
DATA CONSTRUCTORS: ON THE INTEGRATION

O F RULES AND RELATIONS

M a t t h i a s Jarke
Graduate School of Business Administration

New York Unversity

V o l k e r L i n n e m a n n and J o a c h i m W. S c h m i d t
Fachbereich Informatik, Johann Wolfgang Goethe-Universitat

Dantester. 9, 6000 Frankfurt 1, West Germany

April 1985

Center for Research on Information Systems
Computen Applications and Information Systems Area

Graduate School of Business Administration
New York Unversity

W o r k i n g P a ~ e r Series

CRIS #91

GBA #85-23 (CR)

Forthcoming in Proceedings ofthellth International Conference on
Very Large Data Eases, Stockholm, Sweden, August 1985.

Data Constructonr On the Integration of R d a ~ and Relations

Abstract
Although the goals and means of rule-based and data-based systems are

too different to be fully integrated a t the present time, it seems appropriate to
investigate a closer integration of language constructs and a better cooperation
of execution models for both kinds of approaches.

In this paper, we propose a new language construct called constructor that - - when applied to a base relation - causes relation membership to become true
for all tuples constructable through the predicates provided by the constructor
definition. The approach is shown to provide expressive power a t least
equivalent to PROLOG's declarative semantics while blending well both with a
strongly typed modular programming language and with a relational calculus
query formalism. A three-step compilation, optimization, and evaluation metho-
dology for expressions with constructed relations is described that integrates
constructors with the surrounding database programming environment. In par-
ticular, many recursive queries can be evaluated more efficiently within the
set-construction framework of database systems than with proof-oriented
methods typical for a rule-based approach.

1 Introduction
Combining the semantic capabilities of rule-based knowledge representa-

tion and reasoning systems with the efficiency-oriented mechanisms for query
result construction and transaction processin in large shared DBMS has been
the focus of much recent research [Kers 847. Apart from the possibility of
defining a completely new architecture for "knowledge based systems", the solu-
tions proposed so far can be interpreted as extreme points in a continuum of
coupling strategies. Researchers either propose to replace one system com-
pletely by the other one [ScWa 841 - the end points of the spectrum - or to cou-

le current expert systems languages (most notably, PROLOG [Java 841,
Zani 841) with existing DBMS interfaces - the cutting point defined by history. P

With a number of researchers [Smith 841, [Ullm 841 we believe that a cou-
pling strategy is preferable to fully integrated solutions. Because of the
different stress on representation vs. efficiency between ICR and DB research
[MyBr 851, little is gained (and unnecessary complexity is incurred) by putting
all capabilities into one system. In contrast, a coupling architecture allows each
subsystem to evolve independently and to offload. the reconciliation task to
separate coupling tools [Jark 841.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

Granted that coupling is necessary, the question remains what the capabili-
ties of each of the partners should be. While in the short run there is a clear
economic incentive to leave existing systems as they are [Java 841, nothing says
that the optimal division of labour between the deductive capabilities of rule-
based systems and the selective power of data-based systems will remain where
it has been historically - a t the point of 'relational completeness' as defined by
[Codd 721.

The question of exactly what capabilities should be added to the DBMS is
open. [Ullm 841 proposes an architecture using 'capture rules' that define use-
ful extended DBMS capabilities. The present paper follows a similar approach
but investigates the problem from the viewpoint of integrated database pro-
gramming languages rather than from a PROLOG perspective. Database
languages can in principle handle, e.g., recursive queries using programming
language constructs, such as functions and iteration. However, current query
optimization strategies do not take advantage of the relationships among the
corresponding sequence of queries. Efficiency is the responsibility of the pro-
grammer.

Rather than enhancing a query optimizer directly to handle multiple
related queries, this paper studies special-purpose language constructs that
capture higher-level data definition and operation and are easily recognizable
by a compiler. To provide the necessary framework, section 2 reviews the data-
base programming language DBPL which integrates relational data structures -
and transactions with the programming language MODULA-2 [Wirth 831.

The main focus of the paper is the detailed analysis of a DBPL extension
called constructor which has evolved from the selector concept introduced in
[MaReSc 841. While selectors allow the definition of selected subrelation vari-
ables, constructors expand existing relations. Constructors implement recur-
sion using an equational fixed point semantics. We introduce constructors in
sections 2 and 3 using an example with a CAD flavour. We show how to integrate
the tuple relational calculus concepts of negation and universal quantification
into this framework. Moreover, we demonstrate that our proposal provides
expressive power a t least equivalent to PROLOG's clause-order independent
declarative semantics while being closer to the spirit of typed, procedural data-
base pro ramming languages, such a s PASCAL/R [Schm??] or ADAPLEX
[Smith 817.

The database programming language environment also inspires particular
implementation and optimization strategies since it is frequently used for
implementing higher-level database interfaces. In section 4, we interpret con-
structed relations as an extension to range-nested expressions as introduced in
[JaKo 831, and outline a three-level compilation and optimization framework.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

a Typerr, Relations. and Predicates

The impact of logic on computing - from early data processing in the fifties
to modern computer science - can hardly be overestimated.

In the field of programming, logic marks the step from machine-oriented
coding to algorithmic programming. High level languages provide conditional
statements and boolean expressions, use propositions for data type definition,
and depend crucially on predicates for the s ecification of language semantics
and for reasoning about programs [Gries 811. Pfiehn 841.

In the area of data modelling. the degree to which predicates are utilized
allows a distinction between early reference-oriented data models and those
that capture more of the relationships defined by the application semantics.

