
THE HISTORICAL RELATIONAL DATA MODEL (HRDM)
AND ALGEBRA BASED ON LIFESPANS

James Clifford
and

Albert Croker

Information Systems Area
Graduate School of Business Administration

New York University
90 Trinity Place

New York, N.Y. 10006

June 1986

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I16
GBA #86-19

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans

James Clifford and Albert Croker
Computer Applications and Information Systems

Graduate School of Business Administration
New York University

March 1986; revised June 1986

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

Table of Contents

1. Introduction
2. Lifespans
3. Historical Relations in HRDM
4. The Historical Relational Algebra of HRDhl

4.1. Set-Theoretic Operations
4.2. PROJECT
4.3. SELECT
4.4. TIMESLICE
4.5, wHJ3N
4.6. JOIN

5. Summary and Future Work

Page i
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

Abstract

Critical to the design of an historical database model is the representation of the @existencem
of objects across the temporal dimension -- for example, the "birth," "death," or "rebirth" of
an individual, or the establishment or dis-establishment of a relationship. The notion of the
"lifespan" of a database object is proposed as a simple framework for epressing these concepts.
An object's lifespan is simply those periods of time during which the database models the
properties of that object. In this paper we propose the historical relational data model (HRDM)
and algebra that is based upon lifespans and that views the values of all attributes as functions
from time points to simple domains. The model that we obtain is a consistent extension of the
relational data model, and provides a simple mechanism for providing both time-varying data
and time-varying schemes.

1. Introduction

In a database modelling information over time, the status of an "object" - is i t interesting to the

enterprise or is i t not? - will change over time. For example, in a personnel database, throughout the

period during which a particular person is employed by a company, information about that person can be

assumed to be of interest and so will be recorded in the database. But in general i t can be assumed that

the database itself will have existed before and will continue to exist after the employment period of any

particular employee.

The "birth" of an object 0, with respect to a database, refers to the point in time when the database

first records any information about 0. Similarly, its "death" occurs when the object ceases to be

modelled. Historical databases, however, need also t o support the notion of "reincarnation," since a

death is not necessarily terminal. For example, employees can be hired, fired, and subsequently re-hired;

students may drop in and out of school. For this reason the historical database must be able t o support

object reincarnation, to allow for tracking such reincarnation events as well as the individuals so

reincarnated. But database "objectsH model not simply individuals (parts, suppliers, students, courses,

etc.) but also relationships among individuals (shipments, enrollments). Unlike the standard Entity-

Relationship model ([Chen 76]), which allows for only one instance of a given relationship (one part-

supplier pair, e.g.), the historical model must model relationships over time, allow for "re-incarnatedu

relationships, and enforce referential integrity constraints with respect t o the temporal dimension. For

example, a student can only take a course a t time t if both the student and the course exist in the

database a t time t.

Page 1
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

Early work on historical databases, (e.g. [I<lopprogge 81, Klopprogge 83, Clifford 831) recognized this

problem and proposed the incorporation of a time-stamp and a Boolean-valued EXISTS? attribute to each

tuple as a solution. The database was seen as a three-dimensional cube, wherein at any time t a tuple

with EXISTS? = True was considered to be meaningful, otherwise i t was t o be ignored. As discussed in a

classification scheme proposed in [Snodgrass 851, other subsequent and contemporaneous efforts at

defining "historical" database models (e.g. [Ben-Zvi 82, Lum 84, Snodgrass 84, Ariav 841) continued to

examine more succinct or perspicuous representations along this tuple-based line. [Clifford 821 was the

first to suggest incorporating the temporal dimension a t the attribute level. This idea was further refined

in [Clifford 851 and was also the basis for the model proposed in [Gadia 851.

These developments can be seen as efforts in the direction of associating the temporal dimension with a

smaller component of the model -- a t first with the relation itself (the "cuben metaphor), later with each

tuple (e-g., the notion of "tuple homogeneity" in [Gadia 85]), and finally with each attribute value. We

believe that the orthogonal notions of tuple and attribute lifespans proposed in this paper provide for the

suitable level of uniformity and flexibility in the temporal dimension.

2, Lifespans

In order t o address these temporal issues (and also, as we shall see, the related issue of evolving database

schemas) we introduce the lifespan notion. For instance, the lifespan of an employee, with respect to the

personnel database, would explicitly represent the temporal dimension of the information about that

employee. Queries or other data operations that refer to that employee outside of that lifespan will be

treated specially, because the database is not modelling that employee during those time periods.

The question arises, what is an appropriate "object" with which to associate such a lifespan? In

particular, data models distinguish between the schema and the instance, and provide constructs of both

types. Most attention in historical database research has focussed on the database instance, since in

general i t is the data objects whose lifespans will be of interest. In the relational model the database

instance can be looked a t as a hierarchy as in Figure 1, the database being composed of a set of relations,

and each relation composed of a set of tuples.

