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EXTERNAL SEMANTIC QUERY SIMPLIFICATION: 

A GRAPH-TmORETIC APPROACH AND ITS IMPLEMENTATION IN PROLOG 

Abstract 

Semantic query simplification utilizes integrity constraints enforced 
in a database system for reducing the number of tuple variables and 
terms in a relational calculus query. To a large degree, this can be 
done by a system that is external to the DBMS. The paper advocates 
the application of database theory in such a system and describes a 
working prototype of an external semantic query simplifier implemented 
in Prolog. The system employs a graph-theoretic approach to integrate 
tableau techniques and algorithms for the syntactic simplification of 
queries containing inequality conditions. The use of integrity 
constraints is shown not only to improve efficiency but also to permit 
more meaningful error messages to be generated, particularly in the 
case of an empty query result. The paper concludes with outlining an 
extension to the multi-user case. 
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1.0 INTRODUCTION 

A research project at New York University [Jarke and Vassiliou 

1984; Vassiliou et al. 19831 investigates the integration of 

logic-based expert systems into existing management information 

systems. Several prototype expert systems in life insurance [Jarke 

and Sivasankaran 19841 and management science are being built which 

rely heavily on access to large databases containing, e.g., model 

input, actuarial data, customer data, or health scoring information. 

The interaction between expert systems and existing databases 

requires coupling two independent software systems: the expert 

system, e.g., written in Prolog, and a database system accessible 

through a relational query language, e.g., SQL, Rather than writing 

application-specific access routines as customary in the expert 

systems area, it was decided to build a generalized software tool that 

provides information to the expert system as and when required for the 

expert's deduction, much in the same way a human expert might consult 

a database for certain facts [Vassiliou et al. 1984; Jarke et 

al. 19841. 

While the original motivation for building sueh a tool was its 

use as a data management backend to an expert system, it is not hard 

to see that the other direction of interaction is at least equally 

desirable. Very high-level user interfaces to databases make use of 

deductive components but often lack an efficient interface between 

these components and an existing database. So-called deductive 

database systems partially solve this problem but stress a very deep 

integration with the underlying database ( BDGEN [ Nicolas and Yazdanian 
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19831) o r  attempt t o  build one in tegra ted  system (e.g., DADM [Kellogg 

19821). In  con t ras t ,  our approach assumes independent e x i s t i n g  

systems and a t t aches  the  t r a n s l a t i o n  procedure t o  the  exper t  systems 

language ra the r  than t o  the  DBMS (which may be used f o r  many o the r  

purposes i n  addi t ion  t o  its use as an expert system backend), 

A second aspect  of enhancing DBMS with semantic knowledge has 

been worked upon t o  a lesser degree s o  far: the  knowledge-based 

execution of  conventional database operat ions [Hammer and Zdonik 1980; 

King 19811. Current DBMS a r e  t y p i c a l l y  good i n  evaluat ing  a l t e r n a t i v e  

s t r a t e g i e s  fo r  processing a query on the  physical  l eve l .  They are 

o f t e n  less s t rong i n  transforming a query submitted by the  user  i n t o  a 

(poss ib ly  d i f f e r e n t )  representa t ion  which lends itself t o  t h e  c r e a t i o n  

of  more e f f i c i e n t  processing a l t e r n a t i v e s ,  i n  p a r t i c u l a r  when q u e r i e s  

t o  views a r e  concerned [Ott  and Horlaender 19821, Moreover, 

processing a sequence o r  set of  r e l a t e d  quer ies  is r a r e l y  supported. 

A coupling mechanism al lows the  crea t ion  o f  an ' exper t  systemf 

e x t e r n a l  - t o  the  DBMS t h a t  might employ s y n t a c t i c  and semantic 

knowledge about the  database schema, as well as about s t r e n g t h s  and 

weaknesses of the  query optimizer o f  the  underlying DBMS, t o  rephrase  

and organize a query o r  set of  quer i e s  i n  the  most e f f i c i e n t  way. 

