
IMPROVEMENTS IN DATABASE CONCURRENCY

CONTROL WITH LOCKING

Albert Croker

Information Systems Department
Graduate School of Business Administration

New York University
90 Trinity Place

New York, N.Y. 10006

November 1986

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I34
GBA #86-99

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

ABSTRACT

Various techniques have been proposed to ensure the safe, concurrent execution of a set of database

transactions. Locking protocols are the most prominent and widely used of these techniques, with two-

phase locking and tree-Iocking being but two examples of these protocols. A locking protocol defines a

general set of restrictions on the placement of lock and unlock steps within transactions. In this paper we

show that i t is possible to further increase the potential level of concurrency of a set of transactions,

within the context of a specific locking protocol, by further restricting the placement of lock and unlock

steps within each transaction. We also discuss a variation of the tree-locking protocol that allows

transaction to be locked with respect to a dynamically changing set of tree structures. In addition we

define and discuss the concept of a concurrency cost function for a locked transaction. This cost function

measures the potential for conflict of a transaction with other transactions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

1. Introduction

A locking protocol is a set of rules governing the placement of lock and unlock steps

among the access steps of a transaction. Various locking protocols have been proposed

[BG,EGLT,G,KSI,KS2,SICI,SIC2,Y) t o ensure the correct concurrent execution of a set

of database transactions. These protocols ensure correctness by allowing transactions,

through the use of the lock and unlock primitives to control the access to database

objects by other transaction. The locking of a database object by one transaction will

cause any other transaction that attempts to lock that object t o be delayed until the

first transaction unlocks the object. (Throughout this paper we will assume that a lock

step provides the locking transaction with exclusive access t o the object referenced by

that step.)

Lock steps are useful for ensuring serializability because of their ability t o block

transactions that attempt t o lock and access a currently locked database object.

However this ability to block the execution of transaction can limit the level of

concurrent execution of a set transactions in database system. The longer a transaction

keeps a database object locked, the greater is the likelihood that i t will conflict with

another transaction that will attempt to lock and possibly access the same object. This

conflict will lead t o the second transaction becoming blocked.

In this paper we define techniques that can be used in conjunction with previously

defined locking protocols (the two-phase locking protocol (2PL) of Eswaran et al.

[EGLT], and the tree locking protocol (TL) of Silberschatz and Kedem [SKI] t o increase

the overall level of concurrency in database transacton systems. In addition, we define a

transaction metric that provides a relative measure of the length of time that a

transaction maintains locks on database objects.

In Section 2 we provide a set of definitions and notation that we will make use of. In

Section 3 we define a concurrency conflict potential, a transaction metric that reflects

the likelihood that a given transaction will conflict with other transactions. In Sections

4 and 5 we discuss techniques for increasing the level of concurrency in the context of

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-86-99

two-phase locking and tree locking, respectively, These techniques involve the

manipulation of lock, unlock, and access steps. Additionally, in Section 5 we discuss a

variation of the tree locking protocol that allows trees t o be defined dynamically based

on a currently executing set of transactions. We conclude in Section 6.

2. Definitions

We define a t ransac t ion t t o be a linear sequence of access steps

where each step ai.xi represents a read (r) or a write (w) of a single database object x.

(Two different steps may access the same database object.) A. locked transact ion t is a

transaction, among whose steps are interspersed a sequence of lock and unlock steps.

That is,

is a locked transaction where s represents an access (r or w), lock (1) o r unlock (u)

step. We refer t o a locked transaction t as a locked version of its underlying

transaction.

A schedule S of a set of (locked) transactions T is an interleaving of the steps of those

(locked) transactions, and restricted so that no step belonging t o one transaction and

referencing a database object x can be placed between a lock step and its corresponding

unlock step of a second transaction. (An unlock step corresponds t o a lock step if they

are contained in the same locked transaction, and if the unlock step is the next

following unlock step referencing the same database object as the lock step.) That is, in

no schedule involving the two transactions

and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

can the step rZ,k.x be placed between 1 ..x and ulj.x. (We assume that tl contains
1,1

no other lock o r unlock steps that also reference x between these two steps.)

As is typical of locking protocols, the two-phase locking and tree locking protocols can

be defined in terms of the set of restrictions that each imposes on the placement of lock

and unlock steps with respect to each other and the access steps of a locked transaction.

