
GENEWIZED TUPLE SELECTION PREDICATES

James Clifford
Department of Infomation Systems
Leonard N. Stem School of Business

New York University
44 West 4th Street, Suite 9-170
NewYork,NY 10012-1126

(212) 998-0800

May 1987

Working Paper Series
STERN #IS-87-38

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

Abstract

Tuple selection predicates (such as CITY = "Brighton*) provide the basis for both the
Select and Join operators in the relational model (RM). Several proposed extensions to RM
can be seen as relaxing the First Normal Form constraint of simple values to allow function-
valued attributes. In order to take advantage of these complex values the class of allowable
tuple selection predicates likewise needs to be extended. We propose a class of general tuple
selection predicates based upon a general model allowing function values of any type
constructed from some basic set of primitive domain types, and we investigate how various
recent proposals fit into this general framework.

1. Introduction

In proposing the Relational Model of Data (RM) [Codd 701 as an alternative to the hierarchical and

network "graph-based models," Codd cited a number of motivations. Chief among these was the

provision of application independence from the details of the physical implementation. Unlike existing

models, access paths were to be computed "on the fly* as it were, by means of the contents of the

database itself, and not by means of predefined, physical links between records and files. The case for

what has come to be known as First Normal Form (lNF), i.e., allowing only simple, unstructured

domains for relation attributes, was made in that paper. Specifically i t is argued that "[lNF] is not only

an advantage for storage purposes but also for communication of bulk data between systems which use

widely different representations of data." Clearly these arguments for 1NF are motivated by concerns of

efficiency, not by concerns of data model expressivity.

It is interesting to note that the paper cited by Codd, [Childs 681, imposes no such restriction to simple

domains on the "set-theoretic data structure* proposed. Moreover, a great deal of work on extensions to

the relational model, motivated by conclrns of modelling expressivity, have concluded that the 1NF

restriction is too limiting. Some of this work has been very general, such as proposals to allow set-valued

domains [JaeschkeSchek 821 and [Arisawa et al. 831, or to incorporate a temporal dimension into the

model [CliffordCroker 871, or to include more complex semantic "objects" [HammerMcleod 78). Other

work has been motivated by particular application domains, e.g. CAD/CAM IKatz 86) and VLSI

[BatoryKim 851, in some cases even looking back to the earlier "graph-based" models for some of the

useful constructs there that were eliminated in RM. Thus i t appears that the pendulum, which in the

interests of data independence had swung in the direction of simplicity, is now moving back in the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

direction of complexity in order to meet the demands of more sophisticated applications and users.

In this paper we assume without argument'the need for non-first normal form databases; the reader is

referred to such works as [JaeschkeSchek 821 for some of the cogent arguments in support of relaxing the

1NF constraint. Within the framework of an extended RM allowing complex domains, then, we look a t a

model where domains are considered to be functions. We then propose an extension to the notion of

tuple selection predicates a s the basis for extending the relational algebra to cover these new data

structures. We also show that in all cases these extended tuple selection predicates reduce to the simple

predicates allowed in RM, in the sense described in [CliffordCroker86].

2. Tuple Selection Predicates

2.1. Preliminaries

Let D = { Dl, D2, ..., Dn) be a set of value domains, where for each i , Di ;f 4. Each value domain

Di is analogous to the traditional notion of a domain in RM in that i t is a set of atomic (non-

decomposable) values.

Let U = { Al, A2, ..., Am) be a (universal) set of attributes.

Let DOM : U -> D be a domain assignment function, which gives the domain of each attribute A in U,

written DOM(A).

A binary relation R on sets A and B is a set of ordered pairs R = (<a,b> I a f A A b E B). We

sometimes write aRb when <a,b> f R.

A function f from A to B, f: A -> B, is a binary relation such that whenever <a,b> and <a,c> are

in f, b = c.