While i n  theory i n f e r i o r  t o  a f u l l y  in tegra ted  i n t e l l i g e n t  DBMS query 

optimizer (which would have f u l l  access t o  a l l  i n t e r n a l  da ta  

s t r u c t u r e s  and f u l l  information about the database state a t  any given 

t ime),  such an ex te rna l  'database programming e x p e r t t  may well b e n e f i t  

many ex i s t ing  databases i n  which the  code o f  t h e  DBMS is no t  

access ib le  or should not be touched f o r  r e l i a b i l i t y  reasons. 
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The purpose of the present paper is twofold. Firstly, it tries 

to clarify the concept of semantic query simplification, as compared 

to other approaches to utilizing general laws (or A 1  rules) in DBMS, 

In particular, it is argued that results obtained by database theory 

research should be employed as a crucial part of the knowledge bases 

and inference mechanisms in knowledge-based query evaluation methods 

although there is additional knowledge that has to be captured and 

utilized in a less structured manner, both in the application domain 

and in the query optimization domain itself. 

Secondly, the paper reports preliminary experience with a working 

prototype of a semantic query simplifier implemented in Prolog whose 

knowledge base may contain key dependencies, general functional 

dependencies, certain types of domain and inclusion dependencies, and 

some 'expert' rules added to the system to reduce optimization time 

(although these may in rare cases prevent optimality of the result). 

An overall algorithm has been described in [Jarke et al. 19841. This 

paper presents a more efficient, integrated method that is based on a 

graph-theoretie representation of tableau techniques and handles 

arbitrary conjunctive queries with inequalities. The paper concludes 

with an outline of extensions currently under study, in particular 

with the concept of a multi-user querying front end. 

2.0 SEMANTIC QUERY OPTIMIZATION, DATABASE THEORY, AND PROLOG 

Rules in database systems. While the main purpose of most -- 
current DBMS is the management of large amounts of formatted specific 

facts, some DBMS support general rules that govern which data can be 

stored in the database (inte~rity constraints) or how to derive new 
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facts from the stored ones; the latter are called deduction rules if 

applied at query time and generation rules if used to store derived 

facts explicitly. In other words, deduction and generation rules 

increase the number of facts retrievable from the database beyond the 

originally inserted facts, whereas integrity constraints reduce the 

number of facts that can be stored and retrieved. 

Semantic query optimization employs integrity constraints for 

transforming queries, in the extreme to the degree that they can be 

answered without looking at the stored facts at all, The underlying 

principle of semantic query optimization is that one can add to each 

query predicate, P, an arbitrary number of integrity constraints, C1, 

..., Cn, to form a new predicate: 

P AND C1 AND ... AND Cn 

without changing the result of the query (since all integrity 

constraints are always true by definition). The new predicate can 

then be converted -- by syntactic transformations (e.g., idempotency 

laws of the relational calculus [Jarke and Koch 19831) -- into a form 
that lends itself to more efficient evaluation. We speak of semantic 

query simplification if the query resulting from this process never 

has more terms or tuple variables in its predicate than the original 

one, This will be the case if a subpredicate of P is implied by the 

added integrity constraints (i.e., the subpredicate is redundant and 

can be omitted) or contradicts them (i.e., the query result will be 

empty by definition). Interestingly, the basic ideas underlying this 

kind of optimization appeared almost simultaneously in a database 
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theory [Aho et al, 19791 and in an A1 context [Hammer and Zdonik 1980; 

King 19811. However, it seem that the connection between the two 

approaches has not generally been recognized. Demonstrating the 

practicality of this relationship is one of the goals of the present 

paper 

Knowledge bases for semantic guery optimization. A major issue 

in semantic query optimization has been the reduction of the search 

space for applicable integrity constraints and efficiency-enhancing 

query transformations [King 1981; Du 19831. It is our perception 

that the type of integrity constraints existing in the system has a 

substantial influence on how this reduction can best be achieved. 

