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ABSTRACT 

Various techniques have been proposed to ensure the safe, concurrent execution of a set of database 

transactions. Locking protocols are the most prominent and widely used of these techniques, with two- 

phase locking and tree-Iocking being but two examples of these protocols. A locking protocol defines a 

general set of restrictions on the placement of lock and unlock steps within transactions. In this paper we 

show that i t  is possible to further increase the potential level of concurrency of a set of transactions, 

within the context of a specific locking protocol, by further restricting the placement of lock and unlock 

steps within each transaction. We also discuss a variation of the tree-locking protocol that allows 

transaction to be locked with respect to a dynamically changing set of tree structures. In addition we 

define and discuss the concept of a concurrency cost function for a locked transaction. This cost function 

measures the potential for conflict of a transaction with other transactions. 
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1. Introduction 

A locking protocol is a set of rules governing the placement of lock and unlock steps 

among the access steps of a transaction. Various locking protocols have been proposed 

[BG,EGLT,G,KSI,KS2,SICI,SIC2,Y) t o  ensure the correct concurrent execution of a set 

of database transactions. These protocols ensure correctness by allowing transactions, 

through the use of the lock and unlock primitives to  control the access to database 

objects by other transaction. The locking of a database object by one transaction will 

cause any other transaction that  attempts to  lock that  object t o  be delayed until the 

first transaction unlocks the object. (Throughout this paper we will assume that  a lock 

step provides the locking transaction with exclusive access t o  the object referenced by 

that  step.) 

Lock steps are useful for ensuring serializability because of their ability t o  block 

transactions that  attempt t o  lock and access a currently locked database object. 

However this ability to  block the execution of transaction can limit the level of 

concurrent execution of a set transactions in database system. The longer a transaction 

keeps a database object locked, the greater is the likelihood that  i t  will conflict with 

another transaction that  will attempt to  lock and possibly access the same object. This 

conflict will lead t o  the second transaction becoming blocked. 

In this paper we define techniques that  can be used in conjunction with previously 

defined locking protocols (the two-phase locking protocol (2PL) of Eswaran et al. 

[EGLT], and the tree locking protocol (TL) of Silberschatz and Kedem [SKI] t o  increase 

the overall level of concurrency in database transacton systems. In addition, we define a 

transaction metric that  provides a relative measure of the length of time that  a 

transaction maintains locks on database objects. 

In Section 2 we provide a set of definitions and notation that  we will make use of. In 

Section 3 we define a concurrency conflict potential, a transaction metric that  reflects 

the likelihood that a given transaction will conflict with other transactions. In Sections 

4 and 5 we discuss techniques for increasing the level of concurrency in the context of 
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two-phase locking and tree locking, respectively, These techniques involve the 

manipulation of lock, unlock, and access steps. Additionally, in Section 5 we discuss a 

variation of the  tree locking protocol that  allows trees t o  be defined dynamically based 

on a currently executing set of transactions. We conclude in Section 6. 

2. Definitions 

We define a t ransac t ion  t t o  be a linear sequence of access steps 

where each step ai.xi represents a read (r) or a write (w) of a single database object x. 

(Two different steps may access the same database object.) A. locked transact ion t is a 

transaction, among whose steps are interspersed a sequence of lock and unlock steps. 

That  is, 

is a locked transaction where s represents an access (r or w), lock (1) o r  unlock (u) 

step. We refer t o  a locked transaction t as a locked version of its underlying 

transaction. 

A schedule S of a set of (locked) transactions T is an interleaving of the steps of those 

(locked) transactions, and restricted so that  no step belonging t o  one transaction and 

referencing a database object x can be placed between a lock step and its corresponding 

unlock step of a second transaction. (An unlock step corresponds t o  a lock step if they 

are contained in the same locked transaction, and if the unlock step is the next 

following unlock step referencing the same database object as the  lock step.) That  is, in 

no schedule involving the two transactions 

and 
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can the step rZ,k.x be placed between 1 ..x and ulj.x. (We assume that  tl contains 
1,1 

no other lock o r  unlock steps that  also reference x between these two steps.) 

