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Abstract: Assessing the Temporal Differentiation of Attributes as an

Implementation Strategy for Temporally Oriented Relational Databases
Joseph Shiftan - New York University, GBA, CAIS
(Advisors: Professors Gad Ariav and Jim Clifford)

Temporally Oriented Databases (TODBs) are database systems in which
both historical and current data are accessed and treated with full
symmetry. The growing interest in such systems is manifested recently
in a number of research efforts focusing on a wide set of issues,

ranging from the study of abstract conceptual models to the practical
implementation of working systems.

Attempts to implement TODBs have so far been at best preliminary,
characterized by an ad hoc flavor, or have had a very limited scope.
This dissertation research is an attempt to design a general purpose
relational Temporally-Oriented Database Management System (TDMS), and
examine the feasibility of its implementation along current
theoretical concepts. The users view data in a TDMS as a temporally
oriented, three dimensional cube; this is, in fact, implemented as a
two layered data structure. The implementation model interrelates the
external user view Wwith an underlying functional view of the data, and
specifies on the translation between these layers.

The major principle in the implementation is the differentiation of
attributes according to their temporal variation. This research uses
this concept as an implementation strategy of TDMSs, and assesses this
approach for dealing with the following primary questions: efficient
ways to store and retrieve data, the integrity constraints needed to
maintain the database consistency and the definitions and
implementations of temporal operations in such systems.

Further validation of the model was achieved through the development
of a TDMS prototype. The prototype was developed using INGRES commands
embedded in PASCAL programs on VAX/VMS, and provides a test bed for
further studies of temporally oriented information systems.
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Chapter 1

Introduction and Overview

1.1. The Motivation of this Research

There is intensifying research interest in expanding the capabilities of
Database Management Systems (DBMSs). The current state of general purpose
DBMSs is the result of many well documented research efforts, for example

[Codd 701, [Stonebraker 76)], [Chen T6] and [Ullman 80]. Current DBMSs,
however, typically assume that the user is interested only in the present
(most recent) data, and do not provide him with adeguate tools to deal with
data at other hoints in time. The user can, of course, explicitly define time
as a data item in his/her database, and use it to "tag" time-varying data
items (e.g., salary). However, this only allows for a limited, schema-defined,
number of time-points for which values are stored. In addition, the user
himself is burdened with defining and implementing the necessary operations to

capture the full meaning of time in storing and retrieving data.

The absence of a DBMS that handles time properly is being challenged by
the growing need to have the same quality of access to both historical and
present information, and to treat them uniformly. This need has been prompted
by a number of developments. Prominent among them is the concept and the

growing usage of Decision Support Systems (DSSs) [Morgan 81], [Ginzberg 82].



Page 2

The capacity to deal adequately with time and historical information is a core
requirement in many systems [Ariav 83a]. Historical information is also an
essential component 1in business planning in general, and especially in
"Retrospective Analysis" [Ackoff 81]. The time has come for developing a new

type of database, a Temporally-Oriented Database (TODB), to meet the needs for

maintenance of historical data. In handling such a database, both historical
and current data should be treated uniformly and accessed with the same ease
. and with fully symmetric functionality. Recognizing the need for systems that
provide these capabilities has already motivated many research efforts,
summarized in [Bolour 82]. This survey contains about fotty references to the

subject, addressing largely four topics:

* Conceptual data-modeling (12 references), e.g., an extension to the
relational model to incorporate a built-in semantics for time
[Bubenko 77], [Clifford 82a), [Clifford 83al, [Ariav 83a].

* Design and implementation of historical databases (10 references),
e.g., the organization of write-once, historical database [Ariav
81], [Ben-Zvi 82] and implementation of temporally-oriented medical
databases [Wiederhold 75], [Fries 72].

# "Dynamic databases" (6 references), e.g., the modeling of transition
rules and temporal inferences from these rules [Mays 81], [Findler
71].

* A1 related research (12 references), e.g., the temporal
understanding of time-oriented data [Kahn 75].

In a parallel development, constraints that traditionally have limited
the practicality and feasibility of TODBs, e.g., the huge-amount of storage
needed for maintaining a "complete history", have recently been loosened in
the wake of new hardware developments such as optical storage technologies,

e.g., [Copeland 82], [Chi 82].
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A panel held in summer 1983 brought together many researchers in the
field, to discuss their work and identify promising research areas [Ariav
83b]. This panel pointed out that one of the areas requiring further research
effort was the implementation of TODBs. The designation of this effort as a
high priority item.bn the research agenda of TODBs is also included in other

sources, e.g., LAriav 83a) , [Ben-Zvi 82].

Since the [Bolour 82] survey, more research has been reported, including
some efforts that concentrate mainly on the design and implementation of
TODBs, and on the gquery languages needed to support them, e,g,, [Lum 84],

[Snodgrass 84], [Snodgrass 85], [Ariav 85] and [Clifford 85a].

The major part of the theoretical efforts in this area deal with a
temporal extension to the relationzl data model. Consequently, our research
attempts to study the design and implementation of a general purpose

relational Temporally-Oriented Database Management System (TDMS), capable of

managing varied information, completely independent of the nature of the
attributes and the data structures defined to contain them. This TDMS retains
some of the major properties of the relational model, within which this

implementation research is carried out.

In this dissertation, the terms TODB and TDMS are mentioned frequently.
It should be clear, that the first refers to the database itself, while the
second is the system that handles this database. Therefore, whenever dealing
with the content of the database, the term TODB is used, and when describing

the properties of systems handling such databases, the term TDMS is used.



1.2. The Research Goals

In most existing information systems, time aspects are usually either
ignored, treated only implicitly, or factored out [Tsichritzis 82]. Most
DBMSs do not treat present and past related questions symmetrically, but
typically differentiate between them in terms of data accessibility. It is
important to emphasize that this approach prevails not because of the scarcity
of temporal references in common data, but rather in spite of their abundant
availability. These current practices clearly simplify the task of data
management, but result in reduced functionality and a 1less "correct" or

"faithful" representation of reality.

This research focuses on the assessment of TDMS with respect to
practicality, and  ultimately wvalidates this assessment through the

conceptualization, design and implementation of a general purpose system that

preserves the inherent dynamics of its content, deals with it explicitly, and
makes the time dimension of the data accessible to its users. The TDMS has
been developed within the context of the relational database model [Codd 70],
[Codd 7T4], [Codd 79], [Maier 82], [Merrett 84], wutilizing theoretical
concepts that have already been suggested (e.g., [Ariav 83al], [Ariav 83c],
[Clifford 82a), [Clifford 82b], [Clifford 83al, [Clifford 83b], [Ben-zvi
82]). The basic component of these conceptual views of time-varyiﬁg data is
viewing the data items as organized in a cube, creating a three-dimensional,
temporal extension of the relational model. Two of the digensions in this
cube are identical to those of the regular relational model (objects and
attributes), and the third dimension is time. We call this cube of

information a Temporally Oriented Relation (TOR).
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The storage of TORs, which seems at first to be a simple one, is actually
quite complicated. A cube of data, as viewed by the user, conceptually
contains a full description of the relation for all time-points within some
time period. Therefore, a direct implementation would, if possible at all, be
highly redundant and impractical, and the basic question that should be
addressed is how to implement these TORs efficiently, both for storage and
retrieval [Clifford 83a]. Furthermore, a database will probably contain a
mixture of static information (NAME, BIRTHDATE, etc.) and time-varying items

(SALARY, POSITION, etc.), and a TDMS must handle both intelligently.

Finding an efficient way to store and retrieve the data is, of course,
not enough. As we know, the real power of the relational model is in its
operations that allow the user of a relational database either to select
portions of the information included in a specific relation, or to join two

relations and create a new relation containing their combined information.

Following the regular relational model, our TDMS should also have the
capability to answer queries by executing operations on the TORs.
Manipulations of TORs may be specified with or without explicit temporal
components, and they should be expressed in terms of the user's cubic view,
and then translated into efficient manipulations of the implemented data
structures. These operations should be natural extensions to the basic
regular relational algebra operations, SELECT, PROJECT and JOIN, defined in
the relational model [Maier 82], [Ullman 80]. The collection of these new
operations are referred to as Temporal Relational Algebra Operations.

Although they are extensions of the regular operations, the complexity
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introduced by adding the temporal dimension to the relational model puts
slightly different interpretations on some of the temporal operations, and
makes their implementation depend upon the characteristics of the TORs
involved. However, iike the regular relational model, these operations are the

ma jor component that makes our system powerful and responsive to the typical

user's needs.

As mentioned above, there have been already attempts to deal with the
theoretical concept of TDMSs, emphasizing the mechanism of uniform access to
current and historical data (e.g., [Ariav 83a)] and [Clifford 83bl). 1In this
research, we carry the task a bit further, and use the theoretical views
developed in these works as a basis for a comprehensive and rigorous framework
for the actual design and implementation of such systems. The proposed
framework emerges_out of conceptual considerations, and, therefore, provides

sound guidelines for implementation and a meaningful basis for evaluation.

1.3. Temporal Differentiation of Attributes

The major concept developed and examined in this research is the temporal
differentiation of attributes, and its use as a basis for an implementation-
level data model of temporally oriented relational databases. According to
this concept, the time stamps in our data structures are associated with the
various attributes in the TORs, rather than with entire tuples. This research

investigates the implications of this approach for the implementation of

relational TODBs.

Temporal differentiation of attributes rests on the following
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observation. In regular relations, there is only one type of atomic value
associated with the various attributes, and key attributes are distinguished
from non-key attributes. TORs, however, are more complicated, as not all
attributes change 'in the same way along time. There are, of course, key
attributes, but the rest of the attributes are divided into at least two
different kinds: constant attributes {CAs) (e.g., NAME, PLACE_OF_BIRTH),
which are time invariant, and time-varying attributes (VAs) (e.g., SALARY,
ADDRESS) [Clifford 85a]. 1In addition, one could further distinguish between
interpolatable and non-interpolatable time-varying attributes. For example,
if the salary of an employee is known at two time-points, and there is no
salary value for any time point between them, it can be usually concluded that
his salary in every intermediate time-point is the same as in the earlier
time~-point. This is likely to be the appropriate interpolation operation for
this kind of data. Now, suppose that a database records car accidents with
the time stamps in which they occur. If someone has two accidents in two
different days, then it does not imply anything about the time between these
two dates. This is a case of a non-interpolatable time-varying attribute.
Similarly, knowing the sales volume on Monday and on Wednesday implies nothing
about Tuesday. Basically, time varying data are either states (like
position), or events (like car accidents). Each of them should be handled

somewhat differently, but both of them are completely different from constant

attributes.

The basic distinction between constant attributes, which do not change at

all along time, and the various types of time-varying attributes, can be
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powerfully exploited, to provide solutions to the problems involved 5jn
implementing TODBs. The temporal differentiation of attributeé is a storagé
strategy that recogqizes explicitly the fact that various attributes vary
differently over tiﬁ;. Specifically, attributes are stored independently of
each other, clustered along their pattern of change over time. If time stamps
are associated with the whole tuple, then a change in one of its attributes
implies the creation of a new tuple containing the new value of this attribute
and the appropriate time stamp. No other attributes in this tuple may have
changed, and yet they have to be copied to the new tuple, together with the
one that has, in fact, changed. This situation introduces a lot of redundancy

into the database.

In designing the TDMS, we use our basic approach - the temporal
differentiation of attributes - and focus on a comprehensive assessment of
this concept as an implementation strategy of Temporally Oriented Relational

Databases.

The most general formulation of the key questions in our research is,

therefore, as follows:

¥ What is the impact of the differences between attribute types in
TODBs on the design and the implementation of TDMSs?

¥ How can these differences be exploited in the design of the data
structures in the system, and how will these data structures affect
all the other components of the TDMS?
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1.4. Previous Research Efforts in Designing TODBs

Before presenting the research goals and methodologies, we turn to
highlight earlier efforts to design and implement Temporally-Oriented
Databases. We have selected a representative sample that demonstrates the
current status of efforts in the domain. In particular, we distinguish among

four categories of efforts:

1. Theoretical basis developed, but no design is explicated: [Bubenko
771, [Clifford 82b].

2. Theoretical basis explicated, design outlined, but no actual
implementation attempted: [Ben-Zvi 82], [Ariav 83a].

3. Theory-based implementation of limited aspects of TODB [Snodgrass
84], [Lum 84].

4. Ad hoc implementation, without an explicit theoretical basis:

[Wiederhold 75], [Ariav 81).

The underlying premise of the expanding body of research in this field is
the recognition that time is not merely another attribute, or another data
item tagged along with each tuple, but a dimension that requires new and

different conceptual tools and design techniques.

1.4.1. Theoretical Studies Without Any Implementation

(Bubenko T7] illustrates the problems in handling temporal data through
an example of an inventory management system. The system keeps track of
available quantities-on-hand, and the events affecting this information, viz.,
shipments and deliveries.  Bubenko argues that time should be introduced
through recording the quantities-on-hand at times of a change. This method
guarantees that the database includes a finite number of time-point

references.
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Handling time requires special care, he argues, and cannot be treated as
an integral part of any traditional data model. For instance, the relation
QUANTITY-ON-HAND(article,quantity,time) is not a relation in the cnnvéhtional
sense, since if #é define its meaning to be "quantity at time t" where t is a
variable, its extension includes an infinite number of tuples. However,
assuming that there is an underlying finite representation of the database,

time views could be defined using the tools of relational algebra or

relational calculus.

The latter point is one of the major issues dealt with in [Clifford 82a].
This work provides the theoretical background for the incorporation of a
temporal component into the relational model. It shows how the semantics of
such an extendgd relational model can be mirrored by the semantics of formal
logic. In ﬁarticular, it identified three major principles that must be
addressed in any practical implementation of an historical database system.
The first of these was the notion of a "completed relation," which motivated
the intuitive concept of the database as a collection of three-dimensional
"cubes" of facts. The Comprehension Principle, a three-dimensional version of
the "closed-world" assumption [Reiter 78], stated that the database is assumed
to contain complete information about the objects throughout the time period
which it 1is capturing. Finally, the need for explicit ™"Continuity
Assumptions" was identified. According to this assumption, the cube is dense
and includes values for all time points in the temporal dimension. This paper
also defines functions that are associated with time-varying attributes in the

model, and a mapping from a partial specification of their value (for example,
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from a sampling at a small number of points) to a complete specification of
their value over some time interval. While implementation was not directly
addressed in this wprk, these principles are in fact very important in any

implementation effort.

1.4.2. Tentative Designs

Some research efforts tried to form a theoretical basis for a design of a
TDMS. For instance, [Ben-Zvi 82] introduced the Time Relational Model as a
basis for a new architecture which incorporates comprehensive time processing
capabilities into the relational model. 1In it, a traditional relation is
extended into a time-relation which contains the tuples' history, i.e., all

the values that each tuple has acquired over time.

A time view'oﬁerator, TV, is then defined as the operation that extracts
from a time-relation a regular ("flat") relation which corresponds to the
state of affairs at a specified point in time (as seen from any specified,
possibly different, point in time). Every operation on data is preceded by
the TV operator, and therefore retains its standard relational meaning. The
model proposes a unified view of present and past data, and thus maintains
time-independence and time transparency, i.e., the user may operate on this

model without having a special concern for time.

Although no actual implementation is reported, some aspects of TODB's
design are discussed. For instance, a distinction is drawn between the
"interpretive” and the "built-in" approaches. The former adds a time

relational front-end interface to an existing DBMS (the approach we have
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chosen), whilé in the latter a time relational DBMS is designed and built from
scratch (probably trading off design effort for execution efficiency). The
proposed database is arranged such that "current" tuples are stored physically
together, and all pést versions of the tuples are stored in a second storage

area. All tuples of the same kind are chained together in descending order of

their time stamps.

The proposed structure includes rather elaborate indexing, to allow
efficient retrieval of current and past tuples. Interestingly, the proposal
includes a facility to support future data, by automatically replacing current
data with future data at the appropriate time. This 1is achieved by

maintaining a specialized chain, called the tuple-future chain.

A clear limitation of the time-relational model is that it does not
include any relational algebra operators that act directly upon the time-
relations, and therefore none of the problems associated with such operators
are actuzlly addressed. This issue was nevertheless the major concern in

[Ariav 83a], where the daia model developed in it includes the data-cube as a
basic data construct, and a set of operations and constraints on such
constructs are outlined. The dimensions of the cube are objects, attributes,
and time, each of which could be directly manipulated ﬁy the user. The
temporal aspect of data is not factored out when the user accesses it. This

ubiquitous cubic view of temporally-oriented data serves as the external

(users') view of historical data in this dissertation research.

[Ariav 83a] used the model as the basis for the design of a TODB, and in
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particular for the design of an extension of SQL to incorporate in it temporal
elements in a way that does not penalize users who are not interested in
access to the historical data. The gquery language is then expressed in a set
of navigational Opérations, and ultimately translated into a DBTG schema. The
same model is then used in the design of an integrated graphic user-interface

that introduces the time dimension into guery responses.

In the above system, not only the information is time stamped, but also
the schema. The system supports multiple, time-ordered (internal) schemata,
through which programs will gain access to the portion of data that has been

recorded while the corresponding schema "prevailed”.

Both [Ben-Zvi 82] and [Ariav B83a] developed some limited implementation
design, but did not validate their architectural proposals through a

corresponding detailed design or a prototyping effort.

1.4.3. Limited Implementations

[Snodgrass 84] has developed and implemented TQUEL for querying temporal
databases. TQUEL is a superset of QUEL, the query language in the INGRES
relational database management system. A tuple relational calculus semantics
is providéd for the TQUEL RETRIEVE statement. Two additional temporal
constructs have been defined in TQUEL: the WHEN and VALID clauses, direct

semantic analogies to QUEL's WHERE clause and target list.

The time stamps used in the data model underlying [Snodgrass 84] are

associated with the whole tuple, an approach that has prevailed so far.
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Incidently, the problem of the storage redundancy does not show up in the
examples illustrating TQUEL in Snodgrass's paper, due to their simplicity_
(each of the relations in these examples contains only one time-varying.
attribute in addition to the key-attribute, the NAME, a temporally constant
attribute). However, in a more realistic situation one would expect to have
more time-varying attributes, 1like SALARY, MARITAL STATUS, DEPARTMENT,
ADDRESS, etc., which should be assumed to vary in different time-points. Such
a situation cannot fit elegantly into TQUEL. These fundamental problems limit

to a large extent the practicality of TQUEL.

TQUEL distinguishes between event relations and interval relations.
Interval relations have two time stamps in each of their tuples, called
"start" and "stop". The absence of an open-ended category forces every
continuous state to end at an explicitly specified time-point, which is rather
cumbersome. A common situation is that a state has started at some time-
point, but has not yet ended as of today. Also, there is a lot of redundant

data when the "stop" of one tuple is automatically the "start" of the

subsequent.

(Lum B8Y4) proposes a method, which has been validated through
implementation, to handle historical databases. Its basic design supports the
usual view of database functions, and, in addition, the general time domain,
so that both current and historical data can be accessed in the same way. Like

[Snodgrass 84), [Ariav 83al], [Clifford 82a), [Ben-Zvi 82] and others, [Lum
84] extends the relational database model, and they view the temporal data as

2 three-dimensional structure.
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The implementation approach used by [Lum B84] is the common one,
associating time stamps with the whole tuple. 1In each relation there is a
table containing only the current tuples, as in regular DBMSs, but in addition
a transparent time S%amp is added to each tuple. Included also with each
tuple is a pointer to the first history tuple, if any. All history
information belonging to one tuple is chained in reverse time order, with the
beginning of the chain always in the current tuple (except where a tuple has
been deleted, in which case it is moved to the history chain, and in its place
a "delete indication" is kept). With this basic structure, all current and
history data in a table can be accessed, although only sequentially. 1In order
to allow random or direct access, a rather complicated indexing method is

implemented using ordinary trees.

[Lum 84) also discusses the problem of the nature of time raised also in
[Ariav 83a], and distinguishes between physical time, i.e., the time on the
database interval clock, and the logical time, which is the time associated
with the user's application perspective. This distinction is needed in
situations like retroactive reporting, in which the use of only a single
parameter for time will lead to the 1loss of information. the paper's
conclusion is that the physical time will be used to record all database
actions, and the user will decide whether to define explicitly one or more
additional time parameters in the database. These "time" parameters are

referred to as logical time, based on the real physical time as a reference.

The indexing methods in [Lum 84] are complicated, and cause the execution

of many operations whenever z change is made in the database, in order to
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maintain its consistency. The paper describes how to store and retrieve data,

but does not cover the crucial aspect of operations on the data.

1.4.4. Implementations Without Theoretical Basis

There have been some attempts to develop datz management systems that
exhibit some of the properties addressed by the studies mentioned above. For
instance, [Wiederhold 75] describes =a medical database of temporal

information, dubbed TOD (Time-Oriented Database).

The design of TOD distinguishes between the stable patient information
and the volatile, chronclogically ordered visit data, and organizes them in
two separate files. This distinction is similar, in some ways, to the
distinction adopted in our research, which differentiate between constant
attributes (CAs), and time-varying attributes (VAs). In TOD, visit numbers
are used to locate-the records via the index structure of the historical file.
The first and the last visit of every patient are specified in the patient's
header record, and other visits in the parameter file are chained both forward
and backwards, to facilitate efficient retrieval. The system is capable of
retrieving information, both for tracing a specific patient's condition, anq

for statistical analysis across patients.

TOD is, in fact, a special purpose system, developed specifically for
hospital environment. It handles temporal information, but the distinction
between static data items and dynamic data items is not in the level of
attributes. It is instead in a higher level of the general patients'

information and their visits' information.
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A more generalized version of a TDMS is the DATA system (for Dynamic
Alerting Transaction Analysis system) [Ariav 81], a rudimentary, relational-
like system that handles certain time aspects in an explicit manner. The data
in the system is maintained as a cumulative, time ordered list of transactions
(i.e., recorded events), and the status of an entity "as of time t" is derived
from the collection of transactions relating to that entity which have been
recorded prior to time t, and ignoring all transactions since t. The
specialized commands for dealing with time are the following: rundown replays
a sequence of recorded events between two points of time, settime allows the
user to view the database from previous points in time, and rollback, backs up
the database to permit operations on its contents at some previous point in

time.

Transactions are always appended to the database, and are never modified
or deleted. Nevertheless, they can be one of three basic types, namely
addition, modification or deletion. Each transaction contains a time stamp, a2
pointer to the previous transactions related to the same entity, and
eventually the new data value. This architecture actually extends the notion
of "differential files" [Severance 76], to the point where the background

database is simply an empty set.

The DATA system associates the time Stamps with the whole tuples, and as
such it suffers from the corresponding storage redundancy problem. In
addition, it does not actually combine data of different objects to produce
reports for the various potential users' views, but is only a tool to maintain

the “complete history" in its transactional form, and retrieve it whenever

required,
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1.5. The Structure of this Research

This chapter has presented the background of this research, described the
general nature and capabilities of a Temporally Oriented Database (TODB) and
surveyed related literature. It then presented the major concept of the
research - the temporal differentiation of attributes, and outlined the

general research question, namely: how should we design and implement a TDMS

based upon this concept.

Chapter 2 presents the general framework of this research, develops the

specific research questions and describes the methodologies that were used to

answer them.

Chapter 3 presents the basic data structures used in our model, using the
concept of the temporal differentiation of attributes [Clifford 83b]. These
data structures are stored in regular relations, =allowing us to use an
existing DBMS to implement and manipulate them. In so doing, we do not need to
design the modules to carry out the I/0 operations, and are able to
concentrate on the conceptual components of the system. This chapter also
describes the ways to create the TODB scheme, to load it with data and to
update it, including the procedures to maintain the TODB's consistency. The

simplicity of these tasks underscores one of the advantages of the proposed

design.

Chapter 4 develops the general framework within which the temporal
relational algebra operations are defined and implemented in this

dissertation. Chapters 5, 6 and 7 cover the temporal relational algebra
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operations, SELECT, PROJECT and JOIN correspondingly. The operations are
explained through concrete TODB examples covering all their variations in the
unique environment of TODBs. The detailed definitions of the temporal

operations set this dissertation apart from previous attempts to study the

implementation of TDMSs.

Chapter 8 contains a discussion of the results of this research, with an
attempt to generalize the results and put them in a broader perspective.
Chapter 9 concludes this dissertation, highlighting its contribution and
significance and outlining the major research issues that emerge from our

research.




Chapter 2

Research Goals and Methodologies

The focus of this research is the assessment of the temporal

differentiation of attributes as an implementation strategy for relational

TODBs.

2.1. The Research Framework

This section outlines the conceptual view of a TODB, and presents the

overall framework of the research.

2.1.1. Basic Theoretical Components

The external data structure of TODBs is a cube, instead of a table in the
traditional relational databases. The cube represents a Temporally Oriented

Relation (TOR). An example of such a cube is presented in Figure 2-1.

All TORs have TIME as their third dimension, added to the two that
already exist in regular relations. The time-unit is typically application
dependent. Throughout this dissertation, the time-unit will be a day (denoted
YYMMDD; e.g., 820517 means: May 17, 1982). In other applicatidns it may be an

hour, a month, or any time-unit that fits the nature of the database.

However, only one time-unit is allowed in one TODB. The TDMS, in fact, does

not "know" the meaning of the numbers representing the time stamps for the
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Figure 2-1: The Basic Data Structure of TODBs (the Cube)
attributes in the various TORs. Consequently, it cannot handle the existence
of different time-units, and execute operations requiring an interpretation of
their relationship. This self-imposed limitation enables us to concentrate on
other issues in a TDMS. Further research should explore the structure of the
time domain, operations on that structure, relationships between time domains,

etc.

The cube representing the TOR actually contains one time slice for each
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day, containing the data for this particular day. Let us assume the existence
of the TOR DEPT, with values for all attributes at each day, starting, for
instance, at 800101. The data for two arbitrary days in this cube is shown in

Table 2-1 (the source data for these time slices is described later).

The data for 801010:

- -

- -

1 |  SALES | 10050 |
2 | PRODUCTION | 10030 |
3 | ACCOUNTING | 10010 |
4 | MANAGEMENT | 10025 |

- ————

- —

——— -

| 1 | SALES | 10050 |
| 2 | PRODUCTION | 10005 |
| 3 | ACCOUNTING | 10080 |
! 4 | MANAGEMENT | 10025 |

- -

Table 2-1: Two Time Slices from the Cube Describing the TOR DEPT

In general, we will use the convention that two TORs are considered to be
equivalent during a time interval, if all their time slices for the same time

points are equal.

In a regular relation, the information about an object is included in a
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tuple of this relation. In a TOR, however, every object has a tuple for each
time-point, creating together a horizontal slice of the cube. "Tuple” in a TOR
has the same meaning as "tuple" in a regular relation, but while an ordinary
tuple in the regula; case describes the current status of the object, a tuple

in a TOR contains the information of the object at a specific time point. This

time-point, however, is not included in the tuple, since time is an implicit

entity of the TODB, and does not appear in its TOR's schemes.

Conceptually, there is potentially a different time slice (table) in each
TOR for each day, starting at 800101. 411 the time slices of one TOR
conceptually constitute its cubic view. Needless to say, it is extremely
wasteful to actually store the data this way. Therefore, another view of the
data, an interna1~view, is defined as the underlying functional view of the
data, that contéins only the minimal amount of data needed to create the

external user's view.

The internal view [Clifford 83b] takes advantage of the differentiation

between constant attributes (CAs) which are time invariant, and time-varying

attributes (VAs) that do change along time. In this internal view, each time-
varying attribute (VA), such as SALARY, has as its domain not simple values

(such as 25,000) but rather functions from time points to values. The

. representation of a VA by the minimal data needed to determine its value for

each time-point is called a partial specification of the VA, since by itselfl

it provides only partial information about the values of this VA in this TOR.
This information is indeed sufficient for determining the values of this VA

for any object at any point of time, since there is a known interpolation
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mechanism that completes the description of the data. The internal view of a
TOR, therefore, contains the data for all its CAs and the partial

specifications of its VAs.

The operations on the above data constructs could be viewed as expanded
definitions of the traditional relational algebra operations, forming a
temporal relational algebra. These operations create new TORs, thus
maintaining the "closure" property of the relational model. 1In general, we
strive to define the temporal operations as a consistent extension of the
regular relational algebra operations, and thereby maintain the meaning of a
regular operation when applied to a TOR that contains eguivalent of a single

time slice.

2.1.2. The General Framework of the Research

The framework of the design of our TDMS is depicted as in Figure 2-2.
The external view in this framework is the cube which is the basic structure
as viewed by the user for representing temporal data. The internal view
contains the minimal data needed to simulate the cube. The values of the CAs
in this view are atomic values, while the VAs contain functions from time-
points to values, for those time-points in which values have changed. The
internal view is not convenient for storage in a traditional relational DBMS.
Therefore, we rearrange the information included in this internal view, and
store it in regular relations (The exact structure is presented in Chapter 3).
One should note that the information recorded in these representing relations
is identical to the information included in the internal view; the same is

true for the mechanisms to construct the whole cube out of either the internal
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view or the representing relations. Another important point is that storing

the information in these representing relations allows us to manipulate them
by an existing relational DBMS. The interpretation of these relations as
representing the TORs in the TODB is carried out by the TDMS. Both the
internal view and the representing relations can be mapped to the physical
storage which is the lowest level in the research framework, that concerns the
actual storage of data. In general, we will deal only with the higher levels

of the framework; specifically, the TOR and its underlying representing

relations.

In TDMS, the user interfaces with the database by using the terms of the
external view, and can generally be ignorant of the distinction between CAs
and VAs. However, these two different kinds of attributes are stored and
handled differently in our model. Therefore, each attribute must be classified
to the TDMS upon the creation of a new TOR. Thus, the database administrator
(DBA) should be aware of this issue, and whenever he wishes to create a new
TOR, he has to specify its key, its CAs and its VAs. From this point on, this
knowledge exists in the TODB, and the user never has to repeat it. The levels
below the internal view are completely hidden from the user, and he never

deals with them or has to provide information for them.

The major effort in developing TDMS is the formulation of temporal
operations, conceptually defined on the external cubic view(s), but actually
executed on the representing relations. Therefore, in developing these
operations we are concerned With consistent mapping from the cubic view(s) to

the representing relations. The internal view is mainly used to present the
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THE CUBE/TOR
(The external user's view)

i THE INTERNAL VIEW | | THE REPRESENTING RELATIONS
(The internal functional | (The logical representation
view, based on partial . of each TOR by regular
specifications) ! relations as primitive
i objects)

THE PHYSICAL STORAGE

Figure 2-2: The Framework of the Research
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results of the various examples, raised during the discussions about these
operations in Chapter 5 through 7 below. The internal view seems preferable
for presenting The results to the user, while the representing relations are
essential to the execution of the operations in our implementation approach.
As the two are equivalent, we use the representing relations in the detailed
design of the temporal operations, while using the internal view for
presentation purposes. It should be noted that a different implementation

strategy could have used the internal view as the underlying data structure.

2.2. The Issues Involved in Implementing TODBs

As the literature survey indicates, implementing TODBs involves a whole
set of design issues. A critical survey of the previous research on these
subjects suggests the major topics highlighted in the following paragraphs.

Later in this chapter, we identify those implementation issues on which the

dissertation centers.

* The types of time

When dealing with time, one may consider different types of time
stamps that could be associated with data items, e.g., the time in
which some event happened, the recording time, etc. This issue has
been dealt with in several papers, e.g., [Ariav 83a), [Lum 84],

[Snodgrass 85)], and introduces a higher level of complexity into
temporal data models.

¥ Data structures

A number of researchers (e.g., [Wiederhold 75], [Clifford 82a],

(Ariav 83a], [Lum 84] among others) view temporally oriented data
conceptually as a three-dimensional cube. It is clear that the cube
contains extremely redundant information, and the data cannot
possibly be stored as such. Therefore, a primary design decision in
implementing a TODB concerns its data structures and storage
methods. They should provide a method to store the minimal amount
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of data needed tec construct the whole cube, in a way that is
efficient both for storage and for retrieval.

L ¥ Temporal operations

The capability to retrieve any desired information from an existing
TOR is Just the first step in developing TDMSs. Experience with
regular databases has already taught us that the relation schemes
should be designed to conform to the highest normal forms, thus
preventing unnecessary redundancy in data, and various anomalies in
updating operations. The price for this design is that many common
queries cannot be answered directly from single relations, but
require the creation of new (possibly temporary) relations, using
relational algebra operations. In TODBs, we face the same problem,
and we cannot expect to have all desired queries answered by using
only single TORs. We therefore have to add more functionality to the
system, and the next step in building a TDMS is the definition and
implementation of operations on the TORs, in order to accomodate
more advanced queries that people are likely to ask.

¥ Integrity constraints

Any DBMS should ideally provide tools to maintain consistency in the
database. This issue is probably more important in TDMS which
handles objects with many different tuples for the various time
points associated with their attributes. Another factor affecting
the importance of this point in the TODB is that data is never
modified or deleted, a fact that should dictate the execution of =z
comprehensive validation procedure before a data item is allowed to
‘ enter the TODB.

* Implementation approaches

In the design and implementation of a TDMS that extends the
| 3 relational model, there are two basic approaches, as suggested by
[Ben-2vi 82]:

s 1. Starting from scratch, and devising all the needed modules,
% including the 1I/0 module, internal manipulations, user
' interface, etc.

8 2. Using an existing DBMS as a tool to manipulate the TORs as
9 needed. On top of this DBMS, an interpretive mechanism could
g be built to mediate between the user and the DBMS. The user
then deals with external views, the cubes, while the DBMS
contains regular relations. The modules added to the DBMS fill
this gap between the user's view and the DBMS's content.
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A product obtained with the first approach is likely to be superior
in performance, but would probably take much longer to develop,
especially if it contains all the desired properties that already
exist in commercial DBMSs.