In particular, there may be a discrepancy between the scope of 

typical integrity constraints in a relational database system and in 

AI-based knowledge representation (e.g., a semantic net or a set of 

Prolog view definitions), With few exceptions (e.g., [~iug 1980 1 ) , 
database theory has concentrated on those types of general laws that 

are applicable to all elements of one relation (e.g., domain or 

functional dependencies), or to a combination of relations (e .g. , 
inclusion dependencies), It is therefore (relatively) easy to 

recognize the applicability of an integrity constraint to a particular 

query, and to develop powerful -- sometimes provably optimal -- 
inference mechanisms. The task may be further simplified by the fact 

that the same laws are also used in the database design process to 

structure the database. 
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In c o n t r a s t ,  published work i n  semantic query opt imizat ion  has  

focused on more s p e c i f i c  cons t ra in t s  t h a t  capture  chunks o f  knowledge 

about  smaller sets of  da ta ;  simple examples o f  such c o n s t r a i n t s  

include:  "only tankers have more than 400,000 tdwn [King 19871 o r  

" a s s i s t a n t  professors  do not have tenureff.  Here, it is no t  s u f f i c i e n t  

t o  look a t  a r e l a t i o n  name i n  the c o n s t r a i n t  d e f i n i t i o n ,  s i n c e  the  

a p p l i c a b i l i t y  of a cons t ra in t  t o  a c e r t a i n  t u p l e  depends on membership 

i n  a - subre la t ion .  Moreover, the  number of  c o n s t r a i n t s  is p o t e n t i a l l y  

very l a r g e  and tends t o  be a funct ion  of  t h e  number of  t u p l e s  

(database s i z e )  r a t h e r  than of  the  number o f  a t t r i b u t e s  (schema s i z e ) .  

F ina l ly ,  i t  is of ten  not  c l e a r  whether, how, and t o  what degree the  

add i t ion  of an i n t e g r i t y  cons t ra in t  w i l l  improve the  e f f i c i e n c y  o f  

query evaluat ion:  the  r e s u l t i n g  query may conta in  fewer o r  more terms 

than the  old one. A r t i f i c i a l  In te l l igence- type  h e u r i s t i c s  and 

i n f o r m t i o n  about the  database state a t  query execution time are 

f requent ly  required f o r  making these  decis ions .  

Ultimately, the  f e a s i b l e  ex ten t  o f  semantic query opt imizat ion  

depends on two fac to r s :  ( a )  what types of  i n t e g r i t y  c o n s t r a i n t s  are 

enforced by the  DBMS? and ( b )  what amount of  search  f o r  opt imizat ion  

s t r a t e g i e s  is j u s t i f i e d  by t h e  expected savings  i n  query execution 

time? For an ex te rna l  semantic query opt imizer ,  the  heavy r e l i a n c e  on 

database theory and general ly app l i cab le  laws has  the  advantage t h a t  

t h e  number of i n t e g r i t y  cons t ra in t  d e f i n i t i o n s  ( t o  be kept  c o n s i s t e n t  

between the  optimizer and the  DBMS) is r e l a t i v e l y  small and t h a t  

l i t t l e  knowledge is required about the  c u r r e n t  database state; t h e  

latter type of  knowledge is assumed t o  be handled by t h e  DBMS query 

optimizer ( t h i s  d is t inguishes  t h i s  approach from Warren's El9811 who 
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duplicates DBMS functions in his optimizer). Additionally, although 

there is a trend towards more sophisticated integrity assertions 

[Blaustein 19801, most current database systems do not go beyond 

relatively simple concepts, such as bounds for numerical attribute 

values, key or at most general functional dependencies, and certain 

types of inclusion dependencies, e.g. , unary ones [Cosmadakis and 

Kanellakis 1984 1 or referential constraints [ Jarke et al. 1984 1. 

As demonstrated in the sequel, these constraints can be employed 

quite efficiently in integrated query simplification algorithms that 

rely heavily on partial results provided by database theory. Such an 

algorithm has been implemented in DEC20-Prolog. Runtimes for a set of 

74 test queries with four to six tuple variables and 5 to 20 join and 

restrictive terms were in the range between .5 and 1.2 seconds, 

including the times for translating from the Prolog form to the 

internal representation used by the optimizer, and from the optimized 

internal form to the DBMS query language, The usage of additional 

'expert rules', obtained by observing systems behavior and intended to 

cut off less promising searches, even at the expense of guaranteed 

optimality, further reduces these times and, in particular, their 

growth rate with respect to the size of queries and the number of 

integrity constraints. 