As is typical of locking protocols, the two-phase locking and tree locking protocols can 

be defined in terms of the set of restrictions that  each imposes on the placement of lock 

and unlock steps with respect to  each other and the access steps of a locked transaction. 

Each set of restrictions guarantees that  any schedule definable over a set of locked 

transactions, each of which satisfies the restrictions, is sem'alizable (i.e., equivalent t o  a 

serial schedule). W e  use serializability as the criterion for schedule correctness. 

The restrictions imposed by the two-phase locking protocol are: 

1. each access step a.x must be preceded by the lock step l.x, and followed by 
the unlock step u.x, and 

2.  no lock step may follow an unlock step. 

By these two restrictions, all two-phase locked transactions are characterized by an  

initial sequence of lock and access steps that  is followed by a sequence access and unlock 

steps. The first sequence of steps is called the growing phase of the transaction, and the 

second sequence is called the shrinking phase. The phase-shift point of the transaction 

separates the the growing phase from the shrinking phase. 

The tree locking protocol assumes that  the set of database objects that  are t o  be 

accessed by a transaction are organized hierarchically. The restrictions on the 

placement of lock and unlock steps within a transaction are defined in terms of this 

hierarchical organization. The restrictions, with respect t o  a given database hierarchy, 

imposed by the tree locking protocol are: 

1. each access step a.x must be preceded by the lock step l.x, and followed by 
the unlock step u.x, 

2. with the exception of the first lock step, each lock step 1.y must be preceded 
by the lock step l.x, and followed by the unlock step u.x, where the 
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database object x is the parent of y in the database hierarchy, and 

3. an  unlock step u.x may occur no more than once. 

3. Transaction Cost 

In this section we define a function that  provides a measure of the overall length of 

time that  a transaction maintains locks on the database objects in its lock set. We 

assume that  a transaction may execute concurrently with any arbitrary set of other 

transactions. Because of this assunlption we define this function in terms of only the 

transaction t o  which i t  is applied, and thus i t  provides only a "relativew measure of the 

length of time t ha t  a (locked) transaction maintains locks on database objects. 

By their design locking protocols such as 2PL and TL restrict the set of schedules that  

would otherwise be definable over a set of transactions. Any schedule is definable over 

a set of transactions since without locks there can be no blocking. The lock primitive 

allows a locked transaction to  block another transaction that  attempts t o  lock a 

currently locked database object. This blocking action lasts from the time the 

successful lock is executed until the transaction holding the lock releases it with an 

unlock step. 

The longer a transaction holds a lock on a database object the greater the probability 

that  it will conflict with (block) other transactions that  also attempt to lock that  object; 

in turn the greater the level of conflict between transaction the lower will be the level of 

concurrency of any resulting schedule. 

When a transaction locks a database object that  object becomes unavailable t o  other 

transactions until it is later unlocked. Under a static analysis of the transaction, the  

duration of a lock will depend on the number and duration of the steps tha t  occur 

between that  lock and its corresponding unlock. For  example, in the transaction 
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there are n + l  steps aj between the lock step 1.x and its corresponding unlock step 

U.X. 

In our model of a locked transaction, each step s. can be one of four types: read, 
J 

write, lock or  unlock. In general the duration of a step can depend on many factors: the 

type of step, the types of storage devices being used, whether the referenced database 

object is currently locked by another transaction, etc. However, because we seek a 

metric that  is defined only in terms of the transaction to which i t  is applied, we 

consider only the type of the step. 

Read and write steps are similar types of operations in that they both cause a transfer 

of data between a database on some secondary storage medium and a transaction's 

workspace. (They differ in the direction of the data flow.) Given this similarity, we 

assume that  the duration of each of these two types of steps to  be the same. 

The execution of a lock or unlock step generally requires some communication 

between a locked transaction and the lock manager of a database management system. 

In carrying out the granting or releasing of locks, the lock manager requires little or no 

time consuming transfer of data between primary and secondary memory. Thus, in 

comparison to  that  of a read or write step, the duration of their execution is negligible. 

We assume the duration of the execution of a lock step to  be 0 time units, and that of 

read and write steps to be 1 time unit. 