In the second approach, one is relieved from dealing with I/0
operations and file management, since a reference to the DBMS will
be made whenever needed, handling a tuple at a time from regular
relations to manipulate them as desired. Therefore, the completion
of a TDMS prototype would be much easier, even though its
performance may be inferior.

% Query languages and user interfaces

A TDMS requires a special kind of query language to support
questions referring to the temporal dimension of the data (e.g., the
language suggested by [Ariav 85] or [Snodgrass 84]), containing the
necessary extensions for the specifications of the query's time
aspects.

The issue of query languages raises the aspect of interfaces. The
issue of friendly user interfaces becomes more complicated in TDMSs,
because of the added temporal dimension.

% Query qptiﬁization

A query optimization procedure is a very important component of a

] DBMS such as INGRES, that uses a non-procedural query language, and
k may be even more important in TDMSs, since each single temporal
3 operation requires the execution of many computations, and the
combination of several operations needed to answer more advanced
queries may be very expensive.

b

* ¥ Temporally oriented (evolving) schemes

i In the course of the 1life of a database, it may happen that
' modifications to some relation scheme are needed, €.g., a new

3 attribute is added or dropped ( [Navathe 80], [Ariav 83z2]). So, for
example, even though there are no past values for the new attribute,
the user may wish to start managing it, together with the other
attributes, from now on. This implies the conversion of the concept
4 of a scheme from a constant entity to a time-varying one. Thus, a
3 TOR can have different schemes for different pericds of time, and
! whenever a modification to the scheme is needed, another version of
it is created. The new scheme should not require any duplication of
data, but should refer differently to the already existing data, and




Page 30

possibly combine it with new attribute(s) added to the scheme in
this version. A new version of the scheme does not cancel the old
ones; the system should determine, based on the user's query, which
version(s) of the scheme to apply.

The capability to handle evolving schemes is a natural outgrowth of
research on historical databases. Evolving schema allow the same
TOR to include different combinations of attributes in different
periods of time, thus introducing an additional and very powerful
flexibility in the ways that data can be viewed in different periods
of time. Such an evolving schemes capability is, of course, a very
desirable property of a TDMS. This issue has been initially
discussed in [Ariav 83a], but because of its complexity it is not
yet clear if and how it can be incorporated into an implementation
of a TDMS.

2.3. The Research Questions

The basic principle of the temporal differentiation of attributes has
implications for every issue involved in implementing TODBs. A relatively
closed subset of issues has been designated as the set of issues to be
addressed in this research. This dissertation research examines therefore the
impact of temporal differentiation of attributes on the design and
impleméntation of TODBs. This section outlines the specific research
questions addressed in this dissérhétion. There are other issues involved in
implementing TODBs with which we do not deal in this research. We comment on
some of them in the conclusion of this research, pointing out the potential

benefit of our basic concept as applied to them.

Before presenting the research questions, a comment on the role of time
in TODBs is due. The precise meanining of time in temporally oriented
databases has not been well defined in many of the research efforts proposing

Schemes to satisfy the need for supporting time varying information in
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database systems. Furthermore, there has been confusion concerning the
terminology and definition of the time attributes in many of these research

efforts [Snodgrass 85].

In our data model the time values associated with the various data items
in the TODB specify the starting validity time of these data items, and have
nothing to do with other possible time perspectives, such as recording time.
Dealing with more than one time dimension reguires multiple time-stamps
associated with each data item (see [Ariav 83a]), and is not covered by this

research.

We believe that one cannot resclve the problem of databases with
multiple-time dimensions, without having first a single-time TDMS such as the
one studied in. this research. Therefore, solving the problem of handling
historical databases arranged along a single dimension of time is an essential
step towards the development of more complicated databases. The proper
treatment of more than one temporal dimension is clearly a subject of future

research.

All the research questions deal with the temporal operations. Extending
the existing relational algebra operations into temporal relational algebra
operations is a complicated effort. It immediately raises many questions,

among which the major are:

¥ Research question 1

Is there a "natural" extension of the regular relational algebra
operations into temporal relational algebra operations? Could such
an extension maintain the closure property?
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* Research question 2 %

How are the algorithmic definitions of these operations affected by
the types of attributes being manipulated, namely: key attributes,
CAs (constant attributes) or VAs (time-varying attribute)? How are
the results affected by the types of the involved attributes?

¥ Research question 3

How is the time dimension of the result inherited from the time
dimension(s) of the operand(s)?

These questions about the temporal relational algebra operations may not
exhaust all the problems concerning them, but seem to be central ones and

reflecting the complexity of the issues on hand.

2.4, Research Methodologies

All the research questions stated above refer to the impact of the
temporal differentiétion of attributes on the operations in TDMSs. These
questions can conveniently be addressed through the development of a detailed
design of a TDMS, and the application of ghis TDMS in the management of a

benchmark database.

2.4.1. Detailed Design of the TDMS

A major part of the research has been a complete design of a TDMS. This
entailed the definition of a mapping between the conceptual view of data (the
cube) and the primitive objects (the representing relations) that are used to
implement it. This mapping exploits the temporal differentiation of
attributes, and constitutes an implementation-level data model. The detailed
design contains the full set of algorithms in a TDMS in sufficient detail to

program them. The actual programming of these algorithms and application in
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various examples serves as a quality control, and provides the means to
identify implementation problems and a vehicle for the demonstration of the
various features of such a system. The design provides a basic means for
assessing the usefulness of this concept as an implementation strategy for

TDMSs.

The design details how to store the minimal amount of information needed
to create the whole cube. It demonstrates that efficient storage can be
accomplished by using regular relations as primitive objects, without any
additional types of data structures. The full design shows exactly what the
data structures are, how they are maintained, and what mapping techniques are

used to retrieve data from them, in order to simulate the user's cubic view.

Research quesgian 1 deals with the definition of operations needed to
answer user queriés. The design defines such operations as natural extensions
of the regular relational algebra operations. These definitions maintain the
closure property, so that each operation creates a new valid TOR. The
definitions of these temporal relational algebra operations refer conceptually
to the cubes, but the algorithmic definitions deal with our data structures.
They manipulate a seguence of regular relations representing the operand(s),
perform operations on these relations, and create a new sequence of regular
relations representing the resulting cube. A full mapping among the external
and the implementation data model demonstrates the correctness of the

algorithmic definitions.

While developing the algorithmic definitions of the temporal operations,
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we systematically analyze the effect of the types of participating attributes.
Special care is given to the temporal JOIN operation, which is the most
complicated operation in TDMSs. Our analysis of the temporal pperaticns_
includes many examples, demonstrating the impact of the various aﬁtributes
types involved i; these operations on their results. This responds to research

guestion 2.

The result of any temporal operation is a new TOR. Consequently, it
contains time stamps associated with its attributes. The design of the
operation must specify how these time stamps are inherited from the time
stamps associated with the attributes of the operand(s). This analysis is
part of the design of the temporal relational algebra operations, and

therefore answers research question 3.

2.4.2. Use of Actual Database

A& benchmark database was used to investigate the nature of a TODB.
Discussing detailed concrete examples is one way to demonstrate the specifics
of the design and the implementation, to present the internal representations
of the TORs, and to show how the representing relations are manipulated to

create new TORs as results of temporal operationms.

We have chosen a personnel database containing nine TORs (see Figure
2-3), each of which has at least one time-varying attribute. This database is
much richer than the examples used in previous works like [Ariav 83c],

[Clifford 82a], and [Snodgrass 84], and the variety of its TORs and their

attributes allowed us to study the intricate details to be resolved in TDMS
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design. It also enables us to assess many logical and practical queries whose
answers demand the execution of temporal relational algebra operations. These
queries are used to illustrate the problems in our design, and help outline

their solutions.

% EMP(EMPNO,NAME, SEX ,DEPTNO, JOBCLS)
* DEPT(DEPTNO,DEPTNM,DEPMGR)

* SAL(EMPNO,SALARY)

¥ COURSE(CRSNO,CNAME,PRICE,DURATN)
# TRNHST(EMPNO,CRSNO,GRADE)

*# DRESS(SEX,ROOM)

# UNIONS(UNION,SEX,OFFICE)

* PHONES(EE@H_E,DEIPTNO,LINES)

# PROJECTS(PROJNO,PROJNM,COST ,DEPTNO)

(key attributes are underlined)

Figure 2-3: The TORs in the Benchmark Database

The benchmark database is used throughout the dissertation. In the

following paragraphs we briefly introduce its structure and content.

The relation EMP contains the basic information about each employee:
his/her identification number (EMPNO), NAME, SEX (M or F), the department
number (DEPTNO) to which he/she is assigned, and his/her JOBCLS (a number

indicating class of occupation).



The relation DEPT describes the departments in this firm. DEPTNO is the

department number, DEPTNM is its name, and DEPMGR is the identification number

(EMPNO) of its manager.

The relation SAL holds the salary, SAL, of each employee. In fact, it
can be merged with the relation EMP, but it has been defined separately, to
enable us to illustrate later the simplest possible JOIN operation in our

TDMS. It contains the employee identification number (EMPNO) and his SALARY.

The relation COURSE describes the courses given within the training
system of the firm. CRSNO is the course-number, CNAME is its name, PRICE is

the price charged for it, and DURATN is its duration in days.

The relation TRNHST describes the instruction-history of each employee,
and contains his/her EMPNO, the number of the course taken (CRSNO), and the

GRADE achieved. Note that in this relation the key consists of two attributes,

EMPNO and CRSNO.

The relation DRESS stores the dressing room allocated to the male
employees and to the female employees in the organization. It contains the
key SEX, and the allocated dressing ROOM. The relation UNIONS describes the
various unions present in the company. There are several unions, each of which
is open either only to men, or only to women. The relation contains the union

name (UNION), the SEX to which it is open, and its OFFICE.

The relation PHONES describes the phone lines allocated to each

department in the organization. The key of this relation, PHONE, is a
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telephone number, DEPTNO is the department number to which the telephone is

assigned, and LINES is the number of lines allocated to this phone number.

Finally, the relation PROJECTS describes the various projects handled by

the company. Its key is the project number PROJNO, PROJNM is the project name,

COST is the estimated cost of the project, and DEPTNO is the identifier of the

department responsible for this project.

An examination of the attributes included in this database reveals that
some of them, like EMPNO, NAME and SEX in the relation EHP, and CNAME in the
relation COURSE, are not subject to changes-along time, while others, 1like
{ JOBCLS in the relation EMP, and SALARY in the relation SAL, do change at

various points of time.

2.5. Summary

Adopting the concept of the temporal differentiation of attributes raises

several questions concerning the impact of this concept on the design of
TDMSs. This chapter presented the specific research questions and the
" methodologies used to answer them. These methodologies center around a
complete design of a TDMS, based on the data model developed in this
dissertation. Like every other data model, ours contains the three major
components: data structures, constraints and operations. They are discussed

in full detail within the next chapters of the dissertation.
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Chapter 3

Data Structures in TODBs

This research develops a data model to implement temporally oriented
relational databases, and as such, it contains all three major components of
every data model: data structures, operations and constraints. This chapter
covers two of our model's components, the datz structures and the integrity
constraints. Their design is the background for the discussions in chapters &

through 7 that deal with the research questions presented in Chapter 2.

3.1. The External Cubic View

The conceptuai objects handled by a TDMS are cubes of data rather than
flat tables, and in our terminology we refer to them as Temporally-Oriented
Relations (TORs). A typical cube is illustrated in figure 3-1, representing
the TOR EMP as viewed by the user. The cube is conceptually constructed by
the collection of all time slices corresponding to all time points (days in
our example) included in it. Table 3-1 presents the flat tables containing the
data of two arbitrary days in the TOR EMP. The source data for these time

slices is included in Appendix A.
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----——---_-—----———-———-——--—-—-n-—_--—a—-

———— —————

- — -

The User's External Cubic View of a TOR

Figure 3-1:
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For 800101:

-

—————— . — - ——— -

| 10010 | MIKE | M | 3 | y |
| 10090 | SUSAN | F | y | y |
| 10030 | HENRY | M | 2 | 3 |
| 10025 | OSCAR | M | 4 1

- ——— -

For 811020:

-

-

| 10010 | MIKE | M | 2 | 3 |
| 10090 | SUSAN | F | y | 3 |
| 10030 | HENRY | M | 2 | 3
[ 10025 | OSCAR | M | y 1
| 10005 | MARY | F | 2 | 3 1
| 10050 | DAVID | M | 1 3 |
| 10080 | ALICE | F | 3 | 2 |

—— ——— - -

Table 3-1: Examples of Time Slices from the TOR EMP

Each of the time slices constructing the cube corresponds to one time
point, and is a valid regular relation. In order to understand the conceptual
"eonstruction" of the cube, one can imagine that for some relational scheme,
data is recorded at every time point (in our example, every day), creating a
separate relation containing this day's data. Then, all these relations are
combined together seguentially. Each of these time slices, being a regular
relation, consists of tuples representing its various objects. "Tuple" in the

cube is the same as "tuple" in a regular relation. It contains values for all
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the attributes included in the cube's scheme for a specific object at a

specific time point. In the regular relational model, a tuple contains the

current values of the particular object. Whenever one of these values changes,
the new value replaces the old one, causing the loss of the information just
replaced. In our external cubic view, a new relation is created for each time
point, containing a tuple for each individual object. This relation "exists"
conceptually even if it is identical to the one that immediately preceeded it.
An object, therefore, is conceptually represented in the cube by a horizontal
slice (horizontal layer), containing a separate tuple for this object's values

at each time point.

The three dimensions of the cube are the following: the objects
dimension, the attributes dimension, and the time dimension. The first two
play in our model the same role as in the regular relational model. The third
dimension, TIME, starts at some time point in the past, at which the data

collection started, and contains all time points from then until now.

As the cube is conceptually constructed of the time slices corresponding
to the different time points on the time axis, it is useful to take a closer
look at these time slices. There are objects (e.g., employee 10090 in Table
3;1) whose data are identical in the two time-slices, and possibly identical
in all time slices corresponding to dates between 800101 and 811020. There
are attributes that by their nature do not change at all over time (e.g.,
EMPNO, NAME and SEX in EMP; DEPTNM in DEPT), while others (e.g., DEPTNO and
JOBCLS in EMP; GRADE in TRNHST) do. Moreover, the number of objects does

change over time, i.e., employees are hired or may quit. Quiting means that
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their records do not "exists" in the database after their quitting dates, even

though their data is never deleted.

A11 these observations raise several problems concerning this external

cubic view:

1. There are attributes that do not change at all over time, and
repeating them may create an enormous amount of redundant stored
data in the cube.

2. Even some time varying attributes (such as DEPTNO in EMP and GRADE
in TRNHST) do not change very frequently, and therefore introduce
further redundancy into the database.

3. There is a problem with representing the fact that some objects do
not exist in various time-points of the database, while they do in
others. This problem is relevant, for example, to employee 10050 in
the TOR EMP.

3.2. The Internal View

As a solution to the problems raised in the previous section, we propose
the definition of an internal view of the TOR, which contains only the minimal
amount of information needed to construct the whole cube, by associating time
with each attribute in the TOR [Clifford 83b] and [Clifford 85al], rather than
with a whole tuple, which has been the common practice so far. This approach
provides more flexibility in designing the internal view, allowing each
attribute to change along time independently of other attributes in the same

TOR.

The components of the internal view are:

1. The internal view distinguishes between changing and non-changing
attributes. Attributes that do not change along time (like NAME,
SEX, SOCIAL-SECURITY-NUMBER) are called constant-attributes (CAs).
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Attributes that change along time are called time-varying attributes
(VAs).

The domain of a CA contains atomic values (names, numbers, etc.)
just like attributes in regular relations.

The domain of a" VA contains functions instead of values. Each
object has its own function from time-points to the actual values

[Klopprogge 81]. There are, of course, many time-points in each of
these functions, with a lot of redundancy in recording all of them.
Therefore, following [Clifford 83b] and [Clifford 85a)], we define a
partial specification for every VA. It contains only those time-
points in its function, at which the value has changed. The partial
specification of a VA contains the minimal amount of data needed to
determine its values at all time-points. As an example, see Table
3-2, presenting the partial specification of the VA DEPTNO for
object 10030 in the TOR EMP.

T

| TIME | DEPTNO |

——————————

| 800101 | 2 |
| 820701 | 3 |
| 830508 | 2 |

- —

Table 3-2: A Typical Partial Specification Describing a VA

A NULL value is used in the partial specification of a VA of a
specific object in some TOR at some time point, wheénever no other
value, taken from this VA's domain, is known to prevail for this
time point. The use of a NULL value may be caused by many reasons,
and the detailed discussion about them is beyond the scope of this
research [Clifford 85al. Their most common use, however, is to
indicate the absence of a value for a VA in an object of some TOR,
at a specific time point. 1Inexistence of an object during a given
period of time is indicated in our model by assigning NULL values to
all its VAs during this period. This is the main use of NULL values
in our model., These NULL values are automatically in effect until
other assignments are made to the object's VAs. Therefore, whenever
a query, refering to time points in this time interval, is executed,
this object shows up in the answer with NULL values assigned to all
its VAs, indicating its non-existence. As one of the basic
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principles underlying the TODB is that data is never deleted or
modified, no previous data of this object is affected by the fact
that, starting at some time point, this object no longer exists in
the TOR (e.g., an employee who quits his job). Included in this
previous data are all its CAs, including its key. They are left

unchanged even during the period in which the object does not exist,
since by their nature they never change.

The use of NULL values assigned to all VAs of an object at a specific
time point as indicator of non-existence affects the definitions of operations
later on. Every temporal operation creates a new TOR, that may have objects
that do not exist at some periods of time, as inherited from the operand(s).
The procedures to execute those operations should contain the steps to
maintain consistency in representing such situations in the resulting TORs.
Such steps would have been needed in any other method used to reflect non-
existence of objects at some time points, since this situation is an integral
part of the TODB{S nature. As we found out, our method is sufficient for
maintaining conéistency in all the operations executed with TORs. However,

other methods can be suggested, and future research should deal with the use

of NULL values in TODBs.

The partial specification of a VA of some object in a TOR contains only
values for time points at which these values have changed. Therefore, an
interpolation function is also needed, to give the full function definition

(Clifford 83b]) and [Clifford 85a]. It is clear that by itself, without an
interpolation function, the partial specification indeed gives only partial
information about the values of the VA. This interpolation function is

associated with each VA in each TOR, and enables us to determine the value of
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this VA at time-points in three distinct periods of time, i.e., (1) before the
first explicitly specified time-point, (2) after the 1last time-point
specified, and (3) between any two time-points within the partial
specification of the VA. For instance, for the VA DEPTNO in the TOR EMP, the

following step function interpolation could be used:

* For a time-point before the first one, the value of the function is
NULL.

* For a time-point after the first one the value is equal to the value
associated with the latest specified entry before that time-point.

Note that the only property of time that is relied upon to provide this

definition is that it is totally ordered (i.e., for any two points t4 and t,

either tq < t, , tp <ty , or ty = t2).

The definition of this function reflects the typical interpolation for
this attribute. However, there may be other interpolation functions according
to the nature of the VA, e.g., for the VA "temperature of a patient" in a
hospital, the value at a time-point between two existing values can be their

average, or another linear combination of them.

The partial specification, defined above, is the collection of all
explicitly recorded values in a VA. It can easily be seen that a partial
specification of a VA, together with its interpolation function, gives

complete information about it, and enables the determination of its values at

all time-points.

The internal view of a TOR is the representation of this TOR by means of
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its CAs and the partial specifications of its VAs, together with their
interpolation functions. Note that the constant attributes in this internal
view contain (like attributes in reguiar relations) atomic values rather than

functions. The internal views of the TORs EMP and DEPT are presented in

Tables 3-3 and 3-4 respectively.

EHP{EMPNO,NAHE,SEX,DEPTNO,JOBCLS)

CAs VAs
| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 10010 | MIKE | M | 800101 3 | 800101 4 |
| l | | 810215 2 | 810201 3 |
I | l | | 821015 2 |
| 1 | | ! |
| 10005 | MARY | F | 810210 2 | 810210 3 |
| | ! | | |
1710050 | DAVID | M | 800601 1 | 800601 3 |
| 1 | | 820508 NULL| 820508 NULL|
I l | | 830415 1 | 830415 2 |
| I | I I |
| 10030 | HENRY | M | 800101 2 | 800101 3 |
| | | | 820701 3 | 820101 2 |
| | | | 830508 2 | 830304 1 |
| l l | I |
| 10080 | ALICE | F | 810101 3 | 810101 2 |
| ! | | ! |
| 10025 | OSCAR | M | 800101 y | 800101 1 |
| ! | | | |
| 10090 | SUSAN | F | 800101 y | 800101 4 |
| | | | | 811015 3 |

—-———.-.--.-.__—_-_---—--n---..._-..----.---.——-—-——-—-—n--—

Table 3-3: The Internal View of the TOR EMP

Tables 3-3 and 3-4 demonstrate the use of NULL values. Interpreting Table

3-3, using a step interpolation function for both DEPTNO and JOBCLS, leads to
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DEPT(DEPTNQ,DEPTNM, DEPMGR)

- -

| DEPTNO | DEPTNM | DEPMGR |

SALES 800601 10050
820508 NULL

830415 10050

| | [ I
[ | | |
l I | |
| | | |
| 2 | PRODUCTION | 800101 10030 |
| | | 820701 10005 |
| I | |
I 3 | ACCOUNTING | 800101 10010 |
I I | 810215 10080 |
| | | _ [
| 4 | MANAGEMENT | 800101 10025 |

- -

Table 3-4: The Internal View of the TOR DEPT
the observation that all the VAs of object (employee) 10050 during the period
820508 - 830414 are NULL, indicating that this employee actually did not exist
in the organizatién during that period. The "story" behind this information
is that this employee had actually quit his job in the organization at 820508,

and then returned back at 830415.

The rather intricate internal view is hidden from the user whose view 1is
the whole cube, containing a full table of values for every point in time.
However, in the first step of creating a TOR, the DBA has to classify each
attribute in it as one of the following categories: a key attribute, a non-key
constant attribute, or a VA, and specify the interpolation function for each
of its VAs. This information is needed in building the internal view which is
the basis for creating the physically implemented TODB, represented by regular

relations.
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The property of being a CA or a VA is associated with an attribute within
a specific TOR. For example, the attribute DEPTNO in the TOR EMP is a VA,

while it is the key of the TOR DEPT.

Assuming that a cube summarizes the information contained in its entire
set of time slices, we can define the relationships between the two through
the steps necessary to build the cube using this sequence of time slices,

namely:

1. Scan all the relations, and prepare a list of all different objects
appearing in at least one of them.

2. Record the CAs of these objects in the cube at all time points.
These values for a specific object can be copied from any relation
containing this object, since they never change, and therefore are
identical in all the relations containing it.

3. Scan the relations again, and copy the VAs of each object in each
relation to the appropriate tuple in the cube (namely, to the tuple
describing this object at the time point corresponding to this
relation).

4. The previous step leaves possible "holes" for the VAs of the various
objects at those time points in which these objects do not exist,
and therefore these VAs could not possibly be copied from the
relations corresponding to those time points. All these "holes"
should be filled with NULL values that indicate the non-existence of
an object at a specific time point.

This procedure clarifies the relationship between the cube and the

various relations corresponding to all its time points.

After the conceptual creation of the cube, one can take a time slice from
it at any time point, and compare it to the relation originally containing the

data at this time point. In so doing, one will probably discover that this
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time slice may not be absolutely identical to this relation. The relation is
a subset of the time slice. Tﬁe time slice may also contain tuples in whith
all the VAs are NULL. These tuples represent objects that do not exist at
this time point. Therefore, they are not included at all in the original
relation, but do belong to the cube. Nevertheless, the time slice is
informationally equivalent to the original relation. This discussion suggests

the following definition for the equivalence of two time slices:

Two time slices are equivalent if they contain the same tuples, except

some possible tuples in either of them, containing NULL values for zll their

VAs. These tuples are practically ignorable, and therefore the two time slices
are, in fact, equivalent. It should be noted, however, that these tuples add

some information about the cube, namely, they indicate what objects exist in

the cube at other time points.

Following the definition of equivalence between two time slices, this is

the definition of equivalent cubes:

Two cubes, representing two TORs, are egquivalent if all their time slices

are equivalent.

These definitions are later used in this dissertation to demonstrate the
correctness of TDMS's operations. They are based on the conceptual
construction of the cube. However, one should not confuse between this

conceptual construction of the cube with its actual representation in memory.
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3.3. The TODB for the Benchmark Database

Recognizing the distinction between constant attributes (CAs), and time-
varying attributes (VAs), we can now present our benchmark TODB. it is a
temporal extension to the regular relational database presented in Chapter 2.

This TODB is included in Figure 3-2.

# EMP (CAs: EMPNO,NAME,SEX ; VAs: DEPTNO,JOBCLS)
# DEPT (CAs: DEPTNO,DEPTNM ; VA: DEPMGR)

SAL (CA: EMPNO ; VA: SALARY)

e

"

COURSE (CAs: CRSNO,CNAME ; VAs: PRICE,DURATN)
* TRNHST (CAs: EMPNO,CRSNO ; VA: GRADE)
% DRESS (CA: SEX ; VA: ROOM)

# UNIONS (CAs: UNION,SEX ; VA: OFFICE)

% PHONES (CAs: PHONE,DEPTNO ; VA: LINES)

* PROJECTS (CAs: PROJNO,PROJNM ; VAs: COST,DEPTNO)

For simplicity, we assume that the interpolation functions of each
VA in each TOR is a step-function.

Figure 3-2: The Benchmark TODB
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3.4. The Underlying Storage Structures

The internal views do not address directly the data structures necessary
to actually store the information. The actual representation of a TOR by a
sequence of regulartrelations is explained in this section. Using regular
relations as primitive objects allow us to bridge between TDMS and existing
relational DBMSs that could be used to manipulate these regular relations as
needed. As stated earlier, such a DBMS, INGRES, is used to implement the TDMS
prototype as a part of this dissertation, saving, thereby, the effort of

" building the models to mazintain and manipulate these regular relations.

The following paragraphs describe the relations that represent a TOR.
One relation in this sequence contains all CAs in the TOR. The key of this
relation is the key of the original TOR. This relation for the TOR EMP is

included in Table 3-5.

EMP 1 (EMPNO,NAME, SEX)

-

| EMPNO | NAME | SEX |

i —

| 10010 | MIKE | M |
| 10005 | MARY | F |
| 10050 | DAVID | M |
| 10030 | HENRY | M |
| 10080 | ALICE | F |
| 10025 | QSCAR | M |
| 10090 | SUSAN | F |

Table 3-5: The Relation Representing the CAs in EMP

One additional relation is created for each VA in the TOR. The
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attributes in this relation consist of all the attributes in the key of the
TOR, the attribute TIME, and finally the VA itself. The values stored for the
VA are precisely its partial specification. The key of this relation contains
all the attributes:in the key of the TOR, together with the attribute TIME.
The regular relations representing the VAs in the TOR EMP in our TODB are

included in Table 3-6.

In addition to these relations that represent the actual data, we need
another relation to hold certain meta-data, namely information needed to
associate a cube (the external view) with the entire set of relations that
store its content. This relation of meta-data describes the scheme of the
TOR, as well as the typeé of its attributes. Specifically, this relation has
the name of the TOR, and contains the attributes: ATTRIBUTE, PTYPE and LTYPE.
All attributes belonging to the TOR are the objects of this relation. PTYPE
contains their ﬁhysical types (INTEGER; REAL, or CHARACTER), and LTYPE
contains their logical types as follows: 1 for key attribute, 2 for constant
non-key attribute, and 3 for time-varying attribute. Note that the system
could be extended later to handle additional types of attributes, to indicate
non-interpolatable time-varying attributes, to specify the interpolation
function to be used, etc. The relation describing the scheme of the TOR EMP

is included in Table 3-T.

In general, the meta-data relation of the TOR REL is REL, the relation
describing the CAs of this TOR is REL4, and, assuming that this TOR has n VAs,
their corresponding relations are: REL,, REL3,...,REln+1. The names of the

relations, associated with the various VAs, are determined by the order in
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EMP2(EMPNO, TIME,DEPTNO)

———

- -

| 10010 | 800101 | 3 |
| 10010 | 810215 | 2 |
| 10005 | 800101 | 2 |
| 10050 | 800601 | 1|
| 10050 | 820508 | NULL |
| 10050 | 830415 | 1
| 10030 | 800101 | 2 |
| 10030 | 820701 | 3 |
| 10030 | 830508 | 2 |
| 10080 | 810101 | 3 .
| 10025 | 800101 | y |
| 10090 | 800101 | y |

—— -

-

——————— - -

| 10010 | 800101 | 4 I
| 10010 | 810201 | 3 |
| 10010 | 821015 | 2 l
| 10005 | 810210 | 3 |
| 10050 | 800601 | 3 1
| 10050 | 820508 | NULL |
| 10050 | 830415 | 2 |
| 10030 | 800101 | 3 i
| 10030 | 820101 | 2 |
| 10030 | 830304 | 1 |
| 10080 | 810101 | 2 |
| 10025 | 800101 | 1 |
| 10090 | 800101 | 4 |
| 10090 | 811015 | 3 |

Table 3-6: The Relations Representing the VAs in EMP
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EMP (ATTRIBUTE, PTYPE,LTYPE)

-

-

| EMPNO | T4 | 1 |
|  NAME [ cao | 2 |
| SEX | ea 4§ 2 |1
| DEPTNO | 12 | 3 |
j JoBcLs | 12 | 3 |

e e

Table 3-7: The Relation Describing the Scheme of EMP
which these VAs appear in the descriptive relation. The first VA (appearing
after the last CA) is represented by REL,, the next VA is represented by the
relation HELB, and so on. Using this convention, we name, for exanmple, the
regular relations underlying the TOR EMP: EMP1, EMP2 and EMP3, and the meta-

data relation EMP.

The internal views of all the TORs in our TODB, as well as their
representing relations, are included in Appendix A. The time slices presented

so far in this dissertation for some TORs, are based on this information.

The sequence of relations, EMP, EMP1, EMP2 and EMP3, as presented zbove,
together with the interpolation functions for the wvarious VAs, provide the
full information needed to construct the whole cube. All the interpolation
functions for the VAs included in our benchmark database are step functions,
identical to the one used earlier in this chapter as an example. Let us
present its mathematical definition: if T, is the first time-point for which

there is a value for a specific VA Ai in some TOR, and T, is the last time-
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point having the same property, than the value of A; in this TOR at time-point

-

t, denoted by A;(t), is:

2. 44(Tp), if t > T,

3. Ai(T), where T 1is the largest time included in the partial
specification such that T < t, for any t such that Ty <t < T,

Basically, the interpolation functions should be supplied by the DBA, and
there are many ways it can be done. The TDMS calls these functions whenever
needed, assuming they have been supplied By the user as a part of the LINK

step in creating the executable file for the TDMS.

One final comment should be made concerning the NULL values.
Conceptually, NULL values are included in the cube for all VAs of a specific
object at all time points before the first one at which there are explicitly
recorded non-NULL values. In the representing relation, however, there is no
need to record any NULL value at any fime point before the first one at which
some value is recorded, since the values at all these time points are
interpreted as NULL by the interpolation function. NULL values should be
recorded, whenever appropriate, only at time points after the first one for
which a non-NULL value has been recorded (e.g., for the VAs of an employee who

quits his job).

One can identify an immediate advantage of data structures based on the
temporal differentiation of attributes, namely the resulting data structures

contain a separate relation to represent each VA in a TOR (and one relation
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representing all its CAs). In terms of storage space, it appears to be
generally more efficient than the methods used in other research efforts in
designing TDMSs, like [Snodgrass 84] and [Lum 84]. In those works, the time
stamps are associaﬁéd with the whole tuple. Therefore, if the value of one
attribute in some tuple changes, the entire tuple has to be re-recorded with
the new time stamp, even though only one value has changed. It is a
reasonable assumption that the VAs in a TOR do not necessarily change

simultaneously, and therefore our method would require less memory space.

3.5. Creating the TODB

Knowing the data structures representing a TOR in memory, we can now
describe the ways to define TORs, load them with data and update them. This
section covers these issues, including the procedures needed to maintain the

TODB's consistency.

3.5.1. Defining a TOR scheme

In creating TORs, our TDMS has to map each TOR to a sequence of regular
relations. . The process entails the specification of:
* The TOR name
¥ The CAs
* The VAs
* The physical type (integer, real or character) of each CA and each

VA.

The TDMS, then, uses this information to create all relations needed to

represent this TOR. In addition, the system maintains a general table,
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describing the overall TODB schenme.

jnformation is included in Table 3-8.

For our
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benchmark database, this

MAINTB(TORNAM,CRDATE,TYPE)

-

-

T —

800101
800101
800101
800101
800101
800811
801023
810205

LR )

Table 3-8: The MAINTR Relation of the TODB

This table, called MAINTB, contains the name of each TOR,

its creation

date and its type. The type is 0 for TORs created originally by the user

(base TORs), and 1 for TORs created by the system in response to a query

(derived TORs). This distinction serves to allow the user to load data only

into TORs with type 0. MAINTB is the first item of information the system

uses in order to perform any operation on the TODB.
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3.5.2. Appending Data to a TOR

After its definition, the loading of the TODB with data is a fairly
straightforward task. According to the concept of TODBs, no modification of

already stored data is allowed, but rather data is constantly being appended.

In appending data, the necessary operations to maintain the database

consistency are carried out. Basically, these operations are as follows:

# In adding a new object to a TOR, the TDMS verifies that such an
object does not yet exist. To do this, only the relation containing
the CAs of this TOR has to be accessed and checked; no other
relations in this TOR need be examined. Whenever an object is added
to a TOR, values (other than NULL) should be assigned to all its
CAs. From this point on, no changes can be made to the CAs of this
object.

