SPREADSHEET ANALYSIS AND DESIGN

Boaz Ronen
Department of Information Systems
Leonard N. Stern School of Business
New York University
44 West 4th Street, Suite 9-170
New York, NY 10012-1126

Michael A. Palley
Baruch College, CUNY
School of Business and Public Administration
17 Lexington Avenue, Box 513
New York, NY 10010

Henry C. Lucas, Jr.
Department of Information Systems
Leonard N. Stern School of Business

New York University
44 West 4th Street, Suite 9-67
New York, NY 10012-1126

June 1987

Working Paper Series
STERN 1S-87-52

SPREADSHEET ANALYSIS AND DESIGN

Boaz Ronen*
Michael A. Palley**
Henry C. Lucas, Jr.*

ABSTRACT

Spreadsheet programs and microcomputers have revolutionized
information processing in organizations. Users have adopted
spreadsheets to solve problems and circumvent the long
delays encountered in dealing with the traditional
information services department. A significant number of
serious errors have been reported through the misuse of
spreadsheet technology. This paper discusses several
different contexts for the development of spreadsheet models
and presents structured design techniques for these models.
The recommended approach to spreadsheet analysis and design
encourages the use of a block structure format for the
worksheet and introduces Spreadsheet Flow Diagrams as a
systems design tool. The objective of this design approach
is to reduce the probability and severity of spreadsheet
errors, improve auditability and promote greater longevity
for spreadsheet models.

* Graduate School of Business Administration, 100 Trinity
Place, New York, N.Y. 10006

** Baruch College, CUNY, School of Business and Public
Administration, 17 Lexington Avenue, Box 513, New York, N.Y.
10010

INTRODUCTION

Spreadsheet programs have become extremely popular with
microcomputer users. Spreadsheets are utilized heavily by
end users and systems professionals alike. In fact
spreadsheet software has contributed a great deal to the
popularity of personal computers. These packages present
the user with a general purpose problem solving tool.

A spreadsheet can be viewed as a large matrix in which
columns are typically designated by letters and rows by
numbers. The intersection of a row and column defines a
cell; a cell can contain a number, label or formula which
relates it to other cells in the spreadsheet. The ability
to relate cells with formulae is what provides spreadsheets
with their tremendous power. If the spreadsheet model is
constructed with formulae, a change in one or two numbers is
immediately reflected throughout the spreadsheet.

As an example, consider Figure 1 which is the printout
of a simple spreadsheet model. Figure 1 is a salary
calculation model; the decisionmaker enters an increase
amount, and the percentage of the 1987 wage the increase
represents is calculated in the third column. Total
increases and the percentage of total 1987 compensation they
represent are computed in the Totals row.

Suppose that the decisionmaker is told that wage
increases in his department can average 8% for 1987. This
model allows him to enter different increases for

individuals, observe the individual's percentage increase

-2 -

and at the same time view the impact of all increases on the
"bottom line" represented by the totals. In this instance,

the decisionmaker has stopped having reached a departmental

aggregate wage increase of 8.03%

Once this model has been constructed, the only input
needed by the decision maker is to enter dollar amounts in
the column labeled "Increase." The alternative to a
spreadsheet model is pencil, paper and calculator; each time
a new salary increase is entered, the totals must be
manually recomputed. One of the authors used to use a
calculator for this process and developed the model in
Figure 1 as his first spreadsheet application. He reports
that the time to figure raises fell by a factor of at least
five using the model.

Spreadsheets offer a tremendous amount of analytical
power. Most users of spreadsheets develop the models
themselves. Another attraction of both microcomputers as
well as this type of software is that the user is no longer
dependent on the information services staff. Especially for
quick, infrequently used applications such as the one in
Figure 1, it would take far too long to create an
application on a mainframe or mini through the information
services department.

Overview

This paper recommends a structured approach to the

design of spreadsheet models. Topics covered include the

differences between spreadsheets and traditional information

3

processing applications. The paper then suggests that
different types of design contexts influence the degree of
structure appropriate in spreadsheet design. The life cycle
of a spreadsheet is presented along with a block structure
format for these models. The paper introduces spreadsheet
flow diagrams (SFDs) as one approach to designing these
models. The paper concludes with suggestions for menu

designs for spreadsheets.