The semantic query simplifier consists of two translation 

mechanisms, a knowledge base, and the simplifier inference engine 

working on it, using a 'blackboard' [Erman and Lesser 19751 for 

intermediate results accessed and altered by multiple, largely 
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independent algori thms (Figure 1 ) .  Thus, mul t ip le  ' exper t s '  can be 

c rea ted  f o r  d i f f e r e n t  kinds of  i n t e g r i t y  cons t ra in t s .  

input  query language (e,g. ,  Prolog) 
I 
I METAEVALUATE 
i$. 

dbca l l  language 
I 
1 GENERATE TABLEAU 
alr 

- 
i n t e r n a l  graph representa t ion  <------------------ 

on 'blackboard' SIMPLIFY 
I 
I NLTRANSLATE + 

DBMS query language (e.g.,  SQL) 

> knowledge 
base 

Figure 1: St ruc tu re  of  t h e  External  Semantic Query S i m p l i f i e r  

The knowledge - base is s p e c i f i c  t o  a p a r t i c u l a r  database;  it  

conta ins  a schema d e f i n i t i o n  and p red ica tes  desc r ib ing  the  i n t e g r i t y  

cons t ra in t s .  The current  system w i l l  u t i l i z e  [ I ]  key dependencies 

(one per r e l a t i o n ) ,  general  funct ional  dependencies (s tandardized so 

t h a t  they have only one a t t r i b u t e  on the  right-hand s i d e ) ,  value 

bounds f o r  numerical a t t r i b u t e s ,  and r e f e r e n t i a l  i n t e g r i t y  

cons t ra in t s ,  i .e. ,  inc lus ion dependencies, i n  which the  s u p e r s e t  s i d e  

must be a key and i n  which each a t t r i b u t e  appears  i n  a t  most one 

r e f e r e n t i a l  cons t ra in t  on t h e  subset  s i d e  [ ~ a r k e  e t  a l ,  19841. 

Referent ia l  c o n s t r a i n t s  were se lec ted  s i n c e  they are c e n t r a l  t o  the  

r e l a t i o n a l  da ta  model, y e t  have e a s i e r  in fe rence  a lgor i thms than 

general  inclusion dependencies. Key dependencies have been 

implemented separa te ly  from o the r  func t iona l  dependencies f o r  t h r e e  

111 Additional c o n s t r a i n t s  can be spec i f i ed  but  w i l l  be ignored by the  
s impl i f i e r ,  s ince  -- i n  t h i s  r e spec t  -- Prolog is pure ly  d e c l a r a t i v e .  
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reasons. First, many systems support keys but much less handle 

general functional dependencies, Thus, being able to state key 

dependencies directly may be convenient for a user. Second, in 

tableau optimization, equal keys mean that two complete rows become 

equal and one of them can be removed, leading to the removal of one 

join operation in query evaluation. Finally, the use of key 

dependencies speeds up the simplification algorithm in comparison to 

the usual representation in which a functional dependency would have 

to be defined for each non-key attribute. 

In summary, the knowledge base would be roughly appropriate for a 

database in Fagin's [I9811 domain/key normal form, except that we 

allow the use of general functional dependencies. Figure 2 contains 

the Prolog description of the knowledge base for a two-relation 

database describing employees and their departments. There is a value 

bound on the salary attribute of the employee relation; note that the 

bounds could be defined either by the domain type, or they could 

represent the actual maximum and minimum value for the current 

database state if those are maintained [Blaustein 19801. The two 

referential integrity constraints say that employees work only in 

departments that exist, and that managers are employees. 

schema(emp1oyee , [ eno , ename , salary, dno 1 ) . 
keydep ( employee, [ en0 1 ) . 
funcdep( employee, [ ename 1 , [ eno 1 ) . 
valuebound(employee, salary, 1000, 9000). 

schema(depar tment , [ dno , dname , mgr 1 ) . 
keydep(department , [ dno 1 ) . 
f uncdep(depar tment , [mgr 1 , [ dno 1 ) . 
refint(employee, [dno], department, [dnol). 
refint(department, [mgr], employee, reno]). 

