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COMMON SUBEXPRESSION ISOLATION IN MULTIPLE QUERY OPTIMIZATION 

Abstract: The simultaneous optimization of multiple queries submitted to a 
database system may lead to substantial savings over the current approach of 
optimizing each query separately. Isolating common subexpressions in multiple 
queries and treating their execution as a sharable resource are important 
prerequisites . This chapter presents techniques for recognizing , supporting , 
and exploiting common subexpressions in record-oriented, relational algebra, 
domain relational calculus, and tuple relational calculus query representations, 
It also investigates preconditions that transaction management mechanisms must 
satisfy to make multiple query optimization effective. 

1.0 INTRODUCTION 

The joint execution of batches of queries and update operations has been a 
standard technique in the conventional, record-at-a-time file systems of the 
sixties and early seventies. However, with the introduction of interactive 
database systems based on direct access to specific subsets of data, the 
research focus has changed towards optimizing individual, set-oriented data 
requests. With few exceptions, the art of multiple query processing has not 
survived the cultural jump from file to database processing. Recently, however, 
there has been renewed interest in exploiting the potential advantages of 
resource sharing in query optimization. Two concepts can be distinguished. 

Batching. Sharing the cost of operations by jointly executing multiple 
queries submitted at approximately the same tiee is viable in a shared database, 
mere a batch of queries can be composed and executed within reasonable response 
time limits (a few seconds [BARB~~I), or in a non-interactive database 
programing environment. The sharing objective distinguishes batching from 
simple parallelism of data access, as investigated, e-g., in ICHESS31. 

Repetitive gueries. (Partially) repetitive queries can share common 
resources even in a one-user environment if these resources (usually called 
access paths) are kept over an extended period of time. Speaking in business 
terms, we have an investment problem: the more queries will use a resource, the 
more initial investment is justified. Support for repetitive queries on a 
long-term scale, mostly through indexes, has been the focus of much research on 
the file system level, but less so for high-level queries. 

One of the obstacles preventing a more extensive use of these opportunities 
in database systems has been uncertainty about what constitutes a sharable 
resource. This chapter assumes (the evaluation of) common subexpressions in 
queries to be the sharable resource and investigates methods for isolating and 
exploiting them. h subexpression is a part of a query that defines an 
intermediate result used during the process of query evaluation. In the 
relational framework adopted in this paper, subexpressions are deffned in 
relational calculus or as results of relational algebra operations. For the 
sake of brevity, relational notations as introduced in JARK84bl will not be 
repeated here. 
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In traditional file systems, where records are retrieved one-at-a-time, a 
query or update is simply defined by a particular key value. Common 
subexpressions are characterized by the same key value. Section 2 reviews 
multiple query optimization for such record-oriented systems. Section 3 
motivates and defines more general common subexpressions. Sections 4 through 6 
present specific methods for common subexpression representation and analysis in 
three popular query language environments: relational algebra, domain 
relational calculus (including languages such as QBE and Prolog), and tuple 
relational calculus (including languages such as SQL and QUEL) . For the latter 
representation, a database programming language construct, called selector, is 
used to represent subexpressions and access paths supporting their execution. 

Finally, section 7 briefly considers a new research problem resulting from 
multiple query optimization. If the scope of query optimization is extended 
beyond transaction boundaries, query evaluation strategies may interfere with 
concurrency control algorithms, leading to an inefficient overall architecture. 
The need for global transaction optimization integrates the two hitherto 
separated research areas of query optimization and concurrency control. 

2.0 MULTIPLE QUERY OPTIMIZATION IN RECORD-ORIENTED SYSTEMS 

In a traditional file system, each query retrieves at most one record, 
which is described by its file (relation) name and a unique key value. Many 
such systems are still in use, e.g., in banking applications or reservation 
systems, in which each user transaction addresses only one data object (e.g., 
bank account) at a time. One can represent a request for the record of relation 
'rel' with the key value 'keyvall in an array-like notation [SCXM831, 

re1 [ keyval I .  

For example, if sociai security number is the key for an employee file, a user 
may ask for 'employee[ 115-66-3331 1 ' . 

In a multiple query environment, information must be provided to determine, 
to which query the answer should be delivered. A query can be represented by a 
record 

ewerid, timestamp, opcodexead, rel[ keyval I>.  

Consequently, a batch of queries can be stored in a relation, the so-called 
'transaction file'. m e  timestamps become important when the same user submits 
the same request several times, for example, because of intervening updates. 
However, we shall ignore this possibility for the moment and will return to it 
only in section 7. 

Under what conditions is batching advantageous? In a paged random access 
environment, the main profit stems from clustering accesses to the same physical 
page. Little is gained by batching non-clustered queries which access different 
pages. (See CSHNE761 for a quantitative analysis of the worst case of random 
queries to a large file.) Two queries to a relation obviously access the .same 
page if they request the same key value. Therefore, the transaction file should 
be grouped by relation names and key values; this is typically best achieved by 
sorting. Sorting has the side benefit of achieving optimal clustering if the 
database relation to be accessed is sorted by the same criteria (e.g., organized 
in some indexed sequential fashion). 