Consistent with the above assumptions U7e define the duration o f  the lock step 1.x in 

the locked transaction t (denoted h(t,x)) t o  be the number of access steps occurring 

between 1.x and its corresponding unlock step. The concurrency conflict potential of a 

(locked) transaction t, and denoted C(t), is defined as 

Although it is based on several simplifying assumptions, the concurrency conflict 

potential is adequate for our needs. First, it is defined solely in terms of the transaction 
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t o  which i t  is applied. Second, i t  allows two different transaction t o  be compared t o  

each other in terms of the relative expected duration of the length of time that  they 

maintain locks. 

The concurrency conflict potential of any transaction is zero since by our definition a 

transaction contains no lock or unlock steps. The concurrency conf l ic t  potential w i t h  

respect t o  a locking protocol P of a transaction t is the minimum concurrency conflict 

potential associated with any P-locked version of t. 

In the next two sections we will use the concurrency conflict potential function as the 

basis for defining optimal placements of lock and unlock steps, and the reordering of 

access steps within locked transactions. 

4. Optimal Two Phase Locking 

Typically, there are many two-phase locked versions of a given transaction. Each of 

these versions are characterized by a unique placement of lock and unlock steps. In this 

section we define an algorithm that  when applied t o  a transaction produces an 

opt imal ly  two-phase locked version of that  transaction. 

Let transaction t be defined as 

(To simplify our presentation we will assume here that  each database object xi is 

unique.) The locked transaction tl (shown below) represents one possible placement of 

lock and unlock steps allowed under the two-phase locking protocol. 

(This locked transaction could result if it was required that  all lock steps precede all 

access steps and all locks are released (unlocked) when the locked transaction 

terminates. The concurrency conflict potential of this locked transaction is 
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Shifting each lock step 1.x rightward so that it immediately precedes the first access 

step a.x, so that  an object is not locked until it is to be accessed, results in the locked 

transaction 

Applying the cost function to  this transaction we get 

For n = 5, C(tl) = 25 and C(t2) = 15; for n = 10, C(tl) = 100 and C(t2) = 55. (As 

n increases, the ratio of C(t2) to C(tl) approaches 2.) The locked transactions tl and t2 

demonstrate that the placement of lock (and unlock) steps can have a significant impact 

on the concurrency conflict potential of a transaction. 

Given the restrictions on the placement of locks by the two-phase locking protocol, it 

is not possible to further reduce the concurrency potential associated with t2 by shifting 

lock steps further to  the right. However it can be reduced by shifting both lock and 

unlock steps leftward as we show with the following locked transaction. 

The value of the cost function applied to  this locked transaction is 

For n=5, C(t3) = 8.75; for n=10, C(t3) = 30. 

The phase-shift point occurs in a different position in the locked transactions tl, t2, 

and tg. The phase shift point occurs after the access step an.xn in the locked 
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transactions tl and t2, and between access steps an/2.~,,2 and an/2+l.xn/2+1 in the 

locked transaction t3. In general the phase-shift point may be defined as occurring 

between any two transaction steps. 

In the following lemma, we define a pattern for the placement of lock and unlock 

steps relative t o  a given position of the phase-shift point such t ha t  the resulting two- 

phase locked transaction has the lowest concurrency conflict potential of any other two- 

phase locked version of the same transaction with a similarly positioned phase-shift 

point. (Unlike our earlier example, this lemma permits a transaction t o  have multiple 

steps that  access the same database object.) 

Lemma: 

Let t' be a two-phase locked transaction that  is derived from the transaction 

and has the structure: 

For each database object x, 

o if ai, i - < j, is the first step accessing x, then ai is immediately 

preceded by the step 1.x 

o if ak, k 2 j+l ,  is the last step accessing x, then ak is immediately 

followed in t' by the unlock step U.X. 

All other lock and unlock steps--and thus the phase shift point--in t', occur 
between the access steps a. and a (with unlock steps following lock 

J jt-1 
steps). 

If t" is any other two-phase locked transaction that  is derived from the transaction t 

and has a phase-shift point between the access steps a. and aj+l, then 
J' 

Proof: 
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By the definition of the locked transaction t', shifting a lock step, l.x, rightward (or a n  

unlock step, u.x, leftward) over any access steps will either violate the two-phase 

locking protocol or  change the position of the phase-shift point. 