DESIGN METHODOLOGY

The Problem

Spreadsheet packages and micros have extended computing
to vast numbers of individuals. For many users, the
spreadsheet program represents the first "hands on"
experience with a computing device, programming and
documentation. In general, these users have not been trained
to undertake systems analysis and tend to overlook the
concerns of the professional systems analyst in designing a
system, such as reliability, auditability and control. 1In
fact, the spreadsheet user is often happy to avoid systems
professionals.

Unfortunately, user independence comes at a potentially
high cost. The practitioner literature has discussed a
number of problems with spreadsheet construction (Bryan,
1986 and Grushcow, 1985). Examples of frequently cited
errors are mistakes in logic, incorrect ranges in formulae,

incorrect cell references, confused range names, incorrectly

-

copied formulae, incorrect use of formats and column widths,
accidentally overwritten formulae and misuse of built-in
functions. Table 1 describes some of the problems found
with spreadsheets.

Design Obijectives

To minimize the probability and severity of the
problems in Table 1, the designer of a spreadsheet should be
concerned with the following issues: 1) A spreadsheet
should produce reliable results; the output it generates
should be correct and consistent. 2) A spreadsheet should
be capable of being audited; the user should be able to
retrace the steps followed to generate different outputs
from the model to understand the model and to verify
findings. 3) A spreadsheet should be capable of being
modified easily without introducing errors.

A final issue impacts the three listed above:
comprehensibility. The designer and user should be able to
easily understand the model and its assumptions as
represented in the spreadsheet.

Spreadsheets and Traditional IS

Spreadsheets are a type of information system, though
they are most often not developed by information systems
professionals. The IS professional is (or should be)
concerned with the issues described above in designing any
information system. One reason for lengthy development

times for multiuser systems designed by professionals is

=5

concerns about data integrity, input editing and error
checking.

Since the spreadsheet developer is often a user who is
basically unfamiliar with the design principles above, ad
hoc design is common. There tends to be little concern with
formal analysis or documentation. Often the spreadsheet
model is a one-time exercise or an infrequently used
decision support system (DSS). Formal design methods slow
progress on "quick" systems.

A structured approach to spreadsheet design can help
reduce the probability and severity of problems with
spreadsheets. To be useful, a spreadsheet design approach
must help achieve the objectives for these models described
above, must achieve results quickly, and must be suited to
the style of the end user. Table 2 describes the
characteristics of spreadsheet applications and the
implications of these characteristics for design.

Because of the wide variety of use for spreadsheet
models, it is very difficult to construct a design
methodology that will be generally applicable. This paper
proposes a structured approach to design the use of which is

contingent on the type of model being developed.

SPREADSHEET ANALYSIS AND DESIGN

Types of Applications

Spreadsheets are distinguished by the variety of

.applications for which they have been used. The most

-

frequent use of spreadsheets is for decision support and
personal productivity, but there have also been many
spreadsheet applications which could be considered
mainstream information systems applications. For example, a
firm might do all of its financial statement consolidation
for its subsidiaries using a spreadsheet package. Before
this software was available, the firm might have written
COBOL programs or purchased a dedicated package to produce
financial statements.

Figure 2 depicts the design context for spreadsheets.
If the spreadsheet is to be used for a traditional
transactions processing or information processing task, then
one could argue that it should be designed using normal
information services methodologies like structured design,
data flow diagrams, etc.; (see Lucas, 1985). However, it is
unlikely that such formal design will be used. The
techniques presented below are an alternative to completely
informal, ad hoc design for systems professionals as well as
end users.

In the DSS environment, it is important to consider
whether or not the developer is also the user. If the user
develops his or her own model for a one shot decision, then
informal design procedures are probably satisfactory. It is
also unlikely that anyone can convince the user in these
circumstances to adopt any other apprcach! If the one-shot

decision is crucial to the organization, it might be useful

-7 =

to at least have someone other than the designer audit the
model.

If a user is developing his or her own application and
plans to use it frequently, then the analysis approach
suggested later in this paper should be considered.

