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ORTHDGONAL INFQRMCITION STRUCTMES - CI MODEL TO EVCILUCITE THE 
INFORBATION PROVIDED BY A SECOND OPIN ION 

ABSTRACZ 

The paper discusses the value of information when a number 
of independent sources provide information related to a 
common set of states of nature. 

The starting point is the Information Economic model of 
Information Structures. The model is augmented to represent 
independence of informational sources by means of 
orthogonality of the information structures. 

A new mathematical operator, orthoaonal oroduct, is defined 
and its properties are probed. It is shown that this 
operator maintains some mathematical properties such as 
closure, association, unity element, null element, etc. It 
is demonstrated how the orthogonal product represents the 
notion of multi-source information. 

The paper proves that an orthogonal product is generally 
more informative than its multipliers, namely, if cost is 
not considered a constraining factor, then there is a non- 
negative value to obtaining a second opinion. 

The paper concludes with a numerical example and a 
discussion on the applicability of the model of 
orthogonality. 

Keywords: Information Economics, Information Structures, 
Value of Information, Decision Models 
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DRTHOGONQL INFORMATION STRUCTURES - A MODEL TO EVALUATE THE 
INFORMATION PROVIKED BY 6 SECOND O P I N I O N  

1. INTRODUCTION 

The Information Economic approach to information evaluation 

is based on an Information Structure (IS) model developed by 

MarschakC93, McGuire and RadnerC113, DemskiES3, and others, 

and later expanded in a number of articles 

(e.g.,Cll,E2l,C33). The model portrays an information 

system as a stochastic (Markov) matrix of probabilities 

which transform states of nature to signals. The decision 

maker ( D M )  has to select the optimal decision rule under 

given values of a priori probabilities for states of nature, 

and given values of payoffs. The Information Economic model 

proposes a partial rank ordering of Information Structures 

by using Blackwell TheorernC103. 

The IS model basically deals with one source of information 

generating signals in a stochastic manner. In reality, 

however, there are many cases where the DM has to consider a 

number of signals based on the same set of states of nature 

but generated by 'independent' information systems. The IS 

model does not deal with such cases. Since the power of a 

model is in its correspondence to a real decision problem 

(DernskiC53), there is a need for a modification to the 

traditional model. 
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In other words, the real state of nature is unknown to the 

decision maker who has to learn about it through signals. 

However, instead of reacting in response to a signal 

provided by a single system, the DM requests signals from a 

number of sources and reacts only after examining the 

combined information. Here are some examples. 

A manufacturing business of hi-tech electronic products 

wishes to place an offer in a bid for a new product. The CEO 

requests to prepare a cost estimate of the new product. 

This is performed by two independent teams. One team takes 

a 'micro' approach; the product is decomposed into major 

components which are further divided into items until the 

entire Bill-of Materials (see MonksC16Jr ch. 11)  is 

exploded. Then the cost of each elementary component is 

assessed, and the total is summed up in order to obtain an 

aggregate estimate. 

The second team takes a 'macro' approach (also known as 

Parametric Control). The team attempts to assess some 

overall traits of the new product; e.g., weight, volume, 

number of electronic cards tslots). Based on these few 

parameters and, of course, on past experience and historical 

data, the team calculates a rough estimate of the cost. 
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The CED has to consider two distinct signals provided by two 

independent sources before deciding what he or she believes 

to be the real cost. 

A similar example is very common in the construction 

industry. The cost of building a new house is usually 

estimated in two ways. One way is to try to list out all 

the necessary 'ingredients' of the house and sum up their 

cost; the other way is to calculate the 'magic number', 

normally the floor space, and multiply this number by the 

cost per square foot. The result will yield a quite good 

approximation of the cost of the building. 

One last example is taken from a totally different area. 

When a person faces a crucial decision regarding his or her 

own health (e.g., undergoing a major surgery), most of the 

people will ask for a second opinion. A second opinion is 

indeed an additional signal, based on the same state of 

nature, but provided by an independent source. 

The problem of multi-source information has been discussed 

in a number of articles. WinklerClB3, for instance, examined 

the problem of combining several forecasts of a single 

variable. Morris f14,153 treated the same problem by a two- 

stage Bayesian process. However, the incorporation of the 

IS model (which is in fact based on Decision Theory) into 
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the problem of multi-source information has not yet been 

explicitly presented. 