*¥ After adding a new object, there is no need to assign any values to
any of its VAs. They are automatically interpreted as NULL for all
time points, as long as values are not assigned to them. This
means, according to our design, that the object does not exist in
the database (yet), but once a non-NULL value is assigned to one of
its VAs, the object starts to exist.

* In order to append a value to a VA of an existing object, the key is
used to identify the object. First, the TDMS verifies that such an
object really exists in the TODB. As before, only the relation
containing the CAs of this TOR is involved in this verification. If
the object does not exist, any attempt to append data to any of its
VAs is rejected. If the object exists, then a <time-point, value>
pair should be supplied in appending a value to any of its VAs. 1In
executing the append operation, the TDMS maintains the finality
property [Ariav 83c], by verifying that this object does not yet
have an explicit value (a tuple) for this VA, at this time point.
Only the relation containing this VA is involved in this operation.
Recall that the key of this relation is the key of the TOR and the
attribute TIME; since the user has supplied both, the system can
perform this check. If such a tuple is found, the transaction is
rejected, Otherwise, a new tuple, containing these values of the key
attributes, the time value and the value of the VA, is appended to
the relation.
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Under the temporal differentiation of attributes, verifying the existence

of an object requires accessing only the CAs relation, and the maintenance of
the finality property requires accessing only the relation containing the data
of the VA involved. Iherefore, consistency is maintained efficiently, and the
involvement of relatigns in the integrity checks is limited to those directly

affected by the update.

The activities detailed above constitute the entire mechanism for
consistency maintenance of the original TORs. However the database is expected
to contain also views created by temporal relational algebra operation,
containing information derived from base TORs. We assume that only base TORs
can be loaded with data, avoiding thereby the complicated issues of updating

derived views.

3.6. Summary

This chapter presented the data structures designed to efficiently store
the information needed to construct the whole cube. The information stored is
indeed minimal, since it contains only the constant values of the CAs, and the
values of the VAs for the time points.;p which changes have téken place.
Furthermore dropping of any item of data from the amount stored, clearly leads
to loss of information. In using regular relations, we take full advantage of
the temporal differentiation of attributes, by allocating a separate relation
to each of the VAs, and another relation to all the CAs (whose temporal

variation is, of course, the same).

The method of using regular relations does not require any additional
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indexing schemes to capture the full meaning of the data (e.g., [Lum 84]), and
allows for a relatively simple procedure to load data into the various
relations representing the TOR. The use of regular relations carries an
additional significanthadvantage. It releases us from building the tools to
manipulate the basic data structures, since the regular relations can be

handled by an existing DBMS,
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Chapter 4

Introduction to the Temporal Relational Algebra Operations

4.1. Introduction

In the previous chapter, we described the data structures through which
the cubic conceptual view of. a TOR is represented. In the next three
chapters, we deal with the definitions and the design of the temporal

relational algebra operations which manipulate these data structures.

In dealing with the temporal operations, we define correspondence between
the user's view_o} these operations and their implementation as executed by
the TDMS. Conceptually, new TORs are created by these operations, but at the
implementation level, these new TORs are represented by regular relations that

are created by operations on similar relations representing the original

operands.

4.2, Conceptual Definition of the Temporal Operations

Chapters 5, 6 and 7 cover the temporal relational algebra operations in
full detail. Chapter 5 deals with the design of the temporal SELECT operation
which is a natural extension to the regular SELECT operation. However, due to
the temporal nature of this operation, there are actually two variations of

it, the SELECT SOMEWHEN operation and the SELECT EVERYWHEN operation. In
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addition, this chapter defines a temporally-oriented operation, the time
selection. Chapter 6 analyzes the temporal PROJECT operation. In addition, it
covers another temporally-oriented operation, the time projection, that is
applicable in PROJECT operations that do not preserve the entire key. Chaﬁﬁér
7 analyzes the tempo;;1 JOIN operation. This current chapter outlines the

general framework for designing and analyzing these operations.

The temporal SELECT, PROJECT and JOIN operations are defined as direct
extensions to the corresponding regular relational operations. Being temporal
operations, their semantic base is the external cubic view, on which they are
defined. However, in their specific definitions, as well as in the analysis of
their results, we use the definition of the cube as consisting of all its time
slices, to make the extension from a regular operation to the corresponding
temporal operation. As discussed in Chapter 3, the cube consists of a
sequence of time siices, each of which corresponds to a particular time point,
and ;s a valid regular relation containing the dapa of this specific time
point. As such, this time slice may participate in any regular relational
algebra operation, which is well defined in the regular relational model

[Ullman 80], [Maier 82]. This observation is the basis of our definition of

a correctness criterion for temporal operations, as follows:

Given a regular relational algebra operation S (either a SELECT or a
PROJECT), a temporal operation S' is its natural extension if, when
operating on a TOR (cube) T, it produces a new TOR (cube) N whose
various time slices are the results of the operation S, operating on
the various time slices of this original TOR T.

Formally, if the original TOR T is the union of the time slices
(relations): Ty, Tpy ..., Ty, ..., T, and that the new TOR is the

union of the time slices: N4, Np, ..., Ny, ..., Ny, then, the temporal
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¥ operation S', such that N = S'(T) (i.e., operation S' applied to T) is

a natural extension of the regular operation S, if for every i
(between 1 and n): N; = S(T;)

This definition implies that a temporal operation should be defined in
correspondence with éﬁe way the cube is conceptually constructed from its
various time slices. More specifically, conceptually the operation is executed
through a loop on the time slices of the operand. 1In each step of this loop,

| the corresponding regular operation is executed on one time slice of the
operand, producing the corresponding time slice of the resulting cube. The

union of these new time slices constitutes the new cube.

This definition applies to the temporal SELECT and PROJECT operations.
For the temporal JOIN operation, being a binary operation, the definition is

slightly modified, as follows:

Assume that the TOR (cube) R is the union of the time slices: R,
Ro, ..., Ry, and that the TOR (cube) S is the union of the time
slices: 84, Sp, ..., S,. Then, a TOR T, the union of the time slices:
T4, Toy eeey Tny 1is the result of their temporal JOIN' operation,
T=JOIN'[R,S], iff for every i (between 1 and n): T; = JOIN[R4,S;]
(i.e., JOIN' extends JOIN).

Again, the resulting TOR is conceptuélly constructed by looping through
all the time slices of the operands, corresponding to the same time points. In
each step of the loop, a regular JOIN is executed with these two time slices,
resulting in a new relation. The new TOR is the union of all these new

relations.

One comment should be made about the use of the same n as the number of

time slices included in the two operands. It does not imply anything about
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the earliest time point or the latest time point at which information is
recorded in the two operands. Any cube can conceptually be augmented both
backward and forward in time. Time slices can conceptually be added before
the earliest point at which information is explicitly recorded, by copying the
CAs of all thé objects in the cube, and inserting NULL values for all their
VAs. Similarly, time slices can be appended after the last time point at which
information is explicitly recorded, by simply copying the entire previous time
slice (that is valid anyway, as long as no other information is recorded after
this last time point). This observation implies that the two operands can be

brought to consist of the same number of time slices.

The motivation to define a temporal operation as a repetitive execution
of the corresponding regular operation on the various fime slices of the
operand(s), comes from the view of a TODB as a union of all the static
databases that could have been created for the same relational schemes at all
time points, starting at some time point ty. In the TODB, we have all these
possible databases included in one historical database. A typical TODB
contains TORs originally created by the user (base TORs), and TORs resulting
from temporal operation (views). Conceptually, a user should be able to use
the TODB in order to create a static rglational database, corresponding to a
particular time point. Such a database would contain relations derived from
base TORs, and relations derived from views. Each relation derived from a view
should be the result of the regular operation on the relation(s) derived from
the base TOR(s), corresponding to the temporal operation that created this

view in the TODB. Such a situation maintains consistency in the conceptual
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view of the TODB, as a union of static databases, with respect to both base

TORs and views.

An alternative criterion for the correctness of a temporal operation
might state that such.an operation is correct if whenever it is applied to a
cube that happens to be a single time slice (that is practically a regular
relation), it produces a new time slice identical to the relation that would
. have been produced by the corresponding regular operation on the original time

slice. The formal definition of this criterion is:

The temporal operation S' (an extension of the regular operation
S) satisfies this criterion if:

S'(R) = S(X)
where R is a cube containing only one time slice, and X is

its snapshot representation.1

.

We consider this criterion to be weaker than the previous one, since it
does not.address the entire cube. The first criterion is therefore stronger,
since it treats the most general case (a general cube; not a single time
slice). A temporal operation that satisfies the first correctness criterion,

automatically satisfies the second, but not vice versa.

Ta snapshot representation of a time slice is the presentation of its
content in the format of a regular relation
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4.3. The Framework of Analyzing a Temporal Operation

In presenting the temporal relational algebra operations included in our

model, we use a syntax that has not been used in any previous research. It is§
however, somewhat similar to the retrieval language TOSQL [Ariav 85], a
temporal extension ér a subset of SQL [Astrahan 75], containing the necessary
extensions for the specifications of the query's time aspects. The definition
of the temporal operétions provides the basis for understanding their

semantics, but does not outline the way to implement them. The definition of

a temporal operation implies the execution of the same operation on the
various time slices of the operand(s). Our implementation, however, uses the
data structures representing the cube(s), and manipulates them to produce
another sequence of the same data structures, representing the new cube. The
procedure according to which the new data structures are created does not
concern the user, Fho deals with the external cubic view of the operands, and

with the same view of the resulting TOR.

Qur correctness criteria serve as the basis for examining the correctness
of a temporal operation definition. The strong correctness criterion implies
that every time slice of the resultant TOR, at an arbitrary time point, should
be equivalent to the result of the regular relational operation executed on
the corresponding time slice(s) of the operand(s). The weak correctness

:- criterion implies that a temporal operation, executed on a TOR (or TORs) that
-. happens to contain only a single time slice, will produce an equivalent result
to the one produced by the corresponding regular operation. The two

correctness criteria are independent of the data structures used to represent
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the TORs in the system, and of the way they are manipulated in the procedure

that creates the new TOR.

It should be noted here, that the two time slices (the one taken from the
resulting TOR, and the other produced by the regular operation on the
corresponding time slice(s) of the operand(s), should be eguivalent to satisfy
either correctness criterion, but not necessarily identical. The definition
presented in Chapter 3, implies that tuples in either time slices, containing

NULL values for all their VAs, should be ignored, and if the remaining tuples

"are respectively identical, then the two time slices (relations) are

equivalent. This definition is used to demonstrate that the operation

satisfies a correctness criterion.

In the detailed anzlysis of the temporal operations, included in Chapters
5, 6 and 7, an attempt is made for each operation to apply the strong
correctness criterion. The weak criterion is used only when the strong one
fails. There are some operations that do not satisfy the strong criterion,
but they are still meaningful and produce valuable information. For such
operations, attemﬁtg are made to demonstrate that they satisfy at least the
weak criterion. The next three chapters deal with the temporal relational
algebra operations. All the operations are presented and analyzed using
examples taken from our benchmark database. Their semantics are explained
both for the specific examples and in general terms. Then, an algorithm is
presented for each example, detailing the manipulation of the relations that
represent the operand(s) which create the new relations representing the

resulting TOR. These procedures are presented both in general terms, and
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specifically for each example. Finally, each discussion ends with a
verification step, examining and demonstrating the operation's correctness.
The examples in the following three chapters are all based on our benchmark

TODB, which is presented in Appendix A.

4.4, Summary

This chapter outlined the principles and the framework for the
discussions about the temporal relational algebra operations. It defined the
notion of "natural extensions" to the regular operations, and provided ways to

demonstrate the correctness of operations against these definitions.
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Chapter 5

The Temporal SELECT Operation

This chapter is the first of three in which we discuss the temporal
operations. It covers the time-slice operation and its generalization
(slicing the information of more than one time point) and the temporal SELECT
operation. The first operation is, in fact, a special case of the second, and
both are not extensions to regular relational operations, but rather new

temporal operations unigque to TODBs.

5.1. The Time-Slice Operation

The time-slice operation creates a new TOR, containing the data of
exactly one time point (in our set of examples: one day), from the complete
historical data stored in a specific TOR. It is explained using QUERY 5.1.

The syntax for such a query is:

UERY 5.1

CREATE TIME-SLICE
FROM EMP

AT 811020

INTO EMPQA

The definition of the time slice operation at the external level is as

follows:



Given a TOR T, where T is the union of n flat relations Rj: -

T = UNIONT_4(R;),

2 Rg for 1 <t <nm
then, the time slice from T at t =
R, for t>n

QUERY 5.1 creates a new TOR containing only the data of 811020. In the
user's external view, the result is a new cube containing the data of a single
day. The relations representing the resulting TOR are included in Table 5-1.

These new relations are produced by manipulating the relations representing

the original TOR EMP, as included in Appendix A.

EMPQA (ATTRIBUTE,PTYPE,LTYPE)

T

- -

| EMPNO [ 14 | 1 |
| NAME ] czo | 2 |
| SEX I ¢¢ | 2 |
| DEPTNO | 12 | 3 |
| JOBCLS [ 12 | 3 |

———

| EMPNO | NAME | SEX |
| 10010 | MIKE | M |
| 10005 | MARY | F |
| 10050 | DAVID | M |
| 10030 | HENRY | M |
| 10080 | ALICE | F |
| 10025 | OSCAR | M |
| 10090 | SUSAN | F |

——
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EMPQA2 (EMPNO, TIME, DEPTNO)

———

- —

| 10010 | 811020 | 2 |
| 10030 | 811020 | 2 |
| 10090 | 811020 | 4 |
| 10025 | 811020 | 4 |
| 10005 | 811020 | 2 |
| 10050 | 811020 | 1 |
| 10080 | 811020 | 3 l

- ——— -

-

| EMPNO | TIME | JOBCLS |

- ————

[ 10010 | 811020 | 3 |
| 10030 | 811020 | 3 l
| 10090 | 811020 | 3 i
| 10025 | 811020 | 1 |
| 10005 | 811020 | 3 l
| 10050 | 811020 | 3 !
| 10080 | 811020 | 2 I

- - —

Table 5-1: The Relations Representing the Time Slice from EMP at 811020
The resulting TOR contains the data of a single day. It is, however, a

special case of a cube and a perfectly valid TOR.

In order to present the time-slice algorithm, let us assume that we are
creating a time-slice RELQA from the TOR REL at a time point t. If REL has n
VAs, then its descriptive relation ié REL, its CAs relation is REL4, and the
relations representing its VAs are: REL,, REL3, «esy RELp 1- Consequently,
the new TOR RELQA will be represented by the relations: RELQA, RELQA4, RELQA,,
okiny RELQAn+1. The construction of the new relations is achieved through the

following Algorithm 5.1:
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1. Copy the relation REL to RELQA (EMP to EMPQA in our case), since the
two TORs have the same definition.

2. RELq and RELQA; (EMP1 and EMPQA1 in our case) represent the CAs in &
the two TORs respectively. Therefore, they are identical, and REL, '
should simply be copied to RELQA{. While copying it, sort it with
its key, for the sake of efficiency in executing the following
steps. : ;

3. For each of the relations representing the VAs, perform the
following procedure (explained for one of them, say RELj):

a. Sort the relation RELj with its natural key (the key of the TOR
itself and TIME).

b. For each object included in RELQA,4, if there is a value in REL;:
for TIME=t (TIME=811020 in our case), then copy it to RELQA;.
Otherwise, determine the value of this VA in this object at
TIME=t by interpolation, using the available values in REL: and
the interpolation function, and record this value in LQA .
together with this object's key and with the value TIME=t.
(Note that this procedure covers also the case in which the
time point t is before the first time point appearing in REL;
for a specific object, or after the last time point for whicg
this object has an explicit value in this relation, because of
our definition of the interpolation function.) Generally, in
any case of creating a new TOR, the association of
interpolation functions for its VAs is inherited from the
original operand(s).

Table 5-2 presents the "snapshot presentation" of this time slice. 1In
this particular case, Table 5-2 is not one of the many snapshots constructing

the whole cube; it is the whole cube. QUERY 5.1 takes only one time slice

from the original TOR. Therefore, in this specific case the resulting TOR is

actually reduced to a regular (non-temporal) relation.

The new TOR EMPQA is a subset of the TOR EMP, containing information at a

single time point. However, if one tries to use this TOR in order to get
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- — - -

| The Key | The Chs | The VAs |
| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 100101 MIKE | M | 2 I3 1
| 10005 | MARY | F | 2 | 3 I
| 10050 | DAVID | M | 1 | 3 |
| 10030 | HENRY | M | 2 | 3 |
| 10080 | ALICE | F | 3 | 2 l
| 10025 | OSCAR | M | y | 1 |
| 10090 | SUSAN | F | y | 3 i

T ————— ] — - -

Table 5-2: A snapshot of the Result of QUERY 5.1 at 811020
information about other time-points, the results are semantically wrong, and
obviously differ from those obtzined using the original TOR EMP. The
responsibility to avoid such a misuse of a TOR is necessarily the user's. He
has to recognize that Fhe only proper use of such a TOR is for the period for
vhich it was created, for instance: the single day 811020 in the current
example. This potential misinterpretation (i.e., making an inference about an
object's status at 811022) is an error which is not unique for TDMSs, and

could be committed in any information system.

The potential misuse of a derived TOR, with respect to the temporal
dimension, could be controlled by the system, by associating two time values
With each attribute in each TOR, indicating the earliest and the latest time-
points for which it is valid. Such a mechanism should be studied further

before adopting it.
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5.2. The General Time-Selection

The general time-selection creates a new TOR containing the information
not only of one time point, but of a whole time interval. It is actually a
generalization of thevprevious operation. Conceptually, the result of a tiﬁe
selection operation éﬁnsists of all the time slices corresponding to the
various time points included in the period for which it is derivéd.
Therefore, this new TOR is a cube that is "closed" by the lower limit and by

the upper limit of the time-interval for which it is created.

The definition of the time selection operation at the external cubic

level is as follows:

Given a TOR T, where T is the union of n flat relations:
T = UNION]_,(R;),
where R; is the time slice of time point i.

then, the time selection of a TOR T during the interval [k,l], is
defined as follows:

TIME-SELECTION(T)[k,1] = UNION].,(R;)

In order to define this operation in terms of the internal view, let us
use the following definition of the internal view, as a union of its various

objects:

Let OB; be the representation of the object i in terms of its CAs
and the partial specifications (including the interpolation functions)
of its VAs (i.e., it contains a single value for each of this object's
CAs and a function from time points to values for each of its VAs).
Then, the internal view of a TOR that contains n objects is:
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V = UNIONJ_,(0B;)

then, the definition of the time selection operation in terms of the
internal view is:

TIME SELECTION(V)[k,1] = UNIONY.,(0B;[k,1])

where OBi[k,ll is the data of the object i, that corresponds to the
interval [k,1].

Let us present the creation of the general time-selection, through QUERY
5.2. This query conceptually selects out from the TOR EMP all its time slices
during the period 830101 - 831231, and organizes these time slices in the new

cube EMPQB.

QUERY 5.2

CREATE TIME SELECTION
FROM EMP

DURING 830101 - 831231
INTO EMPQB

The implementation of the time selection operation, in terms of the
representing relations, is presented for a general TOR REL, represented by the
relations REL, REL4, REL,, REL3, «esy RELn,q. The time selection operation
creates the new TOR RELQB, containing the time slices between the time points
tq and t>. This new TOR is represented by the relations: RELQB, RELQB,,
HELQB2, ...y RELQB,,4. The procedure to create these new relations is an
extensioﬁ of the algorithm described for QUERY 5.1, and is included in the

following Algorithm 5.2:
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1. Copy the relation REL to the new relation RELQB, since the two TORs
have the same definition.

2. Copy the relation REL; representing the CAs in the TOR REL to the
relation RELQB4 representing the CAs in RELQB, since the CAs are not
affected by the time selection. Also, sort this relation for the

. sake of efficiency in executing the following steps.

3. For each of the relations representing the VAs, execute the
following steps (described for one of them, say RELj):

’ a. Copy all tuples in RELJ with tq < TIME < t, to the relation
RELQBj.

b. For each object that does not have a value in REL; for TIME=t,,
create a value in RELQB: for this time point by 1interpolation,
using the latest value recorded for this object in REL: before
ty, and the earliest value recorded in it after t,. The
interpolation will, of course, properly handle the cases in
which one of these values, (possibly both) does not exist.

c. For time points after the upper limit of the time interval for
which it has been created, insert NULL values in RELQB: for all
objects at TIME=t,+1. This step "closes" the new cube at the
upper limit of its time interval. This step serves to prevent
inferences about a time point outside the range [t,,t-].

Step 3, in this algorithm enables the correct derivation of all the VAs'
values for all the objects of the TOR at any time point between t, and t,.
[ Step 3, is aimed to produce a result in which all the values of all the VAs
for all the objects will be NULL, in any use of the resulting TOR at a time
point outside its "legal" time-interval. These results should alert the user

to recognize this "misuse" of the TOR. The same solution could have been

i

adopted for the time slice operation, to solve the same problem. Therefore,
{ let us assume that even for a time slice, which is a special case of the
general time selection, applied to a single day, Algorithm 5.1 is replaced by

Algorithm 5.2, that contains this "closing" step.
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The relations representing EMPQB are included in Table 5-3.

EMPQB(ATTRIBUTE,PTYPE,LTYPE)

-

- —

| EMPNO | 14 .
| NAME fcao | 2 |
| SEX | C1 I 2 |
| DEPTNO | 12 I 3 |
| JOBCLS |12 | 3 |

————

-

| 10010 | MIKE | M |
| 10005 | MARY | F |
| 10050 | DAVID | M |
| 10030 | HENRY | M |
| 10080 | ALICE | F |
| 10025 | OSCAR | M |
| 10090 | SUSAN | F |

——— -
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EMPQB2(EMPNO, TIME,DEPTNO)

| EMPNO | TIME | DEPTNO | -
| 10010 | 830101 | 2 |
| 10010 | 840101 | NULL |
| 10005 | 830101 | 2 |
| 10005 | 840101 | NULL |
| 10050 | 830101 | NULL |
| 10050 | 830415 | 1 |
| 10050 | 840101 | NULL |
| 10030 | 830101 | 3 I
| 10030 | 830508 | 2 I
| 10030 | 840101 | NULL |
| 10080 | 830101 | 3 |
| 10080 | 840101 | NULL |
| 10025 | 830101 | 4 I
| 10025 | 840101 | NULL |
| 10090 | 830101 | 4 I
| 10090 | 840101 | NULL |

- - — - - -

———— -

-

| 10010 | 830101 | 2 I
| 10010 | 840101 | NULL |
| 10005 | 830101 | 3 I
| 10005 | 840101 | NULL |
| 10050 | 830101 | NULL |
| 10050 | 830415 | 2 |
| 10050 | 840101 | NULL |
| 10030 | 830101 | 2 |
| 10030 | 830304 | 1 I
| 10030 | 840101 | NULL |
| 10080 | 830101 | 2 |
| 10080 | 840101 | NULL |
| 10025 | 830101 | 1 I
| 10025 | 840101 | NULL |
| 10090 | 830101 | 3 |
| 10090 | 840101 | NULL |

- -

Table 5-3: The Relations Representing the Result of QUERY 5.2
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Notes:

1. Some values of DEPTNO and JOBCLS for TIME=830101 in EMP2 and in EMP3
are missing. Therefore, for all objects that do not have a value
either in EMP2 or in EMP3 for 830101, we infer the "missing" values
by interpolation, and record them in EMPQB2 and EMPQB3 respectively.

2. NULL values are inserted in both EMPQB2 and EMPQB3 for all objects
at 840101. This step "closes" the cube for inquiries of the new TOR
for a time point after 831231. .

The operations discussed so far in this chapter highlight one of the
advantages of the temporal differentiation of attributes, namely that it
suggests a way to decompose temporal operations into a sequence of "localized"

operations on regular relations.

5.3. The SELECT SOMEWHEN Operation

The temporal extension of The relational SELECT operation presents
conceptual problems with respect to their meaning. Basically, the SELECT
operation, as noted in Chapter 4 in [Ariav 83a] and in [Clifford 85a], is
divided into two categories: SELECT WHERE <selection-expression> SOMEWHEN, and
SELECT WHERE <selection-expression> EVERYWHEN. The difference between these
two operations is that the SELECT SOMEWHEN should select all objects with
tuples that meet the selection criterion, without considering other tuples of
the same objects. The SELECT EVERYWHEN operation is concerned with the entire
history of an object, and selects only those objects whose all tuples satisfy
the selection critefion, without exception. QUERY 5.3 demonstrates the SELECT

SOMEWHEN operation.
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QUERY 5.3

SELECT FROM EMP
WHERE DEPTNO = 2 SOMEWHEN
INTO EMPQC

SELECT SOMEWHEN cannot be resolved on a tuple basis, but rather on an

object-level, namely, that all the information of the relevant objects is

recorded in the mnew TOR. This approach puts a slightly different

interpretation on the SELECT SOMEWHEN operation, compared to the regular
SELECT, as it introduces to the resulting TOR tuples that can be considered as

irrelevant, since they do not satisfy the predicate.

[Clifford 85b]) points out, however, that this is, in fact, the correct
interpretation of the .temporal SELECT. He argues that each of the temporal
SELECT, PROJECT and time selection operations should exhibit "dimensional
purity", i.e., SELECT on objects, PROJECT on attributes, TIME-SELECTION on

_time. TOSQL in [Ariav 83a] is designed in that way.

According to this approach to the SELECT SOMEWHEN, all the tuples of
those objects that have some qualifying tuple(s) are recorded in the resulting
TOR. 1In our example, it implies that all the information of the relevant
enployees will be copied from EMP to EMPQC without any change, thus avoiding
the need to distinguish between relevant periods and irrelevant ones. In
order to understand the logic underlying this approach, one can think of the

same database handled manually. If all files of employees who worked at some
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period of time for department 2 are selected, then this operation does not

change the information in those files for other periods of time.

The SELECT SOMEWHEN operation does not satisfy the strong criterion of
correctness, suggested in Chapter 4. Potentially, tuples, that in themselves
are irrelevant, are included in the resulting TOR, as they belong to objects
that have some qualifying tuple(s). This operation, however, satisfies the
weak criterion of correctness, requiring that the result of this operation on

a single time slice produces the same result obtained by the regular

operation. This criterion is satisfied because each object in such an operand

contains only the information of one single time point, included in its only
tuple in this TOR. Therefore, if this tuple qualifies, then it is included in
the resulting TOR, but no other tuples of the same object are included, simply

because there are no such tuples.

The SELECT SOMEWHEN operation can be properly defined on the internal
view, as this view consists of the various objects in the TOR. The SELECT
SOMEWHEN does not create new objects, but selects old objects of the operand

according to the selection criterion.

Let the internal view of the TOR be (see formal definition earlier
in this chapter):

V = UNIOND,,(OB;)

The definition of the SELECT SOMEWHEN operation, in terms of
internal views is:

SELECT [V] WHERE(C) SOMEWHEN = UNIONY _4[0B; WHERE(C)]
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where [OB; WHERE (C)] is a qualifying object, namely an object that
has at least one qualifying tuple in the TOR.

The algorithm for implementing the SELECT SOMEWHEN operation is designed
for the general case of a TOR REL, containing n VAs, and represented by the
relations: REL, REL;, RELo, ..., REL,,j. A new TOR RELQC is to be created as
a result of a SELECT SOMEWHEN operation, in which the WHERE clause may be any
predicate defined in [Ariav 83a]. This new TOR will be represented by the

relations RELQC, RELQC,, RELQC,, ..., RELQC,, 1, and is created through the

following Rlgorithm 5.3:

1. Copy the relation REL into the new relation RELQC, since the two
TORs have the same definition.

2. Scan all the representing relations of REL, that are involved in the
WHERE clause, and prepare a set of all the objects that have at
least one tuple that qualifies according to this predicate. All
these objects will be included in the new TOR RELQC.

3. Copy, from each relation REL;, all the tuples belonging to the

objects in this set, to the corresponding relation RELQC;.

This operation, as applied to QUERY 5.3, will be carried out through the

following steps:

1. Copy the regular relation EMP into the regular relation EMPQC, since
the new TOR has the same scheme as the TOR EMP.

2. Scan the relation EMP2, and prepare a list of keys (EMPNOs) that has
the value DEPTNO=2 at least once in this relation.

3. Copy 2all the tuples with these keys from EMP1, EMP2, and EMP3 to
EMPQC1, EMPQC2 and EMPQC3, respectively.

Let us conclude this example by presenting the internal view of EMPQC, in
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Table 5-4. A typical snapshot (at the arbitrary day 820701) from the

resulting TOR is presented in Table 5-5.

- -

10010 | MIKE M | 800101 3 | 800101 4
| 810215 2 | 810201 3
821015 2

I | I | |
I | [ I I
I | | | I |
| I | | I |
| 10005 { MARY | F | 810210 2 | 810210 3 |
| I | I | |
| [ | I | I
I | | | | |
I | | I I

10030 | HENRY M 800101 2 | 800101 3
g 820701 3 | 820101 2
| 830701 2 | 830304 1

]

Table 5-4: The Internal View Describing the Result of QUERY 5.3

-

| The Key | The CAs | The VAs |
| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 10010 | MIKE | M | 2 | 3 I
| 10005 | MARY | F | 2 I 3 I
i [ 10030 | HENRY | M | 3 | 2 |

-

Table 5-5: A Snapshot from the Result of QUERY 5.3 at 820701

Note that Table 5-5 contains employee 10030, even though his DEPTNO at

820701 is 3, namely his tuple for this day does not satisfy the selection
criterion. Regardless, this tuple is included in the resulting TOR, since this
employee has other tuples that do satisfy the selection criterion. This is an
1llustration of the different interpretation of the SELECT SOMEWHEN operation.

Compared to the regular SELECT.
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As mentioned above, this operation does not satisfy the strong
correctness criterion. To illustrate this, let us take a snapshot from the
original TOR EMP at 820701, and then select from this snapshot.those tupleé.
that satisfy the predicate DEPTNO=2. This results in a relation that is not
eqﬁivalent to Table 5-5, since it does not contain the tuple of employee
10030, that is included in Table 5-5. Nevertheless, the operation satisfies
the weak correctness criterion that deals only with a single time slice, since

in such a case only qualifying tuples are selected.

QUERY 5.3 presents a SELECT SOMEWHEN operations with the WHERE clause,
but without any time-predicate like AT, DURING, BEFORE, AFTER, and therefore
the selection has been made for all time-points in the TOR. One may, of

course, want to delineate a time period, and successively apply the SELECT

SOMEWHEN operation -and the time selection. QUERY 5.4 expresses this
operation.
QUERY 5.4

SELECT FROM EMPQC
DURING 810501-820801
INTO EMPQD

Note that the operand, EMPQC, in query 5.4, is the result of QUERY
5.3. In other words, QUERY 5.4 is:

SELECT FROM EMP
CREATE TIME SELECTION
WHERE DEPTNO = 2 SOMEWHEN

DURING 810501-820801
INTO EMPQD



Page B85

QUERY 5.4 means to use the result of QUERY 5.3, uhich'contaiqs the entire
history of employees who worked at some time point in department 2, and then
further select from this TOR the tuples of the period 810501 - 820801. This
guery presents anathgr problem, caused by the fact that the SELECT SOMEWHEN
opération does not ;;tisfy the strong correctness criterion. Consider the
same two operations in reverse order: first, we create the time-selection, and
then apply the SELECT SOMEWHEN operation to its result. Specifically, we

first create the TOR EMPQE by:

SELECT FROM EMP
DURING 810501-820801
INTO EMPQE

And then, create the TOR EMPQF by:

SELECT FROM EMPQE
WHERE DEPTNO = 2
SOMEWHEN

INTO EMPQF

I.e., we evaluate

CREATE TIME SELECTION
SELECT FROM FROM EMP
DURING 810501-820801

WHERE DEPTNO = 2 SOMEWHEN
INTO EMPQF

The resulting TOR EMPQF is not necessarily identical to the TOR EMPQE,
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resulting from executing the same queries in reverse order. As an example for
such a situation, assume that an employee worked for department 2, but not
during the period 810501-820801. Then, the execution of QUERY 5.3 and then 5.4
will first pick out all his tuples from the TOR EMP into the TOR EMPQC, ;;d
then the time selectiaﬁ will have his tuples for the period 81050i-820801,
even though these tuples do not contain the value 2 for the attribute DEPTNO
at all. In the reverse order, the time selection will not contain any tuple
with DEPTNO=2 for this employee, and therefore the SELECT SOMEWHEN will ignore

this employee completely.

This example demonstrates that time selection is not commutative with
SELECT SOMEWHEN. The two cases, discussed above, represent different
semantics: in the first one, we first wanted to select the complete histories
of all employees Who yorked for department 2 in some period of time, and then
to limit our intereét in those employees to the period 810501-820801. 1In the
second question, we first wanted to concentrate only on the data for the
period 810501-820801, and then to select from that data the employees who

worked for department 2 at some time points within the selected period.

Therefore, the combination of the different semantics of the two questions,
and our interpretation of the SELECT SOMEWHEN operation, leads to the result

that these operations do not commute.
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5.4. The SELECT EVERYWHEN Operation

The SELECT EVERYWHEN operation checks the objedts in the existing TOR,

and selects all the tuples of those objects that satisfy the selection

predicate at all time points. This operation turns out to be much simpler
than the SELECT SOMEWHEN operation; it does not exhibit any of the problems

caused by the first operation, in which an object could have both qualifying

and non qualifying tuples.

SELECT EVERYWHEN, like SELECT SOMEWHEN, can be properly defined in terms

of the internal views, as follows:

SELECT WHERE (C) EVERYWHEN = UNIONY_,[0B; WHERE (C)]

where [OBi WHERE (C)] is a qualified object, namely an object whose
all tuples qualify for this selection.