Page 2
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

d a t a b a s e
/ I \

/ 1 \
/ I \

r e l a t i o n 1 r e l a t i o n 2 . . . r e l a t i o n n
/ I \

/ I \
/ I \

t up l e2 , t up l eze2 . . . tuple2,, ,

F igure 1: R e l a t i o n a l database ins tance

If we associate a lifespan a t the database level in this hierarchy, our database will look like Figure 2,

i.e., a collection of relations which are homogeneous in the temporal dimension. (Although in this figure

the lifespan is shown as a single, connected interval of time, this is not necessarily the case.) Associating

the lifespan a t this level commits us t o a database in which each relation and each tuple has the same

lifespan. Because this is so stringent a constraint, i t has not, to our knowledge, been the subject of any

serious research.

r e l l r e f 2 r e l ,

F igure 2 : One l i f e s p a n a s soc i a t ed with e n t i r e database

If we instead associate a lifespan with each relation, then we can have a database which looks like

Figure 3, where each relation can be defined over different periods of time, but each tuple in a given

relation is homogeneous in the temporal dimension, as in [Gadia 851.

Finally, if we associate the lifespan a t the tuple level, we have a database t ha t consists of tuples which,

for any given relation, can look like those in Figure 4.

The choice of which level is appropriate is a tradeoff between the cost of maintaining proliferating

lifespans, on the one hand, and the flexibility that finer and finer lifespans provide, on the other. In

terms of complexity, the overhead for the database or relation approach is quite small, and is

Page 3
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

r e l ,

F igu re 3 : D i f f e r e n t l i f e s p a n s assoc ia ted with each r e l a t i o n

A 1 A2 A3

Figure 4 : Lifespans a s soc i a t ed with each t u p l e i n a r e l a t i o n

proportional to the size of the schema. The cost of the tuple lifespan approach is proportional to the size

of the database instance. [Clifford 851 argues that associating the temporal dimension with each attribute

provides for more user control of the different temporal properties of individual attributes.

Orthogonal to the database instance and its con~ponents is the relational database schema and its

components. Some work has been done in considering the schema to be a time-varying component of the

database (e.g. [Navathe 801, [Shiftan 85]), but this work has not been done within a single, unified model

Page 4
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

for historical databases. The database schema, as illustrated in Figure 5, consists of a set of relation

schemas, each of which, ignoring constraints, can be considered to be the set of attributes for that

relation.

D A T A B A S E S C H E M A
/ I \

/ I \
/ I \

REL . SCIEMAi REL . SCHEMA2 . . . REL . SCHEMAn
/ I \

/ I \
I \

ATTR2, 1 ATTR2, . . . ATTR2, lp

Figure 5: Re la t iona l Database Schema

A single lifespan assigned to the database schema (or relation schema) itself would presumably indicate

the period of time during which the entire database (or relation) was defined or, in a sense, operational.

This does not seem to buy us very much. However, assigning a lifespan to each attribute in a relation

scheme, allows the user to explicitly indicate the period of time over which this attribute is defined in

that relation, thereby allowing for the possibility of evolving schemes. (Then the lifespan of the relation

schema would be the union of the lifespans of all of the attributes in the schema, and we need the

constraint that the lifespan of the key attributes must be the same as the lifespan of the entire relation

schema.)

As an example, consider a database that records stock market information, including an attribute Daily

Trading Volume.

-----~------------l-----------------------l---------------------- > Time
I

NOW

Figure 6 : Lifespan of a t t r i b u t e DAILY-TRADING-VOLUME

Its lifespan may be as indicated in Figure 6, where for the period [tilt2] this information was recorded,

after which i t became too expensive to collect and so i t was dropped from the schema. Subsequently, at

time tg and continuing through the present, a cheap outside source of this information was discovered and

so the schema was expanded to once again incorporate this attribute.

Page 5
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

The lifespan of a n attribute within a given relation is orthogonal t o the notion of the lifespan of a tuple

in a relation, as shown in Figure 7.

I I I I I
tuple, I I I I X X X I

Is = Y I I I I I

Figure 7 : Tuple Lifespan and A t t r i b u t e Lifespan I n t e r a c t i o n

Consider the value of attribute An for tuplem, i.e., the X)(X1d box in the lower right hand corner of the

matrix of Figure 7. Over what period of time is i t defined in the database? The tuple provides

information about an "object' which is assumed to be defined in the database over the lifespan Y, but

the attribute is only defined over the lifespan X. Clearly the "objectu can only have a value for this

attribute in the database over the intersection X n Y of these two lifespans.