Given a function f, f: A -> B, we can be define certain auxiliary notions. The domain of R, which

we will denote byD(R), is defined by: D(R) = { a 1 3 b [&b]). The range of R, denoted R(R), is

given by: R(R) = (b 1 3 a l a b]). Finally, if S and A come from the same universe, the restriction of

Center for Digital Economy Research
Stem School of Business
Working Paper 19-87-38

f to S, denoted fls, is given by: flS = (<a,b> I <a,b> E f A a E S).

The essential component of a selection predicate is a comparison between two values; for this purpose

we need to have comparison operators. Therefore let = { = , #), and e2 = { < , > , 5 , 2) be

sets of binary relations on domains.

We assume for any domain D that all of the elements are el-comparable. On certain domains, which

are said to be ordered, the comparators in e2 are also defined.

2.2. The Selection Predicates of RM

For any attributes Al and A2 E U that are Bjcokparable, any 0 E €I1, and any constants

a f DOM(A), B E DOM(B), the following are tuple selection predicates:

. A O B

Moreover, if DOM(A) and DOM(B) are B2-comparable, then the above predicates can also be formed

with any 9 E e2.

The intended semantics of tuple selection predicates is obvious. A tuple selection predicate P is simply

a function from tuples to (0,l): P(t) = 0 if P is false with respect to t, and P(t) = 1 if P is true with

respect to t.

EXAMPLES: The following simple examples of Selection Predicates are familiar from RM:

1. SALARY < = 50000

2. NAME = 'Jones*

3. MANAGER = CUSTOMER

4.60 < STATUS

In the standard RM, since all values are atomic these are the only allowable predicates on tuples. These

predicates can be looked a t as 'filters' on relations. If r is a relation and P a tuple selection predicate,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

then P(r) = {t in r I P(t) }; in other words, only the tuples which satisfy the *filter* P are in P(r).

I t is important to emphasize this notion of a tuple selection predicate as a "filter;' objects either pass

through the filter or they do not, but in passing through they remain unchanged. As we shall see

certain proposed operations have hybridized a filtering operation with a restricting operation resulting in

a lack of clarity.

Two basic operators in RM make use of tuple selection predicates, the Select (a) operator and the Join

(in several different forms).

SELECT: The relational algebraic Select operator with selection criteria P, denoted ap (r), is exactly

P(r) as we have defined it.

JOIN: Although important a t the *usern level in RM, the relational algebraic Join operator is not

really *primitive.* Cartesian Product is the basic operator for combining two relations, r X s. The

*Joinn is simply a *filteringw (by means of a tuple selection predicate) of the results of the *completea

Cartesian Product to the subset satisfying the desired property. (With the so-called *Natural Join*,

redundant information in duplicate columns is discarded by means of a column projection.) Thus in all

cases we have that r [PI s is just up (r X s)

Viewed in this light, then, i t is obvious that the class of tuple selection predicates P, in effect,

determines the power of both the Select and Join operations in the model. A major issue in an extended

RM that allows complex value domains, then, is the definition of the allowable class P of tuple selection

predicates, since these will serve as the basis for the extended Select and Join.

Given our assumption of function-values domains, the question in our case reduces to the following:

Given two function f and g, what are the meaningful ways in which we can compare them?

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-38

3. Generalized Tuple Selection Predicates

We proceed to build a definition of the class P of generalized tuple selection predicates, proceeding from

a definition of a hierarchy of function domain types built up recursively from the simple or primitive

domains.

The set of Domain Typea is the smallest set D T such that:

1. Dl, D2, ... Dn E D T ; these are referred to as the primitive domains

2. T = {0,1) E DT

3. If a, b E D T , then <a,b> E DT.

An expression of Domain Type a will denote an object of the indicated type. For example, primitive

domains are analogous to the domains of simple values in RM. An expressions of Domain Type T will

denote one of the Boolean values 0 or 1, and an expression of some constructed Domain Type <a,b> will

denote a function from something of type a to something of type b. Of particular interest (to set-valued

extensions) are expressions of type <a,T> which denote sets (actually, the characteristic functions of

sets) of objects of type a.'