QUERY 5.5 demonstfates the SELECT EVERYWHEN operation. This query checks
all the objects in EMP, and selects only those whose DEPTNO is 2 at all time
points. Only one object qualifies: employee 10005, who jolned department 2 at
810210, and never left it thereafter. Employees 10010 and 10030 worked for
department 2 at some periods of time, but since they also worked for other
departments at some periods of time, they do not qualify to be selected into

the new TOR.
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UERY 5.5

SELECT FROM EMP
WHERE DEPTNO = 2 EVERYWHEN
INTO EMPQG

In order to describe the algorithm to execute the SELECT EVERYWHEN
operation, let us define the general case. The TODB contains a TOR REL,
containing n VAs, and represented by the relations: REL, REL4q, ..., RELp 4.
A new TOR RELQG is to be created by a SELECT EVERYWHEN operation, containing a
WHERE clause, as defined in [Ariav 83al. The resulting TOR will be
represented by the relations RELQG, RELQGq, ..., RELQGp,4, created through the

following Algorithm 5.4:

1. Copy the relation REL into RELQG, since the new TOR has the original
TOR's definition.

2. Scan all the representing relations of REL, that are involved in the
WHERE clause, and prepare a set of all the objects in REL whose zall
tuples qualify according to its predicate. This set contains the
objects of the new TOR RELQG.

3. Copy, ' from each of the original relations REL;, all the tuples
belonging to the objects in this set, to the corresponding relation
RELQG; in the new TOR.

The same procedure, applying to our specific example, QUERY 5.5, is as

follows:

1. Copy the relation EMP to the new relation EMPQG, since the new TOR
has the same scheme as the TOR EMP.

2. Scan the relation EMP2, and prepare a set of all objects (employees)
who worked only for department 2.
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3. Copy all the information about these employees from EMP1, EMP2 and
EMP3 to EMPQG1, EMPQG2 and EMPQG3 respectively.

Table 5-6 presents the internal view of the new TOR EMPQG.

———— -

———

- -

Table 5-6: The Internal View Describing the Result of QUERY 5.5

Like the SELECT SOMEWHEN operation, the SELECT EVERYWWHERE is not
commutative with the time selection operation. The reason for this is that
time selection may isolate a period, where the reguired condition for an
object prevails EVERYWHEN, while not being true elsewwhere. Applying the

SELECT EVERYWHERE first, would have eliminated this object from the resulting

TOR.

Since the SELECT EVERYWHEN is not commutative with the time selection
operation, it cannoﬁ satisfy the strong correctness criterion. However, it
does satisfy the weak criterion. If the operand is a single time slice, then
the SELECT EVERYWHEN is identical to the SELECT SOMEWHEN operation, and

therefore, 1like the SELECT SOMEWHEN, it satisfies the weak correctness

criterion.
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5.5. Summary

This concludes the discussion of the various select operations, the timeh
selection, the SELECT SOMEWHEN operation and the SELECT EVERYWHEN'operation.in
The time selection opergtion contains one well defined case, in which all data
for a specific time int;rval is selected. Therefore, our example cﬁmpletely
covers this operation. In the SELECT EVERYWHEN operation, an object is
selected only if all its tuples qualify. In the SELECT SOMEWHEN operation an

object is selected if it has at least one qualifying tuple.
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Chapter 6

The Temporal PROJECT Operation

The PROJECT operation, as defined in Chapter 4 in [Ariav 83a] and in
[Clifford 85a], conforms to the basic relational notion of projection as it
manipulates the cube to create another TOR with a subset of the original TOR's
attributes. The meaning of this operation is contingent upon the extent to
which the original key attributes are retained in the result (i.e, 2ll, some
or none). This semantic problem relates to the loss of the original "object's
identity" in the case of dropping some (or all) of the key attributes. As can

be expected, the PROJECT operation presents further problems in TDMSs.

The conceptual definition of the temporal PROJECT operation, used

throughout this chapter, follows the guidelines set in Chapter 4, as follows:

A TOR S is a.result of a temporal PROJECT operation on the TOR R, if
every time slice of S is the result of the same regular PROJECT on the
corresponding time slice of the operand R. The definition of the temporal

PROJECT' operation at the external level is:

PROJECT'(T) [Ry...RpJ)=U}_,PROJECT(R;)(R4...Rp]

Defining the temporal PROJECT operation in terms of the internal view is
confusing: it is appropriate in cases where the operation preserves the key,

but useless if the key is not preserved.
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OQur initial analysis indicated that the result of the projection is
sensitive to the attributes included in it. To assure comprehensive study, we
have identified all possible attribute combinations (see Table 6-1), and
examined each one of them. Basically, two major types emerged. The first
encapsulates cases 1 through 9 in Table 6-1, in which the key is entirely
preserved. The second type captures the essence of cases 10 through 27, in

which all or part of the key is deleted.

6.1. PROJECT Operations that Preserve the Key

This section covers the PROJECT operations in which all the key
attributes are projected onto the new TOR. In this situation, the objects in
the new TOR are exactlylthe ones in the old TOR; furthermore, the new TOR has
the same meaning as the old one, except that it contains fewer attributes per

object.

Case 1 in Table 6-1, in which the resulting TOR is identical to the
source TOR, involves no manipulation of data, and therefore no further

discussion is needed. QUERY 6.1 exemplifies case 2 in Table 6-1, and presents

a simple PROJECT operation, in which the key is preserved, and only one

attribute is dropped (a CA in our case).

QUERY 6.1

PROJECT EMP
ONTO EMPNO,SEX,DEPTNO,JOBCLS
INTO EMPQG
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I means: attributes are included.
P means: attributes are partially included.
N means: attributes are not included.

Table 6-1: The Various Cases in the PROJECT Operation

QUERY 6.1 preserves the identities of the objects (employees) in the new
TOR, and these objects just lose the attribute NAME in their transition from

the 0ld TOR EMP to the new TOR EMPQG.
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In terms of the external cubic view, this query drops out the vertical
slice containing the attribute NAME from the original TOR EMP. The new TOR
contains the four remaining attributes. Each of its time slices is in itself a
result of the same regular PROJECT on the corresponding time slice of the
operand. Since the key 1is preserved, the original objects kéep their
identities in the new TOR, and none of the new TOR's time slices contains any

duplicate tuples.

In order to describe the general steps to execute this PROJECT, assume
that the original TOR is REL, containing m CAs CON4, CONy, ..., CONp and n
VAs, and is represented by the relations REL, REL4, RELp, ..., REL,.4. The
PROJECT operation creates a new TOR by dropping one CA, say the CA CON., from
REL. The new TOR is RELQG, represented by the relations RELQG, RELQG4, RELQG,,

...y RELQGp,q. The steps to create the new TOR RELQG are included in the

following Algorithm 6.1:

1. Copy the descriptive relation REL to the relation RELQG which is the
descriptive relation of the new TOR, except for the tuple that
describes the attribute CON, in REL. Each descriptive relation
contains three attributes: ATTRIBUTE, PTYPE and LTYPE. This step is,
therefore, achieved by the following regular SELECT operation:

SELECT FROM REL
WHERE ATTRIBUTE # "CON_"
INTO RELQG

2. The attribute CONp is stored in REL4. Therefore perform the
following regular PROJECT:

PROJECT REL,

ONTO CONy,...,CON,_4,CON, q,.-.,CON
INTO RELQG,

m

3. Finally, copy the relations REL,, REL3, ..+y REL .4 to RELQG,,
RELQG3, .+..y RELQG 4 respectively.




Page 95

The same steps, executed for our particular example, QUERY 6.1, are:

1. Create the descriptive relation, EMPQG, of the new TOR, by the
following SELECT operation:

SELECT FROM EMP
WHERE ATTRIBUTE # "NAME"
~ INTO EMPQG

2. The attribute NAME is stored in EMP1. Therefore, perform the
following regular PROJECT:

PROJECT EMP1
ONTO EMPNO, SEX
INTO EMPQG1

3. Finally, copy EMP2 and EMP3 to EMPQG2 and EMPQG3 respectively.

Table 6-2 presents a typical snapshot (for the arbitrary day 811015) from

the resulting TOR EMPQG.

- -

- -

-

- -

Table 6-2: A Snapshot from the Result of QUERY 6.1 at 811015

The snapshot presented in Table 6-2 is clearly identical to the result of

a regular PROJECT operation on the snapshot taken from the TOR EMP at 811015.
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The same is true for all other possible snapshots. This demonstrates that this

temporal PROJECT satisfies the strong correctness criterion.

One advantage of the temporal _differentiation of attributes is

>

demonstrated here by thg simplicity of the operation that has only to address
the descriptive relation and the relation containing the attribute to be

dropped, while copying all other representing relations without any changes.

Consider QUERY 6.2. In this query, corresponding to case 3 in Table 6-1,

the VA JOBCLS is to be dropped from EMP.

QUERY 6.2

PROJECT EMP
ONTO EMPNO,NAME,SEX,DEPTNO
INTO EMPQH

Again, the resulting TOR has the same objects as EMP, with one attribute

(a VA in this case) dropped.

Conceptually, there is no difference between QUERY 6.1 and QUERY 6.2,
since in both of them the key is preserved. In their implementation, however,
there is a difference, reflecting the difference between the types of the

attributes being dropped in the two queries.

In the general case, the original TOR REL has n VAs: VAR4, VARp, ...,
VARn, and is represented by the relations: REL4, RELp, ..., RELp,q. The

PROJECT operation drops one VA, say VAR, and creates a new TOR RELQH, that
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has only n-1 VUAs, and is represented by the relations: RELQHy, RELQHp, ...,
RELQH,. The procedure to create the new TOR RELQH is included in the

following Algorithm 6.2:

1. Execute the regular SELECT operation:

SELECT FROM REL
WHERE ATTRIBUTE £ "VAR"
INTO RELQH

2. Copy REL4, RELp, ..., REL, 4, REL_ 4, ---, REL 4 tO RELQH4, RELQH,,
..., RELQH, respectively. All the relations, except REL_, are
copied without any change.

The same steps, applying to our specific example, QUERY 6.2, are:

1. Perform the regular operation:

SELECT FROM EMP
WHERE ATTRIBUTE # "JOBCLS"
INTO EMPQH

2. Copy EMP1 and EMP2 to EMPQH1 and EMPQH2 respectively, and ignore
EMP3.

"Due to the conceptual similarity between QUERY 6.2 and QUERY 6.1, it is
clear that the operation, in which a temporal PROJECT drops a VA, also
satisfies the strong correctness criterion. In fact, this is true for any
temporal PROJECT that preserves the key, since it maintains the objects'

identities in all possible time slices, and consequently in the TOR itself.

The advantages of the temporal differentiation of attributes are even
Clearer in the evaluation of QUERY 6.2. As VAs are stored in separate
relations, dropping such an attribute simply implies its deletion from the

definition of the new TOR.

AT e
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consider QUERY 6.3, corresponding to case 4 in Table 6-1. As one CA and
‘one VA are dropped, QUERY 6.3 is a combination of QUERIES 6.1 and 6.2, and is

resolved accordingly. The same is true for cases 5 through 9 in Table 6-1.

- QUERY 6.3

PROJECT EMP
ONTO EMPNO, SEX,JOBCLS
INTO EMPQI

6.2. PROJECT Operations That Do Not Preserve the Key

This section deals with PROJECT operations in which the whole key, or a
part of it, is deleted, i.e., cases 10-27 in Table 6-1. From conceptual point
of view, such PROJECT operations change the meaning of the TOR, and create new
type of objects in the resulting TOR. From the implementation point of view,
the projected attributes do not maintain their original types (e.g., key, CA,
VA) in this new TOR. Consequently, the new TOR's key is not the same as the
old TOR's, but, instead, it consists of all the projected attributes. The

combination of these attributes defines the "objects" of the new TOR.

QUERY 6.4 corresponds to case 10 in Table 6-1, in which the key is not

fully retained.

QUERY 6.4

PROJECT EMP
ONTO SEX
INTO EMPQJ

o
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This query creates a new TOR as a result of a PROJECT operation on the
TOR EMP, by dropping all its attributes, except the CA SEX. Consequently, the
new TOR has a new kind of object, consisting only of the attribute SEX, and a
new meaning, compared to the existing TOR. In this specific example, we know
that there are only two potential objects in the resulting .TOR: M and
F. Either of theselobjects might not exist in the database at some points of
time (e.g., if there was no woman in the company's personnel during the period
810510-810722, then the object F does not exist in the new TOR in this
period), and the resulting TOR should be designed to reflect such situations.
Since SEX is the only attribute in this TOR, it is obviously its key, and as
such it exists in the database at all time points. Therefore, if the
resulting TOR contains only the attribute SEX, then we are faced with the
problem of how to indicate periods of time in which one of the objects (M or

F) does not exist at all.

According to the general definition of temporal projections, every time
slice of the resulting TOR is a result of the same regular PROJECT on the
corresponding time slice of the operand. -If such a PROJECT operation is
applied to all the operand's time slices, it produces a sequence of regular
relations, one per time-point, each of which contains either both of the
objects M and F, or one of them, or none. Now, we conceptually combine them to
form the new cube. The objects in this cube are, of course, M and F. However,
they do not necessarily exist at all time points. Usually, such a situation
is indicated by the assignment of NULL values to all the VAs of an object at

the time-points in which it does not exist. In our case, there are no VAs to
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play this role; therefore, without introducing another component to the
resulting TOR, there is no way to combine the different relations, resulting

from a PROJECT on the operand's time slices, to form a new‘TOR (cube).

A solution to this problem is in the introduction of another attribute, a
VA, into the resulting TOR. This rather artificial attribute, called STATE, is
aimed to allow the proper recording of the fact that objects of the new TOR
may not exist at all time points. STATE will have NULL values for an object
at all time points in which this object does not exist, following the
convention of assigning NULL values to all VAs to indicate inexistence. At
time poiﬁts in which this object does exist, the VA STATE can have any non-
NULL value, e.g., STATE=1. The procedure to create the new TOR determines the
values of STATE for the various time points, based upon the data in the

operand.

The VA STATE provides a technical solution to the problem caused by
objects that exist at some periods of time, and do not exist in others. This
problem, as illustrated in QUERY 6.4, can be analyzed conceptually from
another angle, by considering the conceptual view of the new TOR, the cube.
This new cube is created by dropping all the attributes of EMP except SEX.
Now, let us consider an arbitrary time slice of the new cube, corresponding to
some day. This time slice probably contains many values of both M and F,
depending upon the number of men and women working for the company on. this
day. In the old TOR, these values belong to different objects. In the new
TOR, however, multiple occurrences of Ms or Fs in one time slice are

duplicates that should, of course, be deleted. This step of deleting
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duplicates, leaves at most one M and one F in every time slice. However, as
already indicated before, some time slices may not contain either the value M
or the value F or both. The new VA STATE is needed to indicate such

situations.

The new TOR EMPQJ, containing the result of QUERY 6.4, is represented by

the relations included in Table 6-3.

EMPQJ (ATTRIBUTE,PTYPE,LTYPE)

- — -

- - ——

| SEX | C1 i 1 [
| sTAaTE | 12 | 3 |
EMPQJ1(SEX)
| SEX |
I
l ¥

- — -

-

| SEX | TIME | STATE |

- — -

| M | 800101 | 1 [
| F | 800101 | 1 I

——

Table 6-3: The Relations Representing the Result of QUERY 6.4
Any time slice taken from the new TOR (for a time point starting at
800101) contains both objects M and F. This reflects the fact that at any time
point starting at 800101, both men and women were employed in this

Organization. Clearly, this is exactly the result of this PROJECT operation
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on any of the original TOR's time slices. Thus, this PROJECT, like the ones

covered earlier in this chapter, satisfies the strong correctness criterion.

-

Let us define QUERY 6.4 in general terms. The original TOR REL contains,.l
among the rest, the noq:key CA CONST, and is represented by the relations REL,
REL{, ..., REL,,q. The new relation RELQJ is a result of a PROJECT operation,
in which only the CA CONST is selected. The procedure to create the new TOR

RELQJ is the following Algorithm 6.3:

1. Create the three relations: RELQJ(ATTRIBUTE,PTYPE,LTYPE),
EMPQJ 1 (CONST) and RELQJ,(CONST,TIME,STATE).

2. Scan the relation REL4, and identify the domain of CONST. These are
the objects of the new TOR. Record them in RELQJ4.

3. The following steps record the right values in the relation EHPQJz,
representings the VA STATE. They are described for some object
CONST=a in the new TOR.

a. Scan the relation REL4 again, and prepare the list of all the
objects in the original TOR REL, having the value CONST=za in
their tuples.

b. With this 1list, scan all the relations representing the
original TOR's VAs simultaneously, and locate the first time
point at which some object in this list has a non NULL value at
least in one of them (indicating that this object exists at
this time point in the original TOR).

c. If no such a time point is found at all, it means that the
object CONSTza of the new TOR does mnot exist at all.
Therefore, delete it from the relation RELQJ4, and do not
record anything for it in RELQJ,. Then, proceed to the next
object of the new TOR (if any).

d. If such a time point, t, is found for some object of REL, say

OBJREL, then record the tuple CONST=a, TIME=t and STATE=1 in
RELQJ,.

e. Continue the scanning, looking for possible NULL values in all
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the VAs of OBJREL at some time point. If no such a case is
found, then nothing more has to be recorded for CONST=a in

f. If NULL values were found for all VAs of OBJREL at some time
point t4, then look for another possible object of REL having
CONST=a, that exists at t4. If no such an object is found,
record the tuple CONST=a, TIME=t4 and STATE=NULL in RELQJ,.
Now, keep scanning, looking for a possible object of REL,
having CONST=a, that exists at a later time point. If found,
denote this time point t, and return to step (d) above. If not,
proceed to the next object of RELQJ (if any).

g. If NULL values were found for all the VAs of OBJREL at some
time point, but another object of REL with CONST=a exists at
this time point, then CONST=a still exists in RELQJ. Denote
the new object by OBJREL, and return to step (e) above.

The same procedure, applied specifically to our QUERY 6.4, is as follows:

1. Create the relations EMPQJ(ATTRIBUTE,PTYPE,LTYPE), EMPQJ1(SEX) and
EMPQJ2(SEX,TIME,STATE).

2. Scan the relation EMP1, and prepare a set of all the different
values of the CA SEX. Obviously, this list in our example contains
two objects: M and F. These values are the objects of the resulting
TOR EMPQJ. Record them in the relation EMPQJ1.

3. The following steps are aimed to record the right values in the
relation EMPQJ2. They are described for the object SEX=M of EMPQJ.

a. Scan the relation EMP1 again, and prepare the list of all the
objects in the original TOR EMP, having SEX=M.

b. With this 1list, scan the relations EMP2 and EMP3
simultaneously, and locate the first time point at which some
object in this list has a non NULL value at least in one of
them. Such a situation indicates that the object SEX=M exists
at this time point.

c. If no such time point is found at all, it means that this
object of the new TOR does not exist at all. Therefore, delete
this object from EMPQJ1, and proceed to the next object of the
new TOR (SEX=F).
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d. If such a time point t is found, for some object in EMP, say
OBJEMP, then record the tuple SEX=M, TIME=t and STATE=1 in
EMPQJ2.

e. Continue to scan EMP2 and EMP3 simultaneously, looking for a
possible NULL values in both of them for OBJEMP at some time
point. If no such a case is found, then nothing more has to be
recorded for SEX=M in EMPQJ2.

f. If NULL values were found in EMP2 and EMP3 for OBJEMP at some
time point t4, then look for another possible object of EMP
having SEX=M, that exists at t4. If no such an object is
found, record the tuple SEX=M, TIME=tq and STATE=NULL in
EMPQJ2. Now, keep scanning, looking for a possible object of
EMP, having SEX=M, that exists at a later time point. If
found, proceed as before. If not, proceed to the next object of
EMPQJ (if any).

g. If NULL values were found in EMP2 and EMP3 for OBJEMP at some
time point, but another object with SEX=M exists at this time
point, then SEX=M still exists in EMPQJ. Denote the new object
by OBJEMP, and return to step (e) above.

In this specific example, the new TOR contains two objects, M and F, and
both of them exist in the TOR from the first time point included in the
database (800101). Different cases are demonstrated in some of the remaining

PROJECT operations discussed later in this section.

The procedure that corresponds to a PROJECT operation that projects only
non-key CA(s) is a complicated.one, since all the relations representing the
original TOR's VAs are scanned simultaneously in order to identify the time
points at which the new objects exist in the new TOR, and those at which they
do not exist. In this case, the temporal differentiation of attributes and our
way to indicate non existence of objects do not simplify the creation of the

new TOR, and may well do the opposite.
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QUERY 6.5 is an example of projecting all non-key CAs of a TOR by a
PROJECT operation, omitting the key. It corresponds to case 11 in Table 6-1,
in which all non-key CAs are projected onto the resulting TOR, and no VA is
projected. As it is analogous to, though more complicated than, QUERY 6.4, it

is briefly analyzed, without repeating the details of its evaluation.

QUERY 6.5
PROJECT EMP
ONTO NAME,SEX
INTO EMPQK

The objects of the new TOR created by this query are all the combinations
of NAMEs and SEXs in the TOR EMP. Again, each time slice of the resulting TOR
should be equivalenp to the result of this PROJECT operation on the
corresponding time -slice of the operand in order to satisfy the strong
correctness criterion. The relations representing the result of QUERY 6.5 are

included in Table 6-4.

Let us now examine this operation with respect to the strong correctness
criterion. Table 6-5 presents a snapshot from the resulting TOR EMPQK at
800501. Similarly, Table 6-6 presents a snapshot taken from the original TOR

EMP at 800501.

Comparing Tables 6-5 and 6-6 leads to the observation that they actually
contain the same information about the combinations of NAMEs and SEXs that
exist in the TOR EMP at 800501. In examining the two tables, one should keep

in mind the specific role of the VA STATE that was added to the resulting TOR.
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EMPQK (ATTRIBUTE , PTYPE,LTYPE)

T ———— -

—————————— -

| NAME | c20 | 1 |
| SEX [ cr t 1 |
| STATE | 12 | 3 |

T —

———

- -

- ——

| NAME | SEX | TIME | STATE |

- —

| MIKE | M | 800101 | 1 |
[ MARY | F | 810210 | 1 |
| DAVID | M | 800601 | 1 |
| DAVID | M | 820508 | NULL |
| DAVID | M | 830415 | 1 |
| HENRY | M | 800100 | 1 |
| ALICE ] F | 8101011 1 |
| OSCAR | M | 800101 | 1 |
| susan | F [ 800101 | 1 |

- —

Table 6-4: The Relations Representing the Result of QUERY 6.5
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-

| The Key | The CA | The VA |

-

| NAME | SEX | STATE |
| MIKE | Mo 1 |
| MARY | F | NuLL |
| DAVID | M | NULL |
| HENRY | Mo 1 |
| ALICE | F | NOLL |
| OSCAR | Mo 1 [
| SUSAN | F | 1 |

]

Table 6-5: A Snapshot from the Result of QUERY 6.5 at 800501

—— T ———

| The Key | The CAs | The VAs |
| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 10010° | MIKE | M | 3 I y |
| 10005 | MARY | F | NULL | NULL |
| 10050 | DpAVID | M | NULL | NULL |
| 10030 | HENRY | M | 2 | 3 |
| 10080 | ALICE| F | NULL | NULL |
| 10025 | OSCAR | M | y | 1 |
| 10090 | SusaNn | F | y I y I

- -

Table 6-6: A Snapshot from the TOR EMP at 800501

The answer to QUERY 6.5 satisfies the strong correctness criterion. As
explained in the remainder of this section, so do all other PROJECT operations
that do not preserve the key, leading to the observation that all PROJECT

operations satisfy the strong correctness criterion.
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The remaining cases in Table 6-1 present implementational problems that
are similar to those already discussed in this section. Therefore, we will

present examples to these cases, without elaborating on their implementations.:

Case 12 in Table 6-1 is demonstrated in this discussion by QUERY 6.6.

QUERY 6.6
PROJECT EMP
ONTO JOBCLS
INTO EMPQL

In QUERY 6.6, information about the various JOBCLSs in the organization
is requested. The objects of the new TOR EMPQL will be the various values of
JOBCLS included in the TOR EMP for its various objects (employees). For each
of these values, the-TOR EMPQL will indicate the periods of time in which it
exists in the TOR. As the only attribute of this TOR, JOBCLS will be its key.
The VA STATE will again be added to the resulting TOR, to allow the indication

of the existence of each value of JOBCLS at any point of time.

The conceptual creation of the new TOR EMPQL is achieved by first
removing the attribute JOBCLS from the TOR EMP, and then rearranging it by
deleting tuples that became duplicates in the new TOR, even though they
belonged to different objects in the original TOR. For example, employee
10030 started his work in the organization at 800101 with JOBCLS 3. Then, at
820101 he was promoted to JOBCLS 2. However, at that time, there were other
employees with JOBCLS 3, and, in fact, for any point of time starting at

800101, at least one employee in the organization had JOBCLS 3. Therefore,
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the object JOBCLS=3 in the TOR EMPQL exists at all time points since 800101.
As opposed to JOBCLS 3, employees with JOBCLS=4 do not exist in the TOR EMP
after 811014, and therefore the object JOBCLS=4 ceases to exist in the TOR

EMPQL at 811015.

The relations repfesenting the new TOR EMPQL, answering QUERY 6.6, are
included in Table 6-7. Table 6-8 presents a snapshot taken from the resulting
TOR EMPQL at the arbitrary day 811230. This table should be compared to the
result of the equivalent regular PROJECT on the time slice of the TOR EMP at

811230. This comparison will demonstrate that QUERY 6.6 satisfies the strong

correctness criterion.

QUERY 6.7 corresponds to case 13 in Table 6-1. The key is dropped in
this query, and a combination of one CA and one VA is projected to the new

TOR.

UERY 6.7
PROJECT EMP

ONTO SEX DEPTNO
INTO EMPQM

The objects of the new TOR EMPQM are all the combinations of DEPTNOs and
SEXs that exist at some time point in the TOR EMP. Each combination like this
Wwill be included in the resulting TOR, with time stamps associated to its VA

STATE, which indicate precisely when it exists and when it does not.

As usual, the purpose of this guery can be better understood by examining
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EMPQL (ATTRIBUTE,PTYPE,LTYPE)

| JoBcLs | 12 | 1 |
| STATE | I2 | 3 |

EMPQL 1 (JOBCLS)

| JoBCLS |

| 4 |

1 3 |

| 2 I

1 1 |

—— — -

-

-

I y | 800101 [ 1 |
| y | 811015 | NULL |
| 3 | 800101 | 1 |
l 2 | 810101 | 1 |
l 1 | 800101 | 1 1

Table 6-7: - The Relations Representing the Result of QUERY 6.6
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- — -

Table 6-8: A Snapshot from the Result of QUERY 6.6 at 811230

a random snapshot from it. Table 6-9 presents a possible snapshot of the TOR

EMPQM (say, at 811010).

——

| SEX | DEPTNO | STATE |
| M 1 | 1 [
| M ] 2 | 1 I
| M 3 | NULL |
| M ] y ! 1 i
| F | 2 | 1 l
| F | 3 | 1 |
| F | y | 1 |

L e e

Table 6-9: A Snapshot from the Result of QUERY 6.7 at 811010

Table 6-9 indicates which combinations of SEXs and DEPTNOs exist in the
TOR EMP at 811010. The NULL value in the VA STATE for the object SEX=M and
DEPTNO=3 indicates that there is no male employee in department 3 at 811010.
The new TOR EMPQM conceptually consists of such snapshots at all its time
points. Like the previous examples, the current one also satisfies the the

strong correctness criterion.
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The regular relations representing the TOR EMPQM are included in fablé:
6-10. Consider, for instance, the object SEX=M and DEPTNO=3 in this taﬁle,
At 800101, the STATE of this object is 1 (namely, it exists), since the malé
employee 10010 is worging in department 3. At 810215, employee 10010 leaveé
department 3, and at-.that time point there is no other male in this
department. Therefore, the STATE of this object becomes NULL, until 820701,
the day at which employee 10030 (also, a male) joins the department. This
employee leaves department 3 at 830508, and from this day there is no male in
the department, which implies the value NULL for the VA STATE of this object,

at the period of time starting at 830508.

QUERY 6.8 illustrates case 14 in Table 6-1. In this case, all the VAs are
projected onto the resulting TOR, but none of the CAs. The objects of the new

TOR EMPQN are all thg combinations of DEPTNOs and JOBCLSs that exist at any

time point in the TOR EMP.

QUERY 6.8
PROJECT EMP

ONTO DEPTNO,JOBCLS
INTO EMPQN

The relations representing the TOR EMPQN are included in Table 6-11.
Consider, for instance, the object DEPTNO=2 and JOBCLS=2 as recorded in the
new relation EMPQN2. This object exists for the first time at 820101, the day
at which employee 10030 is promoted to JOBCLS=2, while working for department

2. Then, at 820701 this employee leaves department 2. As there is no other
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EMPQM( ATTRIBUTE, PTYPE,LTYPE)

—— -

- —— -

-

-

-

R ———————— A et ]

P ———————— etk

| 800601 | |
| 820508 | I
| 830415 | |
| 800101 | I
| 800101 | |
| 810215 | |
| 820701 | 1 |
| 830508 | |
| 800101 | |
| 810210 | |
| 810101 | |
| 800101 | [

Table 6-10: The Relations Representing the Result of QUERY 6.7
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employee in this department with JOBCLS=2 oﬁ this day, the object DEPTNO=2 and
JOBCLS=2 ceases to exist on this day. Then, at 820115, another employee inh_
department 2, employee 10010, is promoted to JOBCLS:z2, and therefore this |
object exists again on this day. This employee never leaves the department,
neither is he further promoted. Therefore the object DEPTNO=2 and JOBCLS=2

exists until now.

EMPQN(ATTRIBUTE,PTYPE,LTYPE)

-

-

| DEPTNO | 12 I 1 !
| JoBcLs | 12 | 1 [
| STATE | 12 | 3 |

- —— -

- -

- —

- -
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EMPQN2(DEPTNO, JOBCLS, TIME, STATE)

- - ——

| 800101 | |
| 810201 | |
| 810201 | |
| 810215 | |
| 800101 | I
| 820101 | I
| 820701 | |
| 821015 | |
| 800601 | 1 |
| 820508 | |
| 830415 | |
| 810101 | |
| 830304 | |
| 830508 | I
| 830508 | |
| 800101 | I
| 800101 | I
| 811015 | |
| 811015 | |

i ——— - ——

Table 6-11: The Relations Representing the Result of QUERY 6.8
In a more general case, more than two VAs can be projected onto the new
TOR. This PROJECT operation, like all other operations included in this

section, satisfies the strong correctness criterion.

Case 15 in Table 6-1 is illustrated by QUERY 6.9. The objects of the
resulting TOR EMPQO are all combinations of SEX, DEPTNO and JOBCLS, included
at some time point in the original TOR EMP. Following the convention, the new

TOR's key contains all its attributes.
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QUERY 6.9
PROJECT EMP
ONTO SEX,DEPTNO,JOBCLS
INTO EMPQO

The relations representing the TOR EMPQO are included in Table 6-12.
Consider the history of the object SEX=M, DEPTNO=2 and JOBCLS=2 in this table.
As shown in the relations EMP1, EMP2 and EMP3, the first day in which this
object exists is 820101, at ?hich employee 10030, a male working in department
2, has been promoted to JOECLS 2. This object ceases to exist at 820701,
since this employee left deparﬁmenh 2 at that day. The object does not exist
in the new TOR until 821015, the day in which employee 10010, a male working
in department 2 on that day, has been promoted to JOBCLS 2. From that day,
there is no change in both the department and the JOBCLS of this employee, and

therefore no further information has to be recorded for the object SEXz=M,

DEPTNO=2 and JOBCLS=2 in the new TOR EMPQO.

EMPQO(ATTRIBUTE,PTYPE,LTYPE)

- - -

- ——— - -

| SEX I et | 1 |
| peptnO | I2 | 1 |
| JocLs | 12 | 1 |
| STATE [ & 1 3 1
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EMPQO1(SEX,DEPTNO, JOBCLS)

| JOBCLS

DEPTNO

SEX |

NN ONMON NN~ ~— — =M

MO N NN~ MO N S  T

EXXEILMEXEXZEMEZXZ EEZXE
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EMPQO2 ( SEX , DEPTNO, JOBCLS , TIME , STATE)

i — -

| 800101
| 810201
| 810201
| 810215
| 800101
| 821015
| 810210
| 820101
[ 820701
| 821015
| 800601
| 820508
[ 830415
| 820701
| 830304
| 810101
| 830304
| 830508
| 830508
| 800101
| 800101
| 811015
| 811015 | 1

- — -

—

Table 6-12: The Relations Representing the Result of QUERY 6.9
The PROJECT operation illustrated by QUERY 6.9, 1like all other PROJECT

operations, satisfies the strong correctness criterion.

Case 16 in Table 6-1 can be demonstrated by QUERY 6.10. The objects of
the new TOR EMPQP are all combinations of NAMEs, SEXs and DEPTNOs included at

any time point in the original TOR EMP.
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QUERY 6.10
PROJECT EMP
ONTO NAME,SEX,DEPTNO
INTO EMPQP

Case 17 in Table 6-1 describes a PROJECT operation in which all the non-
key attributes are projected onto the new TOR. QUERY 6.11 belongs to this
category. The objects of the new TOR EMPQQ are all the combinations of NAMEs,
SEXs, DEPTNOs and JOBCLSs that exist at any time point in the original TOR

EMP.

QUERY 6.11
PROJECT EMP

ONTO NAME, SEX,DEPTNO,JOBCLS
INTO EMPQQ '

Case 18 in Table 6-1 is an "empty" case that does not require any

discussion.