If, on the other hand, se uential processinq is necessary, batching almost 
always makes sense. As t h e m o n s t r a t e ,  the expected savings factor of 
processing a batch of k queries together rather than separately can be 
approximated by 1-2/(k+l) for large files. For example, a batch of just five 
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queries ;ill already lead to savings of about 66.75, as compared to evaluating 
each of them separately: each of the five queries, separately processed, will 
require scanning about 1/2 of the file (for a total of 5/2 file scans), whereas 
only 5/6 of the file have to be scanned on the average to retrieve five 
(randomly selected ) elements. 

Ihe advantages of batching in average processing time per query generally 
grow with batch size, in particular with the size of clusters (i.e., the number 
of accesses to the same page). On the other hand, batch size is limited by the 
maximum response tine acceptable for the first queries suhitted to the batch, 
as well as by storage constraints. 

The key-oriented techniques for multiple query processing do not easily 
generalize to queries retrieving more than one record. In principle, one can 
decompose a set-oriented query into many record-oriented ones. For multiple 
query optimization, however, this approach has major disadvantages: 

Unless secondary indexes are available, the set of key values for each 
query is unknown before accessing the database, and hence the comparison of key 
values cannot be used to deternine sharable accesses. One might argue that 
unknown key values usually require sequential scans, which should sake multiple 
query optimization even more desirable. However, there is now a 'distribution' 
problem: it is not known in advance, to which of the queries in a batch a 
certain record will be relevant. Therefore, sharing is limited to the original 
scan of base data -- none of the intermediate results required for processing 
complex queries can be shared. This problem arises even if the key set for each 
query can be enumerated (e .g. , because secondary indexes are available) . 

The solution adopted in this chapter involves access abstraction mechanisms 
[SXM831, which reduce the probzem of recognizing common physical access 
requirements to the simpler task of identifying corrmon logical access paths, 
i.e., subexpressions. Common subexpressions will be used since one can hardly 
expect two queries to address exactly the same set of tuples as in the 
record-oriented case. 

A few definitions are needed at this point. We define a Query as a 
relation-valued language expression, that is, the evaluation of a query, q, maps 
a database state into a relation V(q) , the value or result of the query. The 
readset, S(q), of a query is the set of all data to be accessed during the 
evaluation of q. Note, that S(q) depends on data structures and query 
evaluation algorithms, whereas V(q) depends only on the state of the database. 
Let Q = [ql, . . . , qn] be a set of queries. Then, a query, c, with non-empty 
value is called a common subexpression of Q if S(c) is a subset of the 
intersection of all the S(qi), i = 1, ..., n. 

An access m t h  is the value of a query or of a set of queries; access 
paths are used to support the evaluation of other queries. For example, a 
secondary index represents the set of results of those queries that ask for all 
relation elements with a given value in the indexed attribute; the use of-he 
index provides a fast way to process other queries that contain queries on the 
indexed attribute as subexpressions. Often, access paths are stored in a 
specific representation form to avoid redundancy and reduce maintenance 
problem. However, the special representation is usually invisible to the user 
who just experiences better performance for certain queries. A language 
construct for the abstract representation of access paths based on this 
observation will be introduced in section 6. 
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An access path defined by a query, ap, is a licable to the evaluation of a 
subexpression, se, if S(se) is a subset of S(ap +n other words -- if the 
selection predicate of se implies the selection predicate of ap. In this case, 
we also say somewhat loosely that ap is applicable to a query containing se. 

These definitions are very general. The detection of common subexpressions 
or of the applicability of access paths 8ay be computationally intractable or 
even undecidable if arbitrary subexpressions are considered. Of course, in a 
finite database, one can always detect common subexpressions 'after the fact', 
i.e., by tracing the query execution. But that does not help in ex-ante query 
optimization where one would like to analyze the query rather than its value. 
Most published procedures follow a two-step heuristic: (a) decompose each query 
into a (partially ordered) set of 'suitable' subexpressions, and (b) identify 
common subexpressions and applicable access paths. What constitutes a 
'suitable' subexpression depends on the query language. The next sections 
discuss three popular representation forms for relational expressions, i.e., 
algebra, domain calculus, and tuple calculus. 

