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OPTIMAL SCHEDULING OF 

PURCHASING ORDERS FOR 

LARGE PROJECTS 

by 

Boaz   on en' and Dan ~rietsch' 

Abstract 

The completion of a typical project hinges upon receiving all the purchased components by the 

time they are scheduled to be used. Some of these components may have long stochastic lead 

times, so the project manager is tempted to order them ASAP, to avoid the (usual) high penalties 

associated with delays. (The penalties may be tangible or intangible, but we assume that they 

can be measured by monetary units.) This in turn may bring about excessive inventory holding 

costs. Clearly an optimization is called for to minimize the total expected cost of the project. 

This is achieved by timing the orders optimally, for the one component case as well as for the n 

component general case. 
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1. Introduction: 

By way of introduction, let us consider the following special case: A project requires one 

purchased component, which must be on hand a t  a specified time, t*. If the item is received 

earlier, the project will be completed in time --i.e., without penalties--but an inventory holding of 

cost C will be incurred for each time unit the item is held in inventory after arrival and until t*. 

On the other hand, if the component is late, a penalty P is incurred for each time unit of delay-- 

since the whole project is consequently delayed. Assume now that the lead time of the component 

has a given stochastic distribution, and the project manager has to decide when to place the order 

in such a manner that the total expected cost of the inventory holding cost and the delay penalty 

will be minimized. 

This problem can now be generalized for n independently distributed components , each of which 

has its own holding cost, where it is enough that one of them will not be in time, to incur the 

penalty in full, while inventory holding cost applies to all the components which did arrive. 

Section 2 describes the single component model. We will show an analytic solution provided the 

lead times has an analytically invertible cumulative distribution function (CDF)--otherwise, a 

numerical procedure will be required to find the exact optimal order point. 

In section 3 we discuss another special case, namely, the two components model. We include this 

case as an introduction to the general case. 

Indeed, Section 4 presents a set of equations, which solve the general case. However, this solution 

requires a numerical search procedure, even if the CDFs of the lead times are analytically 

invertible. 

 ina all^ in Section 5, we discuss some other applications, and suggestions for future extensions. 

2. The Single Component Model 

Our basic premise is that the project manager is responsible for all the costs associated with the 

purchasing decision. Therefore, it's in her or his interest and power to minimize the expected 

total cost of holding the inventory, in case of early delivery, and of the penalty, in case of late 

delivery (e.g., see Taha [2], Chap. 13). We also assume that the component's lead time is a 

stationary stochastic variable with a given distribution. In order to minimize the expected cost, 
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the manager has t o  optimize the scheduling of the order placement--which is the decision variable 

under her or his control. 

The objective function is: 

(2.1) MIN(E(Penalty Cost)+E(Holding Cost)) 

where T is the time in which the order is placed. Figure 2.1 illustrates the relationship between 

t*, T and the lead time distribution. Note that the distribution *startsu a t  T (the item cannot 

arrive before be ordered), and consequently the area to the right of t*, i.e. the penalty 

probability, increases with T, as expected. 

Place figure 2.1 about here 

Expanding the target function (2.1), we may write: 

(2.2) MIN ( C r * ~ ( t - T ) d t  + ~ l r [ l - ~ ( t - T ) ] d t  ) 
T T 

where: 

F() is the CDF of the lead time 

C is the holding cost per period 

P is the penalty cost per period 

Note that these costs are assumed to be linear, as mentioned above. 

By taking the derivatives of (2.2), and using the Leibnitz method to differentiate under the 

intergral, i t  can be shown that the optima1 order point, T* , satisfies 
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In other words, T*  satisfies (2.4) 

(2.4) I'r = urg{qt* - ?") = P / ( P  + C)} 

Assuming that  F() has an analytic inverse, we may now obtain T* directly from it, i.e. 

(2.5) I"C = t*-~-"l/(l + C / P ) ) .  

If F() does not have an explicit inverse, this part of the solution has to be carried out numerically. 

0bvioksly, when P > > C (which is very often the case in practice), the model will push T* as 

far to the left as possible (i.e., ASAP). It  may even happen that (2.5) cannot be satisfied for any 

non-negative T, which implies an immediate order. On the other hand, if the probability that 

the item will be delivered immediately upon order is high enough, we may have to order "just in 

time." In both cases above, the expected total cost will be larger than Moptimal.M 

It is interesting to note that our result is not dependent upon the form of the distribution, or any 

of its moments, except for the cumulated probability itself. However, the optimal value of the 

target function which results, is very dependent upon the distribution, and especially its tails. 

3. Purchasing Decisions for Two Independent Orders 

In this section we assume that the project requires two independent orders. I t  is enough that one 

order will be delayed, to delay the whole project, and thus incur the penalty cost P. However, in 

case one of the orders arrives in time, and the other is delayed, we also have to carry the holding 

cost for the order which arrived. 

For simplicity, we assume that the orders are required a t  the same time t*. However, the readers 

can verify later, that this assumption may be dropped very easily by a simple adjustment. 

Let C1, C2 denote the inventory holding costs per period of item 1 and 2 respectively. Let Fl = 

Fl(t-T1) and F2 = (t-T2) denote the probabilities that the respective orders will arrive before t 

given that they were ordered a t  T (regardless of what happens to the other item). Let P be the 

penalty cost per period in case the project is delayed. 