2.1 Data Typea and Predicates
If "a type is a precise characterization of structural and behavioural pro-

erties which a collection of entities (actual or potential) all share ..."
Deut 811, the formalism by which those properties can be characterized P

decides upon the power of a type calculus.
Currently prevalent programming languages only allow type definitions

based on restricted propositional logic. Take, as an example, the following
PASCAL-like subtype definition:

partidtype I S RANGE l..l08.

which is equivalent to the domain predicate (l<=p AND p<=100) and defines the
domain set

partidtype 4 EACH p IN integer: 1 <= p AND p <= 100 1 .
The expressiveness of the type calculus in high level languages corresponds
closely with that of the expression and statement part of these languages. As a
consequence, any action to be taken to assure type properties can be expressed
directly in the language. A type checker can produce run time code in the
source language to assure, for example, type correctness of an integer expres-
sion, ix, which is to be assigned to a variable, p, of partidtype:

IF (l<=ix) AND (ix<-100)
THEN p:=l x
ELSE <exception> .

Programmers reduce the possibility of run-time exceptions by acquiring
sufficient information on rhs-expressions through inductive reasoning about
assignment chains and subtype definitions (and so do clever compilers).

Approaches to programming that are more concerned about correctness
allow for the definition of additional program properties by so-called annota-
tions. ADA annotations, for example, can be specified in the meta language
ANNA [KrBr 841, and ADA programs can be proven formally correct w.r.t. their
specification. The meta language ANNA allows full first order assertions, while
the object language ADA is restricted to propositional logic. An ADA subtype
definition, for exam le, primetype, can be fully specified by the following ANNA
annotation [KrBr 84r:

primetype IS integer / I WHERE p IN prlmetype ==>
ALL n IN intsger
((la AND n<pl ==> p'tlOD n # 81,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

defining the domain set
prlmetype I EACH p I N integer: ALL n I N integer

((l a AND n<p) ==> p HOD n # ell .
2.2 Predicates in Database languages

Database models, as, for example, the relational model are very concerned
about data integrity; therefore they go beyond programming languages in the
sense that they provide the expressiveness of first order logic directly through
relational languages.

On the expression level, the request for "relational completeness" of query
languages is essentially met by allowing full first order predicates, p(r, ...), as
selection predicates in relational expressions:

rmltype (EACH r IN rel: p(r l l .

On the type or schema level, the role of predicates can be exemplified best by
comparing a PASCAL-like set type definition

ssttype = SET OF elementtype,

with a relation type definition.
The legal values of a relation are also sets of elements; they have to meet, -

however ,the additional constraint that some attribute (or a collection of attri-
butes) serves as a key. i.e., has a unique value amongst all the elements of a
relation:

rsltype = SET OF elementtype 1 1
UHERE re1 IN reltype ==>

ALL r l . r 2 IN re1 (rl.key=rZ.key ==> r l = r 2 .
The key constraint is essential to relational data modelling since only unique
keys can serve as element identifiers as required, for example, for the construc-
tion of higher relationships between elements. Therefore, relational languages
directly support the above class of arinotated set type definitions by a data
structure relation that allows for type definitions equivalent to the previous
one:

r e 1 type = RELATION key OF e lementtype,

For each assignment of a relational expression, rex, to a variable, rel, of reltype,
the relational type checker has to perform a test equivalent to

IF ALL ~ 1 . ~ 2 IN rex (xl.key=x2.key ==> ~ 1 1 x 2 1
THEN rel:=rex
ELSE eexcep t i on> .

2.3 Predicative Support for Relatiom- Selectors and Constructors
The key constraint is, of course, not the only condition one would like to

have maintained automatically on a database. Take, for an example, some
objects related by the fact that one object is in front of another.

TYPE objecttype = ... I* f u l l object description.
e.g, by object record *) . . . ;

parttype = ... (* representative object description,
e.g. by object key +I . . . ;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

objectre1 = RELATION p a t OF objectt(lpe;
infrontret = RELATION . . . OF

RECORD
front, back: p a tt(lps

END;
VAR Objects: ob jectrel;

Infront: infrontret .
Since the attributes, front and back, of the Infront relation are supposed to
relate objects, they have to refer to elements in the Objects relation. The
corresponding referential integrity constraint can be expressed by annotating
the type of the Infront relation:

VAR Infront: infrontrel 1 1 UHERE r IN Infront ==r
SORE r l , r 2 I N Objects

(r. f ront=r l .pat AND
r. back=^-2. p a t) .

In a relational language such a constraint can be enforced by a conditional
which controls assignment to the Infront relation:

I F ALL x IN rex (SOME r l , r 2 IN Objects
(x. front-rl.part AND x.back=rZ.part) 1

THEN Infront:=rex
ELSE <exception> .

Expecting frequent use of relations in such "conditional patterns", the database
programming language DBPL [SeMa 831, [MaReSc 8411 provides an abstraction
mechanism for such patterns through the notion of a selector. Referential
integrity on relations of type infrontrel, for example, can be maintained by

SELECTOR r e f i n t FOR Rel: infrontre lo: ...;
BEGIN EACH r I N Rel: SOME r l , r 2 IN Objects

(r.front=rl.part AND r.back=rZ.partl
END r e f i n t .

An assignment to a selected relation variable, for example,
Infront [ref in t l : = rex.

is defined to be equivalent to the above conditional assignment to the full rela-
tion variable Infront.

In summary, selectors "factor out" conditions on relations, represent them
uniformally, and make them available to all database system components that
have to reason about programs and data (such as query optimizer, concurrency
manager, and integrity subsystem). The selector concept is illustrated in Fig. 1.

While selectors provide support when data elements are to be excluded
from a relation there is also a need for supporting the contrary - when addi-
tional derived data objects are to be included into a relation.