When the developer is not the primary user, then it is
recommended that a formal design methodology be employed.
Even if the system is to be used for a one-shot decision,
the fact that the spreadsheet is being designed for someone
else suggests that the decision is either very important or
the model is complex; either condition warrants the use of a
formal approach to design.

Appplications that will be used frequently by many
users are candidates for formal design, macros and menus.
If users are experienced and understand the package, macros
and menus may be an extra option. However, if users are
inexperienced, menus and macros are needed to help the user

execute the model and to protect the spreadsheet.

The Spreadsheet Development Life Cycle

Texts on systems analysis and design usually include a
systems development life cycle. (See Lucas,1985.) It is
possible to develop a similar life cycle for spreadsheet
applications, though the life cycle must be flexible to
reflect the different contexts for spreadsheet design

described above. (See Figure 3.)

1. Problem Identification

The designer defines the nature of the problem to be
solved. How is the problem currently solved if at all?

What are the performance bottlenecks? This stage is similar
to the "existing systems study" of the systems development
life cycle. How will a spreadsheet model help solve the
problem? What are the sources of information?

a. Cost benefit analysis.

What is a reasonable time frame for model development?

What kind of application is this, e.g. is it a one-shot

decision model or a model that will be used many times?

What resources should be put into development?

b. "Make or buy" analysis.

The designer should conduct research to determine if an

existing template can be purchased for this

application. There are a number of such templates for
income tax calculations, rental analysis, real estate
investments, etc.

2. Definition of model outcome/decision variables.

The spreadsheet is usually developed to produce some
type of results like a net present value for an investment,
a yearly estimate of profits, the deviation of actual from
budgeted expenses, or a set of financial statements. The
outcome variable needs to be defined. The designer may have
variable which represents a decision such as the dollar

raises granted to each employee in Figure 1.

-0 -

a. Define how the outcome is generated.

This part of the model represents the calculations

which are undertaken in the model.

b. Define the block structure of the model.

A recommended model structure is presented later in

this paper.

c. Define menus/macros (optional)

If the model will have menus and macros, the designer

should describe their function at this point.
3. Construct the model

This stage corresponds to the traditional notion of
programming. Using the various commands of the spreadsheet
language, build the model. When the model is large, use a
top down approach in which building blocks are constructed
and then filled in with details.

a. Build macros and menus (optional)

Depending on the type of applications, the developer

may want to include menus and macros.
4. Test

Carefully test the results of the model. Print a hard
copy of the model and the cell formulae. Check all
calculations independently from the spreradsheet. Test both
historical and extreme input data. Examine the spreadsheet
to see if there is an audit trail; can someone follow
through the assumptions to determine how a cell's value was

determined, or is too much hidden in formulae? Look for

-10-

formatting errors which might result in the unintentional
rounding of percentages or multipliers.
5. Documentation

Document the spreadsheet on the spreadsheet, itself.
That is, include text on the spreadsheet that explains the
model as shown later in the paper.

6. Audit

Review the model and its structure. Consider the use
of audit packages to trace through formulae.
7. Prepare a user manual (optional)

For systems designed for others to use, a manual is a
necessity. For applications created by the user, a manual
is valuable if the application is to be used more than once.
8. Training (optional)

If the model is to be used by others, they need to be
trained prior to installation.

9. Installation.

Prepare the spreadsheet for use, for example, by
installing it on a users computer so that the model loads
whenever the spreadsheet program is started.

The next section of this paper suggests a block
structured format for a spreadsheet model. Then the paper
introduces the concept of Spreadsheet Flow Diagrams as a
structured design aid. Finally, the paper concludes with a

discussion of how to design menus for spreadsheets.

-11-

Model Format

Figure 4 presents a recommended structure for a
spreadsheet. Similar designs have been proposed in Grupe
(1985) and Berry (1985). The purpose of the structure is to
separate parts of a spreadsheet into blocks to reduce the
potential for errors. A well structured spreadsheet also
clarifies the assumptions of the model to users.