This paper applies the IS model to the case where a decision 

maker has to consider a number of signals provided by 

"independent" (this term will be defined later more 

rigorously) information structures. 

The paper addresses a number of questions. The first one 

is how independence of ISs can be treated? The paper coins 

a new term, 'orthoaonal information structures" a new 

mathematical operator labeled 'orthoqonal producty is 

defined and its mathematical properties are analyzed. 

The second question deals with the value of the information 

provided by  an orthogonal IS. It is proven that the 

combined information collected from orthogonal systems is 

generally more informative than the information produced by 

each individual system; i.e., it is worthwhile to ask for a 

second opinion (subject, of course, to cost considerations). 

The last part of the paper discusses the applicability of 

the orthogonal model, This discussion is assisted by a 

numerical example. 
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2. ORTHOGONAL INFORMATJON STRUCTURES 

We will first review briefly the traditional Information 

Structure (IS) model (McGuireClOJ), and then incorporate 

orthogonality into the model . 

Let E be a finite set of events (states of nature), 

E=Ce ,,...,e,,3. Let p be a vector of a priori probabilities 

associated with the events in E, p*=(p,,.. .,p,,), where 

Cp,=lr piLO9 i=l,...,n, , (the superscript t stands for a 
transpose operator 1 .  

Let Z be a finite set of signals, Z=Czl,. ..,t,,>. 

An information structure Q is defined as an n=xnr Markov 

(stochastic) matrix of conditional probabilities in which 

signals of the set Z will be displayed at the occurrence of 

an event of E. Thus q,, of Q is the probability that for a 

given event e,, signal z J  will be displayed. 
- 

Let A be a finite set of actions that can be taken by the 

decision maker (DM), A=Cal, ... ,ann3. A cardinal payoff 
function U is defined from A X E  to the real numbers, R1, 

associating payoffs to pairs of actions and events, 

U:AxE-->R1. The function U can be depicted by an n,xn, 

matrix, denote UI whose each element a,, reflects the payoff 

gained when an action a, is taken and the event turns to be 
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The DM cannot observe the events but rather the signals, and 

chooses actions accordingly. The DM'S strategy is delineated 

by an n~xn, Markov matrix D, whose each element d ~ ,  

determines the probability that the DM takes action a, upon 

observing signal 2 , .  Obviously, the DM wishes to optimize D 

to obtain the maximum expected payoff. This is performed by 

the following algorithm: 

Let py be a square matrix containing the elements of p in 

its main diagonal and zeros elsewhere: 

The expected payoff gained from Q ,  U, and a decision rule D 

is given by tr(QDUp'1, where 'try represents the trace 

operator. Maximization of the above is obtained by solving a 

Linear Programming problem for the elements of D constrained 

by the properties of a Markovian matrix (see Ahituv and Wand 

C 3 3  for an elaborate discussion). 

Given two ISs Q and R operating on the same set of events E, 

Q is defined to be ggnerally more informative than R if the 

maximal expected payoff yielded by R is not larger than that 

yielded by Q for all payoff matrices U and all probability 

vectors p. A partial rank ordering of ISs is provided by 
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Blackwell Theorem E l 0 3  stating that Q is generally more 

informative than R if and only if there exists a Markov 

matrix M with appropriate dimensions such that QxM=R; M is 

called the garbling matrix. (Hereafter we will use the terms 

'informativeness' and 'more informative' for the 

relationship 'generally more informative'). 

We will introduce now the notion of orthogonality. 

Intuitively, two tor more) ISs are considered to be 

orthogonal when they observe the same set of states of 

nature but generate signals independently; in other words, 

the likelihood of a signal to be generated by a certain IS 

does not depend on the signal produced by the other, but 

only on the conditional probabilities of the IS itself. 

This will be formulated now more rigorously. 

Let Q and R be two-information structures 

operating on the set of events E and producing the 

sets of signals Z=(zlr. ..,zmz> and 

W=Cw,,...,w,,> respectively. 