Figure 2: Example of a knowledge base for the simplifier 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-84-5 1 



Page 11 

The two translation mechanisms make the core simplifier more or less 

independent of its input (from the user) and output (to the DBMS) 

query languages. There are currently experimental interfaces for 

Prolog input [Vassiliou et al. 19841, and for relational algebra and 

SQL output. The simplifier itself expects its input in a tableau-like 

subset of Prolog [Jarke et al. 79841. Essentially, each query is a 

list of "dbcall" predicates corresponding to the rows of a tableau: 

or to the inequality comparisons: 

dbcall(Operator, Left - operand, Right - operand) 

where the operator may be one of: equal, notequal, lessequal, 

greaterequal, less, greater, and the operands are either domain 

variables appearing as tableau entries or constants. The simplifier 

does a limited amount of input checking by comparing the form of the 

input to the schema information, and constant values to the value 

bounds stored in the knowledge base, Domain variables are expected to 

be indicated syntactically by beginning with '*t - " (for target 

variables) or with '@v - @' (for nondistinguished variables). 

Figure 3 presents an example input query. If Prolog is used as 

the user query language, such queries are derived by processing 

deduction rules (view definitions) defined by Horn clauses [ Vassiliou 

et al. 1984; Jarke et al. 19841. For instance, the query in Figure 3 

could have been derived from a view definition and Prolog query as 

given in Figure 4. 
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[dbcall(employee , [v Eno 1,  t-X , v-Sall , v-D 1 1, 
dbcall(department, rv D, v Fct2, v MI), 
dbcall (employee, [ v-MY smiley, v-Sl3, v Dno3 1 ) , 
dbcall(employee, [v-Eno, t X, v-S, v-~noT), 
dbcall(greaterequa1, v S, TOOO), 
dbcall ( lessequal, v sax1 , v-Sal3), 
dbcall ( lessequal, vISal3, 4000 ) 1 

Figure 1: An example dbcall query 

/* example view definitions in Prolog: it is known that no manager 
makes more than 4000, but nobody makes more than his manager */ 

works - directly for(X, Y) :- 
employeeT~no 1 , X , Sal 1 , D) , 
department(D, Fct2, M), 
employee(M, Y, Sa13, Dno3), 
Sall =< Sa13, 
Sa13 =< 4000. 

/* Prolog query: who works directly for smiley and makes at least 4000? */ 

:- works - directly - for (X, smiley) , employee(Eno, X, S, Dno) , S >= 4000. 

Figure 4: Original Prolog query from which Figure 3 is generated 
by METAEVALUATE mechanism 

The principle of the inference engine has been described in 

[ Jarke et al. 19841 : 

1. For each tableau variable that has a value bound constraint, 

add two inequalities to the query. 

2, Set the Boolean variables REPEAT and FIRSTTIME to true. 

3 .  Apply an inequality simplification algorithm; if a 

contradiction is detected, stop with an empty query result; 

if variables have to be renamed due to newly detected 

equality conditions or if FIRSTTIME, set REPEAT to true and 

FIRSTTIME to false, else set REPEAT to false. 
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4. If REPEAT then do the following: apply a functional 

dependency chase algorithm with deletion of duplicate rows; 

if a contradiction is detected, stop with an empty query 

result; if variables have been renamed return to 3. 

5. Remove tableau rows that serve no other purpose than 

establishing the existence of certain tuples in a relation 

which can already be inferred from referential integrity 

constraints. 

A shortcoming of this procedure is the complete separation of 

processing inequalities and functional dependencies which leads to 

substantial superfluous work. In the subsequent section, a new 

algorithm is described that integrates these two steps and results in 

less overall complexity (and real time savings, as shown by the 

comparison of the two implementations). In this method, a blackboard 

is used for managing predicates that are inserted for temporary, 

shared use by both subalgorithms and erased later, The overall 

algorithm always starts and ends with an 'clean' blackboard, 

4.0 A GRAPH-BASED ALGORITHM AND ITS IMPLEMENTATION IN PROLOG 

4.1 Two Graph Representations 

The query simplifier uses two interacting graph representations: 

a query graph for representing a query containing inequalities, and an 

FDfKD graph for representing the application of functional and key 

dependencies. The former ex tends ideas by [Rosenkrantz and Hunt 19801 

whereas the latter is based on concepts introduced in [Downey et 

al. 19801 who also proposed a fast congruence closure algorithm for 
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determining the lossless join property of a tableau, a variation of 

which is used as part of the algorithm presented here. Both graphs 

share a common set of nodes but differ in edge semantics. 

