
COMMON SUBEXPRESSION ISOLATION IN

MULTIPLE QUERY OPTIMIZATION

Matthias Jarke

January 1984

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #71

GBA 884-46(~~)

Published in W. Kim, D. Reiner, D. Batory (eds.), Q u x
Processing in Database Systems, Springer-Verlag, 1985 pp.191-205

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

COMMON SUBEXPRESSION ISOLATION IN MULTIPLE QUERY OPTIMIZATION

Abstract: The simultaneous optimization of multiple queries submitted to a
database system may lead to substantial savings over the current approach of
optimizing each query separately. Isolating common subexpressions in multiple
queries and treating their execution as a sharable resource are important
prerequisites . This chapter presents techniques for recognizing , supporting ,
and exploiting common subexpressions in record-oriented, relational algebra,
domain relational calculus, and tuple relational calculus query representations,
It also investigates preconditions that transaction management mechanisms must
satisfy to make multiple query optimization effective.

1.0 INTRODUCTION

The joint execution of batches of queries and update operations has been a
standard technique in the conventional, record-at-a-time file systems of the
sixties and early seventies. However, with the introduction of interactive
database systems based on direct access to specific subsets of data, the
research focus has changed towards optimizing individual, set-oriented data
requests. With few exceptions, the art of multiple query processing has not
survived the cultural jump from file to database processing. Recently, however,
there has been renewed interest in exploiting the potential advantages of
resource sharing in query optimization. Two concepts can be distinguished.

Batching. Sharing the cost of operations by jointly executing multiple
queries submitted at approximately the same tiee is viable in a shared database,
mere a batch of queries can be composed and executed within reasonable response
time limits (a few seconds [BARB~~I), or in a non-interactive database
programing environment. The sharing objective distinguishes batching from
simple parallelism of data access, as investigated, e-g., in ICHESS31.

Repetitive gueries. (Partially) repetitive queries can share common
resources even in a one-user environment if these resources (usually called
access paths) are kept over an extended period of time. Speaking in business
terms, we have an investment problem: the more queries will use a resource, the
more initial investment is justified. Support for repetitive queries on a
long-term scale, mostly through indexes, has been the focus of much research on
the file system level, but less so for high-level queries.

One of the obstacles preventing a more extensive use of these opportunities
in database systems has been uncertainty about what constitutes a sharable
resource. This chapter assumes (the evaluation of) common subexpressions in
queries to be the sharable resource and investigates methods for isolating and
exploiting them. h subexpression is a part of a query that defines an
intermediate result used during the process of query evaluation. In the
relational framework adopted in this paper, subexpressions are deffned in
relational calculus or as results of relational algebra operations. For the
sake of brevity, relational notations as introduced in JARK84bl will not be
repeated here.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 2

In traditional file systems, where records are retrieved one-at-a-time, a
query or update is simply defined by a particular key value. Common
subexpressions are characterized by the same key value. Section 2 reviews
multiple query optimization for such record-oriented systems. Section 3
motivates and defines more general common subexpressions. Sections 4 through 6
present specific methods for common subexpression representation and analysis in
three popular query language environments: relational algebra, domain
relational calculus (including languages such as QBE and Prolog), and tuple
relational calculus (including languages such as SQL and QUEL) . For the latter
representation, a database programming language construct, called selector, is
used to represent subexpressions and access paths supporting their execution.

Finally, section 7 briefly considers a new research problem resulting from
multiple query optimization. If the scope of query optimization is extended
beyond transaction boundaries, query evaluation strategies may interfere with
concurrency control algorithms, leading to an inefficient overall architecture.
The need for global transaction optimization integrates the two hitherto
separated research areas of query optimization and concurrency control.

2.0 MULTIPLE QUERY OPTIMIZATION IN RECORD-ORIENTED SYSTEMS

In a traditional file system, each query retrieves at most one record,
which is described by its file (relation) name and a unique key value. Many
such systems are still in use, e.g., in banking applications or reservation
systems, in which each user transaction addresses only one data object (e.g.,
bank account) at a time. One can represent a request for the record of relation
'rel' with the key value 'keyvall in an array-like notation [SCXM831,

re1 [keyval I .

For example, if sociai security number is the key for an employee file, a user
may ask for 'employee[115-66-3331 1 ' .

In a multiple query environment, information must be provided to determine,
to which query the answer should be delivered. A query can be represented by a
record

ewerid, timestamp, opcodexead, rel[keyval I>.

Consequently, a batch of queries can be stored in a relation, the so-called
'transaction file'. m e timestamps become important when the same user submits
the same request several times, for example, because of intervening updates.
However, we shall ignore this possibility for the moment and will return to it
only in section 7.

Under what conditions is batching advantageous? In a paged random access
environment, the main profit stems from clustering accesses to the same physical
page. Little is gained by batching non-clustered queries which access different
pages. (See CSHNE761 for a quantitative analysis of the worst case of random
queries to a large file.) Two queries to a relation obviously access the .same
page if they request the same key value. Therefore, the transaction file should
be grouped by relation names and key values; this is typically best achieved by
sorting. Sorting has the side benefit of achieving optimal clustering if the
database relation to be accessed is sorted by the same criteria (e.g., organized
in some indexed sequential fashion).

If, on the other hand, se uential processinq is necessary, batching almost
always makes sense. As t h e m o n s t r a t e , the expected savings factor of
processing a batch of k queries together rather than separately can be
approximated by 1-2/(k+l) for large files. For example, a batch of just five

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 3

queries ;ill already lead to savings of about 66.75, as compared to evaluating
each of them separately: each of the five queries, separately processed, will
require scanning about 1/2 of the file (for a total of 5/2 file scans), whereas
only 5/6 of the file have to be scanned on the average to retrieve five
(randomly selected) elements.