Definition I-: Signals z, and w,< are orthogonal if and only - 
if 

Pr((z,/ei)/(w,/ei)) = Pr(z,/ei) = qi, and 

Pr((w,/ei)/(z,/el)) =Pr(wk/ei) = r r k  for 

all i. 
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(i.e., the probability that z, is triggered due to 

occurrence of e, does not depend on whether w, has been 

displayed or not, and vice versa). 

Definition 2: Information Structure Q and R are orthogonal 

when all their signals are orthogonal one to 

each other. 

I t  is obvious that the relationship of orthogonality is 

symmetric (by definition) and transitive. The next section 

shows how to compose an integrated IS out of orthogonal 

ones. 

3, ORTHOGONAL PRODUCT 

The purpose of this section is to show how one can combine 

the information provided by distinct orthogonal ISs. This 

will be done by defining a new mathematical operator, 

orthogonal product (or orthogonal multiplication) and 

inquiring its traits. 

Let Q and R be two ISs defined in the same way as in the 

previous section. 
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Definition 3: S is called the orthogonal product of Q and R 

(denote: S = Q@R if S is a matrix of n, rows 

and nwxnz columns whose elements are as 

follows: for every i, i=l,...,ne 

The orthogonal product S maps a set of n, events into a set 

of nwxnr signals. The following numerical example clarifies 

the notion of orthogonal product. 

Example: Let Q and R be the following 2 x 2  orthogonal ISs: 

Let S=Q@R. Then S is computed as below: 

S observes the original set E and produces four signals 

which indicate what can be displayed to the DM: z ,  and w , ,  

2 %  and We, etc. It is now the task of the DM to devise the 

optimal decision rule for each individual pair of signals. 

But first let us discuss some mathematical properties of the 

orthogonal product. 
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Property 1: S is a Markovian matrix (this is the property of 

closure? i.e., the set of IS is closed under the operand of 

orthogonal multiplication; see Wylie and BarrettE193). 

Proof: Obviously, each element of S is non-negative; it is 

sufficient to show that the sum of all the elements in a row 

of S equals 1. 

Property 2: The orthogonal product is an associative 

operation, i.e.? Q@(R@L)=(Q@R)@L. 

This property is a directly consequential to the definition 

of the operator. 

Pro~ertv 3: The unity element of the orthogonal product is 

since for any Q it yields ?@Q=Q. 

Note that the unity element may have an informational 

interpretation as well. An IS of that kind does not provide 

any information; it always produces the same signal. Thus, 

combining it with another IS should not supply any 

additional knowledge. 

Optimizing the decision rule for an orthogonal product 

matrix is similar to the process carried out for a 'simple' 

IS, namely through solving an LP problem. This is obvious 
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since the product is indeed an IS. Let us continue with the 

previous example to demonstrate the optimization process. 

Suppose Q, R and S are as follows: 

Suppose the a priori probabilities are pf=(.6 . 4 ) ,  the set 

of actions is A=Cal,ae), and the payoff matrix U is the 

following: 

and the expected payoff would be T ~ z 8 . 6 .  

51 se? 

Given both ISs, the optimal decision rule for S is 

a, 

a, 

and the expected payoff is T,=11.8 

20 -15  
=U 

-30 40 

Note that the marginal value of the information provided by 

the 'second opinion' (i.e., S) is 0.8 relative to Q, and 3.2 

Given Q alone, the optimal decision rule is Do*= 

relative to R .  However, before we elaborate on the value of 

1 0  

0 1 

orthogonal information, let us discuss two more properties 

of the orthogonal product. 

and the expected payoff would be T,=ll. 
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Property 4: The 'maximum-entropy' matrix is the 'null- 

element' of the orthogonal product in terms of 

informativeness (i.e., contribution to the expected payoff). 

A maximum entropy matrix is a stochastic matrix whose 

elements are all equal, namely, suppose the matrix' 

dimensions are n,xnr then every element t,, equals to l/nr 

for all i and j. 

and S=Q@T, where Q is taken from the previous example. 

For example, assume T= 

S is in fact a flattening of Q: 

.5 .5 

.5 .5 

Property 2: The matrices S=Q@R and S,=R@Q are informatively 

The optimal decision rule D= 

equivalent. 