var-1 <= const 

var-1 < const 

var-1 > eonst 

cons t 
var-1 --------- > O(integer1 

cons t - 1 
var-1 > O(integer) 

-const 
var-1 <--------- Ofinteger) 

-cons t - 1 
var-1 <--------- Ofinteger) 

Figure 5: Construction of query graph from inequalities 
[ Rosenkran tz and Hunt 1 980 1 

The query graph is a labelled directed graph. The node set 

conkins all entries appearing in the tableau (i.e., the dbeall 

predicates that reference relations), plus a node O(d) for each 

ordered domain d 121. Ares represent inequality conditions. There 

are two types: those representing lessequal conditions, and those 

representing notequal conditions. Equality terms are handled by 

renaming; the remaining three operators are converted to lessequal 

arcs, as indicated in Figure 5 .  

m r r e n t  implementation allows only integer as this domain, 
Moreover, DEC20-Prolog allows only integers up to about +/- 131,000. 
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In  Prolog, tableau element nodes a r e  represented  as 4-ary 

p red ica tes  a s s e r t e d  i n  the  blackboard: 

i n  - tableau(Tab1eat.t-entry, Level, Tableau-row-no, A t t r i b u t e  - name). 

The latter two parameters cha rac te r i ze  the  pos i t ion  o f  a tableau e n t r y  

i n  t h e  input  query. The Level parameter provides information when the 

e n t r y  was crea ted  with r e spec t  t o  the  s i m p l i f i c a t i o n  process ;  i t  is 

necessary because t h e  app l i ca t ion  of  e i t h e r  o f  t h e  two a lgor i thms 

working on the blackboard can change tableau e n t r i e s .  Edges a r e  

represented by 5-ary predica tes :  

i n e q u a l i t y ( I d e n t i f i e r ,  Operator,  L e f t  - node, Right - node, Length) ,  

where the  I d e n t i f i e r  is used f o r  f a s t  r e t r i e v a l  on the  blackboard 

(e ,g , ,  f o r  e rasure  o r  change of  operand names) and Length is 

determined as indicated i n  Figure 5. 

In the  F D l K D  graph,  a bundle of  d i rec ted  edges connects  each node 

whose a t t r i b u t e  name appears on t h e  right-hand s i d e  of  a func t iona l  o r  

key dependency i n  the  knowledge base, t o  a l l  t h e  nodes corresponding 

t o  the  left-hand s i d e  of  t h a t  dependency. An example o f  a combined 

query and FD/KD graph is given i n  Figure 6 f o r  t h e  example i n  Figure 

3. The FD/KD edges are not  s t o r e d  e x p l i c i t l y  bu t  der ived when needed, 

u t i l i z i n g  Prolog's  e f f i c i e n t  p a t t e r n  matching c a p a b i l i t i e s .  
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inequality edges 

------------------ 0 ( integer ) 
1 4- 

v En01 v M v En0 t X smiley v S v Sall ---> v-Sal3 v D v Dno3 v Dno - 4  -+ TbcI 4\ - - - - - 
I I I 1 \ I  
I I I i \ I  
I I I I I 
I f 1 KD I I\ FD 
I I ledges I I \ edges 
I I I I I \ 
I I I 1 I \ 

Row1 Row3 Row4 v - En01 v - M v - Eno Right-hand sides of FDs/ KDs 

Figure 5: A functional and key dependency graph overlayed 
with the inequality graph for the query example 

4.2 Two Graph Algorithms And Their Integration 

The two representations could now be used as in section 3 to 

simply implement a repeated execution of two separate algorithms until 

nothing changes any more. Instead, we shall first describe each of 

the algorithms and then present a better integration. The two 

algorithms below are extensions and adaptations of work by 

[Rosenkrantz and Hunt 19801 for the query graph, and by [ Downey et 

al. 19801 for the FDlKD graph. They can be summarized as follows: 

1. Inequality optimization: The algorithm can be summarized by the 

following Prolog rule: 

process inequalities :- 
remove mult iedges , 
compute shortest paths, 
pos tprocess - graph( 0 ) . 