Cases 19-27 in Table 6-~1 repeat cases 10-18, with the difference -that
only part of the key attributes is omitted. This difference, however, does
not change the nature of these PROJECT operations. Any key attribute that is
projected in such a PROJECT operation is simply treated as a CA, and loses its
uniqueness as a prime attribute, since the key is not preserved in its

5 entirety.
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6.3. Summary of the PROJECT Operation

In this chapter, 27 different cases of TOR projection were identified’,
(Table 6-1). Two of these cases (case 1 and case 18) are trivial cases, while
25 of them actually define meaningful PROJECT operations. After analyzing
these cases, we can determine the distinction between PROJECT operations that

preserve the original key, and those that do not, as capturing the fundamental

classes of PROJECT operations.

All the cases in which the key is preserved (cases 1 - 9) are basically
the same. They maintain the original objects' identities, and Jjust drop some
attribute(s) from each of them. Not only the conceptual semantics of all

PROJECT operations preserving the key are the same, but their ‘implementations

are very similar too.

The PROJECT opérations that preserve the key do not cause any problem in
their conceptual definition and in their design. This is not true for those
operations that do not preserve the key. They create new objects, consisting
- of all the projected attributes, and giving new meaning to the resulting TOR,
compared to the original's. The conceptual semantics of such a PROJECT
operation is still straightforward. This PROJECT, executed on every time slice
of the operand, produces new valid relations (after deleting the duplicate
tuples that were created as a result of Qropping the key). The new key of
these relations consists of all their attributes. The new TOR consists of all

these relations as its various time slices.

The problem with these operations starts when combining all these
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separate time slices into the new TOR (cube). Usually, they do not contain
exactly the same objects. In the cube, however, an object that exists at one
time point, automatically has an entire horizontal slice containing its tuples
at all time points. We proposed to add an artificial VA, called STATE, to the
resulting TOR of such an operation, to allow the indication of possible non-
existence of objects at some time points. This may not be the optimal
solution, and more research is needed to identify other possible, and may be

better, solutions.

This concludes the discussion covering the PROJECT operation.
Considering the effect of the temporal differentiation of attributes on these
operations, it is clear that it makes the implementation of the operations
preserving the key very simple, by allowing us to ignore the relations
representing attributes that are not projected. On the other hand, in all the
queries that deal with PROJECT operations that do not preserve the key, none
of the relations representing the existing TOR can simply be copied to the
~relations representing the new TOR, since the new TOR contains new kind of
objects. However, the temporal differentiation of attributes is sometimes
beneficial even in these cases, by allowing us to concentrate on the
attributes that are included in the new TOR, and ignore the others. This, by
itself, is an advantage in the design of any temporal operation.
Unfortunately, in some cases this concept is not beneficial at all (e.g., when

only non-key CAs are projected).

The syntax of the PROJECT operation, supported by our TDMS, is consistent

with the restriction stated before, according to which a query can slice the
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cube only in one dimension at a time. Therefore, a mixture of PROJECT and
SELECT operations should be achieved through a sequence of queries that will
produce the same result as the one obtained by one equivalent guery. It should
be mentioned again, that this restriction does not impose any limitation gn
the capabilities of thésTDMS, but is needed to make the design clearer and
simpler. In creating a sequence of queries aimed at deriving an answer to
some question, the user should also be aware of the possible non-
;ommutativities in executing some queries, and execute the temporal relational

algebra operations in the order that fits the desired results.

6.4, The Time Projection Operation

A PROJECT operation that does not preserve the entire key may be
interpreted in more than one way. Earlier in this chapter, we have chosen the
interpretation according to which every time slice of the resulting TOR is
equivalent to the saﬁé PROJECT on the corresponding time slice of the operand.
This interpretation conforms to the strict "naturalness" criteria, and
reflects the meaning of such a PROJECT operation in the regular relational
model. It is also consistent with the general framework of the temporal
relational algebra operations, developed in Chapter 4. In this section,
however, we develop another type of operation, the Time Projection, as an

alternative to the interpretation adopted earlier for such operations.

The Time Projection does not analyze the data stored in the TOR through
its time slices, but considers the whole temporal pattern of the resultant
objects. Two objects in the original TOR are "merged” to the same object in

the resulting TOR, only if their projected attributes exhibit identical
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temporal pattern. Otherwise, they are considered different objects in the new

TOR as well.

The definition of the time projection operation at the external level is

as follows:

Given a TOR T, where T is the union of n flat relations:
T = UNIONT_4(R;),
then, the new TOR S, containing the result of a time projection operation,
with respect to a set of attributes SA, is:

S = UNIONT_,(s;)

where each S; contains the data of those objects which represent all

different temporal patterns with respect to the set of attributes SA.

The definition of this operation in terms of the internal view of the
operand and the resulting TOR, is as follows:

TIME PROJECTION[V] = UNION¥_,(0B;)

where OB; is a qualifying object, namely an object that contains a
unique pattern of the combination of the projected attributes (only
these attributes are included in the new objects).

In implementing the Time Projection, one faces the problem of creating
possible duplicate tuples in various time slices. These tuples belong to
different objects of the resultant TOR, and their inclusion in it is caused by
the nature of this operation, which, as opposed to the "natural" temporal
PROJECT, does not conceptually operate on the basis of the time-slices of the

operand. To solve this problem, a new attribute is added to the resulting
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TOR, and this new attribute is the new TOR's key, by which the objects are
identified. This attribute is needed for the unique identification of objects
in the new TOR. An obvious choice is to identify the objects by serial
numbers, i.e, the first object is No 1, the second is No 2, etc. We label the

new attribute IDENT.

The time projection satisfies only the weak correctness criterion, as
this operation does not conceptually operate on one time slice at a time, but
on the entire cubic view of the TOR as such. Therefore, when applied to a TOR
that happens to be a single time slice, it produces the same result as the
regular PROJECT operation on the snapshot representation of this flat TOR.
However, when applied to a TOR that contains data for more than one time
point, it produces a new TOR whose various time slices are not equivalent to
the results of this PROJECT operation on the corresponding time slices of the
operand. A snapshot'taken from the resulting TOR possibly contains tuples
that are duplicates in their content, and only the new attribute IDENT, added
to them, makes them, different. However, when applying this PROJECT to the
snapshot from the operand, the duplicate tuples are actually deleted,
producing a relation that is different from the one produced by a snapshot

from the resulting TOR.

The Time Projection operation is briefly discussed iﬁ this section, using
some of the queries presented earlier in section 6.2, applied, for
demonstration purposes, to the TOR NEWEMP. This TOR has the same definition
as EMP, but different data, allowing the presentation of the different
variations of the time projection. The internal view of the TOR NEWEMP is

presented in Table 6-13.
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NEWEMP (EMPNO ,NAME, SEX , DEPTNO,JOBCLS )

T -

| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 10010 | MIKE | M | 800101 3 | 800101 4 |
- I | 810215 2 | 810201 3 |
I I | I | 821015 2 |
I [ [ I I |
| 10005 | MARY | F | 800101 3 | 800101 &4 |
I I | | 810215 2 | 810201 3 |
| | | I | 821015 2 |
[ | | | | I
| 10050 | MINE | M | 800101 3 | 800101 3 |
| | I | 810215 2 | 820101 2 |
I | I | | 830304 1 |
| I | ] | |
| 10030 | HENRY | M | 800101 2 | 800101 3 I
I | I | 820701 3 | 820101 2 |
| | l | 830508 2 | 830304 1 |
I I I I | |
| 10080 | susaNn | F | 810101 3 | 810101 2 |
I | | | | I
| 10025 | OSCAR | M | 800101 4 | 800101 1 |
|- I I | | I
| 10090 | SUSAN | F | 800101 4 | 800101 4 |
I I | I | 811015 3 |
Table 6-13: The Internal View of the TOR NEWEMP

Let us start to analyze the time projection, with QUERY 6.12, which is

the time projection version of QUERY 6.6.

QUERY 6.12

CREATE TIME PROJECTION

FROM NEWEMP
ONTO JOBCLS
INTO TPRC

~—
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In QUERY 6.12, information about the various JOBCLSs in the organization

is requested. The objects of the new TOR TPRC are determined by the various
different patterns of JOBCLS included in the TOR NEWEMP for its variouE;:

objects (employees). The relations representing the new TOR TPRC answering

QUERY 6.12 are included in Table 6-14.

TPRC(ATTRIBUTE,PTYPE,LTYPE)

PR ——————— A e e

| IDENT | 12 | 1 |
| JoecLs | 12 | 3 |
TPRC1(IDENT,JOBCLS)

| IDENT |

I 1 |

| 2 [

l 3 |

| y |

| 5 |

-

——— - -

P ———— el

| 800101 |
| 810201 |
| 821015 |
| 800101 |
| 820101 |
| 830304 |
| 810101 |
| 800101 |
| 800101 |
| 811015 |

[ ————— e

Table 6-14: The Relations Representing the Result of QUERY 6.12
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The new TOR TPRC has five objects (compared to seven in the original TOR
NEWEMP), since the original objects (employees) 10010 and 10005, as well as

10050 and 10030, have identical JOBCLS patterns.

The procedure to create the new TOR TPRC, answering QUERY 6.12, is as

follows:

1. Create the descriptive relation TPRC(IDENT,JOBCLS). The new
attribute IDENT is the key. In this case, the new TOR has no CAs,
and JOBCLS is its only VA.

2. Scan the relation NEWEMP3, describing the VA JOBCLS in the TOR
NEWEMP, and determine how many different patterns of JOBCLS values
are included in it. As mentioned earlier, the original TOR NEWEMP
has five different patterns of JOBCLS. Therefore, the new TOR has
five objects: 1,2,...,5. Record them in the relation TPRC1(IDENT),
describing the CAs in the new TOR TPRC.

3. The information of the five different patterns should be copied from
NEWEMP3 to TPRC2(IDENT,TIME,JOBCLS), associating each tuple being

copied with the correct value of IDENT. Whenever two or more
objects have the same pattern in NEWEMP3, only one of them is copied
to TPRC2.

QUERY 6.13 presents the time projection version of QUERY 6.7. The key is
dropped in this query, ‘and a combination of one CA and one VA is projected

onto the new TOR.

UERY 6.1
CREATE TIME PROJECTION

FROM NEWEMP
ONTO SEX DEPTNO
INTO TPRD

The objects of the new TOR TPRD are determined by all the combinations of
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different patterns of DEPTNOs and SEXs that exist in the TOR NEWEMP. Each

different combination like this forms an object in the resulting TOR.

The regular relations representing the TOR TPRD are included in Table
6-15. Two objects of NEWEMP are "merged" to one in TPRD: employee 10010 and
employee 10050, since both of them are male, and have the same pattern in the
variation of their DEPTNOs. Note also that employee 10005 is not merged with
them despite her identical DEPTNO pattern, since she has a different SEX. The

same is true for employees 10025 compared to 10090.

QUERY 6.13 is resolved by the following procedure:

1. Create the new descriptive relation TPRD. IDENT is, as usual, its
key. SEX is a CA in this TOR and DEPTNO is a VA in it.

2. The objects of the new TOR are determined by all combinations of
different patterns of SEX and DEPTNO in the original TOR NEWEMP.
Therefore, scan NEWEMP1 (representing SEX) and NEWEMP2 (representing
DEPTNO), and prepare a list of the objects of this TOR, representing
all these different combinations. Allocate the IDENT values to
these objects in the new TOR TPRD, and record them in TPRD1,
together with their SEXs.

3. Copy from NEWEMP2 to TPRD2 all the information of the objects
included in the list, and associate the correct value of IDENT with

each tuple being copied.

4, Ignore the relation NEWEMP3.

QUERY 6.14 is the time projection version of QUERY 6.8. All the VAs are

projected onto the resulting TOR, and none of the CAs.
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TPRD(ATTRIBUTE,PTYPE,LTYPE)

- — -

- -

| SEX | e1 | 2 |

o — -

-

- —— -

- - — -

P ————— el

| 800101 |
| 810215 |
| 800101 |
| 810215 |
| 800101 |
| 820701 |
| 830508 |
| 810101 |
| 800101 |
| 800101 |

I —————— A et

Table 6-15: The Relations Representing the Result of QUERY 6.13
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QUERY 6.14
CREATE TIME PROJECTION
FROM NEWEMP
ONTO DEPTNO,JOBCLS
INTO TPRE

The objects of the new TOR TPRE are determined by all the combinations of
different patterns of the VAs DEPTNO and JOBCLS in the TOR NEWEMF. The

relations representing the TOR TPRE are included in Table 6-16.

TPRE(ATTRIBUTE,PTYPE,LTYPE)

-————— -

—— - —

| IDENT | 12 | 1 |
| DEPTNO | 12 | 3 I
| JoBcLs | 12 | 3 |
TPRE1(IDENT)
| IDENT |

- —— - ———

-
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TPRE2( IDENT, TIME, DEPTNO)

- - — -

| IDENT | TIME | DEPTNO |
| 800101 |
| 810215 |
| 800101 |
| 810215 |
| 800101 |
| 820701 |
[ 830508 |
| 810101 |
| 800101 |
l

- —— -

-

| IDENT | TIME | JOBCLS |
| 800101
| 810201
| 821015
| 800101
| 820101
| 830304
| 800101
| 820101
| 830304
| 810101
| 800101
| 800101 |
| 811015 |

————————— -

Table 6-16: The Relations Representing the Result of QUERY 6.14
Note that employees 10010 and 10005 are projected into one object for
this query. Also note that employees 10050 and 10030 have the same JOBCLS
pattern, but since they have different DEPTNO patterns they are projected into

two objects in the new TOR.
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Consider QUERY 6.15, which is the time projection version of QUERY 6.9.

QUERY 6.15
CREATE TIME PROJECTION
FROM NEWEMP
ONTO SEX,DEPTNO,JOBCLS
INTO TPRF

The objects of the resulting TOR TPRF are determined by all combinations
of the different patterns of SEX, DEPTNO, and JOBCLS in the TOR NEWEMP.
Checking the information in this TOR, leads to the conclusion that no two
objects in it have the same combination in their patterns of these attributes.
Therefore, all the operand's objects will be different objects in the new TOR
too, and in practice all the information included in NEWEMP2 and NEWEMP3 will
be copied to the new TOR, with no change, except the addition of the

identification numbérs.

QUERY 6.16 is the time projection version of QUERY 6.11. 1In this query,

all the non-key attributes are projected.

QUERY 6.16
CREATE TIME PROJECTION
FROM NEWEMP
ONTO NAME,SEX,DEPTNO,JOBCLS
INTO TPRH

Considering the content of NEWEMP, one can easily verify that all its

objects maintain their uniqueness, as well as their data, in the new TOR.
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The time projection operation provides an alternative to the meaning of
executing a PROJECT operation that does not preserve the entire key. The user

may choose the operation that fits his needs, either this operation or the

temporal PROJECT.
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Chapter 7

The Temporal JOIN Operation

The JOIN operation is used to combine information from two relations, and
mérge them into a new relation. Generally, two participating relations have
some common attribute(s), either explicitly by names, or implicitly by
content. These attributes serve as the tool to combine the corresponding

tuples from the two relations.

The temporal JOIN operation has not yet been fully and satisfactorily
defined [Ariav 83a], [Clifford 85a], [Snodgrass 85] and [Gadia 84]. However,
within our framework_ of implementing the temporal relational algebra
operations (see Chapter 4), its conceptual definition in our model is fairly
straightforward: a TOR J is a result of a JOIN operation with two existing
TORs A and B, if all the possible snapshots of J are the results of regular

JOIN operations with the corresponding snapshots of A and B.
The definition of the temporal JOIN at the external level is as follows:

Given two TORs K and L, where:

K = UNIONY_4(Ry),
= mn
L = UNION}_,(S;)

where R; and S; are the slices of time point i.

then, the new TOR M, containing the result of the temporal JOIN of K and L is:
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M = UNIONT_,(T;)

where each T; is the result of the regular JOIN:

T; = JOIN(R;,S;)

The difficulties -involved in implementing the temporal JOIN are
substantial, since two cubes are merged here, rather than two flat tables. The
implementation of this operation in the TDMS critically depends upon the types
of the common attributes in the joined TORs. It takes full advantage of the
temporal differentiation of attributes, by decomposing the operation into a
sequence of manipulations of corresponding pairs of relations, representing
the operands. Typically, most of these manipulations are straightforward, with
the exception of the manipulation of the common attribute. Therefore, this
decomposition isolates the difficulties involved in this operation, and

localize them.

The analysis of the JOIN operation in this chapter is limited to those
cases in which there is only one common attribute to the two operands. For
such operations, a comprehensive framework of classifying the various cases is

provided by Table 7-1.

Each "junction" in Table 7-1 represents a different case with respect to
the implementation of the JOIN. Since the temporal JOIN is defined as a

commutative operation, there are only six basic cases, as follows:

1. The common attribute is the key in both operands (key - key JOIN).

2. The common attribute is the key in one TOR, and a CA in the other
(key - CA JOIN).
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- - -

|The types of

| | | |
[the common I | | |
lattribute in | i | I
Ithe operands | KEY | CA | VA |
B | =~ -] e |
| [ I | !
| KEY F 7.9 1 9.2 1 131
l [ I I I
| CA | 7.2 | T4 1 751
| | [ | |
| VA I 7.3 | 981 7.6 |

-

Table T-1: The Categories of the JOIN Operation

3. The common attribute is the key of one TOR, and a VA in the other
(key - VA JOIN).

4. The common attribute is a CA in both operands (CA -~ CA JOIN).

5. The common attribute is a CA in one TOR, and a VA in the other (CA -
VA JOIN).

6. The common attribute is a VA in both operands (VA - VA JOIN).

Each of the six basic cases is discussed in a separate section. The
section number is written in the "box", corresponding to this particular case.
A1l the cases included in Table 7-1, are analyzed through comprehensive
examples. The semantics of each case is explained, followed by the description
of the implementation. Then, the correctness of the operation is
demonstrated, using the regular JOIN with two arbitrary snapshots of the
operands, and comparing them to the corresponding snapshot taken from the

resulting TOR. Note that in the following discussion we use the terms "first"
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and "second" to identify conveniently the operands of the temporal JOIN. It

should by no means be interpreted as if this operation is not a commutative

one.

The demonstration of the correctness of the JOIN operation requires a
correct interpretation ;f NULL values. A snapshot taken from either operand
may have objects that contain NULL values for all their VAs, indicating their
;nexistence, which should be inherited by the result of the JOIN. However, the
JOIN operation does not "know" the meaning of NULL values assigned to all the

'VAs of an object, and it matches such tuples with tuples of the other
snapshot, possibly containing non-NULL va;ues for their VAs. Therefore, in
the resulting relation non-existing objects do-not contain NULL values for all
their VAs, but only for those VAs which are originally NULL in their snapshot.
In order to correct this situation, an adjustment is made in which before
executing the JOIN, all the tuples that contain NULL values for all their VAs
in either snapshot (indicating that they practically do not exist) should be
deleted, and then the JOIN should be executed. This adjustment does not change
these snapshots, since only non-existing objects are deleted. One can even
find a deeper reason for this problem. The only reason for the introduction

of NULL values is the nature of the cube, that requires some means to indicate

non existence values at a specific time point. Once a snapshot is taken, the

NULL values are not needed any more, since at a specific time point, either
the value exists or it does not. Therefore, the real task of NULL values
assigned to all the VAs of some object at some time point is to imply the
deletion of this object from a snapshot taken at this time point, which

underlies the "adjustment" suggested above.
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In applying this adjusted procedure to any result of a temporal JOIN
- operation, it turns out that the snapshot taken from the resulting TOR is
always equivalent to the result of joining the corresponding snapshots of the
operands (according to the definition included in Chapter U4). Therefore, the
temporal JOIN is an opgration that can be defined to satisfy the strong

correctness criterion.

Let us start with perhaps the simplest JOIN operation, one that merges
two TORs having exactly the same key, and no common attributes outside the

key.

QUERY 7.1

JOIN EMP WITH SAL
INTO EMPSAL

The TORs EMP and SAL are included in Appendix A. They have the same key
EMPNO, which is alsc their only common attribute. Therefore, merging them

into one TOR is fairly simplé;

The semantics of this query is simple too. It creates a new TOR,
containing for each employee all his attributes from both EMP and SAL. Tables
7-2 and T7-3 present twe random snapshots of the operands (at 830101). Note,
that according to the adjustments, discussed above, tuples containing NULL

values in all their VAs have been deleted from these tables.
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- -

- —— - - —

| 10010 | MIKE | M | 2 [ 2 |
| 10005 | MARY | F | 2 | 3 |
| 10030 | HENRY | M | 3 I 2 |
| 10080 | ALICE | F | 3 | 2 |
| 10025 | OSCAR | M | Yy | 1 |
| 10090 | SUSAN [ F | 4 I 3 l

- — ] —— - ——

Table 7-2: A Snapshot from the TOR EMP at 830101

-

s

- ——— -

| 10010 | 22100 |
| 10005 | 22500 |
| 10030 | 23500 |
| 10080 | 24000 |
| 10025 | 32300 |
| 10090 | 21200 |

————

Table T7-3: A Snapshot from the TOR SAL at 830101

The JOIN operation, included in QUERY 7.1, conceptually joins each pair
of such corresppnding snapshots from the two operands, to form new snapshots,
containing their combined information. Then, all these snapshots are combined
together, to form the cubic view of this new TOR. This is the conceptual
structure of this JOIN. The result of joining the two snapshots, presented in

Tables 7-2 and 7-3, is included in Table 7-4.
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- —

i

-

| 10005 | MARY | F | 2 | 3 | 22500 |
| 10010 | MIKE | M | 2 | 2 | 22100 |
| 10025 | OSCAR | M | & 1 | 32300 |
| 10030 | HENRY | M | 3 | 2 | 23500 |
| 10080 | ALICE | F | 3 | 2 | 24000 |
| 10090 | SUSAN | F | 4 | 3 | 21200 |

T —

Table 7-4: The Result of Joining the Snapshots of EMP and SAL at 830101

Table 7-4 presents the salary of every employee in the same relation with
his data, as included in EMP. The new TOR consists of such snapshots for all

time points.

In order to describe the general procedure to evaluate such a JOIN
operation, assume that two TORs, RELA and RELB, are joined to form a new TOR
RELJA. These two TORs have the same key, denoted by (key_attributes).
Moreover, the key attributes are the two TORs' only common attributes. The TOR

RELA has n VAs, and is represented by the relations RELA, RELA4, ..., REL_ 4.

The TOR RELB has m VAs, and is represented by the relations RELB, RELB4, ...,

REL The procedure to create the new TOR RELJA is included in the

m+1*

following Algorithm T7.1:

1. The descriptive relation RELJA is the result of the following UNION
operation:

RELJA = UNION(RELA,RELB)

2. The relation RELJA4 is The result of the following regular JOIN
operation:
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JOIN RELA; WITH RELB4
INTO RELJA4
WHERE RELA4.(key_attributes)=RELB,.(Key_attributes)

3. If VAR, one of the VAs in RELA, is represented in RELA by the
relation RELA;, then its values are copied to the relation RELJA; by
the following JOIN operation:

JOIN RELA; WITH RELJA,

INTO RELJA4

USING RELA;.(key_attributes),RELA;.TIME,RELA;.VAR
WHERE RELA;.(key_attributes)=RELJA,.(key_attributes)

"Y4. The tuples of the relations RELB,, ..., RELB; 4 should be copied to
the relations RELJA «asy RELJA through the same procedure
as in step 3 above.

n+2° n+m+1?

5. Each object Op., of the new TOR is a combination of two objects O,
and O, of the two operands. NULL values should be recorded in all
the VAs of Op., at all time points at which at least one of the
original objects does not exist.

Note that in this particular case the algorithm covers any number of

common attributes, as long as they form the key in the two operands.

The same procedure, applied to the TOR EMPSAL, created by Jjoining the

TORs EMP and SAL, is the following:

1. The descriptive relation EMPSAL is the result of the following UNION
operation:

EMPSAL = UNION(EMP,SAL)

2. EMPSAL1 is the result of the following JOIN:

JOIN EMP1 WITH SAL1
INTO EMPSALA1
WHERE EMP1.EMPNO=SAL1.EMPNO

3. EMPSAL2 is the result of the following JOIN:

JOIN EMP2 WITH EMPSAL1
INTO EMPSAL2
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USING EMP2.EMPNO,EMP2.TIME,EMP2.DEPTNO
WHERE EMP2.EMPNO=EMPSAL1.EMPNO

EMPSAL3 is the result of a similar JOIN, where EMP3 replaces EMP2.

4. The tuples from SAL2 (describing SALARY in SAL) should be copied to
EMPSALY through the same procedure as described in step 3 above.

5. NULL values should be inserted in the VAs of non-existing dbjects,
as inherited from the operands (see Algorithm 7.1).

In a simple JOIN as the one included in QUERY 7.1 (key - key JOIN), all
the attributes maintain their original types in the new TOR. Therefore, the
algorithm that creates the new representing relations does not have to deal
with the problem of determining their types in the new TOR. This problem

appears, however, in more complicated JOIN operations.

There is no need to present the regular relations representing the new
TOR EMPSAL, as no new regular relation has been created (except the
descriptive relatioﬁ), and the existing regular relations that have been
recombined to represent this new TOR are included in Appendix A. Note that in
our database, the TORs EMP and SAL contain the same objects, and consequently
these objects are also the objects of the new TOR EMPSAL. However, if this is
not the situation, then only those objects that are included in both EMP and

SAL would be included in EMPSAL.

This query is a good example demonstrating some of the advantages of the
temporal differentiation of attributes. The creation of the new regular
relations, representing the new TOR, has been achieved through a seguence of

operations on the various relations representing the operands, thus
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illustrating how the problem of implementing the temporal JOIN has been

decomposed to a sequence of simple and manageable activities.

-~

The new TOR EMPSAL, which is the result of joining EMP and SAL has the
same CAs as EMP, and therefore its CAs are represented by the relation EMP1,
describing the CAs of the TOR EMP. 1Its VAs are represented by EMP2, EMP3 and
SAL2. Using these relations (see in Appendix A), we can now take a snapshot
from the new TOR EMPSAL at 830101. This snapshot will be equivalent to the
result of joining the corresponding snapshots from EMP and SAL, as represented
in Table 7-4. The only difference will be a tuple of employee 10050,
containing NULL value for all his VAs (and therefore vneglectable) in one
snapshot. This demonstrates that the definition of Key - Key JOIN conforms to

the strong correctness criterion.

7.2. key - CA JOIN

QUERY 7.2 illustrates a JOIN operation in which the common attribute is

the key in one TOR and a CA in the other.

QUERY 7.2

JOIN DRESS WITH EMP
INTO DRSEMP

The TOR EMP contains the data of each employee. The TOR DRESS describes
the dressing rooms used by the employees at all time points. Different
dressing rooms are allocated to men and women. Therefore, the attribute SEX is

the key of this TOR. On the other hand, SEX is one of the CAs in the TOR EMP.
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The purpose of QUERY 7.2 is to create a new TOR in which information about the
dressing rooms used by the various employees, according to their SEXs, will be
added to the data of these employees in the TOR EMP. The meaning of this
query is illustrated by joining two arbitrary snapshots of the two operands.
Tables T7-5 and T-6 prééent the snapshots of the TORs EMP and DRESS at the
arbitrary day 830101. Table 7-7 presents the result of the regular JOIN with

the snapshots included in Tables 7-5 and 7-6.

i —

T —— -

T —————

| 10005 | MARY | F | 2 | 3 l
| 10010 | MIKE | M | 2 | 2 l
| 10025 | OSCAR | M | 4 |1 |
| 10030 | HENRY | M | 3 I 2 |
| 10080 | ALICE | F | 3 | 2 I
| 10090 | SUSAN | F | 4 | 3 |

T ——— "~

Table 7-5: A Snapshot from the TOR EMP at 830101

| Key | va |
| SEX | ROOM |
| M | wMuoy |
| F | M610 |

-

Table 7-6: A Snapshot from the TOR DRESS at 830101

In Table T7-T7, the attribute ROOM is added to the other attributes of each
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- -

——— -

| 10005 | MARY | F | 2 | 3 | M610 |
| 10010 | MIKE | M | 2 | 2 | MyolL |
| 10025 | OSCAR | M | 4 |1 | MuoY |
| 10030 | HENRY | M | 3 [ 2 | M4o4 |
| 10080 | ALICE | F | 3 [ 2 | M610 |
| 10090 | SUsaN | F | 4 [ 3 | M610 |

B L T punp S —p—— e e et

Table T-T7: The Result of Joining Snapshots from EMP and DRESS at 830101
employee, as included in EMP, thus providing the information about his/her
dressing room at 830101. The new TOR DRSEMP conceptually consists of such

snapshots at all time points.

The common attribute, SEX, is the key of the TOR DRESS, and a CA in the
TOR EMP. The type of such an attribute in the new TOR is determined by its

type in the TOR in which it is not the key, and therefore it will be a CA& in

DRSEMP. The attribute ROOM which is a VA in DRESS will maintain its type in
" DRSEMP. In additidn, if the TOR DRESS would have had some CAs, they would have
been also CAs in DRSEMP. This situation is not caused by the temporal nature
of the operands. It can be explained by the dependency theory in the regular

relational model. There, it does not affect the implementation; here it does.

The creation of the new TOR DRSEMP is based on decomposition of this
operation into a sequence of operations involving pairs of representing

relations, one from each TOR. Most of the new representing relations carry
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the same relationships as they do in their original TORs. Therefore, they are
created by relatively simple operations, needed to guarantee that only tuples
which do belong to objects of the new TOR will be copied to the target
relations. As mentioned earlier, the JOIN creates new objects, based on the
existence of objects in both operands. For example, in QUERY 7.2, if there are
no female employees iﬁ'EMP, then the tuples describing the dressing rooms of
women will not be copied to the new TOR DRSEMP from the TOR DRESS. One
relation in the new TOR establishes a new relationship in this TOR: the one
that represents the VA ROOM in the new TOR. This relation establishes a direct
relationship between the individual employees and their dressing rooms. In
our case, this relation happens to be a result of a regular JOIN operation
with regular relations. in more complicated queries, the establishment of new

relationship requires more complicated activity (see later in this chapter).

The internal view of the new TOR DRSEMP is included in Table 7-8. In
this internal view, note that whenever an object does not exist in one of the
operands during some period, this fact is reflected in the resulting TOR.
Since this is an important point, let us be specific. The first is employee
10005 that exists in the TOR EMP only since 810210. Therefore, the value of
the VA ROOM for this employee is also recorded for 810210, and not for 800101,
the first day in which this VA has a non-NULL value in the original TOR DRESS.
An interesting case is exemplified by employe 10050. The first day at which a
non-NULL value of the VA ROOM is recorded for him in DRSEMP is 800601, the
first day at which this employee exists in the TOR EMP, and consequently in

the TOR DRSEMP. Then, at 820508 he quits, and stops to exist in the new TOR
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DRSEMP, as inherited from the TOR EMP. Therefore, not only DEPTNO and JOBCLS
are recorded as NULL in the TOR DRSEMP on this day, but the VA ROOM as well.
Then, at 830415 he returns, a fact that is indicated in EMP by the recording
of non-NULL values for his DEPTNO and JOBCLS. These values are, of course,
copied to DRSEMP. 1In ﬁddition, the value of the VA ROOM is evaluated for this
day by interpolation based for the information in DRESS, and recorded in the
new TOR DRSEMP at this day, just like DEPTNO and JOBCLS. In so doing, the

data recorded for employee 10050 in DRSEMP correctly reflects the periods of

time at which he does not exist.

Expressing the Key - CA JOIN by operations on the relations representing

the operands, is in general:

Two relations RELA and RELB are joined, to form a new TOR RELJB. RELA
has n VAs, and is represented by the relations RELA, RELA4, ..., RELA,, 4. Its
key is denoted by (key_attributes). RELB has m VAs, and is represented by the
relations RELB, RELB4y, ..., RELBp. 4. The common attribute, COMM, is a CA in

the first IOR and the key of the second TOR. The new TOR RELJB will be
) creatéd-ﬁy thé.following Algorithm 7.2:
1. The descriptive relation RELJB is the result of the following UNION:
RELJB = UNION[RELA, (RELB-tuple of COMM)]
2. The relation RELJB4 is the result of the following JOIN:
JOIN RELA, WITH RELB,

INTO RELJB,
WHERE RELA {.COMM=RELB.COMM

3. Let VARA be a VA in RELA, represented by RELA: in RELA and by RELJB,
in the new TOR RELJB. Then, it is a result og the following JOIN:
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—— - — i -

| Key | The CAs | The VAs |
| EMPNO | NAME | SEX | DEPTNO |  JOBCLS | ROOM |
| 10010 | MIXKE | M | 800101 3 | 800101 4 | 800101 M304 |
| | | | 810215 2 | 810201 3 | 820512 Miou |
I | | - | | 821015 2 | I
I I | I | | |
[ 10005 | MARY | F | 810210 2 | 810210 3 | 810210 M610 |
| | I I [ | I
| 10050 | DAVID [ M | 800601 1 | 800601 3 | 800601 M304 |
I I I | 820508 NULL | 820508 NULL | 820508 NULL |
I I | | 830415 1 | 830415 2 | 830415 Muoy |
I I I | | I |
| 10030 | HENRY | M | 800101 2 | 800101 3 | 800101 M304 |
I I I | 820701 3 | 820101 2 | 820512 MuOY |
| I I | 830508 2 | 830304 1 I I
I I | I | | |
| 10080 | ALICE | F | 810101 3 | 810101 2 | 810101 M610 |
| I I I | | I
| 10025 | OSCAR | M | 800101 4 | 800101 1 | 800101 M304 |
| | I I | | 820512 MuoL |
I | I I | I |
| 10090 | SUSAN | F | 800101 4 | 800101 4 | 800101 M610 |
| | i | | 811015 3 | |

D e e T ————

Table 7-8: The Internal View of the TOR DRSEMP

JOIN RELAs with RELJB,

INTO RELJE,

USING RELA;.(key attributes),RELA;.TIME,RELA.VARA
WHERE RELAj.(key_attributes):HELJg1.(key_attributes)

L. The relation representing a VA of the second TOR in the new TOR is
created by the following JOIN (described for a VA VARB, represented
in the second TOR by the relation RELB;, and in the new TOR by the
relation RELJBP):
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JOIN RELA; WITH RELB;

INTO RELJB

USING RELA4.(key_attributes),RELB;.TIME,
RELB; . VARB

WHERE RELA;.COMM = RELB;.COMM

5. NULL values should be inserted for all VAs of objects at time points
in which they do not exist, as inherited from the operands. -

The steps in creating the regular relations representing the TOR DRSEMF,

answering QUERY 7.2, are:

1. The descriptive relation DRSEMP is the result of the following
UNION:

DRSEMP = UNION[EMP, (DRESS-tuple of SEX)]
2. The relation DRSEMP1 is the result of the following JOIN:

JOIN EMP1 WITH DRESS1
INTO DRSEMP1
WHERE EMP1.SEX=DRESS1.SEX

3. Each of the relations DRSEMP2 and DRSEMP3 is created by the
following JOIN operation (described only for DRSEMP2):

JOIN EMP2 WITH DRSEMP1

INTO DRSEMP2

USING EMP2.EMPNO,EMP2.TIME,EMP2.DEPTNO
WHERE EMP2.EMPNO=DRSEMP1.EMPNO

4, The relation DRSEMP4 is the result of the following regular JOIN:

JOIN EMP1 WITH DRESS2

INTO DRSEMP4

USING EMP1.EMPNO,DRESS2.TIME,
DRESS2.ROOM

WHERE EMP1.SEX = DRESS2.SEX

This JOIN establishes a relationship between EMPNO and ROOM, based
upon the relationship between EMPNO and SEX in EMP1 and the
relationship between SEX and ROOM in DRESS2.