Shifting a lock step, l.x, leftward, or an unlock step u.x rightward in the locked 

transaction t' will increase the value of ~ ( t ' ,  x) by an amount equal t o  the number of 

access steps tha t  were shifted over. Thus for each database object x accessed by t', ~ ( t ' ,  

x) is minimal with respect to  the specified position of the phase shift point, and 

C(t') = (~ l (x)rt '  ~ ( t ' ,  x)) - < C(t"). 

The following algorithm transforms a transaction into an optimally two-phase locked 

version of that  transaction. 

Algorithm I. 

input: transaction t = al, a 2,..., an 

output: optimally two-phase locked version of t 

1. for each x in A(t), insert a lock of x, l(x), to  the left of al 

2. for each x in A(t), insert an unlock of x, u(x), immediately after the last step 
that  accesses x. 

(The result of Steps 1 and 2 is a two-phase locked version of t where the 
phase-shift point precedes the access step al, and all of the lock steps are 
adjacent t o  (not separated by an access step from) the phase-shift point, and 
no unlock steps are adjacent t o  the phase-shift point.) 

3. while the number of lock steps adjacent t o  the phase-shift point is greater 
than the number of unlock steps adjacent t o  the phase-shift point 

shift the phase-shift point to  the immediate right of the  next access 
step 

shift those lock steps which do not lock objects accessed by any step on 
the left of the phase-shift point rightward so that  they are once again 
adjacent to  the phase-shift point 

shift those unlock steps which were previously adjacent t o  the phase- 
shift point rightward so that  they once again become adjacent t o  and 
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follow the phase-shift point 

Example 1: 

Let transaction 

be a n  input transaction t o  Algorithm I. Execution of the first two steps of the 

algorithm results in the two-phase locked transaction 

with the indicated phase-shift point. 

Executing Step 3 of the algorithm results in the sequence of two-phase locked 

transactions: 

A t  this point Algorithn~ I ternlinates and outputs the two-phase locked transaction t3. 

The concurrency cost associated with this locked transaction is 

C(t,) = 2 + 1 + 3 + 4 = 10 

Theorem 1. 

If t' is the locked transaction that  results from applying Algorithm I t o  transaction t, 

then t' is an optinlally t-\yo-phase loclted vession of t. 

Proof: 

After the initial insertion of lock and unlock steps by Steps 1 and 2 of the algorithm, 

each iteration of Step 3 causes the phase-shift point t o  be shifted rightward over one 

access step. Let tl be an inter~nediate locked transaction that  exists before an iteration 

of Step 3 with C(tl) = c, and t2 be the locked transaction that  results after one 
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additional iteration. Also let m and n be the number of lock and unlock steps 

respectively, t ha t  are adjacent to  the phase-shift point. One iteration of Step 3 will 

cause either m o r  m-1 lock steps to  be shifted rightward over one access step and all n 

unlock steps to be shifted over the same access step. Thus the concurrency conflict 

potential of the  locked transaction t2 is 

With each iteration of Step 3 the number of lock steps that  are adjacent t o  the phase- 

shift point monotonically decreases, while the number of unlock steps that  are adjacent 

t o  the phase-shift point monotonlically increases. By Lemma 1, each iteration of Step 3 

results in a two-phase locked version of the input transaction having a minimum 

concurrency cost for the resulting position of its phase-shift point. Since n, the number 

of lock steps adjacent t o  the phase-shift point is initially equal t o  zero, each iteration of 

Step 3 causes the concurrency cost associated with the resulting locked transaction t o  

monotonically decrease while m > n ,  and then t o  increase. Since the iteration of Step 

3 stops when rn becomes less than or equal t o  n ,  the final locked transaction t' tha t  is 

output from this step has the minimum concurrency cost of any two-phase locked 

version of the input transaction t. 

4.1. T r a n s a c t i o n  T r a n s f o r m a t i o n  w i t h  T w o  Phase Locking  

In the preceding we have defined rules for the placement of lock (and unlock) steps in 

a transaction so that  the resulting locked transaction is an  optimally two-phase locked 

version of the original transaction. Since the minimum set of database objects that  

must be locked by a t~vo-phase locked transaction t is the access set of t, A(t), these 

rules can be viewed as specifying how this "well-defined" set of lock and unlock steps 

should be arranged within a transaction. Consistent with this view we now look a t  how 

the access (read and write) steps of a transaction can be manipulated t o  further 

decrease the concurrency conflict potential of the resulting transaction. 