We assume that associated with each a E D T is a denumerable set of constants, and as usual the

database schema defines a finite set of attributes {Al, ... Am) each of which has an associated Domain of

a given Domain Type DT(A).

Examp1es:We illustrate our definitions by examples drawn from the following simple environment. The

primitive domains are the sets of values Dl = {a, b, c, d, e), D2 = (5, 6, 7, 81, and T = (0, 1). The set

of attributes is {A, B, C, Dl E), and the domains of each attribute are given by the function

DOM = {<A,Dl>, <B,D2>, <C,<Dl,D2> >, <D,<Dl,T>>, <E,<Dl,<D2,T> > >). In this

application, then, Dl and D2 are primitive domains and therefore Domain Types (by I), T is a Domain

Type (by 2), and <Dl,D2>, <Dl,T>, <D2,T>, and <D1,<D2,T> > are Domain Types (by 3).

'e.g., the subset {a,c} of {a,b,c,d} can be represented by the characteristic function {<a,l>,<b,O>,<c,l>,<d,O>).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

The basic building blocks of P are the Terms, each with an associated Domain Type, and are defined

as follows:

1. Each constant c is a Term of Domain Type DT(c)

2. Each attribute A is a Term of Domain Type DT(A)

3. If X is a Term of Domain Type <a,@> and Y is a Term of Domain Type a , then X(Y) is a
Term of Domain Type /3

4. If X is a Term of Domain Type <alp> then D(X) is a Term of Domain Type <a ,T>

5. If X is a Term of Domain Type <a,@> then R(X) is a Term of Domain Type <@,T>

The intended interpretation of each Term will not be given here in complete detail. In general, in any

expression a constant denotes some individual value of the appropriate type, and an attribute denotes its

current value in a given tuple. X(Y) denotes the application of the value of X (a function) to the

argument Y. Ll(X) and R(X) denote the domain and range, respectively, of the function denoted by X.

Examples: In our example application, a and b are constant Terms of Domain Type Dl, {a,b,c) is a

constant Term of Domain Type <DI,T>, and {<a,5>, <b,5>, <c,5>, <d,5>, <e,5>) and

{<a,O>, <b,O>, <c , l> , <d,O>, < e l l >) are constants of types <D1,D2> and <D1,T>

respectively (by 1). A is a Term of Domain Type Dl and E a Term of Domain Type <Dl,<D2,T>>

(by 2). C(A) is a Term of Domain Type D2, D(A) and E(A)(B) Terms of Domain Type T, and E(A) a

Term of Domain Type <D2,T>> (by 3). Q C) is a Term of Domain type <D1,T> (by 4). Finally,

R(E) is a Term of Domain Type <<D2,T>,T> (by 5). With respect to a particular tuple

t = <a, 6, {<a,5>, <b,5>, <c,5>, <d,5>, <e,5>), {c, e)> on scheme (A B C D), the

interpretation of the Term A is a and of the Term C is {<a,5 >, <b,5>, <c,5>, <d,5>, <e,5>); the

Term C(A) denotes {<a,5>, <b,5>, <c,5>, <d,5>, <e,5>) (a) or 5; the term D(A) denotes

{c, e) (a) or 0; and the Term D(C) denotes {a, b, c, dl e).

The class P of Tuple Selection Predicates can now be defined as follows:

1. If T and S are Terms of Domain Type a , for any a , then T = S, and T .f: S are in P.

2. For any primitive domain a, if a is ordered, and if T and S are Terms of Domain type a ,
then T < S, T > S, T r_< S, and T 2 S are in P.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

3. If T and S are Terms of Domain type <cr,@>, then T C S, T C S, and [T n S] # 0 are in
P.

4. If T is a Term of Domain Type a, and S is a Term of Domain Type <cY,T>, then T E S (or
equivalently S(T)) is in P.

Examples: D(A) = E(A)(B), A = a, B # b, and D(A) are in P (by I), A < b and C(A) > 6 are

in P (by 2), D C (a, b) and [D n (a, b)] # 0 are in P (by 3), and B E R(C) is in P (by 4).