1 0  
1 0 
0 1 
0 1 

Proof: It is obvious that the S and S I  consist of the same 

will yield the same expected payoff as attained by Q .  

column arranged, though, in a different order. It is proven 

in Marschakt93 that permutations of IS columns do not affect 

the informativeness of the IS. 

Intuitively, the interpretation of Property 5 is clear. 

Knowing that the columns of the orthogonal matrix have been 

permuted, the DM has only to permute the rows of the 



decision matrix accordingly. This property implies that it 

really does not matter which opinion is considered first and 

which one is the second as long as two opinions are indeed 

asked for. 

The next section will now inquire into the informativeness 

of the orthogonal product vis-a-vis its multipliers. 

INFORPIATIVENESS OF THE ORTHOGONAL PRODUCT 

Is it always better to acquire a second opinion? A positive 

answer to that question is not quite intuitive. According 

to Blackwell Theorem? a garbled IS cannot perform better 

th>n the original matrix, An orthogonal product is after 

all an IS which has been produced from two original 

stochastic matrices, so maybe it might not perform better 

than its 'parenty matrices, However? unlike a garbled IS 

the orthogonal product is not generated through simple 

algebraic multiplication but rather by a novel operation. We 

will show now that an orthogonal product is generally more 

informative than each of the individual multipliers. 

Theorem 1: Let Q and R be two ISs operating on a common set 

of events. Let S be the orthogonal product of Q and R .  Then 

S is generally more informative than Q ,  and S is generally 

more informative than R. 



Proof: The proof will be handled in a constructive fashion, 

namely we will build garbling matrices that transform S to Q  

or to R. This will constitute a sufficient condition to 

apply Blackwell Theorem to prove the above assertion. 

Let Ma and Me be two Markov matrices each having nrxnw rows 

Let Q= 

and n, or nw columns respectively, constructed as follows: 

q i i *  = .  * q i n E  
: 
q n ~ x  * q n ~ % n ~  

- 
3  
3first n, rows 
3  . . 

- 3 

- 
3 
3 l W b  n, 
3 rows 

- 3 

-3 
32,a nr 
3  rows 

- 3 

- 
3  
>last nr 
3 rows 

- 3 

It is easy to see that S*Ml=Q and S*Me=R. Hence, S is 

generally more informative than both Q and R. 

Since sometimes two ISs can be equivalent in terms of their 

informativeness (e.g., is equivalent to 

it is important to note that this is not the case here, 

namely the relationship 'generally more informative' is a 

one-way relationship between the orthogonal product and its 



multipliers (except for some 'irregular' cases presented in 

the next section). In order to substantiate this 

proposition it is sufficient to provide a numerical example. 

Examine the sample matrices Q and S of the previous 

section. It is easy to see that the matrix Ma that solves 

the set of linear equations Q*M,=S is not Markovian, hence Q 

is not generally more informative than S .  

We will examine now some immediate results of the above 

theorem. 

5.  THE VALUE OF A SECOND OPINIOIJ 

Some immediate conclusions can derive from Theorem 1. First, 

it is clear that the orthogonal product of n+l orthogonal 

ISs is generally more informative than the product of any n 

matrices out of them. This may imply that the acquisition of 

an additional opinion is always worthwhile. However, one has 

to consider the cost (moneywise as well as timewise) of 

obtaining the additional information vis-a-vis the marginal 

expected payoff. 

Suppose the cost is not a constraining factor, then how far 

one should seek for additional opinions? A clear stopping 

rule is when one manages to obtain a 'complete and perfect' 

IS, i.e.r the unity matrix. Such matrix provides the maximal 

expected payoff so there is no need for further inquiry. 



T h i s  can also be displayed in terms of a n  orthogonal 

product : 

Suppose the optimal decision rule for I was 1 0  . 
l o  l l  

Let 
Q= 

The concept o f  orthogonality can also b e  associated with 

distributed systems. When two information systems are 

completely distributed, then from t h e  point of view o f  top 

management seeking integrated data they c a n  b e  perceived a s  

orthogonal. This might imply that distributed systems a r e  

more informative than a centralized one. Again, one should 

be cautious in making hasty conclusions because distributed 

systems might degrade data reliability, or the integration 

of data might be costly. However, relating the concepts o f  

orthogonality and distribution is a n  intriguing avenue for 

further research. 