Remove - multiedges succeeds after removing multiple redundant 

comparisons between any pair of nodes. A (deliberately extreme) 
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example is given in Figure 7. Note, that the first inequality 

(greater, v-S, 200) is removed since it is implied by the 

valuebound on the salary attribute. (The output of the simplifier 

does not really have the same format as its input; the example 

has been translated back to the dbcall language for readability,) 

/* a query with redundant inequality comparisons */ 
[dbcall(employee, [v Enol, t X, v-Sall, v - Dl), 
dbcall(department, rv D, v Fct2, v MI), 
dbcall (employee, [ v-M, v M%I , v~al3, v Dn03 1 ) , 
dbcall(employee, [v-Eno ,-t-~, v-S, v-~no] ) , 
dbcall(greater, v S, 200), 
dbcall (equal, v   an, smiley ) , 
dbcall ( lessequai, v S , 4000 ) , 
dbcall (no tequal , v 5 ,  6000 , 
dbcall(no tequal , V ~ S ,  6000) , 
dbcall ( lessequal, v S , 6000 ) , 
dbcall( no tequal , v - 3, 4000) 1 

/* an equivalent query after removal of redundant inequalities */ 
[dbcall(employee, [v Enol, t X, v Sall, v - Dl), 
dbcall(department , rv D, v Fct2 ,-v M] 1 ,  
dbcall (employee, [ v-MY smiley, v g 1 3  v Dno3 3 ) , 
dbcall(employee, Cv Eno, t X, v - 5 ,  v - ~noJ), 
dbcall( lessequal, V ~ S ,  39@) 1 

Figure 7: Example for removal of multi-edges 

Compute - shortest-paths creates, on the blackboard, a Prolog 

representation of the shortest paths between all pairs of nodes, 

using a simple algorithm of cubic (in the number of nodes) 

complexity , as described , e. g. , in [ Reingold et al. 1977 1 . The 
algorithm has been enhanced in the sense that it stops with an 

error message and an empty query result as soon as a negative 

length cycle (meaning ' A  < A t  for any node A on the cycle -- see 

the example in Figure 8) is detected, and that it considers only 

nodes that actually appear in inequalities. 
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I ?- query8(Q), generate tableau(0 ,Q) , Process inequalities* - - 

warning: contradiction among inequalities 

Q = [dbcall(employee,[v Eno1,t X,v Sal1,v - Dl), 
dbcall(department ,rv D, v Pct2Sv MI ) , 
dbcall (employee, [ v - M ~ v - M ~ ~ ,  v-Sai3, v-Dno3 1 ) , 
dbcall (employee, [ v-Eno , t-X , v-S , v-Dno 1 ) , 
dbcall(lessequal,v S,4000), 
db~all(~reatere~uaZ, v Sa13,5000), 
dbcall(greater , v-S, v - %13) 1 

Figure - 8: Prolog log and query graph showing a contradiction 
between inequalities by a negative length cycle. 

Postprocess-graph (the parameter corresponds to the 

previously mentioned Level parameter in the in - tableau predicates) 
follows the cycles with a total length of 0 and renames all 

variables appearing on such cycles, either to a single variable 

name or -- if any node O(d) is on the cycle -- to a constant 

corresponding to the total length of the path from each node on 

the cycle to node O(d). In the query graph, renaming leads to the 

removal of nodes and all their related arcs and shortest paths, 

FD/KD optimization: A fast chase algorithm computes the 2. - 
congruence closure of the FD/KD graph in a breadth-first fashion, 

using the Level parameter to prescreen the tableau entries to 

which an FD or KD might be applicable at a given point in time, 

The algorithm terminates when, at a given level, there are no 

further in - tableau predicates with that level. In other words, 
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the algorithm tries first to apply all directly applicable 

FDs/KDs; afterwards, only such FDs/KDs can be applicable that 

have as their left-hand side tableau elements changed in the 

previous step, KDs are tried before FDs since their application 

leads to the deletion of a row and therefore renders the 

application of further FDs superfluous. As an example, consider 

the preprocessed query in Figure 7. At level 0, only one 

functional dependency is applicable, leading to the new query: 

Edbcall(employee, [v Enol, t X, v Sall, v-Dl), 
dbcall(department, rv D, v Fctz,-v MI), 
dbcall( employee, [ v-M, smirey, v-gl3, v Dno31) , 
dbcall(emp1oyee , [ v-Eno 1 , t X , v - S, v - ~ n o j  ) , 
dbcall( lessequal, v-S , 39997 3 

At level 1, the key dependency for the employee relation becomes 

applicable, leading to the deletion of the fourth row and to 

renaning of v - Sall to v - S in the first row, Another example is 

given in Figure 9; here, the notequal predicate prevents 

successful application of the key dependency and the query result 

will be empty. 