As a running example, we shall w e  a simplified version of the infection 
control database in a hospital. Such databases are used for tracing the flow of 
infecting organisms in case of epidemics, and for identifying persons under risk 
of infection. A patient is characterized by the ward he/she is located in, by 
the day of surgery, by observed symptoms indicating an infection, and by the 
quantity of pathogenic organisms isolated fro. certain sites of the human body 
(e.g., surgical wounds, the blood, or the respiratory tract). Employees are 
characterized by their status (e.g., doctor, nurse, administration) and assigned 
nard, as well as by their assignment to operating teams on certain days. The 
schema consists of seven relations: 

patient ( p w e ,  ward) 
isolated (pname, organism, site, qty) 
observed ( p w e ,  symptom) 
relevant (symptom, site) 
employee ( e w e ,  status, ward) 
surgery (pname, day) 
opteam (ename, day) 

4.0 COMMON SUBEXPRESSION ANALYSIS IN RELATIONAL ALGEBRA 

In relational algebra notation, a single algebra operation is the natural 
unit of interest. A more complex subexpression corresponds to a sequence of 
operations. Since an operation is meaningful only if all of its inputs are 
known, common subexpression detection is a bottom-up procedure, collapsing 
common subtrees in the operator tree for the algebra query. This procedure, 
introduced in [HALL761 for single query optimization, can be extended to 
multiple query optimization by considering a set of operator trees. 

As an example, consider the queries: "which wards are members of the 
Monday operating team assigned to?", and: "what doctors were on the Monday 
operating team?" Figure 4-l(a) demonstrates collapsing common subtrees 'for 
operator trees corresponding to query formulations which follow the heuristic of 
moving restrictions as far down as possible [SMIT75]. Only the common 
restriction of opteam by 'day=mondayl can be shared in this case. This shows 
that an unf'ortunate sequencing of operations may prevent the detection of larger 
common subexpressions. In Figure 4-l(b), the restriction on employee in the 
second query has been moved upward beyond the Join, such that the sharable 
subexpression includes the join operation. It is not easy to find a query 
standardization that automates such algebra transformations. IliA~L.76 1 presents 
some heuristics. In other cases, collapsing small common subexpressions in the 
beginning of the procedure may prevent the detection of larger ones later on. 
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I I 
8-63 (projection) I 

I I 
I I 

eno eno (join) I 
I I 
I I 
1 o status = doctor (restriction) I 
I employee I 
I day = (restriction) I 
I monday o I 
I employee (access I 

Figure 4- 1 (a ) : A simple common algebra subexpression 

1 I 
ena~se (projection) I 

I 
status=doctor (restriction) I 

I 
I 
I 
I 

(join) I 
I 
I 

(restriction) I 
I 

(access ) I 
I o opteam I 
I I 

Figure 4-l(b): A better couon subexpression 

5.0 COM4ON SUBEXPRESSION ANALYSIS IN DOMAIN RELATIONAL CALCULUS 

Predicate calculus representations offer more control over the level of 
abstraction, on which common subexpressions can be defined. Domain calculus is 
used in connection with logic programming, for instance, if Prolog is used as a 
database language [KOWA81 I .  In this representation, variables range over 
attribute domains, and relations are represented as predicates. Relation values 
are defined as sets of assertions that look like the example schema provided in 
section 3. An arbitrary hierarchy of parameterized and maybe recursive view 
definitions can be superimposed on the original database relations through the 
use of Horn clauses with variables. For example, in the infection database, 
Prolog definitions of the concepts of an infected patient, and of personnel 
contact with a patient look as follows: 

A patient is said to be infected at a certain body site if pathogenic 
organism have been isolated there or relevant symptoms have been observed. 

infected(l?name, Site) :- isolated(Pnante, Organism, Site, Qty). 
infected(Pnaae, Site) :- observed(Pwe, Symptom), 

relevant(Symptom, Site). 
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A employee is said to have been in contact with a patient, if he/she was 
either on an operating team the same day the patient had an operation, or 
he/she is a nurse assigned to the patient's ward. 

contact(Ename, Pname) :- opteam(Ewe, Day), 
surgery(Pname, Day 1. 

contact ( Ename , Pname ) : - employee ( E w e ,  nurse, Ward ) , 
patient(l)naae, Ward). 

In these parameterized view definitions, variable names begin with capital 
letters and constants begin with lower-case letters. Variables are used to 
store parts of the relations implicitly, or to represent subsets of stored 
relations. For example, an assertion 

relevant(fever , Site). 
means that fever is a relevant symptom for infections at any site, since the 
variable 'Site' can assume arbitrary values. A concatenation of predicates by a 
comma indicates AND-connection; the repetition of a left-hand side predicate 
indicates that one or the other definition may apply, i.e., OR-connection of the 
right-hand sides. 

A query is an expression consisting of the symbol : -  followed by 
AND/OR-connected predicates which refer either to views or directly to base 
relations. Consider first the case where there are no recursive view 
definitions applying to the set of queries. Following the two-step heuristic 
mentioned in section 3, each query is first standardized into disjunctive normal 
form, i.e., into a set of conjunctive queries to base relations. More than one 
submitted request will just result in a larger set of conjunctive queries. 

To simplify subsequent steps, the query set is then partitioned into 
components such that the readsets of queries in different components are 
disjoint. The simplest way to guarantee this is to partition the set of queries 
by the relations they access [GRANIII]. Within each component, common 
subexpressions among the queries are identified as follows. 