For an example, a relation, Ahead-2, can be defined that relates - based on
the data in relation Infront - two objects if and only if they are separated by a t
most two steps.
Starting with type

TYPE aheadrel = RELATION ... OF RECORD
head,tai 1: parttype

END.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

Fact Re Lat i on: Re 1 +------------- +
1 I
I I I

I v
I------------- I

I Re1 [sl: Selected
r i i I Relation
I I I I

Figure 1: Selectors and ReLat ions

an annotated definition of relation Ahead-2 would read as follows:
VAR Ahead-2: aheadrel I I UHERE (r I N Infront ==> r I N Ahead-2)

AND (f,b IN Infront ==>
(f.back=b.front ==>
cf. front.b.back> IN Ahead21 .

In a relational language the value of such a relation. Ahead-2, can be denoted
by a query expression in terms of predicates and the Infront relation:

ahsadrel 4 EACH r I N Infront: TRUE.
<f.front.b.back> OF EACH f.b I N Infront:

f . back=b. f ront 1 .
Expecting frequent use of relations in such "expressional patterns" this paper
proposes an abstraction mechanism for such patterns based on the notion of a
con8tructor.

As an example, the Ahead-2-relationship based on relations of type infron-
trel can be constructed by

CONSTRUCTOR ahead2 FOR Rei: infrontrel 0: aheatksi;
BEGIN EACH r IN Ret: TRUE,

<f. front. b. back> OF
EACH f.b I N Rel: f.back-b.front

END ahead2.

The value of a constructed variable, for example,
Infront (ahead21

is defined to be equal to the above relational expression of type aheadrel.
In the same sense as selectors isolate the constraints imposed on selected

relations, constructors factor out the rules that define the elements in con-
structed relations.

In the subsequent section, the basic issues of constructor semantics are
discussed with emphasis on recursive constructor definition and constructor
convergence, and constructors are compared with other approaches to rule and
fact management.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

3 Relation Cons t ruc to~~

Many database rules follow a similar pattern. Certain base facts are stored
for which it is known that a certain rule holds. Other facts for which the rule
also holds are not stored explicitly but can be derived by a possibly recursive
deduction) rule. The deduction rule may depend on the existence of other facts
parameters), which are, however, not necessarily part of the result. Construc-

tors allow the definition of such deduction rules in DBPL. The idea is illustrated
in Fig. 2.

Constructed +-------------+
Relation Rettcf I I

I A 1
I I I
I I
I-------------

I
I

I I Fact Relation: Re1
I I I------------- I I

I

Figure 2: Constructor and Relations

As a simple example, the transitive closure of a relation contains the rela-
tion itself and other tuples derived from it.

In this section, we discuss the notion of a constructor in more detail. We
first provide some examples based on the relations introduced in section 2, and
then define the semantics of recursive constructors formally.

3.1 Recursive Constructors
The above simple constructor, ahead-2. representing all object pairs

separated by a t most two steps, can be generalized to a sequence of construc-
tors, ahead-n, representing all pairs of objects separated by a t most n steps:

CONSTRUCTOR ahead-n FOR Re1:infrontrelO: aheadrel:
BEGIN EACHr I N Rel: TRUE.

<f.front,b.tail> OF EACH f I N Rel,
EACH b I N Re1 lahead-n-11 :

(f . back-b. head1
END ahead-n .

For the definition of a constructor, ahead, representing all object pairs
separated by an arbitrary number of steps, we utilize simple recursion:

CONSTRUCTOR ahead FOR Rel: in f ront re l 0: aheadrel;
BEGIN EACH r I N Rel: TRUE,

ef.fr0nt.b. ta i l> OF EACH f I N Rel,
EACH b I N Re 1 fahead) :

(f . back-b. head)
END ahead .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

Intuitively, the value of a constructed relation
Infront !ahead j

can be seen as the limit of the sequence of constructor applications:
Infront laheadj = lim Infront fahead-nj

n 0-

The details of constructor semantics are given in section 3.2.
Because, in our example, the sequence is monotonic, the limit exists and

can be implemented by a finite loop using a relation variable, Ahead:
Ahead := I) ;
REPEAT

O ldahead : = Ahead;
Ahead :- IEACHr I N 1nfront:TRUE.

<f. fr0nt.b. tai l> OF EACH f I N Infront.
EACH b IN Ahead:

f . back-b. head 1
UNTIL Ahead = Oldahead .

According to [AhUl 791, we compute the least fixed point of a relational expres-
sion.
To show how to combine selectors and constructors, we define

SELECTOR h i d d e n g ~ (Ob j: parttypef FOR Rel: i nfrontre l0 ;
BEGIN - - -

EACH r IN Rel: r - f ront = Obj
END hi ddengu .

Then the expression
Infront [hidden-by ("table")] lahead1

returns all objects behind the table.
To give an example of mutual recursion, we introduce a second dimension

to our object relationships. In addition to one object being in front of the other,
objects may be related by the fact that one is on top of another. The new facts
can be represented by the following relation:

TYPE ontoprel = RELATION ... OF
RECORD

top.base: parttgpe
END;

VAR Ontop: ontoprel .
We say that object A is ahead of object B not only if it is (maybe indirectly) in
front of object B but also if A is above an object that is (maybe indirectly) in
front of B. For example, we would say that a vase is ahead of a chair if the vase
is on top of a table which is in front of the chair. In order to reflect this
extended relationship, we define a new data type

TYPE aboverel = RELATION ... OF
RECORD

high. tow: part t ~ p e
END

and introduce a second constructor:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

CONSTRUCTOR above FOR Rel: ontoprel(1nfront:infrontrsl):
abovere 1:

BEGIN EACH r IN Rel: TRUE,
<r. top,*. Lou> OF

EACH r IN Rel,
EACH ab I N Re1 fabove(1nfront)f :

r.base = *.high.
<r. top,ah. t a i l > OF

EACH r I N Rel.
EACH ah I N I n f r o n t iaheadtRell) :

r. base - ah. head
EN0 above.