Manipulating the lock steps of a locked transaction does not affect the semantics of 
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(i.e., what  is computed by) the underlying transaction. Rearranging the read and write 

steps of the underlying transaction results in a syntactically "differentw transaction. 

However, if this new transaction can be guaranteed t o  have the same semantics as the 

original, and a t  the same time have a smaller concurrency conflict potential with respect 

t o  2PL, then i t  would be preferable to  the original. 

In our model, a transaction 

t = al.xl, a2.x2, ..., a,.x,whereai a {r, w] 

is a finite sequence of read and write steps. The interpretation of a read step r.x in a 

(locked) transaction t is that the current value of x is retrieved for manipulation by t. 

We assume that  the value read is not dependent on any of the preceding steps in t. 

The execution of a write step w.x by the (locked) transaction t results in a new value 

for x. Unlike a read step, the value written may be dependent on previous steps in 

transaction t. In particular, the value written by step w.x in t may be defined as a 

function of some or all of the values read by previous steps of t. (We assume tha t  each 

data  item accessed by a transaction is not read or written more than once and a read t o  

a data item must precede any write to  that  data item.) In the absence of additional 

semantic information in our nlodel we must assume that  the value written by each write 

step of a transaction is dependent on each of the values read by preceding steps. 

The implication of the above analysis is that  in any transaction a read step can be 

shifted to  the left (performed earlier) in the transaction without affecting what the 

transaction computes. A read step can be shifted t o  the right as long as i t  continues t o  

precede each of the write steps that  i t  originally preceded. Similarly a write step may be 

shifted t o  the right without affecting the value written, and shifted t o  the left as long as 

i t  continues to  follow each of the read steps that  i t  originally followed. 

Although in our model it is not possible t o  eliminate read and write steps without 

affecting the semantics of a transaction, it is often possible and desirable t o  reorder 
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transaction steps. The reordering of transaction steps is possible when, the order, with 

respect t o  each other, of each pair of read and write steps is preserved, and thus the 

resulting transaction can be presunled to  have the same meaning. A particular 

reordering is desirable if it has a smaller concurrency conflict potential with respect t o  

2PL. 

We have defined an optimal placement of lock and unlock steps, and thus an optimal 

positioning of the phase-shift point, in a two-phase locked transaction. Fro111 this 

definition it follows that the closer the phase-shift point can be brought to  the 

beginning of a transaction, the sooner the unlocking of database objects can begin. 

Analysing Algorithm I we see that the optimal position of the phase-shift point occurs 

between the two transaction steps where the number of objects that  have been accessed 

for the last time by the transaction is most equal to  the number of objects that  have 

not as yet been accessed. Thus the sooner a transaction can make a set of final accesses 

t o  objects in its access set, the sooner can occur the phase-shift point. 

Algorithm I determines the the optinla1 phase-shift point of a transaction by initially 

defining it at  the beginning of the transaction, and then repeatedly shifting it leftward. 

This shifting continues for as long as the concurrency conflict potential associated with 

the resulting locked transactions decreases. The faster the number of locks and unlocks 

that are adjacent to the phase-shift point can be reduced and increased, respectively, 

the closer the phase-shift point will be to the beginning of the resulting optimally two- 

phase locked transaction. This observation, along with the earlier stated restrictions on 

the reordering of transaction steps suggests the following strategy for reordering a 

transaction's access steps. 

1. Place at  (shift forward to) the beginning of the transaction those steps 
that read data items t8hat are not later written transaction. 

*the rationale for this step is that as soon as the phase-shift point is 
reached, each of the objects read by these steps can be unlocked. 
Additionally, shifting the phase-shift point rightward over this sequence 
of read steps will cause the number of lock steps that are adjacent t o  it 
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t o  decrease by one, while the number of unlock steps that  are adjacent 
t o  i t  will increase by one. (Also, this strategy may increase the 
likelihood that  if a transaction has t o  be aborted i t  will have read from, 
but not written to, the database, and thus allow for an  easier recovery.) 