Each query within a component is a conjunction of predicates, where each 
predicate corresponds to access to one relation. Common subexpressions have to 
contain at least common predicate (=  relation) names. Thus, for each pair' of 
queries, we just have to test if pairs of predicates with common relation names 
are equivalent. In fact, we can test for containment, rather than for exact 
equivalence, and use the result of one subexpression as an access path for 
evaluating the other subexpression [GRAN81]. (Similar methods have also been 
used to optimize tableaux for non-conjunctive queries [SAC180 1. ) 

To illustrate the above procedure, consider the three view queries: 

R1. "what patients with Monday surgery have wound infections?" 
: - infected (Who, wound ) , surgery (Who, monday ) . 

R2. "what patients had the same organisms isolated as Smith?" 
:- isolated(smith, Commorg, Sitel, Qtyl ) , 

isolated( Pat, Commorg , Si te2, Qty2 1. 
R3. "who was in contact with wound-infected patients?" 

: - infected ( Infpat , wound 1, contact (Pers , Inf~at 1. 

Using the view definitions given above, the translation of these view 
queries into queries to the base relations given in section 3 yields the seven 
conjunctive queries listed below. Q1 and Q2 come from R1, 43 from R2, and the 
remining four queries are derived from R3. 
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Q1. : - isolated(Hho, Organism, wound, Qty ) , surgery(Who, monday ) . 
42. :- observed(Hh0, Symptom), relevant (Syaptom, wound), 

surgery(Uho, monday). 
Q3.. :- isolated(smith, Commorg, Sitel, Qty 1 1, 

isolated(Pat , Commorg, Site2, Qty2). 
Q4, :- isolated( Infpat , Organism, wound, Qty) , 

surgery(1nfpat , Day), opteam(Pers, Day). 
Q5. :- isolated(Infpat, Organism, wound, Qty), 

patient(Inf'pat, Ward), employee(Pers, nurse, Ward). 
Q6. :- observed( lnfpat, Symptom), relevant (Spptos, wound), 

surgery(Infpat, Day), opteam(Pers, Day). 
Q7. :- observed( Infpat, Symptom), relevant(Spptom, wound 1, 

patient(Infpat, Ward), employee(Pers, nurse, Ward). 

All seven queries form one component and are therefore candidates for 
simultaneous query optimization. Common subexpressions can be identified by 
comparing predicates with equal names: (a) The first predicate of Q1 is 
equivalent to the first predicates of Qr) and Q5, and its value is a subset of 
the value of the second predicate of 43; (b) Similarly, the conjunction of the 
first two predicates of 42 also appears in Qb and 47; (c) the surgery 
predicates in Q1 and 42 are identical; (d) the second rows of queries Q4 and 
Q6, as well as of 45 and Q7 are sharable. 

Could we have detected the conmon subexpressions more efficiently? Yes; 
we could have predicted many of the conunon subexpressions by comparing the 
original view queries directly. For example, that R1 and R3 have a lot in 
common is obvious from the common predicate 'infected(X, wound)'. This 
observation could have reduced the set of queries to be investigated. A more 
systematic analysis of this view-oriented approach will be presented in section 
6.3. 

An additional opportunity for multiple query optimization by common 
subexpression analysis, not found in the other two representations wed in this 
chapter, presents itself in the evaluation of queries that are defined on 
recursive views. Assume that our infection control database contains a base 
relation *met(Cname, Sname) which describes the fact that an individual named 
Gname met a potential carrier of pathogenic organisms, named Sname. Note, that 
the Sname--Gname relationship must be hierarchical (i.e., it may not contain 
cycles) to be evaluable with the depth-first approach of Prolog. We can 'now 
define the risk that organisms have been transmitted from a person another one 
recursively as 

risk(Pnaate, Cname) :- met(Gname, m e ) ,  
infected(Pname, Anysite). 

risk(Pna&e, Cname) : - met(Gname, Intermediate), 
risk(Intermediate, Pname). 

One can now ask for persons exposed to risk by a particular patient, or for the 
patients putting a particular person at risk. In both cases, the query 
evaluation generates a sequence of queries, in which each subsequent query 
contains the previous one as a subquery. For example, the query, 

is evaluated by the sequence of non-recursive database queries 

:- met(Cname, smith), infected(smith, Site). 
:- met(Gname, Cl), 

met(C1, smith), infected(smith, Site). 
:- met(Cname, Cl), 

met(C1, C2), met(C2, smith), infected(smith, Site). 
etc. 
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Each query appears as the second part of the following one; vice versa, 
the evaluation of each query can use the result of the previous one [JARK84a]. 
Additionally, it is possible to rephrase recursive queries in a 8anner that 
keeps the size of intermediate results small EHARQ841. A detailed discussion of 
these approaches, as well as of a large number of additional problem related to 
recursive query processing, is beyond the scope of this paper; more material 
can be found in [MINK831 and EIENS841. 