5. NULL values should be inserted for all VAs of objects at time points
in which they do not exist, as inherited from the operands.
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As explained in Algorithm 7.2, in general, objects of either of the two
operands may be dropped in the new TOR. For example, if there are no women in
the TOR EMP, then the objects of the TOR DRESS, describing the dressing rooms
allocated to women H;ll. be dropped by step 1 of the algorithm. In our
specific example it does not happen. Therefore, the relations EMP1, EMP2 and
EMP3 are practically copied from EMP to DRSEMP, and only the descriptive
relation DRSEMP and the relation DRSEMPY are new relations in the new TOR.

Table 7-9 contains these relations.

The Descriptive Relation of the TOR DRSEMP

DRSEMP (ATTRIBUTE,PTYPE,LTYPE)

- —

i

| EMPNO | 14 | 1 |
| NAME | ceo | 2 |
|  SEX I €& 1 2 |
| DEPTNO | I2 | 3 |
| JoBcLS | 12 | 3 |
|  ROOM | c4 | 3 |

-
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The Relation Representing the VA ROOM in the TOR DRSEMP

DRSEMPY (EMPNO, TIME, ROOM)

——— - -

| 10010 | 800101 | M304 |
| 10010 | 820512 | MuOY |
| 10005 | 810210 | M610 |
| 10050 | 800601 | M304 |
| 10050 | 820508 | NULL |
| 10050 | 830415 | Moy |
| 10030 | 800101 | M304 |
| 10030 | 820512 | Myo4 |
| 10080 | 810101 | M610 |
| 10025 | 800101 | M304 |
| 10025 | 820512 | MuoY |
| 10090 | 800101 | M610 |

——————————— - —

Table 7-9: The New Relations Created for the TOR DRSEMP
This case is not as simple as the Key - Key case. However, the temporal
differentiation of attributes allows us again to decompose the JOIN into a
sequence of operations with the relations representing the operands that

produce the new representing relations of the resulting TOR.

The data of the TOR resulting from QUERY 7.2 is actually included in the
relations EMP1, EMP2, EMP3 (included in Appendix A) and DRSEMP4 (presented
earlier in Table 7-9). Using these relations, we can now take a snapshot from
the new TOR DRSEMP at 830101, which will then be eguivalent to the result of
joining the corresponding snapshots from EMP and DRESS at the same day, as
presented in Table 7-7 above. This implies that the Key - CA JOIN conforms to

the strong correctness criterion.



Page 152

7.3. key - VA JOIN

The case Key - VA JOIN is exemplified by QUERY 7.3. This query means to

complete the information about employees, already included in EMP, by adding

the names and the managers of their departments, taken from the TOR DEPT.

UERY 7.

JOIN EMP WITH DEPT
INTO EMPDPT

The semantics of QUERY 7.3 is explained by joining snapshots taken from
the operands in this JOIN. Tables 7-10 and 7-11 present snapshots taken from

EMP and DEPT at 810215. Table 7-12 presents the result of their JOIN.

- — - -

| The Key | The CAs | The VAs |
| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 10010 | MIKE | M | 2 | 3 |
| 10005 | MARY | F | 2 I 3 |
| 10050 | DAVID | M | 1 | 3 |
| 10030 | HENRY | M | 2 | 3 |
| 10080 | ALICE| F | 3 | 2 I
| 10025 | OSCAR| M | Yy | 1 I
| 10090 | SusaN | F | it i y |

e e L e e e T ——————

Table 7-10: A Snapshot from the TOR EMP at 810215

The resulting TOR EMPDPT consists of all possible snapshots that are
results of JOIN operations with the corresponding snapshots of EMP and DEPT,

g as the one presented in Table T7-12.
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i

| key | a CA | a va |

| DEPTNO | DEPTNM | DEPMGR |

| 1 | SALES [ 10050 |

I 2 |  PRODUCTION | 10030 |

| 3 |  ACCOUNTING | 10080 |

I 4 |  MANAGEMENT | 10025 |

Table 7-11: A Snapshot from the TOR DEPT at 810215
| Key | The CAs | The VAs |
| EMPNO | NAME | SEX | DEPTNO | JOBCLS | DEPTNM | DEPMGR |
| 10005 | MARY | F | 2 | 3 | PRODUCTION | 10030 |
| 10010 | MIKE | M | 2 | 3 | PRODUCTION | 10030 |
| 10025 | OSCAR | M | y | 9 | MANAGEMENT | 10025 |
| 10030 | HENRY | M | 2 | 3 | PRODUCTION | 10030 |
| 10050 | DAVID-| M | 1 ] 3 | SALES | 10050 |
| 10080 | ALICE | F | 3 1 2 | ACCOUNTING | 10080 |
| 10090 | SUSAN | F | y | oy | MANAGEMENT | 10025 |
Table T7-12: The Result of Joining the Snapshots of EMP and DEPT at 810215

The implementation of this JOIN is accomplished by operations with the

representing relations of the operands.

The two operands have the common

attribute DEPTNO which is a VA in EMP, and the Key in DEPT. Its type in EMP

not only determines its own type in EMPDPT as a VA, but also the types of

DEPTNM and DEPMGR as well.

However,

since DEPTNM is a CA in DEPT,

its

introduction into EMPDPT is still relatively simple. The VA DEPMGR, however,
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presents a new problem caused by its type as a VA in DEPT, which in itself is
a VA in EMP. Determining who is the manager of a specific employee at a
particular day depends on both the department of this employee on this day,
and the manager of this department on this day, and requires a special
procedure. This issue is discussed in the following description of the steps

to create a new TOR as a result of such a JOIN operation.

In the general case, there are two TORs, RELA and RELB, that are joined
to form a new TOR RELJC. The first TOR has n VAs, and is represented by the
relations RELA, RELA4, ..., RELA_ . 4. Its key is denoted by (key_attributes).
The second TOR has m VAs, and is represented by the relations RELB, RELB4,
.-+y RELBp, 1. The common attribute, COMM, of the two TORs is the key of RELB
and a VA in RELA. It is represented by the relation RELAQ in RELA. The
procedure to create the new TOR RELJC is included in the following Algorithm

Te38

1. The creation of the descriptive relation RELJC is as follows:
RELJC = UNION(RELA,RELB)

Change the types of all the attributes of RELB to 3 (VAs) in RELJC.

2. The relation RELJC,, describing the common attribute in RELJC, is
the result of the following JOIN:

JOIN RELA, WITH RELB,
INTO RELJC,

USING RELA .(key_attributes),RELA, .TIME,RELA, .COMM
WHERE RELA, .COMM=RELB., .COMM

i

3. Create a temporary relation TEMP, to contain the objects of RELJC:
PROJECT RELJC

ONTO (key attributes)
INTO TEMP
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Every VA, VARA, in the TOR RELA (represented by the relation RELAl)

will be copied to the relation RELJCq in the new TOR by the
following JOIN:

JOIN RELA) with TEMP
INTO RELJC

WHERE RELA,.(key_attributes)=TEMP.(key attributes)

The CAs relation RELJC4 is created by the following JOIN:

JOIN RELA; WITH TEMP
INTO RELJC,

WHERE RELA,.(key_attributes)=TEMP.(key attributes)

Every CA, say CONST, of the TOR RELB, becomes a VA in RELJC, and is

represented by a separate relation, say RELJC; in it, created by the
following JOIN:

JOIN RELJC, WITH RELB4

INTO RELJC;

USING RELJCk.(key_attributes),RELJCk.TIME,
RELB.CONST

WHERE RELJC, .COMM=RELB, .COMM

This operation replaces each value of COMM in RELJC, by its
corresponding value of CONST in the TOR RELB, and records the
results in the relation RELJC;.

Each VA in the TOR RELB will be a VA in the new TOR too. Assume
that one of these VAs is VAR, it is represented by the relation
HELBj in RELB, and will be represented by the relation RELJC. in the
new TOR. This relation describes the values of this VA as functions
of TIME for each of the objects of the first TOR, while originally,
in RELBj, it describes these values for each of the objects of the
second TOR. Therefore, the relation RELJCp is produced by a merge
of RELJCy, and RELBJ, that cannot be translated to a relational
algebra operation. Rather, it is done by scanning both relations
simultaneously, identifying the VAR value of each of the first TOR's
objects at all the time points included in its tuples in RELJC},, and
recording this information in RELJC.,. In addition, this procedure
creates also the additional necessary tuples of RELJC,, reflecting
those objects of the first TOR that are affected by changes in VAR
values, as described in the relation RELBj.

NULL values should be inserted for all VAs of objects in RELJC at

time points in which they do not exist, as inherited from the
operands.
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This procedure, applied to QUERY 7.3, creates the new TOR EMPDPT as

follows:

1. The creation of the descriptive relation EMPDPT is as follows:
EMPDPT = UNION(EMP,DEPT)

With the types of all the attributes of DEPT changed to 3 (VAs) in
EMPDPT.

2. The relation EMPDPT2 , describing the VA DEPT in EMPDPT, is obtained
by the following JOIN:

JOIN EMP2 WITH DEPT1

INTO EMPDPT2

USING EMP2.EMPNO,EMP2.TIME,EMP2.DEPTNO
WHERE EMP2.DEPTNO=DEPT1.DEPTNO

3. Create a temporary relation TEMP, to contain the objects of EMPDPT:

PROJECT EMPDPTZ2
ONTO EMPNO
INTO TEMP

The relation EMPDPT3, representing JOBCLS in EMPDPT is a result of
the following JOIN:

JOIN EMP3 WITH TEMP
INTO EMPDPT3
WHERE EMP3.EMPNO=TEMP.EMPNO

4, The relation EMPDPT1, describing the CAs in the new TOR is created
by the following JOIN:

JOIN EMP1 WITH TEMP
INTO EMPDPT1
WHERE EMP1.EMPNO=TEMP.EMPNO

5. EMPDPT4 describes the VA DEPTNM that, being a CA in DEPT, is

determined uniquely by DEPTNO. Therefore, the creation of EMPDPTY
is achieved by:

JOIN EMPDPT2 WITH DEPT1
! INTO EMPDPTY
USING EMPDPT2.EMPNO,EMPDPT2.TIME,
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DEPT1.DEPTNM
WHERE EMPDPT2.DEPTNO=DEPT1.DEPTNO

6. The relation EMPDPT5 describes the values of DEPMGR as functions of
TIME for each employee. It is created by scanning EMPDPT2 and DEPT2
simultaneously, identifying the manager of each employee at all the
time points included in his tuples in EMPDPTZ2, and recording this .
information in EMPDPT5. In addition, this procedure creates the
additional necessary tuples of EMPDPT5, reflecting the employees
affected by changes in departments managers, as described in DEPT2.

7. NULL values should be recorded for all VAs of objects at time points
in which they do not exist. E.g., employee 10050 in the TOR EMP
does not exist during the period 820508 - 830414. Therefore, in the
resulting TOR EMPDPT, all the VAs of this object should be NULL
during this period. The VAs inherited from EMP are clearly NULL,
and NULL values are inserted in the relations representing the VAs
DEPTNM and DEPMGR in the new TOR, VAs that are inherited from the
TOR DEPT.

The new relation EMPDPT5 is presented in Table T7-13. The
presentation of all other relations that represent the new TOR EMPDPT
is omitted, since they are either existing relations, or easily
derivable from existing ones. In this specific example all the
objects of the two operands are included in the new TOR, but as
explained before, in general some of them may be ignored. For example,
if no employee ever worked for department 3, then the information
about this department in DEPT will be ignored.

This query illustrates the complexities involved in performing the JOIN

operation, and the dependency of this operation upon the types of the common

attributes in the participating TORs. Nevertheless, decomposing the JOIN into

a sequence of a fairly isolated operations on the representing relations of
the operands, helps to reduce the complexity of this JOIN. Basically, in a VA
- Key JOIN, the objects of the new TOR are of the same kind as those of the
TOR in which the common attribute is a VA. Objects that appear only in one of
them (i.e., they do not have matching objects in the other TOR) are omitted

from the result, and therefore the relations representing them in the new TOR
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EMPDPTS (EMPNO, TIME, DEPMGR)

-

-

| 10005 | 810210 | 10030 |
| 10005 | 820701 | 10005 |
| I I I
| 10010 | 800101 | 10010 |
| 10010 | 810215 | 10030 |
| 10010 | 820701 | 10005 |
| | I I
| 10025 | 800101 | 10025 |
I | I I
| 10030 | 800101 | 10030 |
| 10030 | 820701 | 10080 |
| 10030 | 830508 | 10005 |
| | | I
| 10050 | 800601 | 10050 |
| 10050 | 820508 | NULL |
| 10050 | 830415 | 10050 |
| I | I
| 10080 | 810101 | 10010 |
| 10080 | 810215 | 10080 |
| I I |
| 10090 | 800101 | 10025 |

-

Table 7-13: The Relation Representing the Managers
of All Employees at All Time Points

'cénnot'simply.be-copied from those of one TOR, but must be created by regular

JOIN operations that select only the proper objects.

The objects of the second TOR (in which the common attribute is the key)
just add information to the corresponding objects of the first TOR. In
addition, all the second TOR's attributes become VAs in the new TOR.
Therefore, new relationships should be established between them and the key of

the new TOR (which is inherited from the first TOR). This issue is relatively
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simple when dealing with the CAs of the second TOR, and is resolved by
appropriate JOIN operations. Transfering a VA from the second TOR to the newﬁiw
TOR is more complicated. It requires a special operation that infers the
temporal path of this VA in the objects of the new TOR, derived from its
variation in the second TOR and from the variation of the second TOR's key as

a VA in the first TOR.

The VA - Key operation, as defined here, satisfies the strong correctness
criterion. Taking a snapshot from the new TOR EMPDPT at 810215, produces a
relation that is identical to the result of joining snapshots from EMP and

DEPT at this day (Table 7-12 above).

7.4. CA - CA JOIN

This case is presented by using the TORs EMP and UNIONS in QUERY 7.4
below. The TOR UNIONS contains information about unions that are present in
the company and their offices (there are "currently" three unions, two for men
only and one for women only). The content of this TOR is included in Appendix
A. It is assumed that every employee is a member in all the unions that

correspond to his/her sex.

UERY 7.4

JOIN UNION WITH EMP
INTO UNEMP

The purpose of QUERY 7.4 is to associate each individual in the company

Wwith the unions of which he or she is a member, and present the combined
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information of the employees and their unicns in one TOR. The meaning of
QUERY 7.4 is illustrated by taking snapshots from the operands at an arbitrary
day, and joining them to produce a relation that is one of many of which the
new TOR conceptually consists. The two snapshots (at 810215) are presented in

Tables 7-14 and 7-15. Their JOIN is presented in Table 7-16.

- - -

- — -

T —— - -

! 10005 | MARY | F | 2 | 3 |
| 10010 | MIKE | M | 2 | 3 I
| 10025 | OSCAR | M | 4 . l
| 10030 | HENRY | M | 2 3 l
| 10050 | DAVID | M | 1 [ 3 !
| 10080 | ALICE|{ F | 3 | 2 I
| 10090 | SUSAN | F | 4 | 4 |

——— T — — -

Table 7-1;;- & Snapshot from the TOR EMP at 810215

———— -

i —— i ———

| UNION | SEX | OFFICE |

e

| ALPHA | M | M101 |
| BETA | F | M102 |
| GAMA | M | w203 |

——————————— -

Table T7-15: A Snapshot from the TOR UNIONS at 810215

The new TOR UNEMP conceptually consists of all pgssible snapshots like

the one represented in Table 7-16. This TOR contains new type of object,
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| ALPHA | 10010 | M | MIKE | M101 | 2 | 3 |
| ALPHA | 10025 | M | OSCAR | M101 | 4 I 1 |
| ALPHA | 10030 | M | HENRY | M101 | 2 | 3 |
| ALPHA | 10050 | M | DAVID | M101 | 1 3 I
| BETA | 10005 | F | MARY | M102 | 2 3 I
| BETA | 10080 | F | ALICE | M102 | 3 | 2 I
| BETA | 10090 | F | SUSAN | M102 | 4 | 4 I
| GAMA | 10010 | M | MIKE | w203 | 2 | 3 I
| GAMA | 10025 | M | OSCAR | w203 | 4 |1 I
| GAMA | 10030 | M | HENRY | W203 | 2 | 3 |
| GAMA | 10050 | M | DAVID | w203 | 1 | 3 |

e e e e LT T TSy ———

Table 7-16: The Result of Joining Snapshots of EMP and UNIONS at 810215
namely "union members", i.e., all combinations of UNIONs and EMPNOs that
exist. The conceptual construction of this JOIN is inde;d similar to previous
JOIN operations analyzed in this chapter. Its implementation is symmetric
(like the Key - Key JOIN above), and the two operands are treated the same.
The new key is a combination of the two operands' keys. The common attribute
is a CA that depends upon each of them in its TOR, and therefore the new TOR
should reflect this dependency, by having this combination of the keys as its
key. Consequently, all other attributes maintain their original types, since’

their dependency and variation do not change in their transition to the new

TOR. The internal view of the new TOR UNEMP is presented in Table 7-17.

=,
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———— i — —— ——

| The Key | The CAs | The VAs |
| UNION | EMPNO | SEX | NAME | 0=TICE [ DEPTNO JOBCLS |
| ALPHA | 10010 | M |-MIKE | 8005: M101 | 800501 3 800501 y |
| I I I | 8106’5 N503 | 810215 2 . £10201 3 |
I [ | i | | . 821015 2 |
I | | I [ [ | |
| ALPHA | 10050 | M | DAVID | 8006:1 M101 | 800601 1 | 300601 3 |
I | | | | 81065 N503 | 820508 NULL | 820508 NULL |
| | | I | 82058 NULL | 830415 1 | 830415 2 |
| I | : | 830:°5 N503 | I [
I | | | I | | |
| ALPHA | 10030 | ¥ | HENRY | 8005:1 M101 | 800501 2 | 800501 3 |
| ! | ' | 810¢°5 N503 | 820701 3 | 820101 2 |
I | | I | 830508 2 | 830304 ,
| | I . | | I I
| ALPHA | 10025 | M | OSCAR | 800521 M101 | 800501 4 | 800501 1]
I | | | | 810¢°5 N503 | I |
| | | | | | I
| BETA | 10005 | F ' MARY | 810z:0 M102 | 810210 2 | 810210 3 |
I I | : | 81020 N505 | | |
| | | . [ I I |
| BETA | 10080 | F | ALICE | 810°31 M102 | 810101 3 | 810101 2 |
I I I ! | 81020 N505 | I I
I I I | I | [
| BETA | 10090 | F ' SUSAN | 800321 M102 | 800601 L | 800601 y |
| I I I I |

810320 N505 | 811015 3

—————— - - -
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| The Key | The CAs I The VAs |
| UNION | EMPNO | SEX | NAME | OFFICE | DEPTNO | JOBCLS |
| GAMA | 10010 | M | MIKE | 810210 W203 | 810210 3 | 810210 y |
| | I | | | 810215 2 | 810201 3
| | | | [ | | 821015 2 |
| I | | | | [ [
| GAMA | 10050 | M | DAVID | 810210 w203 | 810210 1 | 810210 3 |
| | | | | 820508 NULL | 820508 NULL | 820508 NULL |
| | [ I | 830415 W203 | 830415 1 | 830415 2 |
| | | | | | | |
| GAMA | 10030 | M | HENRY | 810210 W203 | 810210 2 | 810210 3 |
| | I I I | 820701 3 | 820101 2 |
| | I I | | 830508 2 | 830304 1 |
| I | | | | I |
| GAMA | 10025 | M | OSCAR | 810210 w203 | 810210 4 | 810210 1

B T T T Lk T LT g —— - - -

Table 7-17: The Internal View of the TOR UNEMP
The general CA - CA JOIN joins two TORs, RELA and HELB,Iéo form the TQR
RELJD. The TOR RELA has n VAs, and is represented by the relations RELA,
RELAq, ..., RELAiq. -Its key is denoted by (key A). The TOR RELB has m VAs,
and is represented by the relations RELB, RELB4, ..., RELBp 4. Its key is
denoted by (key B). The two TORs have one common attribute, COMM, which is a
Ci in both of them. Tﬁe resulting TOR RELJD is created through the following
Algorithm 7.4:
1. The descriptive relation RELJD is the result of the following UNION:
RELJD = UNION(RELA,RELB)
2. The relation RELJD4 is the result of the following JOIN: &
JOIN RELA4 WITH RELB4

INTO RELJD,
WHERE RELB,.COMM = RELA.COMM
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3. A VA in the first TOR, say VAEL represented by RELA;, is represented
by a relation, say RELJDj, in RELJD, crzated by the following JOIN:

JOIN RE_JD4 WITE RELA;

INTO RELJDj

USING EELAi.(keF_A),RELJD1.(key_B),
FELA; .TIMZ .RELA; . VARA

WHERE F=LJD.(key_A) = RELA;.(key_A)

4, similarly, a VA VARB in FZLB, represented by RELB,, will be
represented by RELJD;, createc by the following JOIN:

JOIN RTLJD; WITE RELB,

INTO RTLJD;

USING RELJD4.(key_A),RELB,.(key_B),
RELB) . TIMZ ,RELBy, . VARB

WHERE FEZLJD4.(key_B) = RELB,.(key_B)

5. NULL values are recorded for all VAs of objects at time points in
which they do not exist, as ZInherited from the operands, including
periods before the first expZ-Zcitly recorded values in the operands
for all their objects.

The new TOR UNEMP, answerirg QUERY 7.4, is created by the following
procedure:
1. The relation UNEMP is the result of the following UNION:
UNEMP = TNION(EMF,UNIONS)
2. The relation UNEMP1 is the result of the following regular JOIN:

JOIN EMF~ WITH UNIONS1

INTO UNEMP1

USING UNZONS.UNION,EMP.EMPNO,
EM=.SEX,EMP .NAME

WHERE UNZONS1.SEX = EMP1.SEX

3. The relation UNEMP2 is the result of the following regular JOIN:
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JOIN UNEMP1 WITH UNIONS2

INTO UNEMP2

USING UNIONS2.UNION,UNEMP1.EMPNO,
UNIONS2.TIME,UNIONS2.0FFICE

WHERE UNEMP1.UNION = UNIONS2.UNION

The relation UNEMP3 is the result of the following regular JOIN:

JOIN UNEMP1 WITH EMP2

INTO UNEMP3

USING UNEMP1.UNION,EMF2.EMPNO,
EMP2.TIME,EMP2.DEPTNO

WHERE UNEMP1.EMPNO = EMP2.EMPNO

4. The last relation UNEMP4 is the result of a regular JOIN, similar to
the previous one, where EMP2 is replacec by EMP3 and DEPTNO is
replaced by JOBCLS.

5. NULL values are recorded for all VAs of objects at time points in
which these objects do not exist. In QUERY 7.4, such a situation
happens with employee 10050. NULL values were inserted for the VA
OFFICE of all the objects in the new TOR UNEMP (Table 7-17 above)
which contain EMPNO=10050 as one of their components, at the time
points implied by NULL values in both VAs DEPTNO and JOBCLS. Also,
non-NULL values (obtained by interpolation in the TOR UNIONS) were
assigned at a .later time points to the VA OFFICE, as implied by
DEPTNO and JOBCLS values of the object 10050 in EMP. In addition,
the first non-NULL values for all VAs of all objects are recorded
for the latest time point of the two that appear in DEPTNO and
JOBCLS (in EMP for the EMPNO component of the objects) on one hand,
and in OFFICE (in UNIONS for the UNION component of the objects) on
the other hand. This makes the information in the new TOR
consistent with the way of indicating periods of time at which
objects do not exist, by NULL values assigned to all their VAs
during these periods. In so doing, these objects have implicit NULL
values during the period of time before both of their components
(EMPNO in EMP, and UNION in UNIONS) first exist in their original
TORs.

From implementational point of view, the CA - CA JOIN is a symmetric
case. This symmetry is reflected in the underlying procedure: the new key is

the union of the original keys; all the attributes maintain their original
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types; and the transformation of each attribute from its original TOR to the
new one depends only on its type, and not on the identity of the operand to
which it belongs. As could be seen through inspection of Tables 7-17 and

7-16, this JOIN could be defined to satisfy the strong correctness criterion.

7.5. CA - VA JOIN

The TORs EMP and PHONES are used in presenting this case. The TOR PHONES
describes the various telephones used by the various departments in our
organization. Its key is the telephone number; it has the CA DEPTNO,
indicating the department to which it is assigned, and the VA LINES indicating
the number of lines allocated to each number at each point of time. The

content of the TOR PHONES is included in Appendix A.

QUERY 7.5 below demonstrates the CA - VA JOIN. It associates the
individuals in the organization with the telephone numbers through which they

can be reached, according to their departments.

QUERY 7.5

JOIN PHONES WITH EMP
INTO PNEMP

We illustrate the meaning of QUERY 7.5 by Jjoining two snapshots taken
from the operands at an arbitrary time point, say 830101. These snapshots are
presented in Tables 7-18 and 7-19. The result of their JOIN is presented in

Table 7-20. The new TOR PNEMP conceptually consists of such relations at all
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time points. Therefore, this TOR cesscribes the associations between emplcyees

and departmental telephone numbers at all time points.

-

e e L T T p—

D L e ———— T e

i

| 10010 | MIKE | M | 2 I 2 I
| 10005 | MARY | F | 2 [ 3 |
| 10030 | HENRY | M | 3 |2 i
| 10080 | ALICE| F | 3 | 2 I
| 10025 | oscar | M | y |1 |
| 10090 | susan | F | 4 | 3 1

- - - =

Table 7-18: A Snapshot from the TOR EMP at 830101

-
-

- -

| 2856010 |
| 2856040 |
| 2856090 |
| 2856110 |
| 2856000 |
| 2856100 |

- ———— - — -

Table 7-19: A Snapshot from the TOR PHONES at 830101

As shown in Table 7-20, this JOIN creates new objects identified by the
combination of the two operands' keys. The reason for this is that the common
attribute is a non-key attribute in both operands. Since this attribute

depends on both keys (as expressed in the two TORs), this dependency should be




Page 168

—— - -

| The Key | The CAs | The VAs |
| EMPNO | PHONE | NAME | SEX | DEPTNO | JOBCLS | LINES |
| 10005 | 2856040 | MARY | F | 2 | 3 [ 3 |
| 10005 | 2856090 | MARY | F | 2 [ 3 | 2 |
| 10010 | 2856040 | MIKE | M | 2 | 2 I3 |
| 10010 | 2856090 | MIKE | M | 2 | 2 I 2 |
| 10025 | 2856000 | OSCAR | M | 4 |1 S
| 10025 | 2856100 | OSCAR | M | 4 |1 o1
| 10030 | 2856110 | HENRY | M | 3 | 2 1
| 10080 | 2856110 | ALICE | F | 3 | 2 1
| 10090 | 2856000 | SUSAN | F | 4 I3 I
| 10090 | 2856100 | SUSAN | F | 4 | 3 I 1 I
Table 7-20: Joining the Snapshots from EMP and PHONES at 830101

reflected in the new TOR, by having both keys combining the new key (this

property is inherited from the regular relational model). The common

attribute DEPTNO will be a VA in the new TOR, as it is in EMP, and not a CA,

its type in PHONES.

Table T7-21.

The internal view of the new TOR PNEMP is presented in



———————————— - —

| The Key l The CAs | The VAs !
| EMPNO | PHONE | NAME | SEX | DEPTNO |  JOBCLS | LINES |
10010 | 2856110 | MIKE | M | 800101 3 | 800101 4 | 800101 1 |
| . | | 810215 NULL | 810201 NULL | 810215 NULL |
| | I [ | | |
10010 | 2856040 | MIKE | M | 810215 2 | 810215 3 | 810215 1 |
| | | | | 821015 2 | 810304 3 |
| ! [ | | | I
10010 | 2856090 | MIKE | M | 810215 2 | 810215 3 | 810215 2 |
| | | I | 821015 2 | I
| | I | | | |
10005 | 2856040 | MARY | F | 810210 2 | 810210 3 | 810210 1 |
| | | | | . ] 810304 3 |
| | I [ | | l
10005 | 2856090 | MARY | F | 811001 2 | 811001 3 ] 811001 2 |
| | | | | | |
10050 | 2856010 | DAVID | M | 800601 1 | 800601 3 | 800601 1 |
| | | | 820508 NULL | 820508 NULL | 820508 NULL |
l [ i | 830415 1 | 830415 2 | 830415 1 |
r | | | | | l
10030 | 2856040 | HENRY | M | 800101 2 | 800101 3 | 800101 1 |
| |~ | | 820701 NULL | 820101 2 | 810304 3 |
| [ [ | 830508 2 | 820701 NULL | 820701 NULL |
| f | I | 830508 1 | 830508 3 |
| | | l I | |
10030 | 2856090 | HENRY | M | 811001 2 | 811001 3 | 811001 2 |
| | | | 820701 NULL | 820101 2 | 820701 NULL |
| [ | | 830508 2 | 820701 NULL | 830508 2 |
| | | | | 830508 1 | !
1 | | | | | |
10030 | 2856110 | HENRY | M | 820701 3 | 820701 2 | 820701 1
| I I | 830508 NULL | 830304 1 | 830508 NULL |
| | | | | I |

830508 NULL

-



-

| The Key | The CAs | The VAs |
| EMPNO | PHONE | NAME | SEX | DEPTNO | JOBCLS | LINES I
| 10080 | 2856110 | ALICE | F | 810101 3 | 810101 2 | 810101 1 |
I I I [ | I I I
| 10025 | 2856000 | OSCAR | M | 800101 4 | 800101 1 | 800101 1 |
| I I : I I I | I
| 10025 | 2856100 | OSCAR | M | 800401 4 | 8oo40o1 1 | 8oodo1 1 |
| I | | I I I I
| 10090 | 2856000 | SUSAN | F | 800101 4 | 800101 4 | 800101 1 |
I | I I | | 811015 3 | I
| | I | | I | |
| 10090 | 2856100 | SUSAN | F | 800401 4 | 800401 4 | 800401 1 |
| | I | | | 811015 3 | I

T — -

Table 7-21: The Internal View of the TOR PNEMP

Let us, for instance, inspect the object EMPNO=10030 and PHONE=2856090 in
Table 7-21. The CAs of this object are those of the TOR EMP. Specifically,
NAME=HENRY and SEX=M are inherited from employee 10030. The determination of
the data in its VAs is-more complicated. All of them should be NULL at time
points in which this object does not exist (i.e., employee 10030 is not in the
department to which the telephone 2856090 is assigned). At time points in
which this object does exist, its VAs should inherit their values from their
original TORs. Specifically, PHONE=2856090 is assigned to DEPTNO=2 starting
at 811001 (we learn this from the fact that the VA LINE is assigned its first
non-NULL value for PHONE=2856090 in the TOR PHONES at 811001). Therefore,
only the period in which EMPNO=10030 was assigned to department 2, after
811001 is relevant to the object EMPNO=10030 and PHONE=2856090. All VAs for
this object in the new TOR (DEPTNO, JOBCLS and LINES) inherit their values at

this day from the original TORs. At 820101, a change occurred in the value of
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JOBCLS in EMP for object 10030. The day 820101 is included in the period at
which the object EMPNO=10030 and PHONE=2856090 exists, and therefore this
change is recorded in the new TOR. Then, at 820701 employee 10030e;eaves
department 2, implying the termination of the object EHPNO=10036- and
PHONE=2856090 in the new TOR. Therefore, NULL values are recorded for DEPTNO,
JOBCLS and LINES of this object in the new TOR. Then, at 830508 employee 10030
returns to department 2. The telephone 2856090 is still assigned to this
department at this day (the value of the VA LINE in the TOR PHONES is non-NULL
for this telephone at this day). Therefore, the values of JOBCLS and LINES (in
addition to DEPTNO), derived from the operands at this day are recorded for
the object EMPNO=10030 and PHONE=2856090 in the new TOR. According to the
data of employee 10030 in EMP and the data of telephone 2856090 in PHONES, no
further changes are recorded in the VAs of the object EMPNO=10030 and

PHONE=2856090 in the new TOR.