2.  Next, follow the sequence S of read steps produced by Step 1 above 
with those write steps that  in the original transaction were preceded by 
only those read steps in S 

*again shifting the phase-shift point over these steps will cause the 
number of lock steps adjacent t o  it t o  decrease while the  number of 
unlock steps adjacent t o  it increases. 

3. The remaining steps of the original transaction should be placed 
following the sequence of read and write steps resulting from Step 2 
above. The ordering of these remaining steps should be the  same as it 
was in the original transaction. 

*the rationale for Step 3 is that  each read step that  precedes a write 
step in the original transaction must also do so in any resulting 
transaction. (Two consecutive write steps may be placed in any order 
with respect t o  each other.) 

The inclusion of additional semantic information in our model, for example, the 

specific read steps on which a write step is dependent, would provide additional 

flexibility for reordering transaction steps. 

5.  Optimal Tree Locking 

The tree locking protocol is an example of a locking protocol that  assumes that  some 

structure is imposed over the set of database objects. This protocol assumes that  the 

set of database objects is hierarchically structured. While this locking protocol will often 

require that  a locked transaction lock database objects that  will not later access, i t  also 

allows transactions to  lock and unlock objects in a non two-phase manner. That  is, 

unlock steps can follo~v lock steps in transactions. 

In this section we define an algorithm that  when applied t o  a transaction and a 

hierarchically structured set of database objects, results in an  optimally tree locked 
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version of the transaction. 

The  hierarchical structure imposed over a set of database objects defines a partial 

ordering of those objects. The tree locking protocol requires that  any tree locked 

transaction accessing these database objects lock them in an order consistent with this 

partial order. For  this reason we refer t o  this hierarchy as a data  access tree (DAT). 

By definition, the tree locking protocol requires that  a transaction lock a subtree of 

the DAT. This subtree is defined as the smallest subtree that  contains the access set of 

the transaction. For a DAT A and a transaction t, we call the minimal subtree of d 

tha t  must be locked by any tree-loclted version of transaction t the t - induced subtree of 

A and denote i t  a .  At. 

Given a database tree A, and a transaction t, the following algorithm will generate a 

tree locked version of t that  is optinlally tree locked with respect t o  A. 

Algorithm 11. 

input: transaction t = al, a2 ,..., an, DAT A 

output: optimally tree locked (with respect to  A )  version of t 

1. for each x c A(t) 

insert a lock of x, l.x, inlnlediately before the first step, ai, accessing x 

insert an unlock of x, u.x, immediately after the last step, a., accessing 
I 

x 

2. for each x in At but not in A(t) 

insert a lock of x, I.s, at the end of the transaction 

insert an unlock of x, u.x, a t  the beginning of the transaction 

(let S = sl, s2, ..., sm be the resulting sequence) 

3. for s := sl t o  sm 

if s is a lock step 1,x and there exists a lock step 1.y t o  the left of 1.x in 
S, and the database object x is an ancestor of y in d, move 1.x so that  
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i t  immediately precedes the leftmost such 1.y 

(let S' = s ' ~ ,  s ' ~ ,  ..., stm be the resulting sequence) 

4. for s := s ' ~  to  s ' ~  

if s is the unlock step u.x and there exists a lock step 1.y t o  the right of 
u.x in S and (x,y) is an edge in A ~ ,  move u.x t o  the immediate right of 

the  rightmost such step 1.y. 

Example 2 

Let transaction 

t = r.a, w.b, r.c, r.d, w.c, w.d 

and the DAT shown in Figure 1 be the input to  Algorithm 2. 

Executing Steps 1 and 2 of Algorithm I1 results in the sequence 

S = u.e, u.h, l.a, r.a, u.a, l.b, web, u.b, l.c, r.c, led, r.d, w.c, u.c, wed, u.d, l.e, 

1.h 

Step 3 shifts the lock steps 1.d, I.e, 1.11 leftward, resulting in the sequence 

S' = u.e, u.h, l.e, l.a, r.a, u.a, l.b, w.b, u.b, l.d, l.h, l.c, r.c, r.d, w.c, u.c, w.d, 

u.d 

Finally, Step 4 shifts unlock steps u.e and u.h rightward resulting in the tree locked 

with respect t o  A traxlsaction 

t' = l.e, lea, r,a, u.a, l.b, w.b, u.b, lad, u.e, l.h, l.c, u.h, r.c, r.d, w.c, u.c, w.d, 

u.d 

The concurrency cost associated with t' is C( t t )  = 11. 