6.0 COMMON SUBEXPRESSION ANALYSIS IN TUPLE CALCULUS 

6.1 Nested Expressions And The Selector Language Construct 

In the tuple relational calculus representation as used in [JARK84bl, an 
interesting Set of subexpressions can be generated using range-nested 
expressions. Recall that the following transformations can be applied to 
generate nested expressions where pl and p2 are predicates [JARK~~]. 

[EACHrINrel:plANDp2] c = = ~ [ ~ A C H r 1 N ~ ~ ~ C H r I N r e l : p l ] : p 2 ]  
SOME r IN re1 (pl AND p2) <==> SOME r IN [EACH r IN rel: pl] (p2) 

ALL r IN re1 (NOT(p1) OR p2) <==> ALL r IN [EACH r IN rel: pl] (p2) 

Here, we shall not deal with universally quantified variables. Therefore, we 
can assue without loss of generality that all queries are conjunctive. Each of 
the inner nestings represents a potential comon subexpression. For the 
definition of access paths, there is a need to abstract from specific 
subexpressions. A language construct called selector [11ALL84 I serves as an 
abstract representation of subexpressions and their access paths. Let 

EACH r IN rel: p(r, sf, ..., sm, tl, ..., tn) 
be a relational expression where p is a well-formed formula of the relational 
calculus in which quantified variables tl, ..., tn appear. The sl, ..., sm are 
formal parameters representing constants in terns of the selection predicate. A 
selector sp representing the subexpression can be declared in a function-like 
fashion [ 1 I: 

SELECTOR sp(s1, ..., sm) FOR rel; 
BEGIN 
EACH r IN Pel: p(r, sl, ..., sm, tl, ..., tn) 

END ; 

Selectors are used in selected variables that appear in relation-valued 
expressions, using an array-like notation 

where the Si are actual parameter values. For example, the notation 
'rel[keyval] ' , which was introduced in section 2 for identifying single tuples 
in relations, uses an implicitly defined key selector, 

SELECTOR sk(keyva1) FOR rel; 
BEGIN 
EACH r IN rel: r.key = keyval 

END ; 

1 1 1 The actual selector definition originally introduced in [HALL84 I, ISCIM83 I 
refers to relation types instead of relation variables. In the query 
optimization context considered in this paper, however, the simpler notation 
presented here is sufficient. 
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Selectors have two uses in multiple query optimization: naming common 
subexpressions and supporting their evaluation. From a language viewpoint, a 
selector can be regarded as the definition of a (possibly parameterized) view, 
similar to the ones we saw in the domain calculus examples. However, from a 
system's viewpoint, a selector can also be perceived as the abstract 
representation of an access path, that -- if provided with appropriate 
parameters -- returns a set of relation elements. Following the definitions 
given in section 3, we say that a selector is applicable to a subquery, if 
actual parameters S1, ..., S. can be found, such that the predicate of the 
subquery implies the selection expression of the selector, with S1, ..., SPI 
substituted for the formal parameters. Furthermore. we say that a selector is 
supported if an actual physical access path has been created for all queries 
represented by the selector definition. 

Since testing applicability is undecidable in general first-order predicate 
calculus, and computationally intractable even in some cases where it is 
decidable [ROSE801, we shall explore several classes of selectors (and 
consequently of nested subexpressions), for which efficient tests or good 
heuristics are known. 

Selectors can be classified by the values of m and n in the above 
definition. First, selectors without parameters (m=O) will be investigated; 
they correspond to traditional database views. This discussion will be 
subdivided into the cases of extended range expressions (n=O, section 6.2) and 
general nested expressions (n>O, section 6.3). Afterwards, selectors wi th 
parameters (m>O) will be analyzed (section 6.4). This discussion will be brief 
since one part of it is covered by the other subsections, another part is 
covered by the literature on index selection, and the remainder is largely 
unresearched . 

6.2 Common Extended Range Expressions 

The early execution of one-variable operations, such as restriction and 
projection, is a well-known heuristic for query transfortuxtion [SIT75 I, 
[WONG761. In the relational calculus framework, this has been modeled by 
introducing nested expressions that extend the range definition of variables 
from simple relation names to relational expressions i.. , queries) that 
contain restrictive terms over the base relation IJARK821. Consider the 
following three queries and their disjunctive prenex normal for. representation 
in Pascal/R [SCHM8O] : 

R4. analyses yielded more than 1000 organisms/ml?" 

[EACH i IN isolated: i.qty > 1OOOl 

R5. "what patients of which wards had at least 2000 organisms isolated?" 

[EACH p IN patient: SOME i IN isolated 
(p.pwe = i.pwe AND i.qty >= 2000)l 

R6. nlist doctors in wards with patients who had fever in connection 
with the isolation of at least 2000 organisms in wounds." 