Each set of restrictions guarantees that any schedule definable over a set of locked

transactions, each of which satisfies the restrictions, is sem'alizable (i.e., equivalent t o a

serial schedule). W e use serializability as the criterion for schedule correctness.

The restrictions imposed by the two-phase locking protocol are:

1. each access step a.x must be preceded by the lock step l.x, and followed by
the unlock step u.x, and

2. no lock step may follow an unlock step.

By these two restrictions, all two-phase locked transactions are characterized by an

initial sequence of lock and access steps that is followed by a sequence access and unlock

steps. The first sequence of steps is called the growing phase of the transaction, and the

second sequence is called the shrinking phase. The phase-shift point of the transaction

separates the the growing phase from the shrinking phase.

The tree locking protocol assumes that the set of database objects that are t o be

accessed by a transaction are organized hierarchically. The restrictions on the

placement of lock and unlock steps within a transaction are defined in terms of this

hierarchical organization. The restrictions, with respect t o a given database hierarchy,

imposed by the tree locking protocol are:

1. each access step a.x must be preceded by the lock step l.x, and followed by
the unlock step u.x,

2. with the exception of the first lock step, each lock step 1.y must be preceded
by the lock step l.x, and followed by the unlock step u.x, where the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

database object x is the parent of y in the database hierarchy, and

3. an unlock step u.x may occur no more than once.

3. Transaction Cost

In this section we define a function that provides a measure of the overall length of

time that a transaction maintains locks on the database objects in its lock set. We

assume that a transaction may execute concurrently with any arbitrary set of other

transactions. Because of this assunlption we define this function in terms of only the

transaction t o which i t is applied, and thus i t provides only a "relativew measure of the

length of time t ha t a (locked) transaction maintains locks on database objects.

By their design locking protocols such as 2PL and TL restrict the set of schedules that

would otherwise be definable over a set of transactions. Any schedule is definable over

a set of transactions since without locks there can be no blocking. The lock primitive

allows a locked transaction to block another transaction that attempts t o lock a

currently locked database object. This blocking action lasts from the time the

successful lock is executed until the transaction holding the lock releases it with an

unlock step.

The longer a transaction holds a lock on a database object the greater the probability

that it will conflict with (block) other transactions that also attempt to lock that object;

in turn the greater the level of conflict between transaction the lower will be the level of

concurrency of any resulting schedule.

When a transaction locks a database object that object becomes unavailable t o other

transactions until it is later unlocked. Under a static analysis of the transaction, the

duration of a lock will depend on the number and duration of the steps tha t occur

between that lock and its corresponding unlock. For example, in the transaction

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

there are n + l steps aj between the lock step 1.x and its corresponding unlock step

U.X.

In our model of a locked transaction, each step s. can be one of four types: read,
J

write, lock or unlock. In general the duration of a step can depend on many factors: the

type of step, the types of storage devices being used, whether the referenced database

object is currently locked by another transaction, etc. However, because we seek a

metric that is defined only in terms of the transaction to which i t is applied, we

consider only the type of the step.

Read and write steps are similar types of operations in that they both cause a transfer

of data between a database on some secondary storage medium and a transaction's

workspace. (They differ in the direction of the data flow.) Given this similarity, we

assume that the duration of each of these two types of steps to be the same.

The execution of a lock or unlock step generally requires some communication

between a locked transaction and the lock manager of a database management system.

In carrying out the granting or releasing of locks, the lock manager requires little or no

time consuming transfer of data between primary and secondary memory. Thus, in

comparison to that of a read or write step, the duration of their execution is negligible.

We assume the duration of the execution of a lock step to be 0 time units, and that of

read and write steps to be 1 time unit.

Consistent with the above assumptions U7e define the duration o f the lock step 1.x in

the locked transaction t (denoted h(t,x)) t o be the number of access steps occurring

between 1.x and its corresponding unlock step. The concurrency conflict potential of a

(locked) transaction t, and denoted C(t), is defined as

Although it is based on several simplifying assumptions, the concurrency conflict

potential is adequate for our needs. First, it is defined solely in terms of the transaction

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-86-99

t o which i t is applied. Second, i t allows two different transaction t o be compared t o

each other in terms of the relative expected duration of the length of time that they

maintain locks.