The constructor ahead is redefined to be mutually recursive,too:
CONSTRUCTOR ahead FOR Rel: i n f r o n t r e l (Ontop:ontoprel):

aheadre 1;
BEGIN EACH r I N Re t: TRUE,

<r. front,ah. t a i t> OF
EACH r IN Rel.

EACH ah I N Re1 4ahead(Dntop)l :
r. back = ah. head.

<r. f ront . ab. Lou> OF
EACH r IN Rel,

EACH ab I N Ontop labove(ReL)) :
r.back = *.high

END ahead .
Through these definitions we can combine both relations, lnfront and Ontop,
and both constructors, ahead and above. by, for example,

I n f r o n t Iahead(0ntop) 1 and
Ontop fabove(1nfront)) .

The values of these mutually recursive constructed relations are defined by the
limits of mutually defined sequences; again, the details are given in section 3.2.
Because the sequences are monotonic, the limits exists and can be implemented
by the following loop, using auxiliary variables, Ahead and Above, for the values
of the constructed relations:

Ahead: = (1 ; Above: = 0 ;
REPEAT

0 ldahead: =Ahead; 0 Ldabove: =Above;
Ahead: =ahead-f c t (0 Ldahead, O ldabove) ;
Above: =above-f c t (0 Ldahead. 0 ldabove) ;

UNTIL Aheadaoldahead AND Above=OLdabvove.

ahead-fct and above-fct are relation-valued functions based on the definition
of the constructors, ahead and above.

In most applications it is obvious to which selectors a constructor is t o be
applied (for example, Infront) and which relations are to serve a s arguments
(for example, Ontop). In a few cases, however, this choice may be difficult, and
the programmer may prefer to start with an empty relation (for example, if the
constructor is based on a join of several base relations rather than growing out
of a single one).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

9.2 Constructor Semantics
In general, a database program may contain a large number, m, of mutually

dependent constructors:
CONSTRUCTOR c, FOR Rel,: reltype, (...): resulttype,;
BEGIN

f l (. . a * ~PP~YC, . , , ..-, a ~ ~ l ~ c l . , , ,)
END c,;

CONSTRUCTOR c, FOR Rel,: reltype, (...): resulttype,;
BEGIN

f, (..., applyc,.,, ..., applyc,,)
END c, ,

where each applycij is a (possibly recursive) constructor application of the
form Re1 {c(. . .) I . Re1 is a relation name known in the context of f,, and c is one of
our c,. If,{ is a relational calculus expression. To simplify indexing, we rename
our constructor applications apply^,^ to apply,. ..., applyl, l=n, +...+ n,.
The semantics of a constructor application

apply, = Actrel [c, (. ..) j ,
on an actual relation Actrel, is defined as follows:
We construct 1+1 functions

function g j is constructed by taking the function f, which corresponds to the
constructor in the application applyj, and replacing all forma. parameters by
their actual values.
We define

= I j (i=O,l ,...,i)
applyik+l = g * (a ~ ~ l ~ O k * . . . v k)

and compute the limits:

The value of constructor application Actrel f c, (...) j is given by apply,.
Of course, this definition makes sense onIy if the limit of the above

sequences exists. If the functions f, are monotonic, we have apply,, Z; apply,.,,
and therefore, by induction, applytk LI apply,k+,. Because all relations are based
on finite domains, there must be a step j such that apply,j = There-
fore, if the f, are monotonic, the limits exist and are reached after finitely many
steps. I t can be shown [ChHa 821 that the functions f, are monotonic if their
predicates are free of negation and universal quantifiers.

Note that, according to [Tars 551, we compute the least fixed point of the
system of equations

A program for computing the limits can be written in the same way as for our
examples in 3.1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

3.3 Negation and Universal Quantification
Database languages like DBPL and Pascal/R [Schm 771 allow universal

quantification of element variables as well as negation of relational predicates.
However, constructors containing negation and universal quantification may be
meaningless because the limit of the fixed point computation may not exist, as,
for example, in

CONSTRUCTOR nonsense FOR Re 1: any t ype (I : anyo ther t w e :
BEGIN EACH r I N Rel:

NOT (r I N Re 1 {nonsense) I
END noneenee.

The iteration yields

and has apparently no limit,
However, there are meaningful constructor definitions with negation and

universal quantification, and the DBPL compiler will recognize a subclass
thereof, defined by the so called positivity constraint.

Let us start with auxiliary definitions:
Definition: Names appearing under NOT and ALL
Let f be a DBPL expression.
A name n is said to appear under ALL if f is of the form

f = . .. ALL r IN exp (p(r, ...)) . ..
and n appears in exp.
A name n is said to appear under NOT if f is of the form

f = ... NOT fact ...
and n appears in the factor fact.
Note that these definitions may be nested, i.e.. a name may appear under
several ALLs and NOTs. In

ALL r IN exp (p(r ,...))
a name n appearing in p(r, ...) but not in exp is not considered to appear under
this ALL.
Definition: positivity of a DBPL expression
Let f(Rel,, ..., REL,,) be a DBPL expression.
f is said to satisfy the positivity constraint if each occurrence of Rel, appears
under an even total number of negations and universal quantifiers.

The idea of positive expressions is similar to 'safe' expressions in [Ullm 821
by which the definition of infinite relations in relational calculus expressions is
avoided.
Lemma:
Each DBPL expression f(Re1,. Rel,) that satisfies the positivity constraint is
monotonic in all its arguments.
-of Sketch:
Chan e f as follows: Replace range-coupled quantifiers by their one-sorted ver-
sion A a ~ o 831-
ALL r IN el (pred(r. ...)) = ALL r (NOT(r IN Rel) OR pred(r ,...))
SOME r IN Re1 (pred(r ,...)) = SOME r (r IN Re1 AND pred(r ,...))