Figure 8 represents an example within the model t o be presented in the next section; lifespans are

associated with tuples and also with attributes, and so tuples are heterogeneous in their temporal

dimension. The lifespan of any particular value is limited both by the lifespan of the tuple and the

lifespan of the attribute. (It is worth point.ing out that in the most general or flexible historical model we

would associate a lifespan with each value in a relation, and so allow for a completely heterogeneous

temporal dimension, but a t the cost of maintaining a distinct lifespan for each value.)

3. Historical Relations in HRDM

Let T = { ..., to, tl, ...) be a set of t imes , at most countably infinite, over which is defined the linear

(total) order <T, where ti < t means ti occurs before (is earlier than) t (For the sake of clarity we will
T j j'

assume that ti < t . if and only if i < j.) The set T is used as the basis for incorporating the temporal
T J

dimension into the model.

Page 6
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

t u p l e t i n r

t u p l e t' i n r

Figure 8: Li fespans a s soc i a t ed with t u p l e s and a t t r i b u t e s

For the purposes of this paper the reader can assume that T is isomorphic to the natural numbers, and

therefore the issue of whether to represent time as intervals or as points is simply a matter of

convenience. Using the natural numbers allows us t o restrict our attention t o closed intervals (a closed

interval of T, written [t,, t2] is simply the set {ti I tl <= ti <= t2)). In a subsequent paper we will

discuss more elaborate structures for the time domain of historical databases.

A lifespan L is any subset of the set T.

In order to provide for derived lifespans, we allow (similar to [Gadia 851 for the usual set-theoretic

operations over lifespans. That is, if L1 and L2 are lifespans, then so are

1. L, U L,

Page 7
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

Since lifespans are just sets, defined over a universe T , the semantics of these operators is apparent.

Let D = { Dl, DB, ..., Dn) be a set of va lue doma ins where for each i, Di #= 4. Each value domain
d

Di is analogous to the traditional notion of a domain in that i t is a set of atomic (non-decomposable)

values.

Using the sets T and D we define two sets of temporal mappings, one from the set T into the set Dl TD,

and the other from T into itself, TT.

The set TD = { TDI, TD2, ..., TDn) where for each i, TDi = { fi I fi : T --> Di) is the set of all
d

partial functions from T into the value domain D,.

The set TT = { g I g : T -> T) is the set of all partial functions from T into itself.

The set of temporal functions T T serves a similar role in the model to each of the sets TD,, but is

defined separately to make explicit the distinction in the model between those values representing times,

and those that do not.

Let U = { All A2, ..., An) be a (universal) set of a t t r i bu t e s .
a

All attributes in the historical relational data model are defined over sets of partial temporal functions.

Specifically, HD = (TD U TT) = { TT, TDI, TD2, ..., TDIl) is the set of all h i s tor ica l domains .
d

Among the functions in each of the set of functions in HD are some that are constant-valued, i.e., they

associate the same value with every time in their domain. Let CD be the set derived from HD by

restricting each of the sets of functions in HD to only those functions having a constant image. Tha t is,

for each set of functions TD, (and TT) in HD restrict TDi (and TT) to only those functions tha t map

their domain to a single value.

We will sometimes want to restrict a function f with domain D to a smaller domain D' C D; we will

Page 8
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

denote this restricted function by flD,.

A relation scheme R = <A,IC,ALS,DOM> is an ordered &tuple where:

1 . A = { A R , AR2, ..., AR) g U is the set of attributes of R. We will sometimes abuse
1 n

notation and refer to A as the sehenze of R; no confusion should arise.

2. I< = { , AK , ...,) C A is the set of key attributes of R
1 2 m

3. ALS: A -> 2T is a function assigning a lifespan to each attribute in R. We will refer to the
lifespan of attribute A in relation scheme R as ALS(A,R).

4. DOM: A --> HD is a function assigning a domain to each attribute in R, with the
restrictions that (a) for all key attributes Ai, DOM(Ai) E CD, i.e., the key attributes must all
be constant-valued; and (b) the domain of each of the partial functions in any DOM(A) is
contained within ALS(A,R).

We refer to the underlying value set of attribute A (i.e., the ranges of the functions in DOM(A) as the

value-domain of A, denoted VD(A). The value-domain corresponds to the traditional notion of the

domain of an attribute.

A tuple t on scheme R is an ordered pair, t = <v,l>, where

1. t.1, the lifespan of tuple t, is a lifespan, and

2. t.v, the value of the tuple is a mapping such that V attributes A E R, t.v(A) is a mapping
in t.1 n ALS(A,R) -> DOM(A).

