in the product mix problem (e.g. (2)) where

j is not only a form index indicating products but also indicates

different activities. The distinction seems academic but is

crucial to a resolution of the problem in (6). To determine if a

form index indicates form, note that each coefficient represents

a rate of change of something. Consequently, there is some state

whose level is changed by the term. We use this as the form

index for the term. Thus, in (2), i becomes the form index in

the row index set for the term aijxj.

We are now in a position to formulate the multimodal

transportation problem (6) correctly. First, we add an index, p,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

that is the form index for product (or is an instance of the form

index if there is only one product) to all terms and the first

two RHS pieces. We know that the states for the first two

constraints are different locations for products, the state for

the third is vehicles and that p is the form index associated

with lijkpXijkp and k with aijkpxijkp Then it is clear that

lijkxijkp should be associated with 2 Sip and 2 dip and

aijkpxijkp with < Ck.

To resolve the problem (7) and (8), if h is the form index

associated with ahkxk, then i and j enumerate instances and we

can sum either bhik over i or dhjk over j to compute ahk. Note

that since the terms are summed in fixed proportion one new

object is constructed for each activity, ie. an instance. We

then place a symbol indicating the instance on each piece in (8),

denoting what is formed from the sum of the inputs.

We can now define two rules for forming pieces from terms. In

the first rule we only consider the case where the indices to be

summed are on the variable. That is, we are avoiding the problem

of constructing new terms that appears in (7) and (8) .

Piece Construction Rule 1: If the index set of a term
contains the index set of a RHS piece and the form indices
on the term and RHS piece are the same, then construct a
piece from the term by summing the indices not in the index
set of the RHS piece.

Rule 1 may generate pieces for use in other rules.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

From our resolution of the issue associated with (7) and (8), we

also have the following:

Piece Construction Rule 2: If there is a form index on a
term that is an element of a set denoting the constituents
of an object, sum over the elements of this set and add the
instance of an index that denotes the new object.

An example of an object is animal feed in the feed-mix constraint

mentioned above (=Cgrains) .

These two rules allow us to form new pieces from existing terms

or pieces. The potential for working with pieces occurs if the

model builder specifies pieces instead of terms from the

beginning but does not identify all of their variations.

Piece construction rules 1 and 2 do not treat cases where partial

sums are involved. Here we have an index (say t) in the index

set of the RHS piece that is not in the index set of the term.

We need to know that some index on the term should be summed over

a subset indicated by the t index in the index set of the RHS

piece. There are two equivalent ways of learning this

information. The first is to input all partial sums directly.

That is, if a term should appear in a partial sum, the piece with

the partial summation indicated, should be generated during the

formulation phase. The other way is to include semantic

information with the piece that leads directly to the partial

sum. An example of the latter would be information of the form

21

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

**capacity added in years t-n, ..., t is available in year t." For

algorithmic simplicity, we assume that all partial sums are given

directly.

6. AN ALGORITHM FOR COMPOSING AN LP FROM ITS PIECES AND TERMS

Suppose we have the following information:

1. All LHS terms for regular (not bound) rows, all RHS
pieces and all pieces with partial sums.

2. Knowledge on all indices as to whether they represent
form, time, place, mode or added attribute, and knowledge of
the row form index (if there is more than one form index on
a term).

3 . All abstractions that allow us to sum over form
indices.

We also repeat the assumptions we made in Section 3:

1. The variables, terms and indices are named appropriately
for the model being constructed.

2. The RHS pieces are uniquely identified by their index
sets and instances of indices (up to upper and lower limits
on the same constraint).

3. If pieces and terms exist, they should be used.

4. Each index set on a term either contains the index set
of each row set it must intersect, or is an element of a
subset whose index (or instance) is on a RHS piece.

5. All index functions are known.

The following algorithm constructs an LP where there is never

more than one piece for a given variable and row combination and

each piece generated belongs in the row to which it is added.

1. For each bound constraint, form from the associated variable

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

the LJ3S piece of the bound using the bounds construction rule as
follows:

a. For each index on the variable that is not in the row
index set and not involved in a partial sum, sum over the
whole range of the index. For each instance of an index on
the RHS piece, replace the index on the variable with its
instance.

b. If the row index set contains indices that enumerate the
subsets for partial sums, determine the associated subsets
and sum the variable over these subsets. (Note that
controlling indices for partial sums are not part of the
variable index set, and, therefore can be recognized easily
in the case of bounds.)

The remaining rows are constructed as follows:

2. For each RHS piece find all terms and pieces with partial
sums whose index sets contain the RHS index set and where the
instances of indices match.

a. Apply construction rules 1 and 2 in order.

b. Assign all matches of LHS pieces to the row associated
with the RHS piece.