[EACH e IN employees : 
SOME o IN observed SOME p IN patient SOME i IN isolated 
(e.ward = p.ward AND p.pname = o.pname AND i-pnaae = p.pname 
AND o.symptom = fever AND i.qty >= 2000 AND i.site = wound)] 
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Applying the nesting transformation given in section 6.1 converts the two 
queries R5 and R6 to: 

R5l. [EACH p IN patient: 
SOME o IN [EACH i IN isolated: i-qty >= 20001 

(o*pnarre = p.pname)l 

Q6 . [EACH d IN [EACH e IN employees : e .status = doctor 1 : 
SOME f IN [EACH o IN observed: o.symptoa = fever] 
SOME p IN patient 

SOWE w2 IN [EACH i IN isolated: 
i.qty >= 2000 AND i.site = wound] 

(w2.pnaae = p.pname AND p.pname = f.pname AND p.ward = e.ward)] 

Nested expressions are conveniently represented by object graphs [FINK82], 
[JARK83]. Each inner expression corresponds to a node, and each Join term 
corresponds to an edge. Thus, while R4 is represented by only one node, R5' and 
R6' are represented by trees with two respectively four nodes (figure 6-1). 

I I Query: R4 I 
I I <i.pname, i.organism, I 
I I i.site, i.qty> OF I 
I I EACH i IN isolated: I 
I I i.qty > 1000 I 

I 1 Query: Rbl I 
I 1 <e.ename, e.status, I 
I I e.nard> OF I 
I I EACH e IN employee: I 
I 1 e-status = doctor I 

I Query: R5 l I I 
I <p.pname, p.ward> OF I I 
I E A C HpINmtient I I 

I <i.pnaae, i.qty> OF I I 
1 EACH i IN isolated: 1 I 
I i.qty >= 2000 I I 

- - 
I I <p.pname, p.ward> OF I I co.pname, o.symptom> OF I I 
I I EACH p IN patient I I EACH o IN observed: I I 
I I I o.pname I o.symptom = fever 
I I  I 

I I 
I I 

I I <i.pname, i.site, i.qty> OF 1 
I I EACH i IN isolated: 1 
I I i.site = wound AND i.qty >= 2000 1 

Figure 6-1: Query graphs for extended range expressions 

Users often refer to previous queries; for example, the infection control nurse 
aight 'zoom in' on the objects of interest by issuing a sequence of queries R4 
to R6. [FINK82 1 therefore suggests storing object graph representation and 
query value -- V(q) in the notation of section 3, not s(q) ! -- of certain 
queries in a buffer to be used for evaluating subsequent queries. 
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Consider first single-node queries such as R4. Such queries are of 
interest, not only because they occur frequently, but also because most indexes 
in database systems can be regarded as collections of query results of this 
type. The stored value of a one-variable query can be used directly as an 
access path for a new one if two preconditions are satisfied: (a) the selection 
expression of the new query implies the one of the stored query; (b) the output 
attributes of the stored query are a superset of the attributes appearing 
anywhere in the new query. For exanple, R4 can be used directly for evaluating 
the second node of R5 since *i.qty >= 2000' implies 'i.qty > 1000' and both 
attributes of the relation 'isolated1 appearing in R5 also appear in the output 
of R4. 

When condition (b) is violated, using the stored query nay still be 
justified, but a 'backjoint is required between the stored query result and the 
base relation to recover missing attribute values. This would happen, for 
instance, if R4 only requested patient names. The join with a stored relation 
may be cost-justified if there are fast access paths to perform the backjoin. 
The backjoin problem may also occur in aulti-node queries. The set of patients 
retrieved in R5 ' is clearly a superset of the ones retrieved for R6 ' . However, 
since the site attribute does not appear in the output of RS', a backjoin of the 
query value V(R5' ) with the relation isolated is required. 

[FINK821 does not perform general implication tests for multi-node queries 
(such tests are studied in [HUNZ791 and [ROSE801 1 but uses a heuristic, which 
not necessarily detects all stored query results usable for a given query. In 
addition, the algorithm also determines eventual backjoins, and compares their 
costs to the savings expected from using the old query value as an access path. 
However, IFINX821 does not assume exact foresight of the query optimizer in 
terms of what future queries to expect. 