The problems involved in formulating this JOIN are similar to those
encountered earlier in the Key - VA JOIN, but they are nevertheless much
deeper. Here we have a CA instead of the key, and therefore the key of the
new TOR UNEMP contains the keys of both TORs participating in the JOIN. As in
the result of QUERY 7.3, the common attribute DEPTNO will be a VA in the
resulting TOR, derived from its type in EMP. Yet, all other attributes will
maintain their original types. The creation of the VA LINES in the resulting
TOR PNEMP is similar to the creation of the VA DEPMGR inﬁPhe résulting TOR of
QUERY T7.3. In the TOR UNEMP, the VA LINES is associated got only with PHONE,

but with the combination of PHONE and EMPNO, and therefore it is affected by




Page 172
its original values in the TOR PHONES together with the values of DEPTNO in
the TOR EMP. However, its dependency on DEPTNO in the TOR PHONES is not an
explicit one like the dependency of an attribute on its key, and therefore the
procedure to determine the values of LINES in the new TOR is more complicated

than the one used in QUERY 7.3, to relate employees to their managers.

Let us present the general case of CA - VA JOIN. Two TORs, RELA and RELB

are joined to form a new TOR RELJE. The TOR RELA has n VAs, and is

represented by the relations RELA, RELA4, ..., RELA . 4. Its key is denoted by
(key_A). The TOR RELB has m VAs, and is represented by the relations: RELB,
RELBy, ..., RELBp,q. Its key is denoted by (key B). The two TORs has one .
attribute, COMM, in common. This attribute is a CA in RELA and a VA in RELB.
It is stored in the relation RELB; in RELB, and in the relation RELA4 in RELA.
This attribute will be represented by the relation RELJE, in the new TOR
RELJE. The steps according to which the new TOR RELJE is created are included

in the following Algorithm 7.5:

1. The relation RELJE is the result of the following UNION:

RELJE = UNION[(RELA-tuple of COMM),RELB]

2. The relation RELJE4 is created by the following JOIN operations:

JOIN RELA, WITH RELBy

INTO TEMP

USING RELA4.(key_A),RELB;.(key_B)
WHERE RELB;.COMM = RELA,.COMM

JOIN RELA4 WITH TEMP
INTO TEMP1
WHERE RELA4.(key_A)=TEMP.(key_A)

JOIN RELB; WITH TEMP1
INTO RELJE,

WHERE RELB1.(key_B):TEMP.(key_B)
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The relation RELJEk describes the VA COMM in RELJE. It is created
by the following operations:

JOIN TEMP WITH RELBj
INTO RELJE,
WHERE TEMP.(key_B)=RELB, . (key_B)

The following steps create the relation RELJE,, representing a VA
VARA in RELJE. It is represented by RELAJ in RELA.

JOIN TEMP WITH RELAj
INTO RELJE;
WHERE TEMP.(key_A)=RELAj.(key_A)

Assume that the VA VARB is represented in RELB by RELBP. It will be
represented by RELJEq in RELJE, through to the following JOIN:

JOIN TEMP WITH RELB,
INTO RELJE :
WHERE TEMP.(key_B)=RELB,.(key_B)

NULL values are recorded in all VAs of objects at time points in
which they do not exist, based on the NULL values recorded in the
VAs of objects in the operands, and on the values of the common
attribute in particular.

The procedure to create the TOR PNEMP, answering QUERY 7.5, is therefore:

The relation PNEMP is the result of the following UNION:
PNEMP = UNION[EMP, (PHONES-tuple of DEPTNO)]

The relation PNEMP1 is the result of the following JOIN operations:

JOIN PHONES1 WITH EMP2

INTO TEMP

USING EMP2.EMPNO,PHONES1.PHONE
WHERE EMP2.DEPTNO = PHONES1.DEPTNO

JOIN EMP1 WITH TEMP

INTO PNEMP1

USING EMP1.EMPNO,TEMP.PHONE,
EMP1.NAME,EMP1.SEX

WHERE EMP1.EMPNO = TEMP.EMPNO

The relation PNEMP2 describes the VA DEPTNO in PNEMP. It is created
by the following operations:
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JOIN TEMP WITH EMP2

INTO PNEMP2

USING TEMP.EMPNO,TEMP.PHONE
EMP2.TIME,EMP2.DEPTNO

WHERE TEMP.EMPNO = EMP2.EMPNO

4. The relation PNEMP3, describing the VA JOBCLS in the TOR PNEMP will
be created by the following JOIN:

JOIN TEMP WITH EMP3

INTO PNEMP3

USING TEMP.EMPNO,TEMP.PHONE,
EMP3.TIME,EMP3.JOBCLS

WHERE TEMP.EMPNO = EMP3.EMPNO

5. The relation PNEMPY, describing LINES in PNEMP, is created by the
following JOIN:

JOIN TEMP WITH PHONES2

INTO PNEMPY

USING TEMP.EMPNO,TEMP.PHONE,
PHONES2.TIME,PHONES2.LINES

WHERE TEMP.PHONE = PHONES2.PHONE

#

6. NULL values are recorded in all the VAs of objects at time points in
which they do not exist, based upon the non-existence of objects in
the operands, and upon the values of the common attribute in them.

The CA - VA JOIN, like all previous.JOIN operation discussed.in this
chapter, satisfies the strong correctness criterion. For instance, Table 7-22
contains a snapshot taken from the new TOR PNEMP at 830101. Comparing Table
T-22 and Table 7-20 reveals that all the tuples that do not contain SULL
values for all their VAs are identical in both of them. In addition, Table
T-22 contains some tuples in which all VAs are NULL. These tuples represent
objects that do not exist at 830101 (in our case, employees and telephone

numbers that are not associated with the same departhenh at 830101).

Therefore, these two tables are equivalent.




Page 175

- -

| 10005 | 2856040 | MARY | F | 2 I3 I3
| 10005 | 2856090 | MARY | F | 2 | 2 | 2 |
| 10010 | 2856040 | MIKE | M | 2 | 2 | 3 |
| 10010 | 2856090 | MIKE | M | 2 | 2 I 2
| 10010 | 2856110 | MIKE | M | NULL | NULL | NULL |
| 10025 | 2856000 | OSCAR | M | 4 |1 I 1
| 10025 | 2856100 | OSCAR | M | 4 I 1
| 10030 | 2856040 | HENRY | M | NULL | NULL | NULL |
| 10030 | 2856090 | HENRY | M | NULL | NULL | NULL |
| 10030 | 2856110 | HENRY | M | 3 |2 |1 ]
| 10050 | 2856010 | DAVID | M | NULL | NULL | NULL |
| 10080 | 2856110 | ALICE | F | 3 | 2 |1
| 10090 | 2856000 | SUSAN | F | 4 | 3 [
| 10090 | 2856100 | sSusaN | F | 4 | 3 I 1

Table 7-22: A Snapshot From The TOR PNEMP at 830101

7.6. VA - VA JOIN

This case is presented using a JOIN operation with the TORs EMP and
PROJECTS. The TOR PROJECTS describes the various projects carried out by the
company. The key of this TOR is PROJNO, and the name of the project (PROJNM)
is obviously a CA. The VA COST describes the costs estimates of each project,
as they develop over time. The VA DEPTNO specifies the department which is in

charge of each project at each point of time.

QUERY 7.6 illustrates a VA - VA JOIN. It associates the various
employees with the various projects carried out by the organization, through

the departments to which the employees belong and in which the projects are
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hzndlec<. We associate each employee with all of the projects in his/her

departxmant.

QUERY 7.6

JOIN PROJECTS WITH EMP
INTO PRJEMP

Tr-= meaning of QUERY 7.6 is illustrated by snapshots of the two operands.

Trey ar2 presented in Tables 7-23 and 7-24. The result of their JOIN is

present=d in Table T7-25.

- —— -

-

| EMPNO | NAME | SEX | DEPTNO | JOBCLS |

e e e T S ———

| 10010 | MIKE | M | 2 | 2 |
| 10005 | MARY | F | 2 ;8 |
| 10050 | DAVID | M | 1 I 2 I
| 10030 | HENRY | M | 2 |1 |
| 10080 | ALICE | F | 3 | 2 [
| 10025 | OSCAR | M | 4 |1 I
| 10090 | SUSAN | F | 4 | 3 |

T ———————————

Table T-23: A Snapshot from the TOR EMP at 831215

Table T-25 contains all the combinations of employees and projects that
are associated at 831215. The new TOR PRJEMP conceptually consists of such
relations at all time points. The employee component of each object in the

new TOR "contributes" all the data of this employee (NAME, SEX, DEPTNO and
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T — - —

| 1000 | MDA | 9000 | 1 I
| 1010 | AI | 22000 | 3 [
| 1020 | TDMS | 18000 | 2 |

Table 7-24: A Snapshot from the TOR PROJECTS at 831215

-

B e e e D S —————

| PROJNO | EMPNO | PROJNM |- NAME | SEX | COST | DEPTNO | JOBCLS |

D e i e b L T e——————

| 1000 | 10050 | MDA | DAVID | M | 9000 | 1 | 2 |
| 1010 | 10080 | AI | ALICE | F ] 22000 | 3 | 2 |
| 1020 | 10010 | TDMS | MIKE | M | 18000 | 2 | 2 [
| 1020 | 10030 | TDMS | HENRY | M | 18000 | 2 1 I
| 1020 | 10005 | TDMS | MARY | F | 18000 | 2 I3 |

Table 7-25: Joining The Snapshots of EMP and PROJECTS at 831215
JOBCLS), while the project component "contributes" the data about the project
(again, its DEPTNO, and its COST). DEPTNQ, the common attribute, appears, of

course, only once for each object.

From an implementation point of view, the VA - VA JOIN is a very
complicated operation, since the two TORs are combined through VAs. On the
other hand, this is a symmetric operation, since the cOmm;h attribute has the
same type in the two operands. The key of the new TOR is the.combination of

the two operands' keys, since the common attribute functionally depends on
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=aem in the two TORs, and the resulting TOR should reflect these dependencies.
Tnce the keys maintain their original types in the new TOR, all other

eztributes maintain their original types too. This property is inherited from

~ne regular relational model.

In order to follow this JOIN operation, let us take a closer look at the
"story" of employee 10030 with project 1000. This project started at 800805
tnder the responsibility of department 4, and employee 10030 had nothing to do
with it. However, at 801220 department 2 took the responsibility for this
croject, and employee 10030, who worked for this department on this day,
became involved with this project. At 811015, the project moved to department
3, and therefore the association between employee 10030 and this project
terminated. AT 820701, employee 10030 moved to department 3, and became again
involved with project 1000. AT 821220 the project moved to department 1, and
from this day on, théfé was no association between employee 10030 and project

1000. The new TOR PRJEMP should reflect such "stories” with full accuracy.

e

! The Key | aca | The VAs I
| PROJNO | EMPNO | PROJNM | COST | DEPTNO | JOBCLS |
1000 10030 | MDA | 801220 5000 | 801220 2 | 801220 3 |

| 811015 NULL | 811015 NULL | 811015 NULL |
| 820701 9000 | 820701 3 | 820701 2 |
| 821210 NULL | 821210 NULL | 821210 NULL |

T ———— ]

Table 7-26: The Object EMPNO=10030 and PROJNO=1000 in the
Internal View of the TOR PRJEMP
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Table T7-26 presents the information corresponding to the "story" of the
association between employee 10030 and project 1000, as described above,
omitting - for presentation purposes - the CAs NAME and SEX. Note that at zall
time points in which there is no association between employee 10030 and
project 1000, all the VAs of this object are NULL, while in those time points

in which this object exists, its VAs are the values derived from the operands.

The general procedure for handling a VA - VA JOIN is as follows: There
;re two TORs, RELA and RELB, that are joined to form a new TOR RELJF. The
first TOR has n VAs, and is represented by the relations RELA, RELA4, ...,
RELA,,1- Its key is denoted by (key A). The second TOR has m VAs, and is
represented by the relations RELB, RELB4, ..., RELBj,4. Its key is denoted by
(key_B). The two TOR havé one common attribute, VAR, which is a VA& in both of
them. It is represented by the relation RELA; in one TOR, and by the relation
RELBj in the other. The steps tq create the relations representing the new

TOR RELJF are included in the following Algorithm 7.6:

1. The relation RELJF is the result of the following UNION:
RELJF = UNION(RELA,RELB)

2. The new objects are included in the relation TEMP, created by the
following JOIN:

JOIN RELA; WITH RELB 5
INTO TEMP

USING RELA;.(key_A),RELB;:.(key_B)
WHERE RELA;.VAR = RELB;.VAR

3. The relation RELJF4 is the result of the following JOIN operations:

JOIN TEMP WITH RELA1
INTO TEMP1
WHERE TEMP.(key_A)=RELA4.(key_A)
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JOIN TEMP1 WITH RELB1
INTO RELJF1
WHERE TEHP1.(key_B):RELB1.(keyﬁB)

The following JOIN creates the relation RELJF, representing the non-
common VA VARA of RELA (represented by RELA, in RELA):

JOIN TEMP WITH RELA,
INTO RELJF,
WHERE TEMP.(key_A) = RELA,.(key_A)

The following JOIN creates the relation RELJF_,, representing the
non-common VA VARB of RELB (represented by RELBp in RELB):

JOIN TEMP WITH RELBP
INTO RELJF
WHERE TEMP.(key_B):RELBp.(key_B)

As mentioned earlier, the creation of the relation that describes
the common attribute VAR in the new TOR, requires special procedure,
similar to those already introduced in queries 6.2 and 6.6. Assume
that this relation 1is RELJF,. This procedure contains a
simultaneous scanning of the relations RELA; and RELBj, in order to
identify for each object (consisting of a combination of (key_R) and
(key_B)) the precise periods of time in which VAR is simultaneously
associated with the object (key_n) in RELA and with the object

(key_B) in RELB. At these periods, the proper values of VAR are
recorded. At others, NULL values are recorded.

NULL values should be recorded in all VAs of objects at time points
in which they do not exist, based upon the existence of objects in
the operands, and upon the values of VAR in them.

The same procedure, applied to creating PRJEMP, is as follows:

The relation PRJEMP is the result of the following UNION:

PRJEMP = UNION(EMP,PROJECTS)

. The temporary relation TEMP, created by the following JOIN, contains

the objects of the new TOR.

JOIN PROJECTS3 WITH EMP2

INTO TEMP

USING PROJECTS3.PROJNO,EMP2.EMPNO
WHERE EMP2.DEPTNO = PROJECTS3.DEPTNO
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3. The relation PRJEMP1 is the result of the following JOIN operations:

JOIN TEMP WITH EMP1

INTO TEMP1

USING TEMP.PROJNO,TEMP.EMPNO,
EMP1.NAME,EMP1.SEX

"WHERE TEMP.EMPNO = EMP1.EMPNO

JOIN TEMP1 WITH PROJECTS1

INTO PRJEMP1

USING TEMP1.PROJNO,TEMP1.EMPNO,
PROJECTS1.PROJNM, TEMP1.NAME,
TEMP1.SEX

WHERE TEMP1.PROJNO = PROJECTS1.PROJNO

4, The relation PRJEMP2 describes the VA COST in the new TOR PRJEMP. It
is the result of the following JOIN:

JOIN TEMP WITH PROJECTS2

INTO PRJEMP2 _

USING TEMP.PROJNO,TEMP.EMPNO,
PROJECTS2.TIME,PROJECTS2.COST

WHERE TEMP.PROJNO = PROJECTS2.PROJNO

5. PRJEMPY is created by the following JOIN:

JOIN TEMP WITH EMP3

INTO PRJEMPY

USING TEMP.PROJNO,TEMP.EMPNO,
EMP3.TIME,EMP3.JOBCLS

WHERE TEMP.EMPNO = EMP3.EMPNO

6. The relation PRJEMP3 describes the VA DEPTNO in the new TOR PRJEMP.
Since DEPTNO is the common attribute in this JOIN, the creation of
PRJEMP3 requires a special procedure, similar to those, already
introduced in QUERY 7.3 and QUERY 7.5. This procedure contains a
simultaneous scanning of the relations EMP2 and PROJECTS3, in order
to identify for each object (consisting of a combination of PROJNO
and EMPNO) the precise periods of time in which the project is under
the responsibility of each department, concurrent with the employee
being in the department. At these periods, the proper values of
DEPTNO are recorded. At others, NULL values are recorded.

7. PRJEMPY is created by the following JOIN:

JOIN TEMP WITH EMP3
INTO PRJEMPY
USING TEMP.PROJNO,TEMP.EMPNO,
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EMP3.TIME,EMP3.JOBCLS
WHERE TEMP.EMPNO = EMP3.EMPNO

More changes are recorded in this relation in the next step.

8. NULL values should be inserted in all VAs at time points in which
objects do not exist.

Assume that we have created the full range of regular relations
representing the new TOR PRJEMP. Then, we can take a snapshot from this TOR at
831215, and compare it to the result of joining the corresponding snapshots of

PROJECTS and EMP at the same day (Table 7-25). This snapshot is included in

Table 7-27.

e e L T ey pp———— e ettt

e T T ————————————— N

- — -

| 1000 | 10025 | MDA | OSCAR | M | NULL | NULL | NULL |
| 1000 | 10090 | MDA | SUSAN | F | NULL | NULL | NULL |
| 1000 | 10010 | MDA | MIKE | M | NULL | NULL | NULL |
| 1000 | 10005 | MDA | MARY | F | NULL | NULL | NULL |
| 1000 | 10030 | MDA | HENRY | M | NULL | NULL | NULL |
| 1000 | 10080 | MDA | ALICE | F | NULL | NULL | NULL |
| 1000 | 10050 | MDA | DAVID | M | 9000 | 1 |2 |
| 1010 | 10010 | AI | MIKE | M | NULL | NULL | NULL |
| 1010 | 10005 | AI | MARY | F | NULL | NULL | NULL |
| 1010 | 10030 | AI | HENRY | M | NULL | NULL | NULL |
| 1010 | 10080 | AI | ALICE | F | 22000 | 3 |2 |
| 1010 | 10050 | AI | DAVID | M | NULL | NULL | NULL |
| 1020 | 10010 | TDMS | MIKE | M | 18000 | 2 |2 I
| 1020 | 10030 | TDMS | HENRY | M | 18000 | 2 |1 |
| 1020 | 10080 | TDMS | ALICE | F | NULL | NULL | NULL |
| 1020 | 10005 | TDMS | MARY | F | 18000 | 2 |3 |
| 1020 | 10050 | TDMS | DAVID | M | NULL | NULL | NULL |

D e L T R ———————— PP

Table T7-27: A Snapshot from PRJEMP at 831215,
taken Directly from the TOR
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This JOIN, 1ike all other JOIN operations covered by this chapter,
satisfies the strong correctness criterion. Comparing Table 7-27 with Tablg
7-25 leads to the conclusion that they are equivalent. The addiﬁional tupleéi
in Table T7-27, are those for which the values of all VAs are NULL. These NULL
values indicate that thé objects to which they belong do not exist at 831215.

The existing tuples in the two tables are, in fact, identical, hence the two

tables are equivalent.

7.7. Summary

In the analysis of the JOIN operations in this chapter, we have seen that

attributes may change their types in the new TOR. Table 7-28 summarize our

findings in this issue.

e - S S i i — - - —— - —

| The Type of the | The Types of Other Attributes |
| Common Attribute [ in the Resulting TOR I
| in | in | in the | The Attributes | The Attributes |
| the | the | Resulting | of the First | of the Second |
| First | Second | TOR | TOR | TOR |
| TOR | TOR | R SR R |
| I { | Key | CA | VA | Key | CA | VA |
| Key | Key | Key | =-=-|CA|VA | -—-|CA-| VA |
| Key | CA | ca | == | CA | VA | Key | CA | VA |
| Key | VA | va | === | VA | VA | Key | CA | VA |
| cA& | ca | ca | Key | CA | VA | Key | CA | VA |
| cA | VA |  va | Key | CA | VA | Key | CA | VA |
| VA | va | vaA | Key | CA | VA | Key | CA | VA |

- ———

Table 7-28: The Types of Attributes in the Result of JOIN

In symmetric cases, all the attributes maintain their types. In the non-
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symmetric cases, the common attribute inherits its type from the TOR in which
it is "less stable" (according to the decreasing order of stability: Key, CA,
VA). Once a common attripute inherits the VA type from an operand, all the
other attributes, in the TOR in which it is not a VA, become VAs too. All
these observations can be explained through the functional dependencies among

all the attributes participating in a JOIN operation.

The analysis and the design of all the JOIN operations included in this
cﬁapter show that the concept of the temporal differentiation of attributes
allows us to handle the most complicated operations by focusing on one _
attribute at a time. In addition, it allows us to create the relations
repreéenting the new TORs, 6ne relation at a time, by executing a sequence of
operations invelving only the relevant relations in the operands. Using this
concept for implementation design, allows the decomposition of higher level
operation on TORs into a sequence of well defined operations on regular
relations, creating a new sequence of relations representing the resulting

TOR, thus making these operations directly executable.
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Chapter 8

Summary of the Research Results

This exploratory study shéds further light on the nature of TODBs and
their complexity, especially with respect to the richness of their operations.
A multi-layered conceptual structure for TODBs has guided the study of an
implementation model that interrelates external user views with an underlying
functional view of the data, and addresses the translation of operations among
these multiple layers. The actual design and prototype implementation allows
us to demonstrate in full detail the properties of a relational TODB, the way
it is stored and the definitions of its operations. This research has
particularly emphasized the design and implementation of a general purpose

TDMS that is a formal extension to the regular relational database model.

The implementation of a general purpose TODB in this dissertation is
based on the evolving body of theory represented by [Clifford 82a], [Clifford
82b], [Clifford 83b], [Ariav 83al, [Ariav 84], [Ariav 85] and [Clifford 85al.
A major concept in our research has been the differentiation of the attributes
according to their temporai variation. Another major ;oncept has been the use
of regular relations to implement the underlying data strﬁctures. This
dissertation uses these concepts as an implementation strategy for relational

TODBs, and provides a preliminary assessment of it, as applied to the three
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basic aspects of DBMSs: data structures, integrity constraints and

operations.

In the following sections, we point out the major findings and

contribution of this dissertation in each of the major aspects of TODBs.

8.1. The Temporal Relational Algebra Operations

The issues raised in this research with respect to operations in
temporally oriented DBMSs, focused mainly on a "natural" temporal extension of
the regular relational algebra operations and the effect of attribute types

(key, CAs, VAs) on the algorithmic definitions of these operations.

The discussions in chapters 4, 5, 6 and 7 dealt with issues. We have
defined in general terms the extensions to the regulaf-relational algebra
operations, and then had specific discussions covering the temporal SELECT,
PROJECT and JOIN operations. The temporal PROJECT and JOIN operations are
strictly natural extensions to the corresponding regular operations, in the
sense that their various time slices are equivalent to the results of the same
operations on the corresponding time slices of the operand(s). The temporal
SELECT operation has two versions, the SELECT SOMEWHEN and the SELECT
EVERYWHEN. Both SELECT operations can only conform to the weak correctness
criterion. All the temporal operations maintain the closure property of the
algebra, creating new TORs as their results. In addition, two other temporal
operations were defined, the time selection and the time projection, which are
unique temporal operations. The major properties of the temporal operations

are discussed in the following subsections, analyzing each of them separately.
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8.1.1. The SELECT Operations

Three SELECT operations were defined and implemented in the TDMS: the

SELECT SOMEWHEN, the SELECT EVERYWHEN and the time selection.

The SELECT SOMEWHEN, as defined in Chapter 5, selects all the data of
every object that has at least one qualifying tuple, and records it in the
resulting TOR. Therefore,- it selects tuples that might not qualify in
themselves, but belong to a qualifying object. This operation cannot be
properly defined in terms of the various timg slices comprising the cube,
since conceptually it does not "operate" on oné time slice at a time, but on
one object at a time. If the entire horizontal slice of each object contains
at least one qualifying tuple, then the entire history of that object

#

qualifies.

The SELECT SOMEWHEN operation satisfies only the weak correctness
criterion as defined in Chapter 4. It does not satisfy the strong criterion
for conceptual reasons, namely the slightly different interpretation of this
operation compéred to the regular SELECT. Had we adopted an alternative
definition, according to which only qualified tuples would have been selected,
this operation would have satisfied the strong criterion, but would have had
serious deficiencies, expressed by recording wrong  information for non-

qualifying tuples of qualifying objects (see [Ariav 83a]).

-

The SELECT EVERYWHEN operation selects only those objects that satisfy

the selection predicate at all time points. If the operand contains only one

time slice (which is informationally equivalent to a regular relation), then
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the SELECT SOMEWHEN and the SELECT EVERYWHEN have the same meaning.
Therefore, the two operations can be considered as extensions to the regular
SELECT operation. %

The SELECT EVERYWHEN operation satisfies only the weak correctness
criterion. As mentioneé'before, it does not satisfy the strong criterion since
selecting tuples on a "one time-slice at a time" basis, introduces tuples of

objects that do not satisfy the selection criterion EVERYWHEN.

A unique temporal operation, the time selection, was also defined in the
TDMS. This operation creates a new TOR containing the data of a specified
time interval. Since it is not an extension to a regular operation, applying

any of the correctness criteria to this operation is irrelevant.

8.1.2. The Temporal PROJECT Operation

The temporal PROJECT operation is the temporal extension to the regular
PROJECT. Every time slice of the resulting TOR is the result of the same
PROJECT on the corresponding time slice of the operand. This operation
includes two cases: the PROJECT operations that preserve the key, and those
that do not. The PROJECT operations that preserve the key create new TORs
with the same objects as in the operands, but with fewer attributes.

Consequently, all the operands' objects are included in the resulting TOR.

In a PROJECT operation that does not preserve the key the original
objects lose their identities, new objects are created, and the new TOR has

therefore a new meaning depending on the projected attributes. This situation
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is not caused by the temporal nature of TODBs; the same happens in regular
PROJECT operations. However, in the temporal case, not only the meaning of
such operations is different from those that preserve the key, but their
implementations are more complicated as well. The most complicated
implementation procedure is the one for the case in which only non-key CAs are
projected; as these attributes do not carry any temporal information, all the
VAs relations are accessed in order to establish the periods of time in which

the new objects exist, as inferred from the existence of objects in the

operand.

If a PROJECT operation, that does not preserve the key, projects at least
one VA, then this VA carries the temporal information needed to determine the
periods of time in which the new objects exist; therefore there is no need to
use non-projected VAs for this purpose. The implementation of such an
operation is simpler than the one in which no VA is projected. However, it is
more complicated as more VAs are projected, since the combination of them

" determines the periods of time in which the new objects exist.

In every PROJECT operation that does not preserve the key, the new key
consists of all the projected attributes, since the new objects are their
various combinations. Therefore, there are no VAs by which we can represent
periods of time in which objects do not exist. The solgtion to this problem
is in the introduction of a special VA into the resulting TOR. This synthetic
attribute, called STATE, is aimed to allow the proper recording of the fact
that objects of the new TOR may not exist at all time points. STATE has NULL

values for an object at all time points in which this object does not exist,

and the value 1 otherwise.
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The problem that caused the introduction of the new VA STATE is inherent

to the temporal nature of the TOR, and is not caused by our specific design.
It can be expected that such a problem will surface under any other
implementation strategy of TODBs in the case of the PROJECT operation ihat

does not preserve the:key.

The temporal PROJECT is critically affected by the types of the projected
attributes. The conceptual problems in this operation coincide with the
implementational problems. If the whole key is preserved, then conceptually it
is a simple operation that just drops some attributes from each object. In
such 'a case, the implementation is also very simple. The relations
representing projected attributes are copied, thus creating the resulting TOR.
On the other hand, the implementation of the temporal PROJECT that does not
preserve the key requires more operations, as new objects are created, and
their existence periods should be determined, as well as the periods of time

in which they do not exist.

The PROJECT operation satisfies the strong correctness criterion,

independently of whether it preserves the key or not.

8.1.3. The Time Projection Operation

The time projection does not analyze the data stored in the TOR through
its time slices, but considers the ﬁhole temporal pattern of the original
objects with respect to the projected attributes. Two objects in the original
TOR are "merged" to the same object in the resulting TOR, only if the
combinations of their projected attributes exhibit the same temporal patterns.

Otherwise, they maintain their identities in the new TOR too.
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As in the PROJECT operation that does not preserve the key, a new
attribute, called IDENT, is added to the resulting TOR. Nevertheless, this new
attribute is the new TOR's key, an attribute by which the new objects are

identified.

It should be emphasized here that, even though the PROJECT operation that
does not preserve the key, and the time projection operation raised unique
problems that were handled by adding a new attribute to their resulting TORs,
they still maintain the closure. property of the temporal operations. TORs

resulting from these operations could be further manipulated by any temporal

operation.

According to 1its definition, the time projection poperation does not
satisfy the strong correctness criterion. The reason for this is in its
conceptual definition, as it defines different objects according to their
behavior along the time dimension, and not on the basis of the various time
slices. Therefore, each time slice of the resulting TOR is not the result of
this operation on the corresponding time slice of the operand. However, if
this operation is applied to a single time slice, then it executes like a
regular PROJECT operation, and therefore it satisfies the weak correctness

criterion.

The implementation of the time projection depends on. the types of the
projected attributes. It is fairly simple; the different patterns of the
combinations of the projected attributes has to be identified and copied to

the resulting TOR.
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8.1.4. The Temporal JOIN Operation

The temporal JOIN operation has not been satisfactorily studied in the
past. Its purpose is the same as the one of the regular JOIN. Nevertheless,
the difficulties involved in implementing it are substantial, since two cubes
are merged here, rathgr than two flat tables. The JOIN operation is viewed
conceptually as the union of the regular JOIN with pairs of snapshots from the
operands, creating thereby new objects based on the objects in the operands.
Even though there is only one conceptual version of the JOIN, in terms of the
’implementation, this operation is divided into six cases based on the types of
. the common attribute of the two operands. Each case defines a class of JOIN

operations with a unique sequence of implementation activities.

A TOR, created by a JOIN operation, contains the union of attributes of
the two operands. Most of these attributes are stored separately in the
various regular relations representing the operands of the JOIN, and they
should be stored in.the new TOR in the same way. Therefore, each relation of
the new TOR is typically created by manipulating two of the representing
relations of.the operands. The implementation 6f the temporal JOIN operation
is acéomplishéd by practically decomposing this operation into a .sequence of
manipulations with the relations representing the operands. Most of these
manipulations are regular JOIN operations, In addition, a final step is
required, to correctly determine the periods of time in which each object
exists in the resulting TOR, based on the information of the objects that
created it in the operands. Tﬁis step results in recording NULL values for
all the VAs of objects that do not exist in the new TOR at some time periods,

as implied by the information of their original objects in the operands.
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The temporal JOIN operation was successfully defined to satisfy the

strong correctness criterion.

8.1.5. Summzry of the Temporal Operations

We consider the definitions and the implementations of the temporal
operations zs the main contribution of this research. An important aspect is
the distinction between the two criteria for the correctness of a temporal
operation - a strong criterion and a weak one - and the examination of each
operation with respect to these criteria. All the SELECT operations and the
time projection operation satisfy only the weak criterion, as they are defined
for the entire data of each object, and not on the basis of the operand's time
slices. £EZ1 other temporal operations satisfy the strong correctness

criterion.

The clesure property is fully maintained in the temporal operations
defined in this dissertation. Any TOR, resulting from a temporal operation,
can be an operand of another operation, without any restriction. Even the
temporal operations that introduce new attributes into their results, namely
the PROJECT operation that do not preserve the key and the time projection,
Icreaﬁe perfectly valid TORs, that can further participate in any other

temporal operation.

P ———————
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8.2. The Temporal Differentiation of Attributes

All the aspects of TODBs covered by this research exploit the temporal
differentiation of attribute, a concept which has proven-to be beneficial for. -
implementing TODBs and TDMSs. This section summarize our findings in this

issue.

8.2.1. Temporal Differentiation of Attributes and Temporal Operations

The definition of the temporal relational algebra operations at the
implementation level is the main benefactor of the temporal differentiation of
the attributes. This concept, as applied to the temporal operations, allows
' ﬁs to delineate easily the scope of each operation, by concentrating on the
relation(s) containing the data items affected by these pperations. In some
cases, only a few new relations have to be generated to represent the new TORs
created by the operations, while some of these relations are simply identical
to existing relations that underly the operand(s). This concept allowed us to
decompose each operation to a sequence of manageable operations with regular

relations.

In the two versions of the SELECT operations, the temporal
differentiation of the attributes helps in identifying the qualifying objects
by accessing only those relations that represent attributes that are included
in the predicate. The entire information of these objects is then copied to
the new TOR, and therefore all the relations representing the operand should
be accessed. The resulting TOR contains a subset of the operand's objects, and

as no new objects are created, the implementation of these operations is




Page 195
achieved by relatively simple manipulations of the relations representing the

operand.

The implementation of the time selection operation does not benefit from
the temporal differentiation of attributes as all the relations representing
the operand have to be accessed when the relevant data is copied from the

original relations to the new ones.

The implementation of the PROJECT operation that preserves the key takes

'full advantage of the temporal differentiation of attributes, since most of

the new relations are simply copied from the relations Irepresenting the
operand. However, in implementing the PROJECT operation that does not preserve
the key, the temporal differentiation of attributes is not advantageous, and
may even complicate the implémentation of this operation, by causing a
simultaneous scanning of the relations representing the VAs involved. Such a
scanning may not appear under different implementation strategy. In this
operation, we also have the problem of introducing the artificial VA STATE.
This problem, however, is not caused by the temporal differentiation of
attributes, but by the fact that new objects are defined by the combination of

all the projected attributes.