Since we associate a lifespan with both a tuple in a relation and an attribute in a scheme, we can derive

the lifespan of the value of an attribute A in a tuple t in relation r on scheme R, which we will denote as

vls(t,A,R). This lifespan represents the set of times over which the value is defined, and is given by:

We can extend this definiton to a set of attributes X = {Al, ... , An) as follows:

For simplicity we will refer to the value t.v of tuple t as follows. The value of tuple t for attribute A

will be denoted by t(A). t(A)(s) is the value of tuple t for attribute A a t time s. Similarly, t(X)(s)

Page 9
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

represents the value of tuple t for a set of attributes X a t time s. Since t(A) is a function with domain t.1

n &S(A,R), the value of t(A)(s) is undefined for any s not in this time period. In this context

undefined means t ha t the attribute is not relevant a t such times, and thus does not exist.

A relation r on R is a finite set of tuples t on scheme R such that if tl and t2 are in r , V s E tl.l and

V s' E t2.1, tl.v(I()(s) # t2.v(I<)(s). If r = {tl, t2, ..., ti) is a relation on R, then LS(r), the lifespan of

relation r, is just LS(r) = tl.l U t2.1 ... U t,.l.

Elsewhere ([Clifford 851, [Clifford 831, e.g.) we have described the need for an interpolation function to

deal with the issue of incompletely specified time functions as the values of TV attributes. For the

purposes of this paper we assume that t(A)(s) is the value of attribute A a t time s for tuple t, regardless

of how that value is obtained (for exan~ple, i t might be stored directly in the relation, or computed by

means of an interpolation function from stored values.)

P u t slightly differently, we can assume that the model consists of three levels, the representation level,

the model level, and the physical level, as in Figure 9. A t the physical level are the file structures and

access methods, a t the model level each attribute in a tuple has as its value a total function from

vls(t,A,R) into some value domain, while a t the representation level these functions may be represented

more succinctly using intervals and allowing for value interpolation.

I REPRESENTATION I
I LEVEL I

I MODEL 1
I LEVEL I

I PHYSICAL I
I LEVEL I
I I

Figure 9 . Levels i n H i s t o r i c a l Re l a t i ona l Data Model

Page 10
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86- 19

For example, assume that the lifespan of a particular value for some t(A) is S = vls(t,A,R). We can

imagine a situation in which, for some S' C S, a t the representation level t(A) is a function from S' to the

value-domain of A. Then the mapping from the representation level to the model level must include, for

any such attribute, an in te rpola t ion func t ion I:

which maps each such "partially-represented function" into a total function from S. As another

example, we might imagine that values constrained to be constant-valued functions might, a t the

representation level, be represented as simple <Lifespan,value> pairs (e.g., < jti,tJ,Codd>).

These two types of lifespans, attribute and tuple, constrain the value of every attribute in every tuple as

follows. The tuple lifespan indicates the periods of time during which the tuple bears information; a tuple

has no value a t points in time other than those in its lifespan. Moreover, each attribute in a relation has

an associated lifespan, and so attributes in a tuple are further restricted t o have no value outside of their

own lifespan. Taken together, these two conditions imply that there is no value for an attribute in a tuple

for any moment in time not in the intersection of the lifespans of the tuple and the attribute.

4. The Historical Relational Algebra of HRIIM

We have expanded the allowable structures of the relational model in two significant ways. We have

added a new type of object into the model's ontology, namely the set T of times, and have defined

attributes to take on values which are functions from points in time (T) into some simple value domain

(one of the Di's or T). Secondly, we have defined the orthogonal concepts of tuple lifespan and attribute

lijespan within a relation, to indicate when the value of an attribute in a tuple is defined. We now

proceed t o define an algebra over these structures.

The temporal component of the historical database model can in some sense be viewed as a third

dimension to the relational model, as seen in Figure 10. Relational algebra provides a unary operator for

each of its two dimensions (Select for the value dimension, Project for the Attribute dimension). The

historical algebra will extend the definition of these two operators t o operate historical relations, and add

Page 11
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

a third operation (Time-Slice) for the added temporal dimension. The binary Join operation will be

extended to join two historical relations. Finally, a When operator will be added to "extract* purely

temporal information.

E /
M /
1 /

T /
/ ATTRIBUTES

Figure 10: Three Dimensions of H i s to r i ca l Data Model

4.1. Set-Theoretic Opera t ions

Historical relations, like regular relations, are set of tuples; therefore the standard settheoretic

operations of union, intersection, set difference, and Cartesian product c a n be defined over them.

As for standard relations, two historical relations r l and r2 on R1 = <A1,I<l,ALS1,DOM1> and

R2 = <A2,K2,ALS2,DOM2> are said to be union-compatible if A1 = A2 and DOMl = DOM2, i.e.

they have the same attributes, with the same domains.