Ihe advantages of batching in average processing time per query generally
grow with batch size, in particular with the size of clusters (i.e., the number
of accesses to the same page). On the other hand, batch size is limited by the
maximum response tine acceptable for the first queries suhitted to the batch,
as well as by storage constraints.

The key-oriented techniques for multiple query processing do not easily
generalize to queries retrieving more than one record. In principle, one can
decompose a set-oriented query into many record-oriented ones. For multiple
query optimization, however, this approach has major disadvantages:

Unless secondary indexes are available, the set of key values for each
query is unknown before accessing the database, and hence the comparison of key
values cannot be used to deternine sharable accesses. One might argue that
unknown key values usually require sequential scans, which should sake multiple
query optimization even more desirable. However, there is now a 'distribution'
problem: it is not known in advance, to which of the queries in a batch a
certain record will be relevant. Therefore, sharing is limited to the original
scan of base data -- none of the intermediate results required for processing
complex queries can be shared. This problem arises even if the key set for each
query can be enumerated (e .g. , because secondary indexes are available) .

The solution adopted in this chapter involves access abstraction mechanisms
[SXM831, which reduce the probzem of recognizing common physical access
requirements to the simpler task of identifying corrmon logical access paths,
i.e., subexpressions. Common subexpressions will be used since one can hardly
expect two queries to address exactly the same set of tuples as in the
record-oriented case.

A few definitions are needed at this point. We define a Query as a
relation-valued language expression, that is, the evaluation of a query, q, maps
a database state into a relation V(q) , the value or result of the query. The
readset, S(q), of a query is the set of all data to be accessed during the
evaluation of q. Note, that S(q) depends on data structures and query
evaluation algorithms, whereas V(q) depends only on the state of the database.
Let Q = [ql, . . . , qn] be a set of queries. Then, a query, c, with non-empty
value is called a common subexpression of Q if S(c) is a subset of the
intersection of all the S(qi), i = 1, ..., n.

An access m t h is the value of a query or of a set of queries; access
paths are used to support the evaluation of other queries. For example, a
secondary index represents the set of results of those queries that ask for all
relation elements with a given value in the indexed attribute; the use of-he
index provides a fast way to process other queries that contain queries on the
indexed attribute as subexpressions. Often, access paths are stored in a
specific representation form to avoid redundancy and reduce maintenance
problem. However, the special representation is usually invisible to the user
who just experiences better performance for certain queries. A language
construct for the abstract representation of access paths based on this
observation will be introduced in section 6.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 4

An access path defined by a query, ap, is a licable to the evaluation of a
subexpression, se, if S(se) is a subset of S(ap +n other words -- if the
selection predicate of se implies the selection predicate of ap. In this case,
we also say somewhat loosely that ap is applicable to a query containing se.

These definitions are very general. The detection of common subexpressions
or of the applicability of access paths 8ay be computationally intractable or
even undecidable if arbitrary subexpressions are considered. Of course, in a
finite database, one can always detect common subexpressions 'after the fact',
i.e., by tracing the query execution. But that does not help in ex-ante query
optimization where one would like to analyze the query rather than its value.
Most published procedures follow a two-step heuristic: (a) decompose each query
into a (partially ordered) set of 'suitable' subexpressions, and (b) identify
common subexpressions and applicable access paths. What constitutes a
'suitable' subexpression depends on the query language. The next sections
discuss three popular representation forms for relational expressions, i.e.,
algebra, domain calculus, and tuple calculus.

As a running example, we shall w e a simplified version of the infection
control database in a hospital. Such databases are used for tracing the flow of
infecting organisms in case of epidemics, and for identifying persons under risk
of infection. A patient is characterized by the ward he/she is located in, by
the day of surgery, by observed symptoms indicating an infection, and by the
quantity of pathogenic organisms isolated fro. certain sites of the human body
(e.g., surgical wounds, the blood, or the respiratory tract). Employees are
characterized by their status (e.g., doctor, nurse, administration) and assigned
nard, as well as by their assignment to operating teams on certain days. The
schema consists of seven relations:

patient (p w e , ward)
isolated (pname, organism, site, qty)
observed (p w e , symptom)
relevant (symptom, site)
employee (e w e , status, ward)
surgery (pname, day)
opteam (ename, day)

4.0 COMMON SUBEXPRESSION ANALYSIS IN RELATIONAL ALGEBRA

In relational algebra notation, a single algebra operation is the natural
unit of interest. A more complex subexpression corresponds to a sequence of
operations. Since an operation is meaningful only if all of its inputs are
known, common subexpression detection is a bottom-up procedure, collapsing
common subtrees in the operator tree for the algebra query. This procedure,
introduced in [HALL761 for single query optimization, can be extended to
multiple query optimization by considering a set of operator trees.