It is clear from the above discussion that only one piece is

generated from each term or piece for each row/activity

combination. If two terms with the same variable generate pieces

for a single row, then the pieces have identical coefficient

values. Note that the only way for an extraneous piece to be

generated for a row is that there is a match in form, time and

place, plus any attribute indices. Since the semantics are

consistent, there must be a missing attribute on the constraint

that would rule out one of the transformations, i.e there was an

error made when the terms were constructed. Thus, we have met

our restricted definition of model validity. More importantly,

the model makes sense semantically. The form indices match and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

all instances of terms with matching form indices are used. Any

term, that, by its semantics, affects the level of some state is

included in the row that defines that state.

Note that an LP formed by the above procedure is valid in the

sense that all of the pieces are combined properly. If the

modeler leaves out a term or piece that cannot be inferred from

existing terms or pieces and the LP is fully connected, there is

no way to identify the missing piece in general. Also, if a row

index set is missing, this cannot be identified unless there is

an unusable fragment. Domain knowledge concerning constraints

that are often required can be used to suggest possible problems

and model refinements to the user thereby addressing both of

these limitations. However, this is outside the scope of this

paper.

7. AN EXAMPLE ILLUSTRATING THE PROCEDURE

In this section, we construct a multiperiod production/

distribution model from indices, terms, RHS pieces, and one piece

with a partial sum. For notational convenience, we use lower

case letters to indicate indices and the corresponding upper case

letter to indicate the set. When we use an upper case letter for

an index, it indicates an instance of the index.

Indices :

j = product

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

jt= subset of products Jt< J
m = material inputs
r = resource inputs (machinery and labor) R = {K,L)
t = time periods
i = time periods
f = factories
w = warehouses
v = vehicles
U = utilization (instance of an index)
A = availability (instance of an index)

Note that the form indices are j, j t , m, r, and v.

Variables:

xj ft = produce
Y ~ f i = acquire machine capacity in year i
e ~ f t = employ labor
hLft = hire labor
dLft = dismiss labor
sj fwvt = ship
ijwt = inventory

Left-hand side terms (the form index is in () and the index set
in { I) :

a ~ j f tXj f t = use of machinery in production (K) {K,j , f ,t}
a~jftuxjft = use of labor in production (L) {L, j ,f ,t,U)
amjftxjft = use of materials in production (m) {m,j,f,t}
-1LftueLft = labor utilization (L) {L, f, t ,U)
l ~ f t ~ ~ ~ f t = labor availability (L) {L, f, t,A)
-lLft~e~ft-.l = labor availability (L) {L,f,t,A)
-lLftAhLft = labor hired (L) {L, f, t,A}
l ~ f t ~ ~ ~ f t = labor dismissed (L) {L, f, t,A}
-Ijftxjft = production amount (j) {j,f,t}
ljfwtSjfwvt = quantity shipped (j) {j,f,w,v,t}
llwtl jwt = inventory at end of period t (j) {j,w,t}
- jwtljwt-l = inventory at end of period t-1 (j) {j ,w,t)
rjfwvtSjfwt = capacity miles by vehicle type and trip (v)

{jtfr~,~,t)

Partial sum piece:

Right-hand side pieces:

E ~ f t = existing capacity (K) {K, f , t}
I OLft- = labor utilization (L) {L, f ,t,U}
= OLft~ = labor availability (L) {L, f ,t,A}
I Mmft = material availability (m) {m, f ,t)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

5 Cmt = total material input limit (m) {m,t)
= Oaft =productbalance (j) {j,f,t)
< -Ajwt = demand (j) {j,w,t)
5 Rtv = ton mile capacity of vehicles (v) {t,v) < Bxj ~ f t = bound on products in subset J' by factory (x)

{~,j',f,t)
< Bxft = bound on total units of output in each factory

(XI {frt)

Constraints:

Using the first rhs piece the indices on one term (applying piece

construction rule 1) and the partial-sum piece match (step 2b),

we define a capacity constraint:

The next two constraints on labor have distinguished indices

other than form, time or place indices (steps 2a and 2b):

We also have a constraint on the materials (step 2):

In the next constraint we use piece construction rule 1 and sum

over all factories to limit the total use of each raw material:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

We have a material balance constraint linking factories and

warehouses (step 2) :

We next have a demand constraint where we use the index function

rule on the inventory activity. Note that the index function

rule leads to two pieces with the same variable in the

constraint:

Our last regular constraint is a limit on vehicle capacity:

The following two sets of bound rows are then constructed (steps

lb and la respectively) :

In this example we did not use composition rule 2: the

situations where this applies are relatively infrequent in

practice. Note also that all terms that contained the RHS

indices of an RHS piece were used in the corresponding rows.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

8. GENERATING RHS PIECES

A variation on the above is inferring the existence of RHS pieces

(case c from Section 2). This is especially important when we

need to combine different submodels because it will often be the

case that the output from one model will be the input to another.