If r l on R1 and r2 on R2 are union-compatible, then

1. r l u r2 = { t on R3 I t E r l or t E r2 A R3 = <A1,K1,ALS1 U ALS2,DOM1> }

2. r l n r2 = { t on R3 I t E r l and t E r2 A R3 = <A1,K1~ALSl n ALS2,DOMl> }

3, r l - 1-2 = { t on R1 I t E r l and t $! r2)

Given r l on R1 and r2 on R2, where the attributes of R1 and R2 are disjoint, the Cartesian product is

given as:

Page 12
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

However, a simple example shows that these operations produce counter-intuitive results for historical

relations. If r l and r2 are as in Figure 11, then the result of their union (r l U r2) is counter-intuitive; a

more complex operation, which "merges" tuples of corresponding "objects" (producing r l + r2 in Figure

11) is more in the spirit of the union operation respecting the semantics of objects. Similar remarks apply

to differnce and intersection, and motivate three "object-basedu versions of union, intersection, and

difference, all of which rely on a preliminary definition of mergable tuples.
r l r2

Figure 11

Two relations rl and r2 on schemes R1 = <A1,I<l,ALS1,DOM1> and R2 = <A2,1<2,ALS2,DOM2> are

merge-compatible if and only if Al = A2, I<, = I<,, and DOMl = DOM2

Merge-compatibility is therefore stricter than union-compatibility, by requiring the same key.

Two tuples rl and r2 on schemes R1 = <A1,I<l,ALS1,DOMl> and R2 = <A2,1<2,ALS2,DOM2> are

mergable if and only if

1. R1 and R2 are merge-compatible

2. Vs E t1.l Vs' E t2.1 [t l .~(I<l) (~) = t2.v(K2)(sY)]

3. VA E Al VS E (tl.l n t2.1) [tl.v(A)(s) = t2 .v(~)(s)]

Condition 2 specifies that the tuples have the same key value, and condition 3 that they do not

contradict one another a t any point in time.

If tl and t2 are mergable, then their merge, denoted tl + t, - is given as follows:

Page 13
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

(t, + tJ.1 = tl.l u t2.1

(t, + t2).v(A) = t,.v(A) u t2.v(A) for all A E A,.

Given a tuple t and a set of tuples S, t is matched in S if there is some tuple t' in S such that t is

mergable with t'; otherwise t is not matched in S.

With these preliminary definitions we can define more semantic-based set-theoretic operations U,, no,

and -o:

If relations r1 on R1 and 1-2 on R2 are merge-compatible, then

rl Uo r2 = i t I t E rl and t is not matched in r2 V
t E r2 and t is not matched in r2 V
3t1 E r, 3t2 E r2 [t = ti + t2 I 3

rl no r2 = (t I St1 E rl 3t2 E r2 [tl and t2 are mergable A t. 1 = tl. 1 n t2. 1 A

VA E R1 v s E t.l[tl.v(A)(s) = t2.v(A)(s) = t.v(A)(s)]])

ri -o r2 = (t I t E rl and t is not matched in 1-2 V
3t1 E r, 3t2 E rz [tl and tz are mergable A

t.1 = tl.l - t2.1 A
VA E RI It.v(~) = t1.v(~)It., 11)

4.2. PROJECT

The project operator T when applied to a relation r removes from r all but a specified set of attributes;

as such i t reduces a relation along the attribute dimension. I t does not change the values of any of the

remaining attributes, or the combinations of attribute values in the tuples of the resulting relation. Let r

be a relation over the set of attributes R and X C_ R. Then the projection of r onto X is given by:

4.3. SELECT

In the historical relational data model tuples, and thus the objects represented by those tuples, are

viewed as having lifespans. The select operator applied to a relation is intended to select from the tuples

of that relation those tuples that satisfy a simple selection criterion. Because of the existence of lifespans

Page 14
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

we have the choice of selecting tuples over their entire lifespans, or selecting tuples ignoring all but a

"relevant* subset of their lifespans. We define two "flavors" of select to reflect these two choices:

SELECT-TIF and SELECT-WHEN.

SELECT-IF reduces an historical relation along the value dimension. With it, if the selection criterion

is met by a tuple t, then the entire tuple t is returned, and its lifespan is unchanged. The selection

criterion, which we specify as 8, is defined as a simple predicate over the attributes of the tuple. For

example, the predicate A 8 a would select only those tuples whose value for attribute A stood in

relationship 8 to the value a . (The value a could represent another attribute value or a constant.)

This flavor of select is closest t o the definition of the select operator in the relational data model in that

if a tuple is taken to represent some object, then in both cases a complete object either is or is not

selected. In the historical relational data model a complete object is assumed t o exist over its entire

lifespan. Since attributes in this model have an associated lifespan i t is necessary when specifying a

selection predicate to also specify those times in the lifespan of the tuple (and attribute) when the

predicate is to be satisfied.