Figure 4 contains a number of blocks which taken
together comprise the spreadsheet model. The identification
block presents the name of the developer, user and the name
of the model. It also contains a list of revision dates.

To the right of the identification block one finds the
macros/menus block. Macros and menus must be isolated from
parameters and formulae because the insertion or deletion of
a row in a model could delete a line or insert a blank line
in a macro causing gquite anomalous behavior when the macro
is executed.

Immediately below the identification block is a map or
index to the spreadsheet. It contains a description of
where the various blocks may be found and acts like a table
of contents for the model.

The large documentation block allows the spreadsheet
developer to describe in general terms how the model works
and to annotate various rows in the model, itself.

The parameter block contains variables which are used
in the formulae. For example, one would place interest

rates, assumptions about sales growth rates, and so on in

-12=

the parameter block. A good rule to follow is that no
formula should contain a number; there should only be
references to parameters or cells in the worksheet. If this
rule is followed, there is 1little danger of
misinterpretation because a crucial parameter is hidden in a
formula. Looking over multiple runs of the model, the user
will be able to see what assumptions pertain to each run,
for example, it will be clear what interest rate was used on
each model run by examining the parameter block for the
interest rate parameter.

The final block in the spreadsheet is the model,
itself. The spreadsheet packages with their row and column
references suggest a view of the model as a matrix. Certain
columns or rows of the matrix (possibly a single cell) might
be interpreted as input or output vectors.

Spreadsheet Flow Diagrams

The notion of Data Flow Diagrams (DFD) has proven
popular in traditional systems analysis and design as a way
to encourage structured, top down design and to reduce
complexity (Gane and Sarson, 1979, DeMarco, 19279). This
paper proposes the use of Spreadsheet Flow Diagrams (SFD)
for the analogous purpose with spreadsheets. For many
spreadsheets there will be no need to follow a top down
approach because the model will be simple. However, for
large spreadsheets, the notation allows and encourages the

use of top down design approaches.

13

Why not just use existing DFD notation? DFDs were
designed for transactions processing systems; they are
excellent for showing sources, flows and processing of data.
The spreadsheet is less concerned with the flow of data than
it is with modeling relationships. Even a low level DFD
might only indicate "Post Receivables" to denote a process
that most designers and users would understand. Spreadsheet
analysis and design needs a notation that shows the
"algorithm" or the underlying formulae of the model.

Figure 5 shows the basic symbols of SFDs. A simple
rectangle is used to represent input vectors, output
vectors, decision vectors and parameters. (Any of these
vectors can be a scalar if it contains only one value.) The
type of vector is designated by a 45° line on one corner of
the rectangle as shown in Figure 5. A rounded rectangle
represents the formulae in the model.

It should be noted that the input, decision and outcome
vectors are subsets of the model matrix in most instances.
Some examples will show these unique characteristics of
spreadsheet models and will also demonstrate how the SFDs
can be used in design and documentation.

In Figure 1, the input, decision and outcome vectors
are highlighted. They constitute three of the four columns
in the matrix that is the model. An SFD for the salary
increase model in Figure 1 may be found in Figure 6a. The
SFD shows clearly that the increase is the decision variable

and that the outcome is to be a salary figure for 1988.

-14-

While this decision vector may seems obvious, approximately
50% of students assigned this problem end up using the
percentages as the decision vector and awarding raises like
$2432!

Figure 7 presents a typical spreadsheet application for
predicting sales of a new product and Figure 6b is a high
level SFD for the model. The input vector has a subscript
"t" to show that the model is predicting values over a time
period. Because it is easier to understand, the model
diagram shows profits as being sales less expenses. The
model box (labeled 1) in Figure 6b is exploded into a lower
level of detail in Figure 6c.

Figure 8 contains the final example, a grading progran;
the corresponding SFD may be found in Figure 6d. Here there
are m students with n grades. The model weights the grades
to provide a final average and grade for each student. The
instructor also is interested in the mean, variance and
standard deviation of the scores on each assignment. The
subscripts m and n used in the SFD clarify the requirements
of the model.