If we start with LHS pieces, inferring the existence of a row is

simple. The normal forms of constraints are material balances,

and constraints where demand is restricted to be less than or

equal to supply (or supply greater than equal to demand).

However, there are, for example, policy constraints where one

specifies a minimum supply reversing the normal inequality.

Thus, the relation cannot be determined with certainty by an

automated system. If, instead of starting with LHS pieces, we

start with LHS terms and pieces with partial sums, we can infer

the limited set of possibilities for RHS pieces by noting that

the index sets on RHS pieces are subsets of term index sets.

The rows in an LP problem can be regarded as regulators of flows.

Thus, every time there is an input to one activity that is an

output from another activity, there must be a row in the LP to

link the flows. When a flow is either just an input or output to

the activities but not both, there is a corresponding nonzero RHS

with an inequality or equality relation. When there are both

inputs and outputs, one can have a material balance with a zero

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

on the RHS.

As discussed above, we cannot in general determine the direction

of the inequality. However, in an important special case, we can

add new rows (balance equations) to our model while at the same

time guaranteeing that the signs of the pieces are correct. This

occurs when we are combining two or more component models to form

a larger model. In essence, the sign of the flow is determined

by the semantics of the original models. As long as we can match

the inputs to one model with the outputs from the other model, we

can determine the links,

We do not have the space to cover the detailed mechanics involved

in combining different models here. However, the following

provides an overview of our approach. For simplicity, we assume

that two models are to be combined and that the names of the

objects in the two models are consistent. The combination of the

models can be complicated by the fact that they may each contain

representations of the same LP activities or use the same

supplies and sources. The initial combined pool of pieces from

which we build the model will therefore contain duplicate pieces.

If we eliminate the duplicates, and further assume that the same

resource (say money) occurs in the objective function of each

model, the basic idea in combining two models is quite simple:

one combines the rows from the two models where the index sets

match and both rows have the same form indices. In order to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

recognize all common flows, it is useful to include variable

nonnegativity constraints explicitly in each model, treating them

as terms from which one constructs pieces. An example where this

is necessary occurs when a product-mix model is combined with a

transportation model; the outflow of products is implicit in the

former (captured by the non negativity condition) but explicit

(as a supply constraint) in the latter. We need to combine the

nonnegativity constraint from the product mix with the supply

constraint of the transportation problem, keeping the signs

consistent, to obtain a material balance equation. The objective

functions of the two models can be simply combined with

appropriate changes in the signs of the coefficients if one

problem is a maximization and the other a minimization.

The current version of LPFORM has a primitive capability for

combining models (Ma, Murphy and Stohr, 1989). We believe that

this is an important model management feature that can be

developed further. One of the major reasons behind our use of

algebraic pieces as fundamental building blocks in the

construction phase is to facilitate the reuse of models in this

fashion.

9. CONCLUDING COMMENTS

In this paper, we have shown how a complete algebraic statement

of an LP problem can be composed from its component algebraic

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

pieces. This capability is necessary in a system like LPFORM,

which translates graphic components into algebraic fragments that

then have to be linked together. In algebraic systems such as

GAMS in which users input complete algebraic statements in the

first place, the techniques developed in this paper can be used

to compose new models from previously developed submodels.

The focus of this paper has been on the relatively narrow area of

model construction (Figure 1). While this is central to our

objective of building truly flexible systems, there are a wide

range of modeling and model management issues that we have not

covered. Within the construction area we have not discussed the

representation of indices and sets in any detail (see Hurliman,

1989, and Geoffrion, 1989). Nor have we touched on the many

current developments in other areas of model development and use.

Some research directions that should be mentioned are as follows.

Starting with the formulation stage, there is a growing

literature on graphical approaches to modeling (Glover, Klingman

and ~hillips, 1990, Jones, 1990, Ma, Murphy and Stohr, 1989, and

Sharda and Steiger, 1989), model reuse (Bhargava, Kimbrough and

Krishnan, 1989), model building systems (Hurliman, 1989, Lucas

and Mitra, 1988, Dhar and Jarke, 1989, and Greenberg, 1989), and

structured modeling (Geoffrion, 1987). In the area of model

interpretation and use, there has been work on the development of

model management systems (Bhargava and Kimbrough, 1989) and on

model diagnosis and analysis (Greenberg, 1989).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

Our own research is aimed at providing automated assistance for

the formulation process. Our goal is to expand the classes of

semantic information utilized in the formulation process to

include information about problem types and corresponding problem

structures. We are attempting to form a semantic net of model

types for use as component models. By knowing problem

characteristics, we can let the system suggest the appropriate

representation for a model component.