6.3 Common Nested Expressions 

In processing batches of queries, such precise knowledge does exist. 
Common subexpressions can be supported in a pre-planned fashion by defining 
appropriate selectors and creating physical access paths supporting them. For 
example, the batch R4, R5, R6 of the previous subsection could be supported by 
the selector 

S1. SELECTOR orgl00O FOR isolated; 
BECIN 
EACH i IN isolated: i.qty > 1000 
END; 

This reduces R4 to a single access to an existing query result via the selector 

and improves the performance of the other queries accordingly. However, it is 
obvious that the limitation of selector definitions to one-variable expressions 
does not permit the level of sophistication required for multi-relation querfes. 
This subsection will therefore consider more general selector definitions. For 
example, with the additional definition of a selector 

S2. SELECTOR pat2000 FOR patient; 
BEGIN 
EACH p IN patient: SOME i IN isolated 

(i.qty >= 2000 AND i.pname = p.pname) 
END; 
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query R6' can be replaced by (notice the backjoin between pi and wi) 

[EACH doc IN [EACH e IN employees: e.statw = doctor 1 : 
SOME fev IN [EACH o IN observed: o.sy.ptom = fever 1 
SOME pi IN patient[org20001 

SOME wi IN [EACH i IN isolated: i.site = wound] 
(wi.pname = pi.pname AND pi.pname = fev.pname AND pi.ward = doc.ward)] 

Even this notation is not completely satisfactory since it does not show that 
one selector can be wed to improve the evaluation of another one, We therefore 
introduce several levels of nesting in selectors. 

S2*, SELECTOR pat2000 FOR patient : ...; 
BEGIN 
EACH p IN patient: SOME i IN isolated~org10001 

(i.qty >= 2000 AND i.pname = p.pname) 
m; 

Many selectors could be defined for supporting any given query. One can 
generate these selectors by applying the general range nesting transformations 
given in section 6.1. In terms of the object graph representation (Figure 6-1 1, 
multi-variable selectors can be defined for any subgraph that does not contain 
the target nodes and is connected to the rest of the query graph by a single 
edge. For example, in query R6 , we could define one selector containing the 
patient/observed subgraph, one containing the patient/isolated subgraph, or one 
that contains all three nodes. 

All queries in a batch can be described by partially ordered sets of 
selectors, using a uniform m i n g  scheme for equivalent selectors. The system 
can then identify common selectors among queries, This looks very similar to 
the algebra approach of section 4. An important difference is that it is not 
necessary to trace all possible sequences of operations if other means exist for 
establishing equivalence among subexpressions, 

A similar structure has been proposed as a logical access path schema for 
database design [ROUS82b]. Rowsopoulos introduces an object graph that is the 
exact complement to an algebra operator graph; that is, the nodes represent the 
results of algebraic operations and groups of edges the operations themselves. 
[ROUS82bl presents algorithms similar to [HALL761 but goes further by assigning 
a weight to each node, based on the frequency of reference to the corresponding 
selector in a set of queries. The higher the weight, the more profitable is the 
creation of a special physical access path to support the selector. The latter 
method is called "view indexingn in [ROUS82a]. 

6.4 Common Query Structures 

The disadvantage of access paths defined through parameter-free selectors 
as described in the previous two subsections is that they essentially represent 
only one (sub)query. The usual understanding of indexes is quite different: 
the exact query is defined by specifying a certain parameter value. " For 
example, most users of the infection control database may be interested only in 
one type of infecting organism at a time but this type may differ from query to 
query. Therefore, it pays to define a selector corresponding to a secondary 
index : 

SELECTOR the-organism(0RG) FOR isolated; 
BEGIN 
EACH i IN isolated: i.organism = ORG 

m; 
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A query requesting wards where Klebsiella bacteria were found would then be 
converted to something like: 

[<kp.ward> OF EACH kp IN patient: 
SOME k IN isolated[ the-organism( jklebsiella' ) 1 

(k.pname = kp.pname)l 

While secondary indexes such as this one are available in most database systems, 
the selector definition can be Bore general. For example, if one is always 
interested in the patients from whom an organism was isolated in certain 
quantities rather than in the isolation itself, one can define and support a 
selector, the definition of which spans more than one relation. 

SELECTOR wi th-org(ORG, QMIN, QMAX) FOR patient; 
BEGIN 
EACH p IN patient: SOME i IN isolated 

(p.pname = i.pname AND i.organism = ORG AND 
i.qty >= QMIN AN11 i.qty <= QMAX) 

m; 
Obviously, definition and maintenance of such a selector require more 
sophisticated data structures and algorithms than conventional one-dimensional 
indexes fNIEV84 I .  

The detection of subexpressions that are supportable by a particular 
parameterized selector hardly differs from the non-parameterized case; in all 
places where the formal parameter appears in the selector definition, any domain 
value say appear in the corresponding position of the query to make the selector 
applicable. 

On the other hand, the problem of choosing a good set of parameterized 
selectors to be supported by physical access paths is much more difficult than 
for non-parameterized ones. For single-attribute selectors, and even for 
general one-variable selectors, the literature on index selection (see [MARC84 1 ) 
applies. For multiple variable selectors, however, one faces the double problem 
of choosing a good level of abstraction, and of deciding which query conditions 
should be parameterized. No solution to this problem is. known as of this 
writing, but several heuristics based on the range nesting procedure of [JARK831 
are under study. 