As an example, consider the queries: "which wards are members of the
Monday operating team assigned to?", and: "what doctors were on the Monday
operating team?" Figure 4-l(a) demonstrates collapsing common subtrees 'for
operator trees corresponding to query formulations which follow the heuristic of
moving restrictions as far down as possible [SMIT75]. Only the common
restriction of opteam by 'day=mondayl can be shared in this case. This shows
that an unf'ortunate sequencing of operations may prevent the detection of larger
common subexpressions. In Figure 4-l(b), the restriction on employee in the
second query has been moved upward beyond the Join, such that the sharable
subexpression includes the join operation. It is not easy to find a query
standardization that automates such algebra transformations. IliA~L.76 1 presents
some heuristics. In other cases, collapsing small common subexpressions in the
beginning of the procedure may prevent the detection of larger ones later on.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 5

I I
8-63 (projection) I

I I
I I

eno eno (join) I
I I
I I
1 o status = doctor (restriction) I
I employee I
I day = (restriction) I
I monday o I
I employee (access I

Figure 4- 1 (a) : A simple common algebra subexpression

1 I
ena~se (projection) I

I
status=doctor (restriction) I

I
I
I
I

(join) I
I
I

(restriction) I
I

(access) I
I o opteam I
I I

Figure 4-l(b): A better couon subexpression

5.0 COM4ON SUBEXPRESSION ANALYSIS IN DOMAIN RELATIONAL CALCULUS

Predicate calculus representations offer more control over the level of
abstraction, on which common subexpressions can be defined. Domain calculus is
used in connection with logic programming, for instance, if Prolog is used as a
database language [KOWA81 I . In this representation, variables range over
attribute domains, and relations are represented as predicates. Relation values
are defined as sets of assertions that look like the example schema provided in
section 3. An arbitrary hierarchy of parameterized and maybe recursive view
definitions can be superimposed on the original database relations through the
use of Horn clauses with variables. For example, in the infection database,
Prolog definitions of the concepts of an infected patient, and of personnel
contact with a patient look as follows:

A patient is said to be infected at a certain body site if pathogenic
organism have been isolated there or relevant symptoms have been observed.

infected(l?name, Site) :- isolated(Pnante, Organism, Site, Qty).
infected(Pnaae, Site) :- observed(Pwe, Symptom),

relevant(Symptom, Site).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 6

A employee is said to have been in contact with a patient, if he/she was
either on an operating team the same day the patient had an operation, or
he/she is a nurse assigned to the patient's ward.

contact(Ename, Pname) :- opteam(Ewe, Day),
surgery(Pname, Day 1.

contact (Ename , Pname) : - employee (E w e , nurse, Ward) ,
patient(l)naae, Ward).

In these parameterized view definitions, variable names begin with capital
letters and constants begin with lower-case letters. Variables are used to
store parts of the relations implicitly, or to represent subsets of stored
relations. For example, an assertion

relevant(fever , Site).
means that fever is a relevant symptom for infections at any site, since the
variable 'Site' can assume arbitrary values. A concatenation of predicates by a
comma indicates AND-connection; the repetition of a left-hand side predicate
indicates that one or the other definition may apply, i.e., OR-connection of the
right-hand sides.

A query is an expression consisting of the symbol : - followed by
AND/OR-connected predicates which refer either to views or directly to base
relations. Consider first the case where there are no recursive view
definitions applying to the set of queries. Following the two-step heuristic
mentioned in section 3, each query is first standardized into disjunctive normal
form, i.e., into a set of conjunctive queries to base relations. More than one
submitted request will just result in a larger set of conjunctive queries.

To simplify subsequent steps, the query set is then partitioned into
components such that the readsets of queries in different components are
disjoint. The simplest way to guarantee this is to partition the set of queries
by the relations they access [GRANIII]. Within each component, common
subexpressions among the queries are identified as follows.

Each query within a component is a conjunction of predicates, where each
predicate corresponds to access to one relation. Common subexpressions have to
contain at least common predicate (= relation) names. Thus, for each pair' of
queries, we just have to test if pairs of predicates with common relation names
are equivalent. In fact, we can test for containment, rather than for exact
equivalence, and use the result of one subexpression as an access path for
evaluating the other subexpression [GRAN81]. (Similar methods have also been
used to optimize tableaux for non-conjunctive queries [SAC180 1.)

To illustrate the above procedure, consider the three view queries:

R1. "what patients with Monday surgery have wound infections?"
: - infected (Who, wound) , surgery (Who, monday) .

R2. "what patients had the same organisms isolated as Smith?"
:- isolated(smith, Commorg, Sitel, Qtyl) ,

isolated(Pat, Commorg , Si te2, Qty2 1.
R3. "who was in contact with wound-infected patients?"

: - infected (Infpat , wound 1, contact (Pers , Inf~at 1.

Using the view definitions given above, the translation of these view
queries into queries to the base relations given in section 3 yields the seven
conjunctive queries listed below. Q1 and Q2 come from R1, 43 from R2, and the
remining four queries are derived from R3.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 7

Q1. : - isolated(Hho, Organism, wound, Qty) , surgery(Who, monday) .
42. :- observed(Hh0, Symptom), relevant (Syaptom, wound),

surgery(Uho, monday).
Q3.. :- isolated(smith, Commorg, Sitel, Qty 1 1,

isolated(Pat , Commorg, Site2, Qty2).
Q4, :- isolated(Infpat , Organism, wound, Qty) ,

surgery(1nfpat , Day), opteam(Pers, Day).
Q5. :- isolated(Infpat, Organism, wound, Qty),

patient(Inf'pat, Ward), employee(Pers, nurse, Ward).
Q6. :- observed(lnfpat, Symptom), relevant (Spptos, wound),

surgery(Infpat, Day), opteam(Pers, Day).
Q7. :- observed(Infpat, Symptom), relevant(Spptom, wound 1,

patient(Infpat, Ward), employee(Pers, nurse, Ward).

All seven queries form one component and are therefore candidates for
simultaneous query optimization. Common subexpressions can be identified by
comparing predicates with equal names: (a) The first predicate of Q1 is
equivalent to the first predicates of Qr) and Q5, and its value is a subset of
the value of the second predicate of 43; (b) Similarly, the conjunction of the
first two predicates of 42 also appears in Qb and 47; (c) the surgery
predicates in Q1 and 42 are identical; (d) the second rows of queries Q4 and
Q6, as well as of 45 and Q7 are sharable.