The concurrency conflict potential of any transaction is zero since by our definition a

transaction contains no lock or unlock steps. The concurrency conf l ic t potential w i t h

respect t o a locking protocol P of a transaction t is the minimum concurrency conflict

potential associated with any P-locked version of t.

In the next two sections we will use the concurrency conflict potential function as the

basis for defining optimal placements of lock and unlock steps, and the reordering of

access steps within locked transactions.

4. Optimal Two Phase Locking

Typically, there are many two-phase locked versions of a given transaction. Each of

these versions are characterized by a unique placement of lock and unlock steps. In this

section we define an algorithm that when applied t o a transaction produces an

opt imal ly two-phase locked version of that transaction.

Let transaction t be defined as

(To simplify our presentation we will assume here that each database object xi is

unique.) The locked transaction tl (shown below) represents one possible placement of

lock and unlock steps allowed under the two-phase locking protocol.

(This locked transaction could result if it was required that all lock steps precede all

access steps and all locks are released (unlocked) when the locked transaction

terminates. The concurrency conflict potential of this locked transaction is

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

Shifting each lock step 1.x rightward so that it immediately precedes the first access

step a.x, so that an object is not locked until it is to be accessed, results in the locked

transaction

Applying the cost function to this transaction we get

For n = 5, C(tl) = 25 and C(t2) = 15; for n = 10, C(tl) = 100 and C(t2) = 55. (As

n increases, the ratio of C(t2) to C(tl) approaches 2.) The locked transactions tl and t2

demonstrate that the placement of lock (and unlock) steps can have a significant impact

on the concurrency conflict potential of a transaction.

Given the restrictions on the placement of locks by the two-phase locking protocol, it

is not possible to further reduce the concurrency potential associated with t2 by shifting

lock steps further to the right. However it can be reduced by shifting both lock and

unlock steps leftward as we show with the following locked transaction.

The value of the cost function applied to this locked transaction is

For n=5, C(t3) = 8.75; for n=10, C(t3) = 30.

The phase-shift point occurs in a different position in the locked transactions tl, t2,

and tg. The phase shift point occurs after the access step an.xn in the locked

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

transactions tl and t2, and between access steps an/2.~,,2 and an/2+l.xn/2+1 in the

locked transaction t3. In general the phase-shift point may be defined as occurring

between any two transaction steps.

In the following lemma, we define a pattern for the placement of lock and unlock

steps relative t o a given position of the phase-shift point such t ha t the resulting two-

phase locked transaction has the lowest concurrency conflict potential of any other two-

phase locked version of the same transaction with a similarly positioned phase-shift

point. (Unlike our earlier example, this lemma permits a transaction t o have multiple

steps that access the same database object.)

Lemma:

Let t' be a two-phase locked transaction that is derived from the transaction

and has the structure:

For each database object x,

o if ai, i - < j, is the first step accessing x, then ai is immediately

preceded by the step 1.x

o if ak, k 2 j+l , is the last step accessing x, then ak is immediately

followed in t' by the unlock step U.X.

All other lock and unlock steps--and thus the phase shift point--in t', occur
between the access steps a. and a (with unlock steps following lock

J jt-1
steps).

If t" is any other two-phase locked transaction that is derived from the transaction t

and has a phase-shift point between the access steps a. and aj+l, then
J'

Proof:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

By the definition of the locked transaction t', shifting a lock step, l.x, rightward (or a n

unlock step, u.x, leftward) over any access steps will either violate the two-phase

locking protocol or change the position of the phase-shift point.

Shifting a lock step, l.x, leftward, or an unlock step u.x rightward in the locked

transaction t' will increase the value of ~ (t ' , x) by an amount equal t o the number of

access steps tha t were shifted over. Thus for each database object x accessed by t', ~ (t ' ,

x) is minimal with respect to the specified position of the phase shift point, and

C(t') = (~ l (x)rt ' ~ (t ' , x)) - < C(t").

The following algorithm transforms a transaction into an optimally two-phase locked

version of that transaction.