Thus we have replaced each occurrence of Rel, under a universal quantifier by

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

an occurrence under NOT. Thus, if the number of ALLs plus the number of NOTs
over each occurrence of Re1 gave an even total, we now have an even number of
NOT8 over each occurence Re1 of a Rel,. However, if this is the case, we can
remove the negations, using generalized deMorgan and distribution laws
[JaKo 831 to move all NOTs as far into the expression (i.e. to the right) as possi-
ble and applying the double negation law NOT(NOT(pred)=pred. The resulting
expression will be monotonic in all its arguments.

A similar lemma is given in [ChHa 821. For simplicity, the DBPL compiler
accepts only constructors satisfying the positivity constraint. I t should be
noted, however, that there are non-monotonic constructors for which the limit
of the fixed point computation exists. The following example is derived from
[Hehn 841:

TYPE cardrel = RELATION ... OF RECORD number: CARDINAL END;
CONSTRUCTOR strange FOR Baserel: cardrel 0: cardrel;
BEGIN EACH r IN Baserel:

NOT SOHE s IN Baserel {strange)
(r . number=s. number+l)

END strange .
Let Re1 = 10, 1, 2, 3, 4, 5, 61. The computation of Re1 lstrangej through the itera-
tion

etc.

has the limit f0,2,4,6{.
However, examples like this one look very artificial and are much more difficult
to understand by programmer and compiler than the simple positivity con-
straint; they are, therefore, not allowed in DBPL.

3.4 Options for Fixpoint Enhancements in Database Prog:rammhg
In this subsection, we surnrnarize the options for expressing the Least Fix-

point Operator semantics in a database programming language like DBPL. For
database programming languages we distinguish six possibilities to include
fixpoint operations. Our constructor approach can be seen as the seventh alter-
native.
- P r o g r a m iteration;
- Recursive boolean functions and procedures;
- Specialized LFP operators;
- Equational relation variable declarations;
- Views as relation-valued functions;
- Logic Programming.

The first two options have already been availabie in early languages such as
PascalIR [Schm 771 although they did not receive much attention there. The

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

programs for computing the limits in section 3.1 may serve as examples for this
approach. Similar effects can also be achieved using recursive functions (to
generate recursive relations or to test membership recursively). Both methods
share the problem of too much generality since the programmer can write any-
thing into the loop or the function body; this severely limits query optimization.

Query-by-example [Zloo 771 was one of the first systems to contain a ape-
cidized operator for transitive closure. More recently, the query language QUEL
has been augmented with an operator * which can extend any QUEL command
with the semantics "to repeat the command forever" [Kung 841, [IoShWo 841.
[EmEmDo 841 combine a similar approach with view-oriented concepts as
described below. While some algebraic optimization of such language extensions
is possible [Kung 841, the approach is essentially procedural and does not seem
to A t well into a calculus-oriented language.

Equation& relation definition bears a close similarity to relation definition
by constructors. However, instead of constructing relations explicitly from con-
ventionally typed variables, the type concept itself could be extended to allow
implicit relation definition by a set of constraining conditions:

VAR Infront: infrontrel;
Ahead: aheadrel I EACH r IN Infront: TRUE, <f.front,b.backr OF

EACH f IN Infront.
EACH b IN Ahead: f.back=b.front I .

The work on equational constraint expressions [Morg 841 follows a similar -
approach.

A number of researchers have proposed parameterized view definitions for
query language extensions (e.g., [MaReSc 841, [ErnEmDo 841). From a program-
ming language standpoint, views can be interpreted in two different ways. If
relations are considered as generalized tables or arrays, these structures seem
to be adequately handled by selectors and constructors. If relations are con-
sidered as sets, views can be considered as relation-valued functions. Since
recursive functions are available in modern programming languages, the exten-
sion to relation-valued functions would be small, for example:

FUNCTION ahead (Current: aheadre 1) : aheach 1:
VAR Neu: aheadrel;
BEGIN

Neu := I EACH r IN Current,
<c. head. d. ta i 1% OF

EACH c. d IN Current: c. ta i l=d. head I ;
I F Neu = Current THEN RETURN Current

ELSE RETURN ahead(Neu1
END ahead: ...
Ahead := ahead(Infront1.

However, as previously discussed, functions are too general to be optimized
efficiently. Of course, if used in a pure query language environment such as SQL,
relation-valued functions can only define parameterized views and thus may not
raise the problems present in tightly integrated database programming
languages.

One of the most important areas closely related to our work is that on logic
programming as exemplified by PROLOG (e.g. [ClMe 811). Being based on Horn
clauses, the programming language PROLOG (without cut, fail and negation) can
be shown to be equivalent to a data base query language with the least fixed
point operator [ChHa 821. As far as our language extensions are concerned, we

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

have the following lemma:

The constructor mechanism is as powerful as function-free PROLOG without cut,
fail, and negation.
-of sketch: Horn clauses are precisely representable by applying a single
Axed point operator to a positve existential query [ChHa 821. Furthermore,
mutual recursion can be replaced by a single fixed point operator by moving the
mutual recursion into the arguments. Therefore, any query representable in
function-free Horn clauses is also representable by the constructor mechanism.

A s far as negation is concerned, our approach assumes a closed world and
is guaranteed to terminate because of positivity. Therefore, i t is not directly
comparable with PROLOG's NOT a s far as generality is concerned. However, i t
seems to be more practical because the problem of endless loops is eliminated.