Could we have detected the conmon subexpressions more efficiently? Yes;
we could have predicted many of the conunon subexpressions by comparing the
original view queries directly. For example, that R1 and R3 have a lot in
common is obvious from the common predicate 'infected(X, wound)'. This
observation could have reduced the set of queries to be investigated. A more
systematic analysis of this view-oriented approach will be presented in section
6.3.

An additional opportunity for multiple query optimization by common
subexpression analysis, not found in the other two representations wed in this
chapter, presents itself in the evaluation of queries that are defined on
recursive views. Assume that our infection control database contains a base
relation *met(Cname, Sname) which describes the fact that an individual named
Gname met a potential carrier of pathogenic organisms, named Sname. Note, that
the Sname--Gname relationship must be hierarchical (i.e., it may not contain
cycles) to be evaluable with the depth-first approach of Prolog. We can 'now
define the risk that organisms have been transmitted from a person another one
recursively as

risk(Pnaate, Cname) :- met(Gname, m e) ,
infected(Pname, Anysite).

risk(Pna&e, Cname) : - met(Gname, Intermediate),
risk(Intermediate, Pname).

One can now ask for persons exposed to risk by a particular patient, or for the
patients putting a particular person at risk. In both cases, the query
evaluation generates a sequence of queries, in which each subsequent query
contains the previous one as a subquery. For example, the query,

is evaluated by the sequence of non-recursive database queries

:- met(Cname, smith), infected(smith, Site).
:- met(Gname, Cl),

met(C1, smith), infected(smith, Site).
:- met(Cname, Cl),

met(C1, C2), met(C2, smith), infected(smith, Site).
etc.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 8

Each query appears as the second part of the following one; vice versa,
the evaluation of each query can use the result of the previous one [JARK84a].
Additionally, it is possible to rephrase recursive queries in a 8anner that
keeps the size of intermediate results small EHARQ841. A detailed discussion of
these approaches, as well as of a large number of additional problem related to
recursive query processing, is beyond the scope of this paper; more material
can be found in [MINK831 and EIENS841.

6.0 COMMON SUBEXPRESSION ANALYSIS IN TUPLE CALCULUS

6.1 Nested Expressions And The Selector Language Construct

In the tuple relational calculus representation as used in [JARK84bl, an
interesting Set of subexpressions can be generated using range-nested
expressions. Recall that the following transformations can be applied to
generate nested expressions where pl and p2 are predicates [JARK~~].

[EACHrINrel:plANDp2] c = = ~ [~ A C H r 1 N ~ ~ ~ C H r I N r e l : p l] : p 2]
SOME r IN re1 (pl AND p2) <==> SOME r IN [EACH r IN rel: pl] (p2)

ALL r IN re1 (NOT(p1) OR p2) <==> ALL r IN [EACH r IN rel: pl] (p2)

Here, we shall not deal with universally quantified variables. Therefore, we
can assue without loss of generality that all queries are conjunctive. Each of
the inner nestings represents a potential comon subexpression. For the
definition of access paths, there is a need to abstract from specific
subexpressions. A language construct called selector [11ALL84 I serves as an
abstract representation of subexpressions and their access paths. Let

EACH r IN rel: p(r, sf, ..., sm, tl, ..., tn)
be a relational expression where p is a well-formed formula of the relational
calculus in which quantified variables tl, ..., tn appear. The sl, ..., sm are
formal parameters representing constants in terns of the selection predicate. A
selector sp representing the subexpression can be declared in a function-like
fashion [1 I:

SELECTOR sp(s1, ..., sm) FOR rel;
BEGIN
EACH r IN Pel: p(r, sl, ..., sm, tl, ..., tn)

END ;

Selectors are used in selected variables that appear in relation-valued
expressions, using an array-like notation

where the Si are actual parameter values. For example, the notation
'rel[keyval] ' , which was introduced in section 2 for identifying single tuples
in relations, uses an implicitly defined key selector,

SELECTOR sk(keyva1) FOR rel;
BEGIN
EACH r IN rel: r.key = keyval

END ;

1 1 1 The actual selector definition originally introduced in [HALL84 I, ISCIM83 I
refers to relation types instead of relation variables. In the query
optimization context considered in this paper, however, the simpler notation
presented here is sufficient.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 9

Selectors have two uses in multiple query optimization: naming common
subexpressions and supporting their evaluation. From a language viewpoint, a
selector can be regarded as the definition of a (possibly parameterized) view,
similar to the ones we saw in the domain calculus examples. However, from a
system's viewpoint, a selector can also be perceived as the abstract
representation of an access path, that -- if provided with appropriate
parameters -- returns a set of relation elements. Following the definitions
given in section 3, we say that a selector is applicable to a subquery, if
actual parameters S1, ..., S. can be found, such that the predicate of the
subquery implies the selection expression of the selector, with S1, ..., SPI
substituted for the formal parameters. Furthermore. we say that a selector is
supported if an actual physical access path has been created for all queries
represented by the selector definition.

Since testing applicability is undecidable in general first-order predicate
calculus, and computationally intractable even in some cases where it is
decidable [ROSE801, we shall explore several classes of selectors (and
consequently of nested subexpressions), for which efficient tests or good
heuristics are known.