The implementation of the temporal JOIN takes full advantage of the
temporal differentiation of attributes. Our approach allows us to decompose
the global problem of designing the JOIN, to a sequence of manageable
operations, each of which aims to build one new relation as a result of the

necessary manipulation with the designated relations of the operands.

I
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8.2.2. Temporal Differentiation of Attributes and Integrity Constraints

Integrity issues in our research centered on integrity checks and their
execution in TDMS. Under the temporal differentiation of attributes, each
logical unit (an attribute) is also a physical unit, and hence checking %
logical unit is rather simple, and typically only little irrelevant data is

accessed.

While adding a new object to a TOR, the TDMS verifies that such an object

does not yet exist. To do this, only the relation containing the CAs of this

'TOR has to be accessed and checked. Whenever an object is added to a TOR,

values (other than NULL) should be assigned to all its CAs. From this point
on, no changes can be made to the CAs of this object. After adding a new
object, there 1s no need to assign any values to any Pf its VAs. They are
automatically interpreted as NULL, as long as no other values are assigned to

them.

The temporal differentiation of attributes plays a major role in- the
procedure to append data pertaining to existing objects. Verifying the
existence of an quect requires accessing only the CAs relation, and the
maintenance of the finality property requires accessing only the relation -
containing the data of the VA involved. Therefore, consistency is maintained

efficiently, and the involvement of relations in the integrity checks is

limited to those directly affected by the loading operation.
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8.3. NULL Values and Object Existence

The value of a time varying attribute may happen to be unknown at some
time point, and therefore this VA may assume a NULL value (see Chapter 3). In
this dissertation only one type of NULL was specified and used. This can later
be extended to contain different NULL values for different situations in which

the attribute value is unspecified (see [Clifford 85a]).

In order to represent time points at which an object does not exist, we
use the convention of assigning NULL values to all the VAs of this object at
such time points. A different convention could be to add a "hidden" system
attribute to each TOR, which indicates directly such situations. ft Shoﬁld be
noted, however, that NULL values would have been recorded anyway in the VAs of
non existing objects during periods of their inexistence. Otherwise, the
final determination of the value of a VA at any time would;;lways require
simultaneous checking of the VA that contains existence information for
objects. Another alternative to indicate inexistence intervals could be the
.}ecording of time spans for each VA in the TOR. As any approach cannot avoid
dealing with the problem of indicating somehow the time points in which an
object does not exist, ouf convention seemed a legitimate choice. It does not
require any additional facilities, but takes advantage of the existing

components of the TOR, to indicate non-existence situations.

The role of NULL values in our TDMS requires special attention in

executing the temporal operations. The various algorithms should record NULL

values in the VAs relations of the resulting TOR, to indicate possible non-
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existence of its objects, as implied by non-existence of objects in the
operand(s). The problem of indicating non-existence periods of time of
objects in a TOR was expected, since it is a direct result of the external
cubic view of the TOR. Our solution to this problem did not complicate the
design of the data strugtures, and allowed us consistent treatment of all the
TDMS's components. We ééel that our means of handling these situations is a
self-contained one that allows us to maintain consistency in all the
operations executed with TORs. However, since we experienced problems with our
désign (e.g., in resolving a PROJECT operation that does not preserve the
key), and since other methods can be suggested, we recommend, in the
conclusion of this dissertation, to conduct more research concerning the use
of NULL values in general, and; their particular role as indicating non-

existence of objects at specific periods of time.

8.4, Implementation Aspects

The use of regular relations as the primitive objects in our

implementation-level model, grants the following advantages:

*¥ Using an Existsing DBMS

The representing relations are manipulated by an existing relational
DBMS, which implies a significantly reduced effort in building a working TDMS
prototype. This approach has probably resulted in an inferior run-time
performance. However, as we are still exploring thé fundamental conceptual

properties of these systems, we are not concerned with performance.

The feasibility of using an existing relational DBMS was demonstrated by
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our design. It allowed us to build the prototype on top of INGRES within a

limited period of time, and save the effort involved in building the I/0

modules in the TDMS.

* preventing the need to rearrange data

Each data item appended to the database,’ is actually appended to a
specific relation. Whenever appending a data item to a TOR, there is no need
to rearrange old data; the new data item will be correctly interpreted

whenever used.

* Implementing the Temporal Operations

In implementing the temporal operations, some problems related to our

specific implementation approach were detected. In the following paragraphs we

briefly comment on them.

In implementing fhe temporal JOIN, the types of the attributes in the
resulting TOR are determined, based on the types of the common attribute in
the two operands, and on the types of each attribute being incorporated into
the resulting TOR. The situation according to which attributes change their
types in a JOIN operation occurs in the regular case as well (e.g., key
attribute may become non-key attribute). In the TDMS, it affects the
impleﬁentation, since the attributes' types play a major role in determining

their storage.

An unexpected difficulty in designing the TDMS involved the execution of

PROJECT operations that do not preserve the key. In executing these
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operations, many relations have to be simultaneously scanned, in order to
identify the non-existence time periods of the new objects. The
implementation of the temporal JOIN is complicated too, but this is ;BE
surprise since the operation is inherently pomplicated. We do not think that
any other implementation strategy, or other techniques (such as indicating

non-existing periods of time of objects) can avoid the difficulties involved

in implementing the temporal JOIN.

¥ Comments on the Design of TDMS

In the following paragraphs, we highlight the decisions that were made

during the process of designing the TDMS, and point out their ramifications.

The first decision was that TOR's key will include constant attributes
(CAs) only. This allowed us to store all the keys of the TOR's objects in one
compact relation (the CAs relation), and then link through this key objects
with their temporal data in the VAs relation. If at some point the key of
some object does change, the TDMS can handle that by "closing" the existing
object, and creating a new object with values inherited from the old one. The
values in the time slice of this time point should be copied from the old
object to the new one, and then NULL values should be recorded for the old
object in all its VAs for this time point, marking it as non-existent. Having
limited the key to CAs, helps in implementing the temporal operations, as

object identification and matching are relatively simple.

Another point that should be emphasized is that a TOR does not have to

have either CAs or VAs. The only component that should exist in the TOR is the
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key. Therefore, if there is a doubt whether an attribute may be subject to
change, it could be defined as a VA and not as a CA. This may cost some extra
space, since this attribute will be stored in a separate relation, rather than

in the CAs relation, but it grants the required flexibility in handling this

attribute.

8.5. Performance Evaluation

This section examines some performance aspects of the TDMS, namely its

storage requirements and the complexity of its operations.

¥ The Data Structures

With respect to the TDMS's data structures, we were able to represent
TORs by a sequence of regular relations which contain the minimal amount of
information needed to construct the whole cube. Each time varying attribute
is represented by a separate relation, all the constant attributes (including
the key) of a TOR are stored together in a single relation and one additional
relation contains the TOR's schema. In the representing relations of a TOR,
the key of the TOR has to be recorded in every VA relation. To quantify this
redundancy, assume that the key of the TOR contains k attributes, the TOR
contains v VAs, and the maximal number of tuples in any VA relation is t.

Then, the order of storage redundancy is O(k¥*t¥*v).

* Storage Space

In terms of storage space, our data structures appear to be generally
more efficient than the methods wused in related research efforts e.g.,

[Snodgrass 84) and [Lum 84]. In those works, the time stamps are associated
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with the whole tuple. Therefore, if the value of one attribute in some tuple
changes, the entire tuple has to be re-recorded with the new time stamp, even
though only one value has changed. Since the time stamps in our design are
associated with the :various attributes, and not with tuples, there is no
redundancy in storingllhe data, and whenever a new value should be associated
with some attribute of a specific object, there is no need to duplicate the
old values of this object. Under the assumption that most the VAs in a TOR do

not change simultaneously, our method would require less memory space.

* The Operations Complexity

The representation of a TOR by a sequence of regular relations allows
also for efficient algorithms to execute the temporal operations. In the

following paragraphs we summarize this issue.

The algorithms ko execute any of the SELECT operations (the SELECT
SOMEWHEN, the SELECT EVERYWHEN and the time selection operation) are fairly
simple and not very costly in terms of performance. If the operand contains n
-objects, and the maximal number of tuples per object in all the representing
relations is m, then the number of operations needed to execute any of these

operations is O(n¥*m).

The execution of a PROJECT operation that preserves the key carries the
maximal benefit from our data structures. if the maximal number of tuples in a
representing relation of the operand is t, then the number of operations in
our implementation of this PROJECT is O(t). The number of operations needed

to execute a PROJECT operation that does not preserve the key is substantially
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higher. If the operand contains n objects, then the resulting TOR has at most

n objects. For each of them, some of the VAs relations (depending on the

specific PROJECT) have to be simultaneously scanned. If the maximal number of

tuples per a VA relation is u, then the whole operation requires O(n*u)

database operations. The same is true for the time projection operation.

The implementation of the JOIN operation requires two major steps. In the
first step the new representing relations are created without determining the
time points in which the new objects do not exist. In this step, each new
relation is created by either a regular JOIN with two relations representing
the operands, or by another operation with such relations, that is equivalent
to a regular JOIN in performance terms. Therefore, if the maximal number of
tuples in any of the VA relations of the first operand is uq, and that of the
second operand is up, then this step requires O(uq*u,) database operations.
Then, in the next step, each object of the resulting TOR is checked against
the objects of the operands that created it, to record the proper NULL values,
whenever needed. If the number of objects in the first operand is ny, and in
the second operand np, and the maximal number of tuples per object in any of
the VAs relations of the operands is m, then this operation requires
O(nq*n,o*m) database activities. This operation is very costly in terms of
performance. It should be noted, however, that it can be "smartly" executed,
to save unnecessary computer time. Typically, in a JOIN operation the user is
not interested in having all the original attributes in the“resulting TOR, but
only those related to this operation. Therefore, before executing a temporal

JOIN, it is recommended to PROJECT the two operands onto the relevant
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attributes. This PROJECT operation preserves the key, therefore is very
simple, takes the maximal advantage of the temporal differentiation of
attributes, and is efficient in terms of performance. The new operands contain

fewer attributes and may lead to a more efficient JOIN.

8.6. Summary

This chapter briefly summarized the major findings of the research. We
feel that even though our research could not examine all the alternatives
concerning the TDMS design, it has created enough information to point out

possible directions towards the developing of such systems.
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Chapter 9

Conclusion and Future Research

This chapter points out the major contribution of this research (Section .
9.1), outlines some immediate potential improvement to our TDMS prototype
(Section 9.2) and raises topies requiring more research in the areas of

relational TODBs (Section 9.3).

9.1. The Contribution of this Research

This research focuses on the design and implementation of relational
Temporally-Oriented Database Management Systems (TDMSs). ﬁdr design presents
an efficient and flexible structure for a TDMS. This has been achieved by two
ma jor properties of our implementation model: the temporal differentiation of
attributes and the use of regular relations as primitive objects by which the
Temporally Oriented Relations (TORs) are represented. The power grantedlto our

TDMS by these properties is demonstrated many times throughout the research.

In building our prototype, we have used the interpretive approach, and
the manipulations of the representing relations are carried out by the
existing DBMS INGRES. By so doing, we have demonstrated the ability of using
an existing DBMS, rather than starting from scratch. ‘&his implementation
strategy relieved us from designing the basic I/0 mechanisms, and allowed us

to concentrate on the application of the TDMS itself. There are, of course,
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trade-offs between this approach and the other alternative, namely, developing
the entire data management mechanism from scratch, which would probably
produce a better performing system. However, for an exploratory research like
ours, the advantages of the interpretive approach, allowing us to builﬁgthe

prototype in a much shorter period, are clear, and justify our choice.

The functional TDMS prototype is beneficial to future research in this
area. Thié prototype can be used for further research in aspects not covered

by this dissertation, such as query optimization and concurrency control.

This implementation research has been the first to spell out épecifically
a complete set of temporal relational algebra operations. Furthermore, the
design of the temporal JOIN operation is a significant contribution, since
this operation has not been defined in previous researchl(as opposed to the
SELECT and PROJECT operations), and its implementation in our research has
been feasible mainly due to the use of the temporal differentiation of

attributes.

9.2, System Extensions and Improvements

Qur TDMS is doubtlessly not complete. The major immediate potential

extensions and improvements that can be introduced to it are:

* Improving the TDMS's performance

The TORs in our TODB are represented by regular relations. Therefore,
the implementation of the temporal operations basically creates a new sequence

of relations to represent the resulting TOR, by manipulating the relations
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representing the operand(s). In many situations, some of the original
relations are copied to the new ones without any change. We consider this to
be one of the advantages of the temporal differentiation of attributes, which
allows us to concentrate on the relations directly involved in the operation,

and ignore or just copy other relations.

However, we could just place the names of the old relations in the
descriptive relation of the new TOR (without, of course, deleting them from
the descriptive relations of the original TOR[s]), and thereby have the same
relations participating simultaneously in more than one TOR. In so doing, we
sometimes could create a new TOR as a result of a temporal operation with
extremely few operations. We virtually have just to create a new descriptive
relation, and possibly a small number of new relations. This approach could

be especially useful in PROJECT operations that preserve the key.

The second approach would definitely be more efficient in terms of memory
space and possibly also in execution time. However, more research is needed
to examine all its implications. For instance, it could only be possible to

actually delete a TOR if no other TOR "pointed" to it,

¥ Generalization of the system's operations

Basically, both -temporal relational algebra operations and temporal
operations have been defined, implemented and demonstrated in this research.
However, we cannot claim that they form a complete set of operations. They
have some weak points that require more research. The following is a list, not
necessarily complete, of some weaknesses already detected by us, concerning

the TDMS's operations:
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So far, only constants are allowed in the predicates of the temporal
relational algebra operations. An immediate improvement that should
be applied to the TDMS is the option to include variables in these
predicates.

Chapter 6 analyzes the problem of PROJECT operations that do not
preserve the key, and proposes a solution. More research is needed
to examine other possible solutions that may be better than ours.

The implementation of the JOIN operation is limited to the cases in
which only one attribute is common to the operands. Having more
than one common attribute may definitely increase the complexity of
the problem, and more research is needed in this issue too.

Our TDMS uses only one type of NULL values. Previous research
efforts, such as [Ariav 83a] and [Clifford 85a], have already
proposed more than one NULL value in TODBs. Their effect on the
temporal operations should be investigated.

Existing relational DBMSs typically provide not only relational
algebra operations, but also reductive operations such as
calculating the sum or the average of attributes, count them, etc.
Such operations should be incorporated into the TDMS too.

Most of the temporal operations in our TDMS are natural extensions
to the regular relational algebra operations. Those operations are
conceptually defined on the basis of one time slice at a time.
There are no operations in which two different time slices are
manipulated in the same conceptual step. Let us elaborate on this
point with respect to the SELECT SOMEWHEN and to the JOIN
operations. In a SELECT SOMEWHEN operation, a query may select all
employees whose salaries- at some time point is lower than their
salaries one month earlier. A more complicated query could select
employees whose salaries were decreased at some time points. 1In a
JOIN operation, one could think about a JOIN operation that
conceptually joins each time slice of the first operand with the
time slice corresponding to some lagged time point in the second
operand. These two examples present another class of temporal
operations, that, as opposed to the operations included in this
research, are not equi-temporal operations. The implementation of
the temporal operations, as included in this dissertation, is the
first step in designing non-equi-temporal operations, and more
effort should be made to augment the existing operations in this
direction.



Page 209

# Query languages

The language used in our system is strictly a procedural one. There is a
lot to be done to incorporate non-procedural query languages like those
suggested by [Snodgrass 84] and [Gadia 84]). The issue of incorporating a
capability in the TDMS to analyze a relational calculus expression, and decide
what operations should be executed to create its result, requires extensive
research. In particular, an investigation should be conducted to explore the
methods used in the regular relational DBMSs that can be extended to be used
in TDMSs. More research is also needed to extend the notion of a relationally

complete query language, and apply it to the temporal model.

¥ Grouping of attributes

The present design assumes that all the VAs in a TOR have different
temporal variations.'ﬁowever, there may be special applications in which there
are some attributes that by their nature have the same temporal variation, For
example, the TOR describing employees may have two VAs, RANK and SALARY, that
may change simultaneously. Such attributes can be handled in a more efficient
way by being grouped to one data structure that will maintain one time stamp
for all of then, rathe? than having the same time stamps associated with each
of them separately. This idea suggests a possible extension of our model, that
will be achieved by grouping such attributes to be included in one relation,
with one time stamp. This grouping will presumably save space and processing

time, in the price of giving up the ability to handle any of these attributes

separately.
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9.3. More Future Research Topics

* Evolving Schemes

From a broader perspective of TODBs, not only historical data is to be
maintained, but also historical definitions of the TORs in it [Ariav 83a].
This raises the issue of database restructuring as dealt with by [Sockut
79] and [Navathe 80]. This capability can accommodate situations in which new
types of data become available at some point, but the database cannot be
changed retroactively. 1In these cases, the schemes of the relevant TORs are
modified accordingly, but the definitions for the older data still underly the
execution of operations on old versions of these TORs ("old" in the sense that
they do not contain the new data item). A basic research is needed to
identify the issues involved in implementing the evolving schemes capability

into TDMSs in general, and to incorporate it into our model in particular.

* Performance Evaluation

This research does not contain a performance evaluation of the TDMS
prototype. The. common exbectation is that improved treatment of temporal
aspects, as represented by systems 1like TDMS, will imply lower DBMS
performance, in terms of CPU and I1/0 operations, storage space, response time,
etc. In general, performance evaluation can be pursued through theoretical

analysis and/or practical methods.

Following, is a brief analysis of possible approaches to performance
evaluation research. Once there are several designs (and possibly prototypes)
of TDMS, developed under different implementation strategies, there will be an

opportunity to conduct research comparing their performance.
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The various algorithms that are used to perform the operations on TORs

can be analyzed to determine the relevant performance factors involved, such
as number of accesses to regular relations, the number of tuples brought into
memory, the analytical complexity, etc., as functions of the properties of the
TORs being manipulated, such as the number of their attributes and their
types, the sizes of the relations representing them, etc. These results can
then be compared to similar measures, already known, associated with the
various relational algebra operations on regular relations. This comparison
may give us some appreciation of the additional computations. executed when
using a TDMS. However, it is almost sure that it is difficult to define a
meaningful comparison, since we have two different types of databases (TODB vs

static database), and operations are performed differently within them.

-

A different approach to performance evaluation could be the actual
measurements of benchmark runs. According to this technique, actual
measurements are taken through monitoring the run-time behavior of
experimental database(s), under a representative sample of operations. These
runs can provide us with two types of data namely, OS-provided overall
performance measurements (e.g., total consumption of CPU time, number of I/0
operations, disk-storage occupation) and a set of measurements that can be
collected by our system itself, to reflect major operational factors in high
level terms (number of accesses to regular relations, amount of data moved to
main memory, number of internal operations). Such measurements can then be
compared to similar measurements collected during a process that produces the

same results under different conditions and different TDMSs.
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¥ Query Optimization

Research may discover ways to take advantage of the unique nature of

TODBs for the sake of query optimization. We expect to find that fhe”

independent existence of the attributes has a major impact on this subject

too.

* Concurrency Control

Basic research is needed in this area to shed light on the specific
problems of concurrency control (if any) in TODBs, and the ways to handle
them. Again, the temporal differentiation of attributes may be beneficial
with this respect as well. Whenever data is being loaded into the database,
there is no need to lock the whole TOR involved, but only the attribute(s) to

which new values are added, since each attribute is stored in a separate

physical unit.

* Handling More than One Temporal Dimension

Our system handles one temporal dimension, e.g., the physical time. If
more temporal dimensions are needed, e.g., the recording time (to deal with
AS-OF time), then they have to be stored explicitly by the user. The inclusion
of more than one temporal dimension in a working system presents fundamental

research problems that have to be further investigated.

* Using Temporal Spans for Attributes 3

In our model, each VA varies along the time dimension without any formal

limits. Its values before the first explicitly recorded value are determined
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by interpolation (typically NULL values). The values after the last recorded
value are determined by this interpolation as well (typically, the last
recorded value). A different approach could suggest that each VA in each TOR
will have two time points associated with it, indicating the first time point
and the last time point at which this attribute's value is valid.
Conceptually, this modification converts the cubic view of the TOR to an image
constructed from several cubes that are pasted together. In practice, the
implications of such a modification on all the aspects of the TDMS (data

structures, operations, constraints, etc.) should be a subject of further

research.

* Updating Views

The append operation was restricted to base TORs, created originally by
the user, and not to views, created by the temporal relational algebra
operations. This restriction seems to be needed to prevent the introduction
' of inconsistencies into a TODB. This is again a subject for future research,
that can identify ways to allow the updating of views under a set of

appropriate rules.

¥ Indication of Non-Existing Tuples

In our TDMS, the indication of a non-existing tuple of an object in a TOR
at a specific time point, is the assignment of NULL values to all its VAs at
this time point. This is not the only way to indicate- such situations.

Another way could be the addition of an invisible attribute to every TOR,

whose only purpose is to indicate the time points at which objects exist, and
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the time points at which they do not exist. The implications of the various
alternative methods to indicate the exisfence of objects at the various time

points is another issue that requires future research.

9.4, Closing Remarks

This study is one further s;ep in the process of making TDMS, the
temporal extension of the regular DBMS, as common and useful as the existing
DBMSs. This research has not covered all the aspects of implementing TODBs
completely and comprehensively. Nevertheless, it has created a sharper and
clearer picture of the complexities inhereng in this topic, which should guide

us in identifying further research issues in this rich domain.
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Appendix A

The Content of the Benchmark Database

The benchmark database included in this dissertation contains nine TORs,
and serves to demonstrate the TDMS's capabilities throughout the dissertation.

The contents of these TORs, in terms of their internal views and their

representing relations, are presented in the following tables.
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EMP (EMPNQO,NAME , SEX ,DEPTNO, JOBCLS)

| EMPNO | NAME | SEX | DEPTNO | JOBCLS |
| 10010 | MIKE | M | 800101 3 | 800101 4 |
| | I | 810215 2 | 810201 3 |
I 1 I | | 821015 2 |
| | | I [ |
| 10005 | MARY | F | 810210 2 | 810210 3 |
I I | | | |
[ 10050 | DAVID | M | 800601 1 | 800601 3 |
I I I | 820508 NULL| 820508 NULL|
| l | | 830415 1 | 830415 2 |
| I I I | [
| 10030 | HENRY | M | 800101 2 | 800101 3 |
| I I | 820701 3 | 820101 2 |
| I I | 830508 2 | 830304 1 |
| | | | I |
| 10080 | ALICE | F | 810101 3 | 810101 2 |
I | | | I I
| 10025 [ OSCAR | M | 800101 4 | 800101 1 |
| | | | | |
| 10090 | SUSAN | F | 800101 4 | 800101 4 |
I | | | | 811015 3 |
Table A-1: The Internal View of the TOR EMP
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EMP(ATTRIBUTE,PTYPE,LTYPE)

| EMPNO | | 1 |
| NAME | ce0 | 2 |
| SEX |l c1t | 2 |
| DEPTNO | I2 | 3 |
| JoBCLS | 12 | 3 |

-

—— -

——————

| 10010 | MIKE | M |
| 10005 | MARY | F |
| 10050 | DAVID | M |
| 10030 | HENRY | M |
| 10080 | ALICE | F |
| 10025 | OSCAR | M |
| 10090 | SUSAN | F |

-

| 10010 | 800101 | 3 |
| 10010 | 810215 | 2 |
| 10005 | 800101 | 2 I
| 10050 | 800601 | 1 |
| 10050 | 820508 | NULL |
| 10050 | 830415 | 1 |
| 10030 | 800101 | 2 I
| 10030 | 820701 | 3 |
| 10030 | 830508 | 2 I
| 10080 | 810101 | 3 |
| 10025 | 800101 | 4 |
| 10090 | 800101 | 4 I



EMP3(EMPNO, TIME,JOBCLS)

- — - -

| EMPNO

- -

| 10010
| 10010
| 10010
| 10005
| 10050
| 10050
| 10050
| 10030
| 10030
| 10030
[ 10080
| 10025
| 10090
| 10090

- -

1

TIME

810201
821015
810210
800601
820508
830415
800101
820101
830304
810101
800101
800101
811015

| JOBCLS |
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Table A-2:

The Regular Relations Representing the TOR EMP
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SAL (EMPNO,SALARY)

SALARY

10010

10005

10030

10080

I

|

I

I

I

|

|

|

I

| 10050
!

[

|

I

|

|

l

J

|

| 10090
l

e e Ll e —

800101
811120

800101
820215

810210
830101

800601
820508
830415

800101
810601
831015
810101

800101
820101

30000
32300

19500
22100

20300
22500

21200
NULL
23500

22000
23500
24500
24000

19700
21200

Table A-3:

The Internal View of the TOR SAL

SAL(ATTRIBUTE,PTYPE,LTYPE)

b LT pe e ————

——————————

| EMPNO | Iy
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-

———— -

| 10025 | 800101 | 30000 |
| 10025 | 811120 | 32300 |
| 10010 | 800101 | 19500 |
| 10010 | 820215 | 22100 |
| 10005 | 810210 | 20300 |
| 10005 | 830101 | 22500 |
| 10050 | 800601 | 21200 |
| 10050 | 820508 | NULL |
| 10050 | 830415 | 23500 |
| 10030 | 800101 | 22000 |
| 10030 | 810601 | 23500 |
| 10030 | 831015 | 24500 |
| 10080 | 810101 | 24000 |
| 10090 | 800101 | 19700 |
| 10090 | 820101 | 21200 |

- — - - -

Table A-4: The Regular Relations Representing the TOR SAL
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DEPT(DEPTNO , DEPTNM, DEPMGR)

I 1 | SALES

| [

| I

| |

| 2 | PRODUCTION
| [

I |

| 3 | ACCOUNTING
| |

| |

| 4 | MANAGEMENT

-

800601 10050
820508 NULL
830415 10050

|

|

[

|

| 800101 10030
| 820701 10005
|

| 800101 10010
| 810215 10080
|

I

800101 10025

Table A-5:

The Internal View of

the TOR DEPT
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DEPT(ATTRIBUTE,PTYPE,LTYPE)

-

- -

| DEPTNO | I4 | 1 |

| DEPTNM | C12 | 2 |

| DEPMGR | 14 | 3 |
DEPT1(DEPTNO, DEPTNM)

-

1 | SALES I
2 | PRODUCTION |
3 | ACCOUNTING |
Y | MANAGEMENT |

-

-

| DEPTNO | TIME | DEPMGR |

- — -

[ 1 | 800601 | 10050 |
I 1 | 820508 | NULL |
I 1 | 830415 | 10050 |
| 2 | 800101 | 10030 |
| 2 | 820701 | 10005 |
|3 | 800101 | 10010 |
| 3 | 810215 | 10080 |
| 4 | 800101 | 10025 |

——

Table A-6: The Regular Relations Representing the TOR DEPT
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COURSE(CRSNO, CNAME , PRICE , DURATN)

- -

| CRSNO | CNAME | PRICE

-

] —

760101
820107

|

|

|

|

| 791001
| 810215
| 821020
| 830501
|

I

i

|

770515
810210

130

150
200

760101
800710

791001
820101
830215

770515
801201
820112

Table A-T:

The Internal View of the TOR COURSE

. COURSE(ATTRIBUTE,PTYPE,LTYPE)

-

-

| CRSNO | 12 |
| CNAME | c20 |
| PRICE | F4 |
| DURATN | I2 |

D e e T Spe——

| 100 | BASIC
| 200 | FORTRAN
| 150 | COBOL

——
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COURSE2(CRSNO, TIME,PRICE)

| 100 | 760101 | 100 |
| 100 | 820107 | 120 |
| 200 | 791001 | © I
| 200 | 810215 | 50 |
| 200 | 81020 | 70 |
| 200 | 830501 | 130 |
| 150 | 770515 | 150 |
| 150 | 810210 | 200

-

| 100 | 760101 | 5 I
| 100 | 810201 | 6 I
| 200 | 791001 | 3 I
| 200 | 820101 | 5 f
| 200 | 830215 | 10 |
| 150 | 770515 | 8 f
| 150 | 801201 | 10 [
| 150 | 820112 | 12 |

e e T ——————

Table A-8: The Regular Relations Representing the TOR COURSE
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TRNHST (EMPNO, CRSNO, GRADE)

- — -

10010

| |
| |
| |
| 10010 | 200
| [
| 10050 | 150
i |
| 10050 | 200
| |
I |
| 10050 | 100

- -

| 820310
I
| 810515

800910

|

|

I

| 810515
| 831210
|

I

100 | 800815 80

92
78
85

70
90

Table A-9:

The Internal View of the TOR TRNHST
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TRNHST(EMPNO, CRSNO, GRADE)

-

| EMPNO | I4 | 1 |
| CRSNO | 12 | 1 |
| GRADE | 12 | 3 |

- -

| EMPNO | CRSNO |
| 10010 | 100 |
| 10010 | 200 |
| 10050 | 150 |
[ 10050 | 200 |
| 10050 | 100 |

- ———— -

[ 10010 | 100 | 800815 | 80 |
[ 10010 [ 100 | 820310 | 92 |
| 10010 | 200 | 810515 | 78 |
| 10050 | 150 | 800910 | 85 |
| 10050 | 200 | 810515 | 70 |
| 10050 | 200 | 831210 | 90 |
| 10050 | 100 | 830815 | 88 |

Table A-10: The Regular Relations Representing the TOR TRNHST
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DRESS(SEX ,ROOM)

- - -

| SEX | ROOM I
| M ] 800101 M304 |
[ | 820512 Muoy |
I | |
| F | 800101 M610 |

—— -

Table A-11: The Internal View of the TOR DRESS

DRESS(ATTRIBUTE,PTYPE,LTYPE)

T

———— - —

|  SEX | c1 |1
|  ROOM | cC4 I3 |
DRESS1(SEX)
| SEX |
l M |
! F [

- —

-

| SEX | TIME | ROOM |
| M | 800101 | M304 |
| M | 820512 | M404 |
| F | 800101 | M610 |

-

Table A-12: The Regular Relations Representing the TOR DRESS
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UNIONS(UNION,SEX,OFFICE)

- -

- -

800501 M101
810615 N503

I
|
I
800601  M102 |
I
I
l

| l I
I | I
I | |
| BETA | F |
! I | 810620  N505
[ I I
| | I

GAMA M 810210 W203

Table A-13: The Internal View of the TOR UNIONS
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UNIONS(ATTRIBUTE,PTYPE,LTYPE)

| ATTRIBUTE | PTYPE | LTYPE |

————— ————— -

| UNION | €8 | 1 |
|  SEX €& | 2 |
| OFFICE | c4 | 3 |

UNIONS1(UNION,SEX)

| UNION | SEX |

| ALPHA | M |

| BETA | F |

| GAMA | M |

- — - -

- —— -

| UNION | TIME | OFFICE |
| ALPHA | 800501 | I
| ALPHA | 810615 | I
| BETA | 800601 | M102 |
| BETA | 810620 | |
| GAMA | 810210 | |

e L

Table A-1Y4:

The Regular Relations Representing the TOR UNIONS
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PHONES ( PHONE , DEPTNO,LINES)

[P A ————— e b T

| PHONE | DEPTNO | LINES l
| 2856010 | 1 | Booto1 11|
: 2856040 : 2 : 800101 1 :
! | | 810304 I
} 2856090 : 2 } 811001 2 :
: 2856110 : 3 i 800101 1 %
: 2856000 : 4 : 800101 1 1
; 2856100 : L : 800401 1 1

-

Table A-15: The Internal View of the TOR PHONES
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PHONES(ATTRIBUTE,PTYPE,LTYPE)

-

2856010
2856040
2856090

2856000
2856100

——— -

-

-

| 2856010
| 2856040
| 2856040
| 2856090
| 2856110
| 2856000
| 2856100

- — -

| I
| I
I |
| 2856110 |
| [
[ |

800101
800101
810304
811001
800101
800101
800401

Table A-16:

The Regular Relations Representing the TOR PHONES
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PROJECTS(PROJNO,PROJNM, COST ,DEPTNO)

(R ——————————— P et LT

| PROJNO | PROJNM | COST |  DEPTNO [
| 1000 | MDA | 800805 5000 | 800805 y |
| i | 811020 7000 | 801220 2 |
| | | 820310 9000 | 811015 3 |
| | | | 821210 1|
| | l I |
| 1010 | AI | 810201 13000 | 810201 2 |
| | | 830405 22000 | 830310 3|
| | | | 840107 1|
l l I | |
| 1020 | TDMS | 831015 18000 | 831015 3|
i l I | 831206 2 |
| l 1 | 850420 1

———————————

Table A-1T: The Internal View of the TOR PROJECTS

PROJECTS(ATTRIBUTE,PTYPE,LTYPE)

i

-

| PROJNO | I2 | 1 |
| PROJNM | Cc20 | 2 |
|  COST | F4 | 3 |
| ©DEPTNO | I2 | 3 |

| PROJNO | PROJNM |
| 1000 | MDA |
| 1010 | Al |

- -
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PROJECTS2(PROJNO, TIME,COST)

| PROJNO | TIME | COST |
| 1000 | 800805 | 5000 |
| 1000 | 811020 | 7000 |
| 1000 | 820310 | 9000 |
| 1010 | 810201 | 13000 |
| 1010 | 830405 | 22000 |
| 1020 | 831015 | 18000 |

i

| 1000 | 800805 | y I
| 1000 | 801220 | 2 I
| 1000 | 811015 | 3 |
| 1000 | 821210 | 1 I
| 1010 | 810201 | 2 |
| 1010 | 830310 | 3 I
| 1010 | 840107 | 1 I
| 1020 | 831015 | 3 |
| 1020 | 831206 | 2 |
| 1020 | 850420 | 1 |

-

Table A-18: The Regular Relations Representing the TOR PROJECTS
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