4 Compilation and Optimization of Constructors

In this section, we investigate the implementation of constructors and the
optimization of queries in which constructed relations appear. Constructed
relations are interpreted as a generalization of the range-nested expressions of
[JaKo 831. First, we study the compilation of queries over constructed relations
into queries over base relations; obviously, the most interesting part of this is
the handling of recursion. Then, we discuss the optimization of such queries.
Rather than adding to the long list of specialized techniques for recursion
optimization, we present a three-level framework tailored for the database pro-
gramming environment in which such techniques can be integrated. For space
reasons, details of i ts implementation must be left to a forthcoming paper.

[JaKo 831 introduced a concept of range nesting for relational calculus
expressions. Basically, i t allows the substitution of relational expressions for
range relations in queries, using the following rules:
N1: (EACH r IN R: predl AND pred21

<==>
(EACH r IN (EACH r ' IN R: predlf: pred21

N2: SOME r IN R (predl AND pred21
<==>

SOME r IN EACH r ' IN R: predlf tpred2)
N3: ALL r IN R (NOT(pred1) OR pred21

<==>
ALL r IN {EACH r ' IN R: predll (pred21

Selected and constructed relations can be interpreted a s methods to name
such extended range expressions. If we want to follow the <== direction in
order to understand and optimize a query in terms of base relations, the ques-
tion becomes by which predicate predl to replace the constructed relation. In
this subsection, a representation and compilation method for solving this prob-
lem are presented. Consider the expression

(EACH r IN Rel(constr1: predtr l l

Of course, the easiest solution is to compute Rellconstr] completely by all
least fixed points of related constructor definitions and then test pred(r).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

However, propagating the constraints given by pred(r) into the constructor
definition may considerably reduce query evaluation costs. A case-by-case
analysis of various constructor types will demonstrate how this can be done.
Assume first that the definition of constr does not contain any constructed vari-
able, i.e. constr works only on base relations.
Car# 1 (Selector): The constructor definition contains a single relational expres-
sion (no union) with a single free variable. In this case, the transformation rules
N1 to N 3 apply directly, possibly in conjunction with a projection on the target
attributes.
Cam 2 (Join): The constructor definition contains a single relational expression
but possibly more than one variable. In this case, substitute r.f in red(r) by x.g
if x.g appears in the position f of the construct6rPs.taiget list &ti*ibly with
renaming). . .

Case 3. (Union): The constructor definition is a union of relational expressions. If
pred(r) satisfies the positivity constraint, treat each of these relational expres-
sions separately and let the result be the union.of..the-.expression-values:. (If
pred(r) does not satisfy the positivity constraint, there may be cases where the
constructed relation has to be comp6ted fully prior to the ;?valuation of pred(r)
[JaKo 831).

If the tuple variable whose range expression is constructed is existentially
or universally quantified, the above rules apply in a similar fashion, correspond- -
ing to rules N2 and N3. The rules actually present just a minor generalization of
[Ston 751.

Consider now the case that the constructor definition does contain con-
structed relations. The naive application of the above rules would give an
infinite derivation sequence in case of recursive constructors. Adapting a trick
described in [Naqv 841, [Venk 841, a finite representation of this infinite
sequence can be devised from which appropriate least fixed point computations
can be generated. Due to space limitations, we can only sketch the algorithm
here, using constructor ahead as an example.

Construct an augmented quant graph for the constructors. A quant graph
represents a relational calculus query [JaKo 831; it has a node for each
tuple variable with its range definition and a directed arc in quantifier
direction (outside in) for each join term and each enforced quantifier
sequence. An augmented quant graph is constructed by adding special
nodes representing the head of constructors and directed arcs represent-
ing the attribute relationships between the result relation and the range
definitions as illustrated in Fig. 3.

2. Construct directed ares from each quantified node with a constructed
range relation (in the example: b) to the corresponding constructor head;
in doing so, check for unifiability of the parameters and the base relation
of the constructors. We have now constructed the equivalent of a clause
interconnectivi ty graph [Sick 761.

3. Evaluate each component as follows. For acyclic subgraphs, replace the
constructor definitions by subqueries on base relations and optimize a s
described. e.g., in [Jark 841. Most c clic subgraphs correspond to recursion
(for exceptions as tautologies see r ~ i c k 761). We can now either apply the
standard algorithms, i.e., LFP computation of the related constructor
definitions, recursive calls of iterative procedures [HeNa 843, or a tuple-at-
a-time cycling [Mesh 811; or we can attempt to employ capture rules
[Ullm 841 to detect special cases such as [Schn 781, [MiNi 831, [Fron 841.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

+--- +
I CONSTRUCTOR ahead FOR Re1:infrontrelO:aheadrel 1

I I I
I front I AND I ta i 1

= I = I I =
I head I 1 ta i 1
V v V

+-------- + +--------- + +-----------.. +
I EACH r I 1 EACH f I back= I EACH b IN /
1 I N R e l I I I N R e l I------> I Re1 {ahead) I

Figure 3: Augmented quant graph

Applying this method a t query evaluation time may be quite expensive if
many constructed relations are defined. Our optimization strategy tries to move
many of these tasks into the compilation phase; this is even more important in a
database programming language than in an interactive query language because
compilation is usually decoupled from execution.

On the other hand, database programming languages are frequently used to .
implement higher-level interfaces and therefore contain only incompletely
specified query forms rather than full queries. These observations lead to a
three-level strategy in the optimization of the system that makes full use of the
degrees of information available to different phases of the DBPL compiler and to
the runtime support system.

On the type-checking level, the compiler performs an analysis of the indivi-
dual constructor definitions and their relationships. For example, this phase
contains the positivity test within the constructor definition. It also constructs
a rough version of the extended quant graphs described above. In terms of
optimization, one major purpose of this is to offer a preliminary partitioning of
the set of constructor definitions in disconnected graphs.

This partitioning can be done by stepwise refinement. A first version of the
graph would just mention relation and constructor names. If some of the
remaining partitions are still very large, they could then be refined to a n inter-
mediate level that, e.g., distinguishes between free and bound variables
[Ullm 841.