Figure 1 
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Definit ion:  A lock step, I.x, in a tree locked with respect t o  A transaction t is 

rightmost if for the next access step, a(y), either y -= x (the lock and access steps 

reference the same database object) or y is a descendent of x in the DAT A. 

Similarly, 

Definition: An unlock step, u(x), in a tree locked with respect t o  A transaction t is 

leftmost-R if i t  is immediately preceded by either the access step a(x) or  a rightmost 

lock step I(y), where y is an inlnlediate descendent (child) of x. (The "-RH is used t o  

emphasize the lack of symmetry between this and the previous definition.) 

T h e o r e m  2 

Let locked transaction t be tree-locked with respect t o  A. If each lock step in t is 

rightmost, and each unlock step is leftmost-R, then t is optimally tree-locked with 

respect t o  A. 

T h e o r e m  3 

If t' is the locked transaction that results from applying Algorithm 2 t o  a transaction t 

and the DAT A, then t' is optimally tree-locked with respect t o  A. 

5.1. T r a n s a c t i o n  T r a n s f o r m a t i o n  w i t h  O p t i m a l  Tree Locking  

In this section we have defined an optimal tree-locking strategy for transactions. Next 

we show that  it is possible t o  reorder the steps of some transactions so that  the resulting 

transaction has a lower concurrency conflict potential (with respect t o  tree-locking with 

respect t o  a specified database access tree) than the original transaction. 

The optimal ordering of steps ia a transaction that  is t o  be tree-locked is dependent 

on the particular database tree with respect t o  which the transaction is t o  be tree- 

locked. Let d be a database access tree. The order in which objects are locked by a 

locked transaction t that is tree-locked 14th respect t o  d must be consistent with the 

partial order of database objects defined by the tree d. 
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How soon a database object can be unlocked by a transaction is restricted both by the 

requirements of the tree-locking protocol (except for the first object i t  locks, a tree- 

locked transaction can only lock a database object if it is currently holding a lock on 

the parent of that  object), and the position of the last access step referencing that  

object in the transaction. 

The restrictions on the placement of lock and unlock steps in a transaction suggest the 

following approach to  the ordering of access steps in a transaction that  is t o  be tree- 

locked with respect to a DAT d. 

TO the extent possible, the order in which a transaction accesses database 
objects should be consistent with the partial order defined over them by the 
DAT n. It will generally not be possible t o  achieve complete consistency 
because, as with two-phase locking i t  is required that  each read step that  
precedes a write step in the original transaction must continue t o  do so in the 
derived transaction. 

Although we have suggested a reordering of access step we have not developed what we 

feel t o  be an efficient algorithm for perfornling the reordering of transaction steps. 

5.2. D y n a m i c  D a t a b a s e  T r e e s  

Even in the presence of optinlally tree locked transactions two properties of the tree- 

locking protocol constrain the degree of concurrency obtainable. First, by definition, a 

tree locked transaction is required to  lock a subtree of the database tree. Thus, a tree 

locked transaction generally nlust lock database objects that  are not accessed. Second, a 

tree locked transaction, with the exception of its first lock, can lock a database object 

only if it is currently holding a lock on that  objects's parent (with respect t o  the 

database tree). If the access set of a locked transaction is dispersed throughout the 

database tree, then the locked transaction will either have t o  maintain a lock on a 

database object near the root of the tree or maintain locks on much of its access set. In 

both cases these locks will have to  be nlaintained for longer periods of time than would 

otherwise be necessary. 

Together, these two propel-ties contribute t o  an increased probability tha t  locked 
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transactions, tree locked with respect to  the same database tree, will have overlapping 

lock sets. The extent of this overlap will depend on the extent of the overlap of the 

access sets of the locked transaction, and how dispersed throughout the database tree 

each access set is. For example, if the locked transactions tl, accessing the database 

objects a and g, and t2, accessing the database objects i and d, are tree locked with 

respect t o  the database tree in Figure 1, then, in addition to  the objects in their access 

sets, they will also have to locli the database objects e and b. 