4. Example Models

In this Section we will show how the tuple selection predicates of four "relationale models fit into the

general model of predicates which we have defined here. These results are summarized in Table 4-1.

1 RM I S e t V a l u e s 1 His tor ica l M o d e l I Indexica l M o d e l 1
Domains 1

1 1. Di
1

I Dl .. D* I Dl .. Dn
I
I Dl .. D,, (values)

I
(Dl .. Dn (values)

I
I

I I I I ?I'M2 (time) I I1 .. Im (indices)
12. T

I
I NO I YES (implicit) I limited 1 YES 1

(3. <a,b> I NO I <Di,T> for each i I <TM,Di> for each i I <a,b> for a an index, [
J I 1 1 1 b any non-index L

Terms 1 I I 1 I
I 1. c
12.A

l YES l YES l YES l l%s
I YES l YES I YES I YES I

i
1 3. A(B) I A(c) only I A(s) only l YES I

I N O I N 0 1 4. D(A)
1 5. R(A)

I NO
I NO I NO

l YES
1 YES

l YES
YES

I

J Predicates 1 I I I I
I 1. equality I YES
1 2. ordering

I YES l YES l YES 1
I YES

1 3. subset
I YES I YES l YES I

I YES (?"A4 only)
j 4. membership 1

I NO
NO

I YES
1 YES I YES P M only)

l YES
1 YES

1

Table 4-1: Comparison of Tuple Selection Predicates in Models

2 ~ e use TM for .Timem, instead of T a s in the original, in order not to confuse the reader with our T = (0,l)

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-38

4.1. Relational Model

Section 2.2 presented the definitions of the simple tuple selection predicates allowed in RM. As seen in

Table 4-1, RM allows only simple domains, a Term is either a simple constant from some domain or the

name of an attribute, and the only comparators available are those based on equality or ordering.

4.2. Set-Valued Relational Models

There have been many proposals for extending R M to allow not only simple values but also sets of

these simple values as the domains of attributes in relations (for example, [JaeschkeSchek 821 and

[Arisawa et al. 831). While these proposals have not explicitly been cast in these terms, by considering the

isomorphism between a set and its characteristic function we can view these setvalued models as allowing

a specific type of function as an attribute domain. In particular, if Di is some simple domain, then

Di attributes in a set-valued RM could have either Di or 2 as their domain. No other domain types are

allowed in these models.

If the set of primitive domains is {Dl, ..., Dn), then the set of types is restricted to these and to those

types of the form <Di,T> for each Di. The Terms include the individual constants of type Di (like "Noel

Coward*) or of type <Di,T> (i.e., sets like {"Lily Tomlin*, 'Noel Coward')), the attributes, and

(implicitly) Terms of function application like A(c) (generally written c E A) for set membership. All of

the predicates in P that can be constructed from these Terms are allowed in these models.

4.3. Historical Relational Models

While the HRDM proposed in [Clifford~roker 871 expl ic i t l y represents the temporal dimension added to

R M as functions from the set of Times to a set of simple values, most of the other proposals for

extending RM with a temporal dimension (for example, [CliffordWarren 831, isnodgrass 841, [Ariav et al.

841, [Tansel 851, and [GadiaVaishnav 851) can be mapped onto such a view and so can be said to

i m p l i c i t l y makes such an extension. In these models, in addition to the basic set of value domains Di, a

distinguished domain of times, TM, is also included. Attributes may then draw their values either from

some value domain Di (in which case they are assumed to be constant functions over time) or from a
D.

domain TM ' (in which case their value is a function of time). (In [CliffordCroker 871 functions from the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

domain TMTM, representing temporal-valued attributes which can vary over time, are identified as a

special and interesting case that give rise to the additional special-case operators of 'dynamicm Time-Slice

and Join.)