Selectors can be classified by the values of m and n in the above
definition. First, selectors without parameters (m=O) will be investigated;
they correspond to traditional database views. This discussion will be
subdivided into the cases of extended range expressions (n=O, section 6.2) and
general nested expressions (n>O, section 6.3). Afterwards, selectors wi th
parameters (m>O) will be analyzed (section 6.4). This discussion will be brief
since one part of it is covered by the other subsections, another part is
covered by the literature on index selection, and the remainder is largely
unresearched .

6.2 Common Extended Range Expressions

The early execution of one-variable operations, such as restriction and
projection, is a well-known heuristic for query transfortuxtion [SIT75 I,
[WONG761. In the relational calculus framework, this has been modeled by
introducing nested expressions that extend the range definition of variables
from simple relation names to relational expressions i.. , queries) that
contain restrictive terms over the base relation IJARK821. Consider the
following three queries and their disjunctive prenex normal for. representation
in Pascal/R [SCHM8O] :

R4. analyses yielded more than 1000 organisms/ml?"

[EACH i IN isolated: i.qty > 1OOOl

R5. "what patients of which wards had at least 2000 organisms isolated?"

[EACH p IN patient: SOME i IN isolated
(p.pwe = i.pwe AND i.qty >= 2000)l

R6. nlist doctors in wards with patients who had fever in connection
with the isolation of at least 2000 organisms in wounds."

[EACH e IN employees :
SOME o IN observed SOME p IN patient SOME i IN isolated
(e.ward = p.ward AND p.pname = o.pname AND i-pnaae = p.pname
AND o.symptom = fever AND i.qty >= 2000 AND i.site = wound)]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 10

Applying the nesting transformation given in section 6.1 converts the two
queries R5 and R6 to:

R5l. [EACH p IN patient:
SOME o IN [EACH i IN isolated: i-qty >= 20001

(o*pnarre = p.pname)l

Q6 . [EACH d IN [EACH e IN employees : e .status = doctor 1 :
SOME f IN [EACH o IN observed: o.symptoa = fever]
SOME p IN patient

SOWE w2 IN [EACH i IN isolated:
i.qty >= 2000 AND i.site = wound]

(w2.pnaae = p.pname AND p.pname = f.pname AND p.ward = e.ward)]

Nested expressions are conveniently represented by object graphs [FINK82],
[JARK83]. Each inner expression corresponds to a node, and each Join term
corresponds to an edge. Thus, while R4 is represented by only one node, R5' and
R6' are represented by trees with two respectively four nodes (figure 6-1).

I I Query: R4 I
I I <i.pname, i.organism, I
I I i.site, i.qty> OF I
I I EACH i IN isolated: I
I I i.qty > 1000 I

I 1 Query: Rbl I
I 1 <e.ename, e.status, I
I I e.nard> OF I
I I EACH e IN employee: I
I 1 e-status = doctor I

I Query: R5 l I I
I <p.pname, p.ward> OF I I
I E A C HpINmtient I I

I <i.pnaae, i.qty> OF I I
1 EACH i IN isolated: 1 I
I i.qty >= 2000 I I

- -
I I <p.pname, p.ward> OF I I co.pname, o.symptom> OF I I
I I EACH p IN patient I I EACH o IN observed: I I
I I I o.pname I o.symptom = fever
I I I

I I
I I

I I <i.pname, i.site, i.qty> OF 1
I I EACH i IN isolated: 1
I I i.site = wound AND i.qty >= 2000 1

Figure 6-1: Query graphs for extended range expressions

Users often refer to previous queries; for example, the infection control nurse
aight 'zoom in' on the objects of interest by issuing a sequence of queries R4
to R6. [FINK82 1 therefore suggests storing object graph representation and
query value -- V(q) in the notation of section 3, not s(q) ! -- of certain
queries in a buffer to be used for evaluating subsequent queries.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 11

Consider first single-node queries such as R4. Such queries are of
interest, not only because they occur frequently, but also because most indexes
in database systems can be regarded as collections of query results of this
type. The stored value of a one-variable query can be used directly as an
access path for a new one if two preconditions are satisfied: (a) the selection
expression of the new query implies the one of the stored query; (b) the output
attributes of the stored query are a superset of the attributes appearing
anywhere in the new query. For exanple, R4 can be used directly for evaluating
the second node of R5 since *i.qty >= 2000' implies 'i.qty > 1000' and both
attributes of the relation 'isolated1 appearing in R5 also appear in the output
of R4.

When condition (b) is violated, using the stored query nay still be
justified, but a 'backjoint is required between the stored query result and the
base relation to recover missing attribute values. This would happen, for
instance, if R4 only requested patient names. The join with a stored relation
may be cost-justified if there are fast access paths to perform the backjoin.
The backjoin problem may also occur in aulti-node queries. The set of patients
retrieved in R5 ' is clearly a superset of the ones retrieved for R6 ' . However,
since the site attribute does not appear in the output of RS', a backjoin of the
query value V(R5') with the relation isolated is required.

[FINK821 does not perform general implication tests for multi-node queries
(such tests are studied in [HUNZ791 and [ROSE801 1 but uses a heuristic, which
not necessarily detects all stored query results usable for a given query. In
addition, the algorithm also determines eventual backjoins, and compares their
costs to the savings expected from using the old query value as an access path.
However, IFINX821 does not assume exact foresight of the query optimizer in
terms of what future queries to expect.