Algorithm I.

input: transaction t = al, a 2,..., an

output: optimally two-phase locked version of t

1. for each x in A(t), insert a lock of x, l(x), to the left of al

2. for each x in A(t), insert an unlock of x, u(x), immediately after the last step
that accesses x.

(The result of Steps 1 and 2 is a two-phase locked version of t where the
phase-shift point precedes the access step al, and all of the lock steps are
adjacent t o (not separated by an access step from) the phase-shift point, and
no unlock steps are adjacent t o the phase-shift point.)

3. while the number of lock steps adjacent t o the phase-shift point is greater
than the number of unlock steps adjacent t o the phase-shift point

shift the phase-shift point to the immediate right of the next access
step

shift those lock steps which do not lock objects accessed by any step on
the left of the phase-shift point rightward so that they are once again
adjacent to the phase-shift point

shift those unlock steps which were previously adjacent t o the phase-
shift point rightward so that they once again become adjacent t o and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

follow the phase-shift point

Example 1:

Let transaction

be a n input transaction t o Algorithm I. Execution of the first two steps of the

algorithm results in the two-phase locked transaction

with the indicated phase-shift point.

Executing Step 3 of the algorithm results in the sequence of two-phase locked

transactions:

A t this point Algorithn~ I ternlinates and outputs the two-phase locked transaction t3.

The concurrency cost associated with this locked transaction is

C(t,) = 2 + 1 + 3 + 4 = 10

Theorem 1.

If t' is the locked transaction that results from applying Algorithm I t o transaction t,

then t' is an optinlally t-\yo-phase loclted vession of t.

Proof:

After the initial insertion of lock and unlock steps by Steps 1 and 2 of the algorithm,

each iteration of Step 3 causes the phase-shift point t o be shifted rightward over one

access step. Let tl be an inter~nediate locked transaction that exists before an iteration

of Step 3 with C(tl) = c, and t2 be the locked transaction that results after one

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

additional iteration. Also let m and n be the number of lock and unlock steps

respectively, t ha t are adjacent to the phase-shift point. One iteration of Step 3 will

cause either m o r m-1 lock steps to be shifted rightward over one access step and all n

unlock steps to be shifted over the same access step. Thus the concurrency conflict

potential of the locked transaction t2 is

With each iteration of Step 3 the number of lock steps that are adjacent t o the phase-

shift point monotonically decreases, while the number of unlock steps that are adjacent

t o the phase-shift point monotonlically increases. By Lemma 1, each iteration of Step 3

results in a two-phase locked version of the input transaction having a minimum

concurrency cost for the resulting position of its phase-shift point. Since n, the number

of lock steps adjacent t o the phase-shift point is initially equal t o zero, each iteration of

Step 3 causes the concurrency cost associated with the resulting locked transaction t o

monotonically decrease while m > n , and then t o increase. Since the iteration of Step

3 stops when rn becomes less than or equal t o n , the final locked transaction t' tha t is

output from this step has the minimum concurrency cost of any two-phase locked

version of the input transaction t.

4.1. T r a n s a c t i o n T r a n s f o r m a t i o n w i t h T w o Phase Locking

In the preceding we have defined rules for the placement of lock (and unlock) steps in

a transaction so that the resulting locked transaction is an optimally two-phase locked

version of the original transaction. Since the minimum set of database objects that

must be locked by a t~vo-phase locked transaction t is the access set of t, A(t), these

rules can be viewed as specifying how this "well-defined" set of lock and unlock steps

should be arranged within a transaction. Consistent with this view we now look a t how

the access (read and write) steps of a transaction can be manipulated t o further

decrease the concurrency conflict potential of the resulting transaction.

Manipulating the lock steps of a locked transaction does not affect the semantics of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

(i.e., what is computed by) the underlying transaction. Rearranging the read and write

steps of the underlying transaction results in a syntactically "differentw transaction.

However, if this new transaction can be guaranteed t o have the same semantics as the

original, and a t the same time have a smaller concurrency conflict potential with respect

t o 2PL, then i t would be preferable to the original.

In our model, a transaction

t = al.xl, a2.x2, ..., a,.x,whereai a {r, w]

is a finite sequence of read and write steps. The interpretation of a read step r.x in a

(locked) transaction t is that the current value of x is retrieved for manipulation by t.