The advantage of using a structured notation for
spreadsheets is the same as the advantage of using a
notation like Data Flow Diagrams for traditional systems
analysis and design. SFDs help the designer structure the
design of the problem. They assist in communicating the

structure of a model to others and they serve as

-15=-

documentation when it is necessary to audit or modify the
spreadsheet.
Menu Design

Many popular spreadsheet packages allow the model
developer to define macros (programs consisting of
keystrokes) and menus. Figure 9 is an example of a state-
transition diagram for a menu for the grading program in
Figure 8. Each keystroke selection from the main menu moves
the user to a state represented by one of the circles. In
Figure 9, the menu appears as the spreadsheet is loaded.

The user sees a menu which contains the following commands:
Add, Delete, Modify, Print, Save and Quit. Typing the
letter A results in the execution of a spreadsheet macro to
add a student to the roster.

If there were submenus reached from this first level,
they could be shown in a similar fashion. For example,
suppose that modify allows the user to choose what is to be
modified, a name or a grade. Entering N results in
positioning the cursor in the name column while a grade
change places the cursor at the first assignment from which
the user can move it to any assignment for any student. The
designer has made a decision to return to the modify menu at
the completion of a change in anticipation of another
change. Alternatively the designer could choose to return
to the main menu.

Another alternative to state-transition diagrams is the

menu trees often printed for menu-driven packages. These

-16-

menu trees look like organization charts and communicate the
same information as found in Figure 9. However, they are
less clear about the return point from each command issued

than the state-transition diagram.

SUMMARY

This article has argued for greater structure and care
in the design of spreadsheet information systems. The paper
first explored some of the problems with spreadsheet design
and the differences between the design of traditional
information processing applications and spreadsheet models.

The major contribution of this research are the
following:

1. Guidelines for differing levels of formal design and
the appropriate use of menus and macros in spreadsheet
design.

2. A suggested systems development life cycle for
spreadsheets.

3. A block-structured format for spreadsheet models.

4. Spreadsheet Flow Diagrams.

5. Menu and macro design aids.

Spreadsheet packages have made a major contribution to
analysis and problem solving. The importance of the
decisions entrusted to spreadsheet modeling and the
pervasive use of these packages suggests that end users and
developers of these models need to be concerned with good

practice in spreadsheet analysis and design.

=-17=

REFERENCES

Ahituv, N. and Neumann, S. (1985). Information Systems for
Management, Dubuque, Iowa: Wm. C. Browne, Second
Edition.

Ariav, G. and Ginsberg, M. (1985). "DSS design, a systematic
view of decision support", Communications of the ACM,

(1986) . "Methodology for DSS analysis and design: a
contingency approach to their application",
Proceedings of the International Conference on

Information Systems.

Berry, T. (1986). "How to structure spreadsheets", Business
Software, October, 1986, pp. 56-58.

Bryan, M. (1986). "Are your spreadsheets lying to you?",
Business Software, October, 1986, pp. 59-64.

Demarco, T. (1979). Structured Analysis and System
Specification. Englewood Cliffs, Prentice Hall.

Gane, C, and T. Sarson. (1979). Structured Systems Analysis.
Englewood Cliffs, Prentice Hall.

Grupe, F. (1985). "Tips for better worksheet documentation",
Lotus, August, 1985, pp. 68-70.

Grushcow, J. (1985). "Avoid these common spreadsheet
errors", Lotus, July, 1985, pp. 59-62.

LeBlond, G. and D.Cobb (1986). Using 1-2-3. Indianapolis,
IN: Que Corporation, Second Edition.

Lucas, H.C., Jr. (1985). The Analysis, Design, and
Implementation of Information Systems, 3rd. ed., New
York: McGraw

McGrath, J. (1986). "PC's can't add - but you can teach them
to", Business Software, September, 1986, pp. 58-59.