On the query compilation level, the compiler looks a t the query forms
appearing in the database program. These query forms may use range relations
that apply constructors to base relations, selected relations, or constructed
relations. The compiler can now instantiate the appropriate constructor
definition graphs and complete the construction of full extended quant graphs
for each query. If such a graph contains a recursive cycle, the compiler can
enerate an appropriate version of the fixed point algorithm {HeNa €341,
Ullm 841. For non-recursive queries, full decompilation and view optimization t

are performed.
The discussion overlooks the fact that constructor and selector definitions

may contain parameters. In case these are constant values in restrictive terms
of constructor definition or associated query, we can represent this situation by
defining an appropriate selector. This selector will provide a logical or even
physical access path for instantiations of the parameters. A logical access path
is a compiled procedure with dummy constants [HeNa 841. A physical access

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

path actually materializes a relation corresponding to the query with the con-
stants used as variables, and partitions it according t o the different constant
values. Obviously, a physical access path would be generated only in case of
heavy query usage since unrestricted constructed relations may be very large.
Maintenance for such access paths is discussed in [ShTZ 841.

If the parameters are of type relation, they may be instantiated a t runtime
with constructed relations, possibly leading to the merging of previously
independent subgraphs. A t a rather high cost, the compiler can check whether
suitable constructors have actually been defined in the database program. In
any case, this case will only permit partial logical access paths to be generated
a t compilation time.

Finally, the runtime support subsystem of query processing must help in
the evaluation of fully instantiated queries. In some cases, this will just mean
the execution of the compiled database programs. In the case of selectors gen-
erated a t compile time, i t means the generation and utilization of physical
access paths. In the case of relation parameters, i t may mean the integration of
pieces of precompiled definitions into meaningful database programs. A major
advantage of the DBPL environment over, e.g., a PROLOG environment is that all
of these tasks can be formulated elegantly with the existing language tools and
are executed in a set-oriented constructive fashion rather than by tuple-
oriented theorem proving.

5 Conclusion

Relational database systems are based on first order logic and provide,
within that framework, solutions for many technical problems with data-
intensive applications, such as query optimization, concurrency management,
and data distribution. While AI-oriented systems have their main emphasis on
issues of knowledge representation and reasoning, future applications will
require the same technical support for problems originating from large scale
fact and rule management.

We argue that the cutting point should make the DBMS responsible for as
much efficient mass-processing of data as possible, whereas the A1 system
retains the responsibility for the more subtle tasks, such a s handling open
worlds (i.e., incomplete knowledge and non-monotonic reasoning) for which
intelligent and frequently problem-specific heuristics are needed since the

roblem in general is computationally intractable or even undecidable
BrLe 841. P

In this paper, we propose an extension of the relational approach that can
handle nested and recursive rule definition and evaluation adequately and
efficiently. In an orthogonal approach to data model extension we investigate
object structures that allow nested and recursive structure definition and com-
ponent selection [Lame 841, [LaMuSc 841. Properly integrated, we expect from
both kinds of research a new generation of data models for object-oriented, rule
intensive applications.

6 References

[AhUl 791
Ah0,A.V.; U1lmamJ.D.: Universality of Data Retrieval Languages, 6th ACM

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

Symp. on Principles of Programming La~guage-s, . San. Antonio,. Texas, Janu-
ary 1979

[BrLe 841
Brackman,R.; Levesque,H.J.: What Makes a Knowledge Base Knowledgable - A
View of Databases from the Knowledge Level, in [Kers 841, 30-39

[BrMySc 841
Br0die.M.L.; Mylopoulos,J.; Schrnidt,J.W. (eds.): On Conceptual Modelling.
Perspectives from Artificial Intelligence, Databases, and Programming
Languages, Springer Verlag, 1984

[ChHa 821
Chandra,A.K.; Hare1,D.: Horn Clauses and the Fixpoint Query Hierarchy,
ACM Symposium on Principles of Database Systems, Los Angeles, 1982, 158-
163

[ClMe 811
Clocksin,W.F.; Mellish,C.S.: Programming in PROLOG, Springer Verlag 198 1

[Codd 721
C0dd.E.F.: Relational Completeness of Data Base Sublanguages, in R. Rustin
(ed.): Data Base Systems, Prentice Hall, Englewood Cliffs. NJ, 1972, 65-98

[Deut 811
Deutsch.L.P.: Summary of Workshop Session on Types, in Brodie,M.L.;
Zilles,S. (eds.): Proc. Workshop on Data Abstraction, Databases, and Con- -
ceptual Modelling, SIGPLAN Notices, Vol. 16, No. 1. January 1981, p. 49

[EmErnDo 841
van Emde Boas-Lubsen,H.; van Emde Boas,P.; D0edens.C.F.J.: Extending a
Relational Database With Logic Programming Facilities, IBM INS-
Development Center, TR 13.195, Uithorn, The Netherlands, 1984

[Fron 841
Fronhoefer,B.: Heuristics For Recursion Improvement, Proc. 6th ECAI, Pisa,
1984, 577-580

[GaMN 841
Gallaire,H.; Minker,J.; Nicolas,J.M.: Logic and Databases: A Deductive
Approach, Comp. Surveys, Vol.16, No.2, June 1984, 153-185

[Gries 811
Gries,D.: The Science of Programming, Springer Verlag, 1981

[Hehn 841
Hehner,E.C.R.: The Logic of Programming, Prentice-Hall International. 1984

[HeNa 841
Henschen,L.J.; Naqui,S.A.: On Compiling Queries in Recursive First-Order
Databases, JACM Vo1.3 1, No. 1, January 1984, 47-85