For tractability reasons, i t  seems convenient to calculate the expected costs till t* and from t* 

separately. It  is easy to see then, that the expected holding cost till t*, h = h(T1,T2), is 
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rt* rt* 

From t* onwards, a t  any given time t ,  there are four mutually exclusive and exhaustive possible 

random events: 

( i )  both items a r e  on hand, and the  implied c o s t  is  zero;  
( i i )  i tem 1 is on hand, but  item 2 is missing, r e s u l t i n g  

a t  a cos t  of P + Ct ;  

(iii) s i m i l a r l y ,  where item 1 is the  missing one, cos t ing  P +C2; 

and f i n a l l y ,  
( iv)  both a re  missing a t  the  same time, cos t ing  P .  

Combining these costs with h, we obtain the target function as follows: 

(3.2) z = z (T,,T2) = h + ( P +  C,) Fl(l-F2)dt + 

Our objective is to minimize z, by optimizing the order points of item 1 and item 2, i.e. TI and 

T2 respectively. To that end, we take the partial derivatives (again, using the Leibnitz method 

where required), and set them to zero. This yields the following equation: 

and a symmetrical results holds for the second item. 

We should observe, that due to the interaction between the two components, it is no longer 

enough to have the fractiles of the distributions -- as was the case for a single item. These 

equations can be solved numerically. 
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4. Purchasing Decisions for n Independent Orders 

As in the former case, i t  is enough that one order will be delayed, to delay the whole project, and 

thus incur the penalty cost P, and, if a t  least one of the orders arrives in time while a t  least one 

of the others is delayed, we also have to  carry the holding cost for the orders which have arrived. 

Let Ci (i = 1, . . . , n) be the holding cost of item i, analog to the notation used in the previous 

section, and similarly let Fi, Fi*, Ti  and Ti* be defined analog to  Fl  (or F2), F1*, T1 and T1* for 

item i. Clearly, these can be written in vector form, e.g TN = (TI, . . .,T,), etc. 

Again we calculate the costs till and after t* separately, and if we use h ( X )  to  denote the 

expected holding costs till t* (as before), we have 

rt* 

From t* onwards, a t  any given time t ,  there are now 2n mutually exclusive and exhaustive 

possible random events, which can be categorized as follows: 

( i )  a l l  items on hand, and the  implied c o s t  is zero;  
(ii) a l l  i tems except item i (where i can be chosen 

a r b i t r a r i l y )  a r e  on hand, y i e ld ing  a c o s t  of 

( i i i )  i tem i is on hand, but a t  l e a s t  one o the r  item is 
missing, r e s u l t i n g  i n  a c o s t  of P + poss ib ly  some 
o the r  C ' 6 ;  

1 
( iv)  s i m i l a r l y ,  where item i is missing and a t  l e a s t  one 

Other item is missing, cos t ing  P + poss ib ly  some 
o the r  C ' s .  

1 

Combining these costs with h, we obtain the target function. In order t o  do that, we can choose 

any i. For convenience we actually show the case for T1 only, but the generalization is 

immediate, due to symmetry. (Note that case (i) can be paired with case (ii), and all the cases of 

(iii) form similar pairs with cases of (iv). Eq. (4.2) is arranged according to  these pairs. For 

clarity we also show the entry for the case where all items arrived--namely (i) --even though its 

contribution is zero.) 
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rt* 

Note that if we would write Eq. (4.2) in full, it would have 2"-l pairs of integrals, in addition to h 

(the first line). 

In order to minimize z, we have to set its gradient by T- to O_ . Due to symmetry, if we find the 

partial derivative by T1, we practically have all the components of the gradient. Looking a t  h 

first, only its first component is a function of T1, and thus we may disregard the others. As for 

the pairs which are not functions of T1, each pair contributes 

(4.3) C t  l*oO F1 II (aomc combination of Fi (1-F.) dt 
f 

But, if we sum all the values for the various combinations of F .  and 1-F. in 4.3, obviously all the 
J J 

possible combinations except the case where all the items arrived are represented, and therefore 

the sum must be: 

By regrouping and some algebraic manipulations we finally get the following expression for the 

partial derivative 
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Where S is P + Ci 

And after setting this derivative to zero: 

(4 .6)  is a set of n nonlinear equations, which can be handled numerically. 

We can also evaluate a lower bound for the Ti's for this problem. Since nj Fj < 1 , 

In other words 

C;,. 

(4.9) Fi = optimal A. (arrival i n  t ime)  <1 - - 
S 

thus, the lower bound may lead to assess Fi as follows: 

and can be calculated for each item independently. 

This means that a project manager using this policy would never have a greater expected penalty 

than the expected penalty derived by this limit. This might be considered as a *conservative 

limit* and might be perceived by managers as a *conservative policy," because the manager 

takes less penalty risks than a t  the optimal policy. 
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5.  Conclusion 

We have shown that  this seemingly complex problem can be solved very easily, indeed. Hi-tech 

projects, and modern production in general, are characterized by an ever growing need for 

timeliness. Management, and competitors, push for shorter cycle times. Thus a model such as 

ours may fill an important gap. 

The model may be used in many other management areas. For instance, many insurance related 

problems, involving risk management may lead to similar results. In actual P.E.R.T. problems, 

(see, for instance Buffa [I], ch.10) each activity has its own t* so to speak, so the model should be 

adjusted accordingly. 

Further research is being done now in order to build an effective Decision Support System that 

will take advantage of the concepts and methods derived in this work. For instance, 

modifications of purchasing policies as well as cost considerations could be done. Another 

direction is to develop a Negotiation Support System for better cost estimation and scheduling of 

large projects. This problem is being investigated as well. 
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Figure  21: The r e l a t i o n s h i p  between 
t*, T and the  lead t i m e  d i s t r i b u t i o n .  
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