If the access set of each tree locked transaction could be localized within the database 

tree so as to  ~ninimize the difference between the locked transaction's lock set and 

access set, then the extent to  which lock sets overlap would be attributable largely to  

the extent to  which access sets overlap. 

Locked transactions having no overlap of their access sets would be able t o  run 

concurrently without conflicting with each other. However, unlike the situation that 

exists with two-phase locking, deadloclr would not be a possibility. 

Unfortunately it is not always possible to structure a database tree so that the access 

set of each locked transaction is localized. Localizing the access set of one transaction 

may cause t2he access set of another transaction to  be more dispersed. Additionally, in 

order to  define the appsopriate database tree, we would need to  know in advance the 

set of transactions that are to access the database. 

Since DATs are not dependent on the logical organization of a database (DATs may 

be defined over relational and net-i~osli databases), different DATs can be defined over 

the same set of database objects. Thus, it is possible to define a DAT for each 

transaction such that its access set is localized within that  database tree. However, if 

transactions are tree Iocked with respect to different database trees, a non-serializable or 

deadlocked schedule may result. 

The following variation of tree loclcing allows database trees to  be customized to  a 

currently executing set of transactions. 
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Definition: TIze Dynanzic Tree Locking Protocol [C,CM] 

1, When a transaction t is t o  be executed, its access set, A(t), is determined. 

2. All currently existing DATs defined over database objects in A(t) are joined 
together (by defining additional edges) t o  form a single database tree A. 

3. Each of the database objects in A(t) that  are not currently in A are added t o  
A. (The tree structure of n nlust be maintained.) 

4. Transaction t is then tree locked with respects t o  A resulting in the locked 
transaction t'. (Algorithm 11 can be used for this purpose.) 

5. Locked transaction t' is then allowed to  execute. 

(We assume that  transactions arrive one a t  a time t o  execute, and initially no 

database trees exist.) 

The dynanlic nature of this protocol is attributable t o  Steps 1 and 2. Unlike the tree 

locking protocol defined by Silbel.schatz and ice den^, the set of database objects t o  be 

locked and the order in which they will be locked by each locked transaction will 

depend on  the set of locked transactions currently executing. Example 2 shows how an 

implementation of dynanlic tree locliiug would work. 

Example 2: Let the three database trees dl, d2,  and d3 shown in Figure 2.a exist at 

the time the transaction 

t = r.d7 r.b7 w.a 

enters the systenl to be executed. I11 St'ep 1 of the protocol, the access set of transaction 

t is determined to be 

A(t) = {a, b, d)  

Using A(t), Step 2 nlerges the database trees dl and d2  t o  form the database tree A4 

shown in Figure 2.b. Since the database tree d4 does not contain all of the objects 

accessed by t, it is extended into the database tree d5 (Figure 2.c) by Step 3. 

Transaction t is then tree loclied with respect to  using Algorithm 11. The locked 

transaction t' is one possible result of this tree locking. 

t' = ].a, l.d, r.d, l.g, u.d, l.b, u.g, r.b, u.b, w.a, u.a 
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Figure 2 

Theorem 4: If n is a schedule of a set of dynanlically tree locked transactions T, 

then n is serializable and free fro111 deadlock. 

6. Conclusion 

In this paper we have presented various techniques for reducing the length of time 

that  locked transactions maintain loclis on database objects. These techniques were 

presented for the tree locking and t'\l;o-phase locking protocols. In order t o  provide a 

measure for this time, we have defined a concurrency conflict potential function. 

This work represents an initial effort a t  determining the feasibility of developing an 

automated transaction compiler/p~~ocessor based on the concept of minimizing the 
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concurrency conflict potential of the resulting locked transactions. The degree of 

improvement that  we have been able to achieve was limited by the model that we used 

to  represent a transaction. As a continuation of our efforts we are investigating more 

semantically descriptive transaction models in order t o  determine other improvements 

that  may be made in the degree of concurrency that can be achieved for transaction 

processing in a database managellle~lt system. 
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