We assume that the value read is not dependent on any of the preceding steps in t.

The execution of a write step w.x by the (locked) transaction t results in a new value

for x. Unlike a read step, the value written may be dependent on previous steps in

transaction t. In particular, the value written by step w.x in t may be defined as a

function of some or all of the values read by previous steps of t. (We assume tha t each

data item accessed by a transaction is not read or written more than once and a read t o

a data item must precede any write to that data item.) In the absence of additional

semantic information in our nlodel we must assume that the value written by each write

step of a transaction is dependent on each of the values read by preceding steps.

The implication of the above analysis is that in any transaction a read step can be

shifted to the left (performed earlier) in the transaction without affecting what the

transaction computes. A read step can be shifted t o the right as long as i t continues t o

precede each of the write steps that i t originally preceded. Similarly a write step may be

shifted t o the right without affecting the value written, and shifted t o the left as long as

i t continues to follow each of the read steps that i t originally followed.

Although in our model it is not possible t o eliminate read and write steps without

affecting the semantics of a transaction, it is often possible and desirable t o reorder

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

transaction steps. The reordering of transaction steps is possible when, the order, with

respect t o each other, of each pair of read and write steps is preserved, and thus the

resulting transaction can be presunled to have the same meaning. A particular

reordering is desirable if it has a smaller concurrency conflict potential with respect t o

2PL.

We have defined an optimal placement of lock and unlock steps, and thus an optimal

positioning of the phase-shift point, in a two-phase locked transaction. Fro111 this

definition it follows that the closer the phase-shift point can be brought to the

beginning of a transaction, the sooner the unlocking of database objects can begin.

Analysing Algorithm I we see that the optimal position of the phase-shift point occurs

between the two transaction steps where the number of objects that have been accessed

for the last time by the transaction is most equal to the number of objects that have

not as yet been accessed. Thus the sooner a transaction can make a set of final accesses

t o objects in its access set, the sooner can occur the phase-shift point.

Algorithm I determines the the optinla1 phase-shift point of a transaction by initially

defining it at the beginning of the transaction, and then repeatedly shifting it leftward.

This shifting continues for as long as the concurrency conflict potential associated with

the resulting locked transactions decreases. The faster the number of locks and unlocks

that are adjacent to the phase-shift point can be reduced and increased, respectively,

the closer the phase-shift point will be to the beginning of the resulting optimally two-

phase locked transaction. This observation, along with the earlier stated restrictions on

the reordering of transaction steps suggests the following strategy for reordering a

transaction's access steps.

1. Place at (shift forward to) the beginning of the transaction those steps
that read data items t8hat are not later written transaction.

*the rationale for this step is that as soon as the phase-shift point is
reached, each of the objects read by these steps can be unlocked.
Additionally, shifting the phase-shift point rightward over this sequence
of read steps will cause the number of lock steps that are adjacent t o it

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

t o decrease by one, while the number of unlock steps that are adjacent
t o i t will increase by one. (Also, this strategy may increase the
likelihood that if a transaction has t o be aborted i t will have read from,
but not written to, the database, and thus allow for an easier recovery.)

2. Next, follow the sequence S of read steps produced by Step 1 above
with those write steps that in the original transaction were preceded by
only those read steps in S

*again shifting the phase-shift point over these steps will cause the
number of lock steps adjacent t o it t o decrease while the number of
unlock steps adjacent t o it increases.

3. The remaining steps of the original transaction should be placed
following the sequence of read and write steps resulting from Step 2
above. The ordering of these remaining steps should be the same as it
was in the original transaction.

*the rationale for Step 3 is that each read step that precedes a write
step in the original transaction must also do so in any resulting
transaction. (Two consecutive write steps may be placed in any order
with respect t o each other.)

The inclusion of additional semantic information in our model, for example, the

specific read steps on which a write step is dependent, would provide additional

flexibility for reordering transaction steps.

5. Optimal Tree Locking

The tree locking protocol is an example of a locking protocol that assumes that some

structure is imposed over the set of database objects. This protocol assumes that the

set of database objects is hierarchically structured. While this locking protocol will often

require that a locked transaction lock database objects that will not later access, i t also

allows transactions to lock and unlock objects in a non two-phase manner. That is,

unlock steps can follo~v lock steps in transactions.