Problem Description

Reliability The degree that the spreadsheet gener-
ated output is correct-impact on degree
of confidence user places in the model

Auditability The ability to retrace the steps follow-
ed in the generation of spreadsheet
results

Modifiability The ability to change or enhance the
spreadsheet to meet dynamic user
requirements

Problems Associated with the
Lack of a Design Methodology

Table 1

Attribute Spreadsheets Implications

Users Non professional User does not realize
users often are problems with ad hoc
designers of approaches
spreadsheets Assumes no need for

a methodology

Development Relatively Short Attitude of no need
or no time for
a formal approach

Modifiability Easy May convince user to
disregard formal
analysis

Life cycle Short Formal technigues seen
as useless

Context Variety of Difficult to build a

situations methodology suitable to

all contexts

Characteristics of Spreadsheet Analysis and Design

Table 2

Identification

F¥EEFESALARY ANALYSISHiHE

Owner: John Johnson
Devel oper:
User: Betty Larson

Date: Jan 30, 1987

Identification
Map

Feter Green

Fevised:

Farameters and assumpticons

Model

Farameters and Assumptions

1. Current salaries (Input Vector) are given in column B.
Z. Balary increase (column C) is the Decision & the Farameter Vector.
3. The recommended salary (column E) presents the Output Vector.
FEFEFFEEALARY ANALYSISHE®E¥
Name Current Increase Fercent Fecammend
1987 1988
Jane Doe | $60, 000 | $4,000 | 6.67% | $64,000
Mary Foe $50, 000 $4, 000 8.00% $£54, 000
Sam Smith $£55, 000 %3, 000 S.45% %58, 000
Feter Jones $70,000 $5, 500 7.86% $75, 500
Harold White $65, 000 %4, 000 6&.15% $69, 000
Steve Rlack $50, 000 %5, 000 10.00% $55, 000
Marvin Gardens $45, 000 %3, 900 7.78% $48, 500
Betty Boop $56, 000 %7, 200 12.86% $63, 200
______________________ = T, o SR, |G, [SR,
Toatals $451, 000! FEG,EOO 8.03% $487, 200

I

D O

Salary Computatien Model

Figure 1

OOH

A31xa1dwod IH £11x91dwod 07
SOJJBW pue snusw

A6oropoyjaw [PWJIOS
-sJ4asn paoudrdadxau] ////

//
/V/
asn
so4oew orqissod Juenbadd
‘fBolopoylaw [eWJ04 - Y
-sJdasn paouaruadx3 L
Y
ya FER
ABoropoyjeu fewdoy Auew "\,
-9uWIil °{uQ //
\\\// sJ4aylo
ABoropoyisw [ewWJIO} 1asn - . 40}

-9sn juanbau ub1saq

U0
p

A 5 Va Emwmhm
v sop~ q40ddns

ABOTOpPOYISW [RWAOS 0%~ ub
- - [eWAOUT [RUOSJUD4
[PWAOJUT-30YS-dUQ g BoSed

ABojopoyiou [RWUAOS —mm
SI [RUOTIIIPRUAR-SINW

Aboropoyjeaw [PwWJUO4 SI Jeuorlrpedl _
-Burssaooud suorjoesurdl

2 24nbr4

sjo99yspeadds Jol
sayoeouddy papuswwoddy pue
$1X932u09) ubrsag jusdaiilq

The Speadsheet Development Life Cycle

Figure 3

1. Problem Identification 2. Definition of model

TS baomeldecician

variables

3. Construct the
Model

Errors

4. Test the Spreadsheet

5. Documentation

6. Audit the Spreadsheet
Models and Structure

Errors

. 7. Prepare a User Manual |

9. Installation 8. Training!

Identification Macros
Owner

Developer Menus
User
Date Revised

Map of model

. Parameters
(Assumptions)

Model
Formulae/Matrix
Input Vector(s)
Decision Vectorts)
Parameter Vectok(s)
OQutput Vector(s)

Recommended Spreadsheet Structure

Figure 4

1z

Input Vector

OQutput Vector

Decision Vector
P

R |

_J Parameter Vector

Formulae (Model)

Data Flow

Spreadsheet Flow Diagram Symbols
Figure 5

1/
|/
Salary87

lsalaryss=|

Salary87+!