If we call both the set of primitive domains {Dl, ..., Dn) and the set of times TM simple tyges, then the

set of types is restricted to these and to those types of the form <TM,a> for any simple type a. The

Terms include the individual constants of type Dip of type TM (like "1978'), or of type <TM,T> (i.e.,

sets of times like (1978, 1979, 1980)); the attributes; Terms of function application like A(s) (where the

argument to the function is always a Time); and Terms for the Domain of an attribute and the Range of

a time-valued attribute (denoted "t.lm and "image of t(A)" respectively in ICliffordCroker 871.) All of the

predicates in P that can be constructed from these ~ e r & s are allowed in these models, with the

restriction that subset and set-membership predicates can only be formed with Terms of type TM and

< TM,T> -

4.4. Indexical Relational Model

The Indexical Relational Model (IRDM) is an attempt to generalize the work on historical and set-

valued extensions to RM to any number of dimensions, for the purposes of providing a common

mechanism for representing multi-dimensional data within a common framework. Based on the field of

indexical semantics, an indexical database views each value as a function from some set of viewpoints, or

"indices* into a set of actual values. In [Clifford 871 we define a general indexical database model and

show how several recent approaches to extending the relational model can be seen as special cases of our

general model.

Among the kinds of information that we believe can be modelled uniformly in an indexical database

model are the following, far from complete, list: opinions, expectations, judgements, personal

observations, histories, predictions, expert advice, hypothesized scenarios, design versions, simulations,

etc. While many, if not all, of these functions can be met by some combination of the DDL of a DBMS

and a host programming language, the interactive query language mode is what has made DBMSs so

attractive, by abstracting the general functions of database querying into a general purpose set of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

querying functions, allowing access to the contents of the database without the need for

programming.

The inspiration for the Indexical Data Model is the field of intensional logic, an attempt to formalize the

pragmatic component of linguistic theory. An intensional logic looks at the phenomenon of context as a

major contributing component to defining the interpretation of a language. This notion of indexical is

applied to provide a semantic theory to an extended relational model, in recognition of the need for

potentially many points of reference in increasingly complex database applications. Moreover,

following the guidelines proposed in [CliffordCroker 861, the model proposed is shown to be a consistent

extension, not only of the Historical Relational Data Model (HRDM) [CliffordCroker 871, but also of the

relational data model itself.

The basic idea of IRDM is to partition the set of primitive domains into two types, a set UD = { Dl,

DS, ...l Dn) serving as a set of value domains, and a set UI = { Ill 12, ,.., Im) as a set of indices. Each

index represents a 'contextual coordinate* [Lewis 761 which contributes to the context in which a

particular fact is to be interpreted. The values of the attributes in a relation are drawn from some

indexical domain which is a function from some number of application-dependent index domains to an

underlying value domain. For example, a SALARY attribute might take values from a domain of

functions from "recording time* to functions from 'data time' to 'salary values;' or a SUBPART

attribute might have values which are functions from "date* to functions from 'designer' to "part ID

numbers.' Operations such as Time-Slice, Temporal Join, version selection, etc., which have been

proposed as special-purpose operators for particular extensions of RM are generalized to a set of extended

relational operators on relations having indexical domains.

4.5. Hybrid Operators

A number of proposed extensions to RM, including [CliffordCroker 871 and [JaeschkeSchek 821, have

exhibited Join-like operators which, like the 'Natural" Join, are not equivalent to a Selection of the

Cartesian Product. However, unlike the case of Natural Join, which is definable in terms of another

primitive relational operator (viz. Project), both of these examples require an additional primitive

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

operator for their definition.

In the case of [CliffordCroker 871, the operator in question is the @JOIN in all of its varieties (including

by extension the Natural Join). The general definition for this operation is is follows:

In words what this definition says it that the result of joining r l and r2 is a set of tuples t , where each t

comes from two tuples trl and tr2 which stand in the relation 8 to one another, and is constructed from

them by res t r ic t ing both of them (as functions) to just those sha red po in t s i n t i m e when they are so

related.