7.0 MULTIPLE QUERY OPTIMIZATION AND TRANSACTION MANAGEMENT 

When we reviewed batched query processing in record-oriented systems, we 
excluded update operations from the discussion. In reality, this separation 
often cannot be accepted; queries and updates may be combined in transactions 
submitted by the sane user or by multiple users. This may lead to problems like 
inconsistent reads or lost updates which have to be prevented by concurrency 
control mechanisms [ E s w A ~ ~  I. 

The only requirement supported by alsost all concurrency control methods is 
serializability, i.e., the outcome of a set of concurrently running transactions 
has to be equivalent to that of some serial execution of the transactions. 
Therefore, read and write accesses can follow each other in arbitrary sequence 
if each transaction concerns only one access to one record. Alternatively, 
record-oriented file systems often combine batched update with interactive 
retrieval; the file system is locked completely during the update process. 
However, certain backout mechanisms for erroneous update transactions have to be 
provided even in this case [ARD179]. 
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Once more, consideration of more complex common strbexpressions complicates 
the problem. This section suamarizes additional research questions that have to 
be anmered if multiple query optimization is to be integrated into an 
transaction processing environment that includes interactive update operations. 

Consider first a one-user environment (or one in which each user 
transaction is completely shielded from the others by exclusive locking 
mechanisms). In such an environment, multiple query optimization is possible 
only within transactions which consist of more than one query. [HEVN81] studied 
the influence of general programming language constructs, such as conditional 
statements and loops, on the composition of query sets to be optimized jointly. 
As a simple example, consider the following program: 

IF condl THEN Q1; 42 
m I F  cond2 TIEN 42; 43 

ELsE Q1; Q3 

Although each query appears twice in the program, any of them will be executed 
at most once. Creating sophisticated access paths, cost-justified only by 
multiple usage of any one query, would be a waste of resources. 

A second problem in the one-user context is addressed in [ K I ~ I  1: the 
interference of update operations with queries. If the value of a subexpression 
is changed, the value of queries before and after the update operation will be 
different. Common subexpressions are defined in C K I M ~ I I  on the relation level. 
As an example, consider a database program that works with queries Qi and 
altering operations Ai on two relations, R1 and R2: 

One can optimize 43 and simultaneously but not Q1 and Q2. It is, however, 
feasible to optimize Q1 and the read part of A1 jointly. Notice that it is 
quite possible that the actual write set of A1 may be disjoint from the read 
sets of Q1 and 42; a detailed analysis of common subexpressions going below the 
relation level may confirm this. 

This argument carries over to the multi-user w. It is well known in 
concurrency control theory that finer granularity of locks can result in more 
concurrency [GRAY75 I, CRIES77 I. To identify potential conflicts on a 
subrelation level, the first requirement is therefore that query optimization 
and concurrency control mechanisms use the same language, i.e., that predicative 
concurrency control methods are employed [ESWA76 I ,  [REIM83]. Moreover, the 
focus of multiple query optimization is on sharing rather than just parallelism 
of data access. Therefore, the introduction of multiple query optimization on a 
global level creates new problems of integrating query optimization and 
concurrency control mechanisns. 

In the locking approach to concurrency control, shared locks have been 
proposed to increase concurrency CEDE83 1 but sharing is not supported activirly . 
On the other hand, optimistic methods [KUNG81 I ,  EREIM831 assume that conflicts 
are unlikely to occur and validate transactions ex-post; hence, full global 
query optimization is possible. However, a whole batch of transactions may have 
to be repeated if one of them cannot be validated. 

W r e  flexible scheduling strategies combining locking and optimistic 
methods are required [ B R A E ~ ~ I .  For example, in order to create a safe 
environment for multiple query optimization, one can schedule read transactions 
pe~~i~isticallg (i .e., use locking) while allowing altering transactions to run 
optimistically. 
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In addition, we are investigating strategies on the query optimization side 
that limit the damage done by transaction abortion without sacrificing 
correctness. Finally, the use of multiversion databases [BERN83 1 is considered 
in this context. A radical solution based on multiple versions completely 
decouples read and write transactions. It allows queries to access only data 
versions guaranteed to be too old to have been created by any currently active 
transaction. However, such an extreme solution is hardly acceptable in general. 

8.0 SUMMARY AND CONCLUSION 

Extending multiple query processing from record handling systems to 
set-oriented database systems is based on the recognition of and support for 
common subexpressions in queries. The review of three different language types 
for relational queries showed that common subexpression analysis is not very 
hard if only one-relation subexpressions are considered and appropriate tools 
exist for isolating them. Common multi-relation subexpressions can only be 
addressed in a heuristic manner. More powerful heuristics, made possible 
through the introduction of programming language abstractions, allow more than 
detecting common subexpressions in a purely bottoa-up fashion. Where simplistic 
radical solutions for concurrency control are not acceptable, multiple query 
optimization requires integrating the hitherto separate areas of query 
optimization and concurrency control, with the final goal of developing a 
unified optimization concept for database implementation. 
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