In this section we define an algorithm that when applied t o a transaction and a

hierarchically structured set of database objects, results in an optimally tree locked

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

version of the transaction.

The hierarchical structure imposed over a set of database objects defines a partial

ordering of those objects. The tree locking protocol requires that any tree locked

transaction accessing these database objects lock them in an order consistent with this

partial order. For this reason we refer t o this hierarchy as a data access tree (DAT).

By definition, the tree locking protocol requires that a transaction lock a subtree of

the DAT. This subtree is defined as the smallest subtree that contains the access set of

the transaction. For a DAT A and a transaction t, we call the minimal subtree of d

tha t must be locked by any tree-loclted version of transaction t the t - induced subtree of

A and denote i t a . At.

Given a database tree A, and a transaction t, the following algorithm will generate a

tree locked version of t that is optinlally tree locked with respect t o A.

Algorithm 11.

input: transaction t = al, a2 ,..., an, DAT A

output: optimally tree locked (with respect to A) version of t

1. for each x c A(t)

insert a lock of x, l.x, inlnlediately before the first step, ai, accessing x

insert an unlock of x, u.x, immediately after the last step, a., accessing
I

x

2. for each x in At but not in A(t)

insert a lock of x, I.s, at the end of the transaction

insert an unlock of x, u.x, a t the beginning of the transaction

(let S = sl, s2, ..., sm be the resulting sequence)

3. for s := sl t o sm

if s is a lock step 1,x and there exists a lock step 1.y t o the left of 1.x in
S, and the database object x is an ancestor of y in d, move 1.x so that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

i t immediately precedes the leftmost such 1.y

(let S' = s ' ~ , s ' ~ , ..., stm be the resulting sequence)

4. for s := s ' ~ to s ' ~

if s is the unlock step u.x and there exists a lock step 1.y t o the right of
u.x in S and (x,y) is an edge in A ~ , move u.x t o the immediate right of

the rightmost such step 1.y.

Example 2

Let transaction

t = r.a, w.b, r.c, r.d, w.c, w.d

and the DAT shown in Figure 1 be the input to Algorithm 2.

Executing Steps 1 and 2 of Algorithm I1 results in the sequence

S = u.e, u.h, l.a, r.a, u.a, l.b, web, u.b, l.c, r.c, led, r.d, w.c, u.c, wed, u.d, l.e,

1.h

Step 3 shifts the lock steps 1.d, I.e, 1.11 leftward, resulting in the sequence

S' = u.e, u.h, l.e, l.a, r.a, u.a, l.b, w.b, u.b, l.d, l.h, l.c, r.c, r.d, w.c, u.c, w.d,

u.d

Finally, Step 4 shifts unlock steps u.e and u.h rightward resulting in the tree locked

with respect t o A traxlsaction

t' = l.e, lea, r,a, u.a, l.b, w.b, u.b, lad, u.e, l.h, l.c, u.h, r.c, r.d, w.c, u.c, w.d,

u.d

The concurrency cost associated with t' is C(t t) = 11.

Figure 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

Definit ion: A lock step, I.x, in a tree locked with respect t o A transaction t is

rightmost if for the next access step, a(y), either y -= x (the lock and access steps

reference the same database object) or y is a descendent of x in the DAT A.

Similarly,

Definition: An unlock step, u(x), in a tree locked with respect t o A transaction t is

leftmost-R if i t is immediately preceded by either the access step a(x) or a rightmost

lock step I(y), where y is an inlnlediate descendent (child) of x. (The "-RH is used t o

emphasize the lack of symmetry between this and the previous definition.)

T h e o r e m 2

Let locked transaction t be tree-locked with respect t o A. If each lock step in t is

rightmost, and each unlock step is leftmost-R, then t is optimally tree-locked with

respect t o A.

T h e o r e m 3

If t' is the locked transaction that results from applying Algorithm 2 t o a transaction t

and the DAT A, then t' is optimally tree-locked with respect t o A.

5.1. T r a n s a c t i o n T r a n s f o r m a t i o n w i t h O p t i m a l Tree Locking

In this section we have defined an optimal tree-locking strategy for transactions. Next

we show that it is possible t o reorder the steps of some transactions so that the resulting

transaction has a lower concurrency conflict potential (with respect t o tree-locking with

respect t o a specified database access tree) than the original transaction.