! “increase/|
" Increase \Salary87,

SFD Problem 1

Figure 6a

—-—...*
Increase f 1_
%increase

N
Salary88 l

>

Salesy
Profittz \\Q
B SEi:)ZiE;t | > Profit,
EVariables
| .//

SFD Problem 2
Figure 6b

Profitt
Salest =
Expenset —"7
| 1.2
Expenset)
=Fixed +

Promotio
+Variable

Level 2 SFD for Problem 2
Figure 6c

/—_’_—-‘_-_*‘\\
Avernz

*
Ngtm

Gr‘ademn i
Mean(Gm)
yar (Gm)

\ Std (Gm)

SFD Problem 3
Figure 6d

Final

alem
Worl

for Diewtal Ecor

Paper 18-87-52

10111

Figure 7

ALL PURPOSE WORKSTATION SOFTWARE CO.
$$tNev Product Projectionsyits
Identification
Duner: All Purpose Workstation Software Co.
Developer: Anne Saith
User: Jerry Brown
Date: 2/1/87 Revised: 4/1/87

Identification

Map of Model

Parameters and assumptions
Variables

Model

1. Sales (in units) for 1988 is the Input Vector,

2. The Output Vector is the Net Profit and Net Present Value.

3, The Model Parameters are presented in the Parameters Box

4, Sales Growth is considered the same in each year.

5. The interest rate (cost of capital) is fixed during all the period
€. Variable costs are proportionally linear to the nusber of units sold.
7. Tax rate is flat for all profits,

tXtParametersisk
Sales Growth 451
Interest 121 P
Price 350
Variable costs 75
Tax rate 35%
Assets deprec 500,000
The Model
$¥iNev Product Projectionskiix

1988 1989 1990
Sales (units) 5,000 | & 7,250 10,513
Revenue $1,750,000 $2,537,500 $3,679,375
Variable cost $375,000 $343,750 $788,438
Fixed cost $900,000 $900,000 $900,000
Promotion $1,000,000 $1,000,000 $1,000,000
Gross Profit ($525,000) $93,730 $990, 938
Depreciation 423,000 $23,000 $25,000
Taxes $0 $24,063 $338,078
Net Profit ($550,000) $44,688 $627,859

NPV]
$540,425 (o]

Figure 8

$1138Student Grading Programiiity
Identification
Owner: Jo Little
Developer: Harry Brown
User: Dr. Dolittle
Date: 2/3/87 Revised: 3/3/87

Map of the Spreadsheet

Identification iMacros
Map i
Assumptions
Parameters

Model

Assumptions and Parameters

1. Each assignment is weight as per Table 1.

2. Grades are assigned per Table 2.

To use the Model:

Alt M starts the macro execution and is the name of XM
BEGIN is the first student name

START is a range name for the menu

GRADE is a range name for the grading table

TABLE 1: WEIGHTS TABLE 2: GRADES
Assignment | 25% -1 F
Assigneent 2 351 P Below 0.00 D
Assignment 3 40% 1 std below 2,20 C

Mean 2.90 B

1 std above .60 A

4.00 A
The Model
$112sStudent Grading Programiiity
Name Assign | Assign 2 Assign 3 Course Final
0.00 | F

Boop, Betty p S 2 2.3 2.12] | D
Caroline, Princ 2 1.7 3.3 242 | C
Carson, Kit 3.7 3.3 4 3.68 | A
Doe, John 2 2.3 2.7 2,39 | C
Dupris, Jean 3 2 3.3 2.77 | ¢
Field, Marshall 4 3.7 3.3 3.62 | A
Jones, Betty 3 4 3.7 3.63 | A
McDonald, Ronal 3 2 4 3.05 | B
Newman, Alfred 4 4 3.7 3.88 § A
Pan, Peter 3.7 3.7 3.7 3.70 | A
Roe, Mary 1.7 2 2.3 2,05 § D
Rogers, Roy 2.7 3.3 3.1 3.31 § B
Smith, Sam 2 3.3 2.7 2,4 1 ¢C
Square, Harold 1. 1 2.3 1.52 § D
VanPelt, Lucy 3 2.7 2.3 2.62 § C
Nean 2.72 2.73 3.15 2,90
Variance 0.77 0.83 0.40 0.49 (o]
Standard Deviat 0.88 0.91 0.63 0.70

State-Transition Diagram for Menu Design

Figure 9