Since values are functions over a set of times, the selection criterion must also specify for which times

the criterion must me satisfied. This can be done by allowing either existential or universal quantification

over a set of times. We use the notation Q(s E S) (where Q is one of the quantifiers forall or ezists) to

represent the bounded quantification (universal o r existential) over all values in S. Then SELECT-IF can

be defined as:

 IF(^ 0 a, Q, L) (r) = <t E r I Q (s E (L n t.1)) [t (~) s 8 a l l

where Q is either the existential (3) or the universal (V) quantifier, and L is a lifespan. (If L = T, the

set of all times, then s E (L n t.1) is equivalent t o s E t.1.)

With SELECT-WHEN, if the selection criterion is met by a tuple t a t some time in its lifespan, what is

returned is a new tuple t' whose lifespan is exactly those points in time W m N the criterion is met, and

whose value is the same as t for those points. The SELECT-WHEN is therefore a hybrid operation,

Page 15 Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

reducing an historical relation in both the value and the temporal dimensions.

For example, fl-*wNEhp=john, ~&=301((emp) would yield a relation (in this case with only 1 tuple,

for key John) with a new lifespan, namely, just those times when John earned 30IC.

4.4. TIME-SLICE

Corresponding to the unary operations SELECT and PROJECT, we define an additional unary

operator, called TIME-SLICE, that reduces an historical relation in the temporal dimension. TIME-SLICE

can be applied in one of two ways to create two different types of temporal subsets of its operand. We

refer to these two applications of TIME-SLICE as static and dynamic. In a static TIME-SLICE (TQL),

the desired temporal subset (lifespan) of the operand is specified as a parameter (L) of the operator.

T,, (r) = Ct I 3 t' E r [1 = L n t a . l A t.1 = 1 A t.v = ta.vll 13

This version of TIME-SLICE defines a relation containing those tuples derived by restricting each tuple

in the operand to those times specified as part of the operand, lifespan.

The dynamic Tl&f€?-SLICE makes use of the distinction in the historical da t a model between historical

domains in TD (mappings from T into D) and those in TT (mappings from T into T). If attribute A is

such that DOM(A) C TT, then for any tuple t in a relation defined over A, the inzage of t(A) is the set

of times that t(A) maps to. This set of times is used in defining a dynamic TIhiiESLICE. Therefore the

result of the dynamic TIPIG2-SLICE (TaA) is not defined over a fixed, pre-specified lifespan. Rather, the

subset of the lifespan that is selected for each tuple is determined by the image of the value of a specified

attribute for that tuple.

TeA (r) = Ct 1 3 t' E r [for L, the image of t(A), t.1 = L A t = t'lL I 3

Page 16
Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-86-19

4.5. WHEN

As in [Gadia 851 (and analogous to the logical calculus defined in [Clifford 831) we provide for a multi-

sorted language whose universes are respectively relations and, using the terminology of this paper,

lifespans. All of the operators except for WHEN are (unary or binary) operations on historical relations

producing historical relations. The unary operator W m N , denoted R, maps relations to lifespans. Its

definition follows trivially from the relation lifespan concept:

n (r) = LS(r)

Intuitively, the WHEN operator returns the set of times over which the relation is defined. Used in

conjunction with other operators, for example SELECT, i t provides then answer t o when particular

conditions are satisfied. (Note that since the result of WHEN is a lifespan, i t can serve as the

"parameter" t o those relational operators (such as TJRJRE-SLICE) which require a lifespan as input.)

4.6. JOIN

The binary relational operator join is used to combine two relations by concatenating a tuple of one

with a tuple of the other whenever specified attributes of the two tuples stand in a specified relationship

with each other. Paralleling the two types of values (ordinary and time) in the historical database model,

we define flavors of join: @-JOIN and TIME-JOIN.

8- JOIN

The @-JOIN is intended to serve the same role in the historical relational data model as in the

traditional relational data model; that is, i t combines two tuples when the values of specified attributes

stand in a 8 relationship with each other. However, the definition of @-JOIN must be modified so as to

apply to historical tuples. (For all versions of JOIN, if the schemes of the two operands are

Rl = <Al,I<l,ALSl,DOM,> and R2 = <A,,I<,,ALS,,DOM,> the resulting scheme R 3 = <Al U

A2,Kl U I<,,ALS1 U ALS2,DOMl U DOM2>.