.9 . I  

.2 .8 

Obviously, a decision rule in the form of 

Finally, it was made clear in a previous section that the 

'maximum entropy' matrix does not improve the expected 

payoff. Nevertheless, due to the above theorem it is now 

Their orthogonal product is S,= 

1 0 
0 1 
1 0  
0 1 

obvious that this matrix does not worsen the level of 

I =  

.'? 0 .1 0 

0  .2 0  .8 

will yield the same expected payoff. 

1 0  

0  1 



informativeness when it orthogonally multiplies a 'regular' 

IS. It maintains, in fact, the same level of 

informativeness; this of course is mathematically possible 

since the rank ordering set by Blackwell Theorem is a non- 

strict relationship. 

The maximum entropy matrix can also be used to demonstrate 

the notion of 'little improvement'. For instance, the matrix 

.5 .5 
1.5 -51 does not add to the informativeness of any existing 

IS, however if this matrix is slightly modified to look like 

where E x  and €, are small numbers, its orthogonal 

multiplication with any other IS represents a 'little bit' 

of added knowledge. In ordinary words, the maximum entropy 

matrix represents a situation of maximum uncertainty, and 

any deviation from it will likely constitute an improvement. 

The next section discusses possible application of 

orthogonal systems for cost estimation. 

6. APPLYING THE MODEL. 

The purpose of this concluding section is to raise some 

ideas on possible application of the orthogonality model. 

This will be done in the contents of cost estimation 

problems. 



Cost estimate of large (and usually unique, non-repetitive) 

projects is a severe problem in many various areas such as 

construction, ship building, aircraft industry, public 

utility companies, software development, electronics, high- 

tech industry, etc. Deviations that are three or four times 

larger than the initial estimate are not very seldom in 

those areas (see: Kharbanda and StallworthyC71 for examples 

of hardware, software, power plants, and aircraft 

developments; McNicholst123 for examples of subway 

construction and military systems developments). 

There are numerous reasons for the deviations. The 

prominent ones are: unforeseen exogenous factors (e.g., 

environmental, political, legal), mismanagement, deliberate 

deviation in order to get a contract, wrong estimation 

techniques. 

We will show now how the concept of orthogonal IS can be 

applied to control the estimation process. This will be 

done by presenting the geperal notation in parallel to a 

numerical example. 

Let E be a set of events representing the real cost of a 

project (ex-post ! ) ,  E=Ce,,...enh). For example, 

E=C%100,000; 9200,000; 3300,000), where the figures indicate 

possible costs of a project. Note that the fineness of event 

classification is subject to the DM judgment and may be 



revised. Without loss of generality, assume that the events 

are arranged such that the associate cost figures are sorted 

in an ascending order. 

Let pt=(p,, ...,p,, be the a priori probabilities assigned 

to the events of E. The probabilities may be subjective or 

based on past experience. For example, pt=(l/3, 1/3, 1/31. 

The decision rule is simply to estimate the cost. It is 

assumed that the DM would like to tell what will be the real 

cost. Hence the decision rule is a matrix whose rows 

correspond to signals provided by an information system 

(which will be discussed later); the columns correspond to 

estimates of the costs (events), and the elements indicate 

the probability that the DM estimates a certain cost value 

under a given signal. For example: 

The payoff matrix U displays a cardinal profit function 

which relates estimates to occurrences of real events (ex- 

post). I t  can be assumed that as the deviation increases so 

is the penalty the company pays. Therefore, the elements of 

the main diagonal of the matrix will be more in favor of the 

DM while 'remote' elements will reduce the profit (or 

increase the loss) monotonically. The following example 

delineates a matrix reflecting losses due to wrong estimates 

E S T I H A T E  
$loOK O K  S300K 

=D 
signal 100,000 
signal 200,000 
signal 300,000 

d l l  dl= dl, 
dcl dee d,, 
d , ~  dae da3 



fnote that underestimate and overestimate do not necessarily 

incur similar losses): 

The major objective of the DM is to determine the most 

appropriate decision rule, namely to estimate the cost as 

accurately as possible when a certain signal emerges from 

the IS. Note that the DM does not necessarily has to follow 

the signal; in other words, had the DM not trusted the IS, 

he or she could place an estimate not concurring with the 

signal emerging from the system (see hhituv and Wandt33 for 

a case like that). 