In [JaeschkeSchek 821 the operator in question is called the 'Intersection Joinn (IJ) and is defined as:

In other words, the Intersection Join is a kind of Natural Join wherein each t in the result comes from

two tuples trl and trz which share a common (non-empty) subset of values for their shared attribute(s);

again the resulting tuple is constructed from them by only including these shared values (i.e. by

restriction.)

We have already exploited the isomorphi&n between sets and their characteristic functions. In the same

vein we can look a t both of these independently defined operators as relying upon the same underlying

'primitive* operation of function restriction. If we denote this operation by T, then provided A is a

function-valued attribute and DT(S) = DT(D(A)) in the scheme of r, we can define the restr ict ion of r

on a t t r i b u t e A to S (or by extension, on a set of attributes X) as:

T,,, (r) = (t 1 3 t' E r A t(R-A) = t'(R-A) A t(A) = t'(A)ls).

In the historical case, then, the @-JOIN can be schematically re-defined as:

Center for Digital Economy Research
Stem School of Business
IAIorking Paper IS-87-38

Likewise the Intersection Join is given by:

The similarity between these two operations, when decomposed into these primitive components, is

obvious, and is compelling evidence for the need for the restriction operator r in such functionally

extended models. (The Time-Slice operator in almost all of the historical relational models is just such an

operator.)

5. Summary

Since its appearance in 1970, RM has served as the basis not only for a tremendous amount of research

in the database community, but also for a growing number of commercially available DBMSs. In spite, or

perhaps because, of this popularity, RM has also served as the springboard for numerous proposals to

extend i t in one direction or another. In this paper we have looked a t a variety of different proposal for

such extensions, all of which share (or can be viewed as sharing) the common thread of relaxing the

restriction to simple values which has come to be known as First Normal Form. Moreover, we have shown

how all such extensions can likewise be viewed as falling into a general class of extensions which allow the

values of relational attributes to be functions in some function space.

We have focussed on the issue of the expressiveness of the tuple selection predicates, since the power of

these filters provides the basis for the "eitraction" operators Select and Join. We have defined a class of

tuple selection predicates P which are an extension of the simple predicates allowed in RM, take

advantage of the complex values allowed in these extended models to provide for data extraction based on

specified components of these complex values, and are seem to generalize particular operators defined in

several different relational model extensions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-38

[HammerMcleod 781
Hammer, M., and Mcleod, D.
The Semantic Data Model: A Modelling Mechanism for Data Base Applications.
In ACM-SIGMOD International Conference on Management of Data. Austin, 1978.

[JaeschkeSchek 821
Jaeschke, G, and Schek, H.J.
Remarks on the Algebra of Non-First Normal Form Relations.
In Boceedings of the 1st ACM SIGACT-SIGMOD Symp. on fiinciples of Database

Systems, pages 124-138. 1982.

[Katz 861 Katz, R. H.
Computer-Aided Design Databases.
In Ariav, G. and Clifford, J. (editors), New Directions for Database Systems, pages

110-123. Ablex Publishing Go., Norrwood, New Jersey, 1986.

[Lewis 761 Lewis, D.
General Semantics.
In Barbara H. Partee (editor), Montague Grammar, pages 1-50. Academic Press, Inc.,

New York, 1976.

[Snodgrass 841 Snodgrass, R.
The Temporal Query Language TQuel.
In R-oceedings of the 3rd ACM SIGACT-SIGMOD Symp. on fiinciples of Databacre

Systems, pages 204-212. Waterloo, Ontario, Canada, April, 1984.

[Tansel 851 Tansel, A. U.
An Extension of Relational Algebra to Handle Time in Relational Databases.
In ACM-SIGMOD International Conference on Management of Data. Austin, May,

1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-87-38