Page 17
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

rl JOIN r2 [A 6 B] = C t 1 3 trl E rl 3 tr2 E 1-2 [t.l = (s I t,,(~) (s) e t,,(~) (s) 3
t.v(R1 - A) = trl.V(R1 - A)],., A
t.v(R2 - B) = tr2.v(R2 - B) A

t.v(A) = trl.v(A> I,., A
t.v(B) = tr2.v(B> I,., 1 3

E Q U I J O I N

The equijoin is just a special case of the general @-JOIN, but its definition can be simplified to the

following:

rl [A = B] r2 = i t / 3 trl f rl 3 tr2 E r2 [t.l = vls(trl,A.Rl) fl vls(tr2,~.~2) A
t.v(R1 - A) = trl.v(R1 - A) It., A
t.v(R2 - B) = tr2.V(R2 - B) A
t.v(A) = t.v(B) = trl.v(A) n tr2.v(B> 1 3

NATURAL- J O I N

The natural join is just a projection of the equijoin. Given relations r l on R 1 and r2 on R2, let X = A1

n A2 be the set of attributes both schemes have in common. Then r l NATURAL-JOIN 1-2 is a relation r 3

on scheme R3 defined as follows:

rl NATURAL-JOIN r2 = < t 1 3 tri E rl 3 tr2 E r2 [t. 1 = vls(trl,X,R1) n vls(tr,,X,R2) A
t.v(R1) = trl.v(R1> I,., A
t.v(R2) = tr2.v(R2> I,., I 3

TIME- J O I N

As was the case for the dynamic TIhlESLICE, TIME-JOIN is defined for attributes A with DOM(A)

C TT. In such cases i t is possible to define a JOIN between a relation containing such a Wtime-valuedw

attribute A and some other relation. Essentially such a JOIN serves as a join of dynamic TIME.SLICEs

of both relations.

Let r l be a relation on scheme R 1 and r2 be a relation on scheme R3, and A an attribute of R1. Then

the TIME-JOIN of r l and r2 a t attribute A of r l , denoted r l [@A] r2, is given as folows:

Page 18
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

5. Summary and Future Work

In this paper we have presented the historical relational data model (HRDhl) and its algebra. The

structures of the traditional relational model were extended by the addition of a new type of object into

the model's ontology, the set T of times, and the domains of relation attributes were extended to be

functions from points in time (T) into some simple value domain. The concepts of tuple lifespan and

attribute lifespan were proposed as a simple technique for providing both time-varying data and time-

varying schemes, and providing a suitable level of user control over the temporal dimension of the data.

Finally, we defined a relational algebra over these structures.

Exactly what should result from the Cartesian product (and by extension, Join) of three-dimensional

relations is not immediately obvious. In this paper we have defined the Cartesian product in such a way

that resulting tuples are defined over the union of the lifespans of the participating tuples, and thus

potentially contain null values. We have defined the JOIN operations, however, t o be equivalent to the

appropriate S E L E C T - W N of the Cartesian product, and thus no nulls result; the JOIN of two tuples

was defined only over their lifespan intersection. I t would also be possible t o define JOINS over the union

of the tuple lifepans, essentially equivalent to a SELECT-IF of the Cartesian product; a resulting tupIe

will have nu11 values for times outside of its contributing tuples' Iifespans. As we poitlted out a t the end of

Section 2, the most general historical model would associate lifespans with each value rather than each

tuple; in this case no null values need result from product operation since the lifespans of any two values

within a tuple are compIetely independent. It appears to be a tradeoff between the complexity of

handling null values versus the complexity of handling additional lifespans.

HRDM is a consistent eztension of the traditional relational data model. By consistent extension we

mean that each component C of the relational model (structural or operational) has a corresponding

component cH in the historical relational model with the property that the defintions of C and cH

Page 19
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86- 19

become equivalent in the absence of a temporal dimension. It is beyond the scope of this paper t o formally

demonstrate this property. We leave that proof t o a subsequent paper, along with a discussion of

integrity constraints and alegebraic properties within KRDM. We will close with a few examples of these

issues.

I t is obvious that a traditional relation r is just a special case of an historical relation rH. One way to

view this is t o consider the set of times T as the singleton set {now), the lifespan of each tuple as T and

the values of all tuples as constant functions from T to some value domain.

Considering the "SELECT" operation, both SELECT-IF and SELECT-WHEN reduce to one another

and t o the traditional SELECT on a static relation r , when T = {now). Similar arguments can be made

for the setrtheoretic operators and for PROJECT and the JOINS. There are no direct analogs to the

operations WHEN or T W S L I C E ; however TIME-SLICE can be viewed as the identity function defined

only for time now, and WHEN maps a relation either to now or to the empty set, corresponding t o either

"alwaysU or "neverU, respectively.