The optimal ordering of steps ia a transaction that is t o be tree-locked is dependent

on the particular database tree with respect t o which the transaction is t o be tree-

locked. Let d be a database access tree. The order in which objects are locked by a

locked transaction t that is tree-locked 14th respect t o d must be consistent with the

partial order of database objects defined by the tree d.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

How soon a database object can be unlocked by a transaction is restricted both by the

requirements of the tree-locking protocol (except for the first object i t locks, a tree-

locked transaction can only lock a database object if it is currently holding a lock on

the parent of that object), and the position of the last access step referencing that

object in the transaction.

The restrictions on the placement of lock and unlock steps in a transaction suggest the

following approach to the ordering of access steps in a transaction that is t o be tree-

locked with respect to a DAT d.

TO the extent possible, the order in which a transaction accesses database
objects should be consistent with the partial order defined over them by the
DAT n. It will generally not be possible t o achieve complete consistency
because, as with two-phase locking i t is required that each read step that
precedes a write step in the original transaction must continue t o do so in the
derived transaction.

Although we have suggested a reordering of access step we have not developed what we

feel t o be an efficient algorithm for perfornling the reordering of transaction steps.

5.2. D y n a m i c D a t a b a s e T r e e s

Even in the presence of optinlally tree locked transactions two properties of the tree-

locking protocol constrain the degree of concurrency obtainable. First, by definition, a

tree locked transaction is required to lock a subtree of the database tree. Thus, a tree

locked transaction generally nlust lock database objects that are not accessed. Second, a

tree locked transaction, with the exception of its first lock, can lock a database object

only if it is currently holding a lock on that objects's parent (with respect t o the

database tree). If the access set of a locked transaction is dispersed throughout the

database tree, then the locked transaction will either have t o maintain a lock on a

database object near the root of the tree or maintain locks on much of its access set. In

both cases these locks will have to be nlaintained for longer periods of time than would

otherwise be necessary.

Together, these two propel-ties contribute t o an increased probability tha t locked

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

transactions, tree locked with respect to the same database tree, will have overlapping

lock sets. The extent of this overlap will depend on the extent of the overlap of the

access sets of the locked transaction, and how dispersed throughout the database tree

each access set is. For example, if the locked transactions tl, accessing the database

objects a and g, and t2, accessing the database objects i and d, are tree locked with

respect t o the database tree in Figure 1, then, in addition to the objects in their access

sets, they will also have to locli the database objects e and b.

If the access set of each tree locked transaction could be localized within the database

tree so as to ~ninimize the difference between the locked transaction's lock set and

access set, then the extent to which lock sets overlap would be attributable largely to

the extent to which access sets overlap.

Locked transactions having no overlap of their access sets would be able t o run

concurrently without conflicting with each other. However, unlike the situation that

exists with two-phase locking, deadloclr would not be a possibility.

Unfortunately it is not always possible to structure a database tree so that the access

set of each locked transaction is localized. Localizing the access set of one transaction

may cause t2he access set of another transaction to be more dispersed. Additionally, in

order to define the appsopriate database tree, we would need to know in advance the

set of transactions that are to access the database.

Since DATs are not dependent on the logical organization of a database (DATs may

be defined over relational and net-i~osli databases), different DATs can be defined over

the same set of database objects. Thus, it is possible to define a DAT for each

transaction such that its access set is localized within that database tree. However, if

transactions are tree Iocked with respect to different database trees, a non-serializable or

deadlocked schedule may result.

The following variation of tree loclcing allows database trees to be customized to a

currently executing set of transactions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

Definition: TIze Dynanzic Tree Locking Protocol [C,CM]

1, When a transaction t is t o be executed, its access set, A(t), is determined.

2. All currently existing DATs defined over database objects in A(t) are joined
together (by defining additional edges) t o form a single database tree A.

3. Each of the database objects in A(t) that are not currently in A are added t o
A. (The tree structure of n nlust be maintained.)

4. Transaction t is then tree locked with respects t o A resulting in the locked
transaction t'. (Algorithm 11 can be used for this purpose.)