6.3 Common Nested Expressions

In processing batches of queries, such precise knowledge does exist.
Common subexpressions can be supported in a pre-planned fashion by defining
appropriate selectors and creating physical access paths supporting them. For
example, the batch R4, R5, R6 of the previous subsection could be supported by
the selector

S1. SELECTOR orgl00O FOR isolated;
BECIN
EACH i IN isolated: i.qty > 1000
END;

This reduces R4 to a single access to an existing query result via the selector

and improves the performance of the other queries accordingly. However, it is
obvious that the limitation of selector definitions to one-variable expressions
does not permit the level of sophistication required for multi-relation querfes.
This subsection will therefore consider more general selector definitions. For
example, with the additional definition of a selector

S2. SELECTOR pat2000 FOR patient;
BEGIN
EACH p IN patient: SOME i IN isolated

(i.qty >= 2000 AND i.pname = p.pname)
END;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 12

query R6' can be replaced by (notice the backjoin between pi and wi)

[EACH doc IN [EACH e IN employees: e.statw = doctor 1 :
SOME fev IN [EACH o IN observed: o.sy.ptom = fever 1
SOME pi IN patient[org20001

SOME wi IN [EACH i IN isolated: i.site = wound]
(wi.pname = pi.pname AND pi.pname = fev.pname AND pi.ward = doc.ward)]

Even this notation is not completely satisfactory since it does not show that
one selector can be wed to improve the evaluation of another one, We therefore
introduce several levels of nesting in selectors.

S2*, SELECTOR pat2000 FOR patient : ...;
BEGIN
EACH p IN patient: SOME i IN isolated~org10001

(i.qty >= 2000 AND i.pname = p.pname)
m;

Many selectors could be defined for supporting any given query. One can
generate these selectors by applying the general range nesting transformations
given in section 6.1. In terms of the object graph representation (Figure 6-1 1,
multi-variable selectors can be defined for any subgraph that does not contain
the target nodes and is connected to the rest of the query graph by a single
edge. For example, in query R6 , we could define one selector containing the
patient/observed subgraph, one containing the patient/isolated subgraph, or one
that contains all three nodes.

All queries in a batch can be described by partially ordered sets of
selectors, using a uniform m i n g scheme for equivalent selectors. The system
can then identify common selectors among queries, This looks very similar to
the algebra approach of section 4. An important difference is that it is not
necessary to trace all possible sequences of operations if other means exist for
establishing equivalence among subexpressions,

A similar structure has been proposed as a logical access path schema for
database design [ROUS82b]. Rowsopoulos introduces an object graph that is the
exact complement to an algebra operator graph; that is, the nodes represent the
results of algebraic operations and groups of edges the operations themselves.
[ROUS82bl presents algorithms similar to [HALL761 but goes further by assigning
a weight to each node, based on the frequency of reference to the corresponding
selector in a set of queries. The higher the weight, the more profitable is the
creation of a special physical access path to support the selector. The latter
method is called "view indexingn in [ROUS82a].

6.4 Common Query Structures

The disadvantage of access paths defined through parameter-free selectors
as described in the previous two subsections is that they essentially represent
only one (sub)query. The usual understanding of indexes is quite different:
the exact query is defined by specifying a certain parameter value. " For
example, most users of the infection control database may be interested only in
one type of infecting organism at a time but this type may differ from query to
query. Therefore, it pays to define a selector corresponding to a secondary
index :

SELECTOR the-organism(0RG) FOR isolated;
BEGIN
EACH i IN isolated: i.organism = ORG

m;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 13

A query requesting wards where Klebsiella bacteria were found would then be
converted to something like:

[<kp.ward> OF EACH kp IN patient:
SOME k IN isolated[the-organism(jklebsiella') 1

(k.pname = kp.pname)l

While secondary indexes such as this one are available in most database systems,
the selector definition can be Bore general. For example, if one is always
interested in the patients from whom an organism was isolated in certain
quantities rather than in the isolation itself, one can define and support a
selector, the definition of which spans more than one relation.

SELECTOR wi th-org(ORG, QMIN, QMAX) FOR patient;
BEGIN
EACH p IN patient: SOME i IN isolated

(p.pname = i.pname AND i.organism = ORG AND
i.qty >= QMIN AN11 i.qty <= QMAX)

m;
Obviously, definition and maintenance of such a selector require more
sophisticated data structures and algorithms than conventional one-dimensional
indexes fNIEV84 I .

The detection of subexpressions that are supportable by a particular
parameterized selector hardly differs from the non-parameterized case; in all
places where the formal parameter appears in the selector definition, any domain
value say appear in the corresponding position of the query to make the selector
applicable.

On the other hand, the problem of choosing a good set of parameterized
selectors to be supported by physical access paths is much more difficult than
for non-parameterized ones. For single-attribute selectors, and even for
general one-variable selectors, the literature on index selection (see [MARC84 1)
applies. For multiple variable selectors, however, one faces the double problem
of choosing a good level of abstraction, and of deciding which query conditions
should be parameterized. No solution to this problem is. known as of this
writing, but several heuristics based on the range nesting procedure of [JARK831
are under study.

7.0 MULTIPLE QUERY OPTIMIZATION AND TRANSACTION MANAGEMENT

When we reviewed batched query processing in record-oriented systems, we
excluded update operations from the discussion. In reality, this separation
often cannot be accepted; queries and updates may be combined in transactions
submitted by the sane user or by multiple users. This may lead to problems like
inconsistent reads or lost updates which have to be prevented by concurrency
control mechanisms [E s w A ~ ~ I.

The only requirement supported by alsost all concurrency control methods is
serializability, i.e., the outcome of a set of concurrently running transactions
has to be equivalent to that of some serial execution of the transactions.
Therefore, read and write accesses can follow each other in arbitrary sequence
if each transaction concerns only one access to one record. Alternatively,
record-oriented file systems often combine batched update with interactive
retrieval; the file system is locked completely during the update process.
However, certain backout mechanisms for erroneous update transactions have to be
provided even in this case [ARD179].