Even a brief survey such as the above reveals a broad range of

research efforts that would not even have been contemplated five

years ago. There is a continuing need to formalize our knowledge

about LP models to enhance the capabilities of model management

systems.

Acknowledgements: We wish to thank Harvey Greenberg for his

helpful comments. This research was supported by Arnoco and Shell

companies.

REFERENCES

Asthana, A., F.H. Murphy, and E.A. Stohr (1989), "Tests of an
Interface for Formulating Linear Programs," presentation
ORSA/TIMS New York, fall.

Beale, M. (1968), Mathematical Prosrammins in Practice, Pittman.

Bhargava, H., S. 0. Kimbrough (1990), "On Embedded Languages for
Model Management,11 Proceedinas of the 23rd Annual Hawaii
~nternational Conference on Systems Sciences.

Bhargava, H., S.O. Kimbrough, R. Krishnan (1989), "Unique Names

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

Violations: A Problem for Model Integration or You Say Tomato, I
Say Tomahto," Working Paper, Wharton.

Bradley G.H. and R. D. Clemence (1988), "Model Integration with a
Typed Executable Modeling Language," Proceedinss of the Twenty-
first Hawaii International Conference on Systems Sciences, Vol
111.

Breightman,R.L. and J.M. Lucas (1987),!!PLANETS: A Modeling System
for Business Planning," Interfaces, 17,l Jan-Feb.

Brooke, A.,D. Kendrick and A. Meeraus (1988), GAMS: A User's
Guide, The Scientific Press, Redwood City, CA.

Dhar, V. and M. Jarke (1989), "On Modeling Systems,!! workshop
proceedings, Information Systems and Decision Processes, Tucson,
AZ, Oct. 5-7.

Fourer, R., D.M. Gay, and B. Xernighan (1987), "AMPL: A
Mathematical Programming Language," AT&T Bell Laboratories,
Murray Hill, NJ.

Geoffrion, A.M. (1987), "An Introduction to Structured Modeling,!'
Manaqement Science, 33,5, pp. 547-588.

Geoffrion, A.M. (1989), "Indexing in Modeling Languages for
Mathematical Programming," working paper, Western Management
Science Institute, November.

Glover, F., D. Klingman and N. Phillips (1990), "Netform Modeling
and Applications," Interfaces, to appear.

Greenberg, H.G. (1989), "Overview of the Development of an
Intelligent Mathematical Programming System (IMPS)," working
paper University of Colorado at Denver, December.

Greenberg, H. G. (1987), wComputer-Assisted Analysis for
Diagnosing Infeasible or Unbounded Linear ProgramsIgt Mathematical
Prosrammins Studies vol. 31, pp. 21-29.

Hirshfeld, D. (1988), "MATHPRO," Presentation at the Intelligent
Mathematical Programming Systems Symposium, University of
Colorado at Denver, December.

Hurliman, T. (1989), "Reference Manual for the LPL Modeling
Language,!' working paper, Institute for Automation and
Operations Research, University of Fribourg, Fribourg
Switzerland, October.

Jones, C.V. (1990), "An Introduction to Graph-based Modeling
Systemsw ORSA Journal on Com~utinq, to appear.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

Krishnan, R., "PDM: A Knowledge-Based tool for Model
ConstructionIU Decision Suwwort Svstems, to appear.

Lee, J.S. (1989), "Towards Automatic Selection of Integer
programming Algorithms in a Model Management System,"
presentation ORSA/TIMS New York, fall.

Lucas, C. and G. Mitra (1988), "Computer Assisted Mathematical
Programming Modeling System: CAMPS," Comwuter Journal.

Ma, P:, F.H. Murphy and E. A. Stohr (1989). A Graphics Interface
for Llnear Programming," Communications of ACM, 32, 8 pp, 996-
1012, August.

Murphy, F.H., J. Conti, R. Sanders and S. Shaw, "Modeling and
Forecasting Energy Markets with the Intermediate Future
Forecasting System," Owerations Research, May-June.

Sharda, R. and D. Steiger (1989), "Functional Description of a
Graph-based Interface for Network Modeling (GIN)," working paper,
Oklahoma State University.

Welch, J.S., Jr. (1987) "PAM- A Practitioner's Approach to
Modeling," Manasement Science, 33, 5, pp. 610-625, May.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-30