5. Locked transaction t' is then allowed to execute.

(We assume that transactions arrive one a t a time t o execute, and initially no

database trees exist.)

The dynanlic nature of this protocol is attributable t o Steps 1 and 2. Unlike the tree

locking protocol defined by Silbel.schatz and ice den^, the set of database objects t o be

locked and the order in which they will be locked by each locked transaction will

depend on the set of locked transactions currently executing. Example 2 shows how an

implementation of dynanlic tree locliiug would work.

Example 2: Let the three database trees dl, d2, and d3 shown in Figure 2.a exist at

the time the transaction

t = r.d7 r.b7 w.a

enters the systenl to be executed. I11 St'ep 1 of the protocol, the access set of transaction

t is determined to be

A(t) = {a, b, d)

Using A(t), Step 2 nlerges the database trees dl and d2 t o form the database tree A4

shown in Figure 2.b. Since the database tree d4 does not contain all of the objects

accessed by t, it is extended into the database tree d5 (Figure 2.c) by Step 3.

Transaction t is then tree loclied with respect to using Algorithm 11. The locked

transaction t' is one possible result of this tree locking.

t' =].a, l.d, r.d, l.g, u.d, l.b, u.g, r.b, u.b, w.a, u.a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

Figure 2

Theorem 4: If n is a schedule of a set of dynanlically tree locked transactions T,

then n is serializable and free fro111 deadlock.

6. Conclusion

In this paper we have presented various techniques for reducing the length of time

that locked transactions maintain loclis on database objects. These techniques were

presented for the tree locking and t'\l;o-phase locking protocols. In order t o provide a

measure for this time, we have defined a concurrency conflict potential function.

This work represents an initial effort a t determining the feasibility of developing an

automated transaction compiler/p~~ocessor based on the concept of minimizing the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

concurrency conflict potential of the resulting locked transactions. The degree of

improvement that we have been able to achieve was limited by the model that we used

to represent a transaction. As a continuation of our efforts we are investigating more

semantically descriptive transaction models in order t o determine other improvements

that may be made in the degree of concurrency that can be achieved for transaction

processing in a database managellle~lt system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

23

References

Bersteiu, P.A., Goodman, N.
Fundanz.enta1 Algorit IL??ZS $or Concurrency Control in Distributed
Database Sgst e m s
Tech. Rep. CC-4-80-05, Feb. 1980,
Computer Corporation of America, Cambridge, MA

Croker, A.
1?2creasing Database Co?zcurrencg through Locking
Pl1.D. Dissertation, S.U.N.Y. at Stony Brook, 1984
stol1y B ~ O O ~ , ny

Croker, A., X/Iaier, D.
A Dyna?nic Free-Locking Protocol
Proceedings of IEEE Conference on Data Engineering
pp. 49-56, Los Angeles, CA, 1986

EGLT Eswaran, ILP., Gray, J.N., Lorie, R.A., Traiger, I.L.
The ATotio?z o f Colzsistency and Predicate Locks in a Database
Sgstenz
CACM, vlS:l l , pp. 624-633, 1976

Gray, J.N.
Notes o?z Datu,ba,se Operating Sgstenzs
IBM Research Lab. RP RJ2188, 1978
Sa11 Jose, CA

IiS 1 ICedem, Z., Silberschatz, A.
Controlling Co~tcurre~zcg us ing Locking Protocols
Proc. 20th IEEE Symp. Foundations of Computer Science,
pp. 274-285. 1979

ICedem, Z., Silberschat~z, A.
Non-two-phase Locking P?*otocols w i t h Shared and Exclusive Locks
Proceedings International Conference on VLDB, 1980

Silberschatz, A., Iiedem, Z.
Co?zsistelzcy i ? z Hz'erwrclzical Database S y s t e m s
Journal of the ACXI, s27:1, pp. 72-80, 1980

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-86-99

Silberschatz, A,, ICedem, 2.
A Fanzily o f Locking Protocols for Database S y s t e m s t h a t are
hfodelled bg Directed Graphs
IEEE Transactions on Software Eng
SE8, pp. 558-562, 1982

Yannakis, h4.
A T l z e o ~ y o f Safe Locking Policies in Database S y s t e m s
Journal of the AChl, v29.3, pp. 718-740, 1982

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-99