The strucures and operations presented in this paper represent only two components of the hgistorical

relational data model; to further elaborate on IlTZDM would require a discussion of the extension of the

various classes of constraints and the theory of normalization which has been developed for the traditional

model. For example, the temporal dimension of historical relations can be used to extend the traditional

notion of functional dependency (FD). The "meaning" of the traditional FD X --> A can be captured (as

in [Clifford 831) in a straightforward way. However in HRDM i t becomes possible to define dependencies

similar t o FD's but which make explicit reference to points in time (variously called "intensional"

[Clifford 831 or "dynamic" [Casanova 791 constraints.) For example, we can define dependencies that

hold not only a t each single point in time, but also that hold over all points in time. We can also define

constraints over the way that values change over time (as in the familiar "salary must never decrease'

example.) These and other types of temporal dependencies can be expected t o have a significant impact

on design methodologies for historical databases.

h4any of the properties of the relational algebra carry over to the historical relational algebra. For

Page 20 Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

example, the commutativity of select, the distribution of select over the binary set-theoretic operators,

and the commutativity of the natural join. The new operators in the model also exhibit properties

analogous to these, such as the distribution of TIMESLICE over the binary set-theoretic operators,

commutativity of TIMESLICE with both flavors of SELECT, etc. These properties follow from the use

of functions as the domains of attributes, and the use of the simple concept of lifespans; a full treatment

of them will require further elaboration.

Acknowledgements

The authors would like to thank Rick Snodgrass and Ed McICenzie for their valuable comments on a

previous version of this paper.

Page 21
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

References

[Ariav 8.11 Ariav, G., Beller, A., and hlorgan, H.L.
A Temporal Model.
Technical Report DS-WP 82-12-05, Decision Sciences Dept., Univ. of Penn., December,

1984.

[Ben-Zvi 821 Ben-Zvi, J.
T h e T i m e Relational Model.
PhD thesis, Dept. of Computer Science, University of California, Los Angeles, 1982.
(Unpublished).

[Casanova 791 Casanova, M.A., and Bernstein P.A.
The Logic of a Relational Data Manipulation Language.
In Proceedings 6 th A C M Symp. on Prog. Lang, pages ?-?. 1979.

[Chen 761 Chen, P.P.S.
The Entity-Relationship Model: Towards a Unified View of Data.
A C M Trans . on Database Sys t ems 1(1):9-36, March, 1976.

[Clifford 821 Clifford, J.
A Model for Historical Databases.
In Proceedings o f Logical Bases for Data Bases. Toulouse, France, December, 1982.

[Clifford 831 Clifford, J., and Warren D.S.
Formal Semantics for Time in Databases.
ACM Trans . on Database Sys t ems 6(2):214-254, June, 1983.

[Clifford 851 Clifford, J.
Towards an Algebra of Historical Relational Databases.
In A C M - S I G M O D International Conference on Management o f Data. Austin, May,

1985.

[Gadia 851 Gadia, Shashi K. and Vaishnav, Jay.
A Query Language for a Homogeneous Temporal Database.
In Proc. o f The Fourth Antaual A C M SIGACT-SIGhifOD S y m p o s i u m o n Principles o f

Database Sys tems, pages 51-56. 1985.

[I(lopprogge 811 I<lopprogge, h2.R.
Term: An Approach to Include the Time Dimension in the Entity-Relationship Model.
In P.P.S. Chen (editor), Entity-Relationship Approach t o I n formation Modeling and

Analys is , pages 477-512. ER Institute, 1981.

[I<lopprogge 831 I<lopprogge, M.R., and Lockemann, P.C.
Modelling Information Preserving Databases: Consequences of the Concept of Time.
In R o c . o f The N i n t h International Conference on Very Large Data Bases , pages

399-416. 1983.

[Lum 841 Lum, V., et al.
Designing DBMS Support for the Temporal Dimension.
In A C M - S I G M O D International Coil feretace on Management o f Data , pages 115-126.

Boston, June, 1984.

[Navathe 801 Navathe, S. B.
Schema Analysis for Database Restructuring.
A C M Trans . on Database Sys t ems 5(2):157-184, June, 1980.

Page 22
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

[Shiftan 851 Shiftan, J.
An Assessment o f TIae Temporal D i f feretztiation o f Attributes in The Design o f

Te~nporal ly Oriented Relational Databases.
Technical Report, Dept. of Computer Applic. and Info. Sys., New York Univ., February,

1985.
(Ph.D. Dissertation in preparation).

[Snodgrass 841 Snodgrass, R.
The Temporal Query Language TQuel.
In Proceedings o f tlze 3rd A C M SIGACT-SIGMOD Symp. on Principles o f Database

Sys tems, pages 201-212. Waterloo, Ontario, Canada, April, 1984.

[Snodgrass 851 Snodgrass, Richard and Ahn, Ilsoo.
A Taxonomy of Time in Databases.
In A C A f - S I G M O D Interrzational Conference o n Management o f Data , pages 236-246.

Austin, 'IX, hllay, 1985.

Page 23 Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-19