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 14

Once more, consideration of more complex common strbexpressions complicates
the problem. This section suamarizes additional research questions that have to
be anmered if multiple query optimization is to be integrated into an
transaction processing environment that includes interactive update operations.

Consider first a one-user environment (or one in which each user
transaction is completely shielded from the others by exclusive locking
mechanisms). In such an environment, multiple query optimization is possible
only within transactions which consist of more than one query. [HEVN81] studied
the influence of general programming language constructs, such as conditional
statements and loops, on the composition of query sets to be optimized jointly.
As a simple example, consider the following program:

IF condl THEN Q1; 42
m I F cond2 TIEN 42; 43

ELsE Q1; Q3

Although each query appears twice in the program, any of them will be executed
at most once. Creating sophisticated access paths, cost-justified only by
multiple usage of any one query, would be a waste of resources.

A second problem in the one-user context is addressed in [K I ~ I 1: the
interference of update operations with queries. If the value of a subexpression
is changed, the value of queries before and after the update operation will be
different. Common subexpressions are defined in C K I M ~ I I on the relation level.
As an example, consider a database program that works with queries Qi and
altering operations Ai on two relations, R1 and R2:

One can optimize 43 and simultaneously but not Q1 and Q2. It is, however,
feasible to optimize Q1 and the read part of A1 jointly. Notice that it is
quite possible that the actual write set of A1 may be disjoint from the read
sets of Q1 and 42; a detailed analysis of common subexpressions going below the
relation level may confirm this.

This argument carries over to the multi-user w. It is well known in
concurrency control theory that finer granularity of locks can result in more
concurrency [GRAY75 I, CRIES77 I. To identify potential conflicts on a
subrelation level, the first requirement is therefore that query optimization
and concurrency control mechanisms use the same language, i.e., that predicative
concurrency control methods are employed [ESWA76 I , [REIM83]. Moreover, the
focus of multiple query optimization is on sharing rather than just parallelism
of data access. Therefore, the introduction of multiple query optimization on a
global level creates new problems of integrating query optimization and
concurrency control mechanisns.

In the locking approach to concurrency control, shared locks have been
proposed to increase concurrency CEDE83 1 but sharing is not supported activirly .
On the other hand, optimistic methods [KUNG81 I , EREIM831 assume that conflicts
are unlikely to occur and validate transactions ex-post; hence, full global
query optimization is possible. However, a whole batch of transactions may have
to be repeated if one of them cannot be validated.

W r e flexible scheduling strategies combining locking and optimistic
methods are required [B R A E ~ ~ I . For example, in order to create a safe
environment for multiple query optimization, one can schedule read transactions
pe~~i~isticallg (i .e., use locking) while allowing altering transactions to run
optimistically.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 15

In addition, we are investigating strategies on the query optimization side
that limit the damage done by transaction abortion without sacrificing
correctness. Finally, the use of multiversion databases [BERN83 1 is considered
in this context. A radical solution based on multiple versions completely
decouples read and write transactions. It allows queries to access only data
versions guaranteed to be too old to have been created by any currently active
transaction. However, such an extreme solution is hardly acceptable in general.

8.0 SUMMARY AND CONCLUSION

Extending multiple query processing from record handling systems to
set-oriented database systems is based on the recognition of and support for
common subexpressions in queries. The review of three different language types
for relational queries showed that common subexpression analysis is not very
hard if only one-relation subexpressions are considered and appropriate tools
exist for isolating them. Common multi-relation subexpressions can only be
addressed in a heuristic manner. More powerful heuristics, made possible
through the introduction of programming language abstractions, allow more than
detecting common subexpressions in a purely bottoa-up fashion. Where simplistic
radical solutions for concurrency control are not acceptable, multiple query
optimization requires integrating the hitherto separate areas of query
optimization and concurrency control, with the final goal of developing a
unified optimization concept for database implementation.

Acknowledgments

The author is grateful to Richard Braegger, W i n g Eckhardt, Manuel Reimer,
Juergen Koch, and Joachim Schmidt for stimulating discussions, and to the
editors for their detailed comments on a previous draft of this paper.

REFERENCES

[ARDI79 1 Ardi ti, J. "An optimized backout mechanism for sequential updatesn,
Proceedings 5th VLDB Conference, Rio de Janeiro 1979, 147-154.

[BARB831 Barber, R.E., Lucas, H.C. "System response time, operator
productivity, and job satisfactionw, Commmunications of the 26, 1 1 (1983),
972-986

[BERN833 Bernstein, P.A., Goodman, N. "Multiversion concurrency control -
theory and algorithmsn, &bJ Transactions on htabase Systems 8, 4 (1983).
465-483.

[BRAE831 Braegger , R.P. , Reimer , M. "Predicative scheduling: integration of
locking and optimistic methodsn, Bericht 53, ETH Zuerich 1983.

ECHAK82 1 Chakravarthy , U.S. , Winker, J. "Processing multiple queries in
database systemsn, IEEE Database Engineering 5, 3 (1982), 38-43.
ICHES831 Chesnais, A., Gelenbe, E., Mi trani , I. "On the modelling of parallel
access to shared datan, Communications of the A(=n 26, 3 (19831, 196-202.

EESWA761 Eswaran, K.P., Gray, J.N., Lorie, R.A., Raiger, I.L. "The notions of
consistency and predicate locks in a database systemw, C~mm~nication~ of @
19, 1 1 (19761, 624-633. -

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 16

[FINK821 Finkelstein, S. "Common expression analysis in database applicationsn,
Proceedings Acm-SIGNOD Conference, Orlando 1982, 235-345.