[IoShWo 841
Ioannidis,Y.; Shinkle,L.L.; Wong,E.: Enhancing INGRES with Deductive
Power, in [Kers 841, 847-850

[Jark 841
Jarke,M.: External Semantic Query Simplification: A Graph-theoretic
Approach and I t s Implementation in PROLOG, in [Kers 841

[JaKo 831
Jarke,M.; Koch,J.: Range Nesting: A Fast Method to Evaluate Quantified
Queries, Proc. ACM SIGMOD Conf., San Jose, Ca, 196-206

[Java 841
Jarke,M.; Vassiliou,Y.: Coupling Expert Systems and Database Management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

Systems. in Reitman,W.R. (ed.): Artificial Intelligence Applications for Busi-
ness, Ablex,Norwood,NJ, 65-85

[Kers 841
Kerschberg,L. (ed.): Proceedings of the First International Workshop on
Expert Database Systems, Kiawah Island, South Carolina, October 1984

[KrBr 841
Krieg-Brueckner,B.: Types in the Programming Language ADA, in
[BrMySc 841, 385-410

[Kung 841
Kung,R.M.; Hanson,E.; Ioannadis,Y.; Sellis,T.; Shapiro,L.; St0nebraker.M.:
Heuristic Search in Data Base Systems, in [Kers 841; 96-10?

[Lame 841
Lamersdorf,W.: Recursive Data Models for Non-Conventional Database Appli-
cations. Proc. Intern. IEEE Conference on Data Engineering, Los Angeles,
April 1984

[LaMuSc 841
Lamersdorf,W.; Miiller,G.; Schmidt,J.W.: Language Support for Office Model-
ling, Proc. 10th VLDB Conf., Singapore, August 1984, 280-290

[MaReSc 841
Mal1,M.; Schmidt,J.W.; Reimer,M.: Data Selection. Sharing, and Access Con-
trol in a Relational Scenario, in [BrMySc 841, 41 1-436

[MaMaJo 841
Marque-Pucheu,G.; Martin-Gal1ausiaux.J.; Jomier,G.: Interfacing PROLOG
and Relational Data Base Management Systems, in G.Gardarin; E.Gelenbe
(eds.): New Directions for Databases, Academic Press. 1984

[McSh 811
McKay,D.P.; Shapir0,S.C.: Using Active Interconnectivity Graphs for Reason-
ing with Recursive Rules, Proc. 7th IJCAI, Vancouver,BC, 368-374

[MiNi 831
h4inker.J.; Nicolas,J.-M.: On Recursive Axioms in Deductive Databases,
Inform. Systems Vol. 8, No. 1, 1983, 1- 13

[Morg 841
Morgenstern,M.: Constraint Equations: Declarative Expression of Con-
straints With Automatic Enforcement. Proc. 10th VLDB Conf., Singapore,
August 1984, 29 1-300

[MyBr 851
Mylopoulos,J.; Brodie,M.L.: A1 and Databases: Semantic Versus Computa-
tional Theories of Information Systems, in Ariav,G.; Clifford,J. (eds.): New
Directions for Database Systems, Ablex, Norwood, N.J. 1985

[Naqv 841
Naqvi3.A.: PROLOG and Relational Databases. A Road to Data-intensive
Expert Systems, in [Kers 841

[Schm 771
Schmidt,J. W.: Some High-level Language Constructs for Data of Type Rela-
tion, ACM TODS 2,3 (19?7), 247-261

[Schn 781
Schnorr,C.P.: An Algorithm for Transitive Closure With Linear Expected
Time, SIAM Journal of Computing 7:2, 127-133

[ScMa 831
Schmidt, J.W.; Mal1,M.: Abstraction Mechanisms for Database Programming,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

Proc. SIGPLAN Syrnp. on Programming Language Issues in Software Sys-
tems. San Francisco, June 1983, 83-93

[ScWa 841
Sciore,E.; Warren,D.S.: Towards an Integrated Database-PROLOG System, in
[Kers 841, 801-814

[ShTZ 841
Shmueli,O.; Tsur,S.; Zfirah,H.: Rule Support in PROLOG, in [Kers 841

[Sick 761
Sicke1,S.: A Search Technique for Clause Interconnectivity Graphs, IEEE
Transactions on Computers C25:8, 823-834

[Smith 811
Smith,J.M.; Fox,S.; Landers,T.: Reference Manual for ADAPLEX, CCA, Cam-
bridge, Mass., January 198 1

[Smith 841
Smith.J.M.: Expert Database Systems: A Perspective, in [Kers 841

[Ston 751
Stonebraker,M.: Implementation Of Integrity Constraints and Views By
Query Modification, Proc. ACM SIGMOD Conf., San Jose, Ca, 1975, 65-78

[Tars 553
Tarski,A.: A Lattice Theoretical Fixpoint Theorem and its Applications,
Pacific J. Mathematics 5:2, June 1955. 285-309

[Ullm 821
Ullman,J.D.: Principles of Database Systems. Computer Science Press, 2nd
ed. 1982

[Ullm 841
Ullman,J.D.: Implementation of Logical Query Languages for Databases,
Report STAN-CS-84- 1000, Stanford,Ca. 1984

[Venk 841
Venken,R.: A PROLOG Meta-Interpreter for Partial Evaluation and Its Appli-
cation To Source-To-Source Transformation and Query Optimization, Proc.
6th ECAI, Pisa, 1984, 91-100

[Wirth 831
Wirth,N.: Programming in MODULA-2, Springer Verlag 1983

[Zani 84)
Zanio10,C.: Prolog: A Database Query Language for All Seasons, in [Kers 841,
63-73

[Zloof 771
Zloof,M.M.: Query-by-Example: a Database Language, IBM Syst. J. 16:4
(1977). 324-343

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-23