In order to perform a reasonable estimate, the DM employs 

some teams that ought to provide him or her with sufficient 

data. In the case of cost estimation, a very common approach 

is to decompose the project into components to obtain the 

'Bill of Material' for the project. This method is labelled 

'Bottom-Up' or 'Work Breakdown Structure' (W.B.S.); it was 

formulated by the U.S. Army in MIL STD 881AE133 (see also 

Buffat43). Once the elementary components have been 

identified and their cost has been determined, the figures 

are aggregated 'upward' to obtain the total cost, to which 

one has to add labor and other direct costs as well. 

This method is considered to be relatively accurate, however 

it consumes much time and labor. Its accuracy deteriorates 



in RbD projects or in projects where human-power is a major 

factor (e.g., software development). 

An alternative approach is called Parametric Costing (Dumas 

C63). This method is based o n  identifying some crude 

parameters that constitute a significant statistical 

correlation with the cost of a project in a certain 

industry. For instance, the 'magic number' for the cost of a 

building is $500 per square meter; the cost of manufacturing 

an airborne radar can be estimated by parameters such as the 

volume and the weight of the instrument. 

A well known method was developed by Large et al.E83 for 

estimating the cost of manufacturing a new aircraft. Their 

assessment for the cost of building 100 combat airplanes of 

the same model is given by a simple formula: 

c=4.2*w-7=*s-74 

where C is the cost per 100 units, W is the aircraft weight, 

and S is its maximum speed. 

A final example is a system named PRICE C173 which is an 

adaptive system. The user of the system can calibrate it to 

fit the organization's particular circumstances. PRICE can 

handle estimates in a number of areas, such a s  hardware, 

electronics, and software. 
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The problem with information systems for parametric costing 

is that they are not costless. They provide 'quick and 

dirty' information, namely faster but probably less 

accurate, at a certain additional cost. The DM can use them 

as Decision Support Systems (DSS) either to obtain fast 

responses or to crosscheck the signal provided by the 

regular IS. Still remains the question how much should one 

pay for a 'second opinion system'? 

The orthogonal IS model cannot advise us how much to pay, 

but it can tell what is the worth of a second opinion by 

figuring out the marginal expected payoff emanating from the 

orthogonal product of the two system. The DM will then 

decide whether the price is worthwhile. 

Let us turn now to the numerical example to demonstrate 

this. 

Suppose the ISs for the bottom-up and the parametric 

approaches are the following matrices Q and R respectively: 

The optimal decision rule for both Q and R will be the 

following matrix: 
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The expected payoffs for Q and R are -8,000 and -22,000, 

respectively. In terms of gross expected payoff Q is 

preferred, however one has to take into account the cost of 

carrying out a bottom-up analysis and the time it might 

consume. Nevertheless, let us check now if taking Q or R as 

a second opinion yields some significant marginal payoff. 

Let S be the orthogonal product, S=Q@R. 

The optimal decision rule for this IS is: 

The expected payoff is -6,066.66. The marginal gross payoff 

is 1,933.34 relative to Q, and 15,933.34 relative to R. 

These values should be compared of course to the cost and 

time factors associated with obtaining the additional 

information. Note that intuitively it makes much sense that 

when R is available, the additional value of a second 

opinion provided by Q is greater than the other way around, 

since initially R appears to be less 'exact' than Q. 

The last but not least important question is how to 

calibrate the model for practical use. This should be based 
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on past experience and subjective judgment. However, once 

the model is programmed and installed on a computer 

(including the LP routine to solve the optimal decision 

rule), it can be used not only to assess the value of a 

second opinion but also to analyze the sensitivity of the 

solution to various assumptions regarding the model's 

components, i.e., the ISs, the payoffs, and the a priori 

probabilities. In fact the programmed model can serve as a 

Decision Support System for the solution as well as as for 

the initial assumptions, 
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