[GRAN81] Grant, J., Hinker, J. "Optimization in deductive and conventional
relational database systemsn, in Gallaire, H., Minker, J., Nicholas, J.-M.
(eds.), Advances fn Database Theory, Plenum, New York 1980, 195-2311.

[GRAY751 Gray, J.N., Lorie, R.A., Putzolu, G.R. "Granularity of locks in a
shared databasen, Proceedings Ist Conference, Franinghaa, Mass. 1975,
428-45 1.

[HALL761 Hall, P.A.V. "Optimization of single expressions in a relational data
base system", Journal g Research Developlent 20, 3 (1976), 244-257.

[HENS~~ I Henschen, L. J., Naqvi, S. A. "On compiling queries in recursive
first-order databasesn, Journal of the ACM 2, 1 (1984), 47-85.

[HEVN81] Hevner , A .R. , Yao, S.B. "Transaction optimization on a distributed
database system", Technical Report HR-8 1-259, Honeywell Corporate Computer
Science Center, Bloomington, XN, 1981.

[JARK82 1 Jarke, H., Schmidt, J. W. "Query processing strategies in the Pascal/R
relational database nanagement systemn, Proceedings ACH-SIGMOD Conference,
Orlando 1 982, 256- 264.

[JAM831 Jarke, M., Koch, J. "Range nesting: a fast method to evaluate
quantified queriesn, Proceedings ACM-SIGUOD Conference, San Jose 1983, 196-206.

[JARK84al Jarke, H., Clifford, J., Vassiliou, Y. "An optimizing Prolog
front-end to a relational query systemH, Proceedings ACM-SIGMOD Conference,
Boston 1984.

[JARKMb] Jarke, H., Koch, J., Schmidt, J.W. "Introduction to query
processingn, this volume.

lKEDE831 Kedem, Z.M. , Silberschatz , A. 2ocking protocols: from exclusive to
shared locks", Journal>of the ACM s, 4 (19831, 787-804.

 KIM^^] Kim, W. "Query optimization for relational database systemsw, IBM
Technical Report RJ308 1, San Jose 198 1.

[KOWA811 Kowalski, R. "Logic as a database languagen, Imperial College, London
1981.

[EIALL&U] Mall, H., Reimer, H., Schmidt, J.W. "Data selection, sharing, and
access control in a relational scenarion, in Brodie, M., Hylopoulos, J.,
Schnidt, J .ti. (eds.) : 9 Conceptual mod ell in^: Perspectives from Artificial
Intelligence, Databases, and Programming Languages, Springer 19811,411-436.

[MARC841 March, S.T. "Physical database design: techniques for improved
database performancen, this volume.

[MARQ84 1 Marque-Pucheu, C. , Martin-Gallausiaux , J., Jomier , C. "Interfacing
Prolog and relational data base management systemsn, in Gardarin, G., Gelenbe,
E. (eds.), New - Applications of Data Bases, Acadaaic Press, to appear 1984.
[MINK831 Hinker, J., Nicholas, J.4. "On recursive axioms in deductive
databases", Information Systems 8, 1 (1983), 1-13.

[HUN2791 Hunz, R., Schneider, H.-J., Steyer, F. "Application of sub-predicate
tests in database systemsn, Proceedings 5th VLDB Conference, Rio de Janeiro
1979 , 426-435

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

Page 17

[NIEVU] Nievergelt, J., Hinterberger, H., Sevcik, K.C. elbe grid file: an
adaptable, symmetric multi-key file structuren, &CJ Transactions on Database
System 9, 1 (19841, 38-71.

[REIM83] Reimer , M. wSolving the phantom problem by predicative optimistic
concurrency controln, Proceedings 9 th VLDB Conference, Florence 1983, 8 1-88.

CRIES771 Ries, D.R., Stonebraker, M. "Effects of locking granularity in a
database management systemn, &CJ Transactions on Database Systems 2, 3 (1977),
233-246.

[ROSE801 Rosenkrantz, D. J., Hunt, H.B. "Processing conjunctive queries and
predicatesn, Proceedin~S 6 th VLDB Conference, Montreal 1980, 64-72.

[ROUS82al Roussopoulos, N. "View indexing in relational databasesw, &J
Transactions on Database Systems 7, 2 (1982), 258-290.
[ROUS82b] Roussopoulos, N. "The logical access path schema of a database", IEEE
Transactions Software Engineerinq m, 6 (1982), 563-573.
[SAG1801 Sagiv , Y., Yannakakis, M. NEquivalences aaong relational expressions
with the union and difference operatorsn, Journal of the ACM 27, 4 (19801,
633-655.

[SCHM~O] Schmidt, J.W., Mall, M. @Pascal/R Reportw, Report 66, Fachbereich
Informatik, University of Hanburg 1980.

[SCHM83] Schmidt, J.W., Mall, M. "Abstraction mechanisms for database
programingn, Proceedings ACM-SIGPLAN Symposium on Programming Languages in
Software Systems, San Francisco 1983, SIGPLAN Notices l8, 6 (1983).

[~?iNE761 Shneiderman, B., Goodman, V. "Batched searching of sequential and tree
structured filesn, g Transactions Database Systems 1, 3 (1976), 268-275.

[S M I T ~ ~] Smith, J.M., Chang, P.Y ,T. nOptimizing the performance of a relational
algebra database interfaceN, Coamunications of the ACM 18, 10 (19751, 568-579.

[WONC761 Wong, E., Youssefi, K. "Decomposition - a strategy for query
processingn, Transactions on Database Systems 1, 3 (1976), 223-241.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-46