I ?- query lO(Q), generate tableau(0,~), simplify. - 
warning: contradiction by \= condition: 
v Dno cannot be equal to v D 
as required by a functionay or key dependency 

Q = [dbcall(employee,[v Eno1,t X,v Sal1,v-Dl), 
dbcall ( depar tmen t , rv-D , v-Fc ~ ~ T v - M  1 1 , 
dbcall( employee, [ v M, smiley , v Sal3, v ~ n o 3  1 ) , 
dbcall (employee, [ v- no , t X ,4080, v  no 1 ) , - 
dbcall (no tequal , v 5 ,  v  no) 1 - - 

Figure 9: Example of a contradiction detected by application 
of functional and key dependencies 
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A closer look at the interplay of these two algorithms shows that 

the results of each algorithm can be expressed in the notion of the 

other by integrating the two graph representations as shown in Figure 

6; this in turn leads to a better integration that avoids full 

repetition of both algorithms at each stage of the algorithm given in 

section 3. 

The most important observation concerns the application of a 

functional dependency by the second algorithm, Its result is that two 

tableau entries are made equal. If both entries, say X and Y, are 

variables, this corresponds to introducing zero-length edges from X to 

Y and from Y to X [31. If previously there was a negative-length 

shortest path in either direction, this leads immediately to a 

negative length cycle and thus to a contradiction in the query, 

Otherwise, all of the shortest paths must be recomputed to look for 

new zero length cycles which could lead to variable renaming, using 

the postprocess-graph predicate at the current Level. However, the 

complexity of this recomputation is at most quadratic (rather than 

cubic as originally), since only each of the previous shortest paths 

has to be compared with a path through the new edges between X and Y. 

For an example for the integrated procedure, consider again 

Figures 3 and 6. Adding zero length edges between v - S and v - Sall in 

Figure 6 through the application of a functional (level 0) and a key 

(level 1) dependency simplifies the query of Figure 3 to: 

131 If one entry (say Y) is a constant of domain d, the same procedure 
will follow but the edges to be added to the graph will be one from 
node X to node O(d) with length Y, and one from O(d) to X with length 
-Y. When X and Y are (different) constants, there is again a 
contradiction leading to a message and an empty query result, 
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[dbcall(employee, [v Enol, t X, 4000, v Dl), 
dbcall(department, rv D, v ht2, v MI); 
dbcall ( employee, [ v-MY .$mirey , 4008, v-Dno3 I ) 1 ) . 

Vice versa, changes in the tableau caused by the inequality 

algorithm will be indicated by the Level parameter of the in-tableau 

predicates on the blackboard, such that they can be exploited by the 

FD/KD algorithm in the same way as changes caused by previous FDlKD 

applications, The implementation of this interplay makes use of the 

recursion features of Prolog. A sketch of some of the high-level 

predicates follows (the system currently has about 200 clauses): 

simplify :- 
process-inequalities, 
one relation simplify(O), 
remove - dele t a b l e  - danglers, 

one - relation-simplify(Levef) :- 
rowrel(Row1, Rel9, rowrel(Row2, Rel), Row2 > Rowl, 
prescreen-and-simpliEy(Level, Row!, Row2, Rel), 
fail. 

one - relation-simplify(Levef) :- 
Level1 is Level + 1, in - tableau(-, Levell, -, - ) 9 

! , 
one relation-simplify(Leve1l). 

one - relatron - simplify( - ), 
prescreenand-simplify(0, Rowl, Row2, Ref) :- 

one level simplify(0, Rowl, ROW~, Rel), !. 
prescreenand-sTmplify (level, Row 1 , Row2, Rel ) : - 

(in - tableau(-, Level, Row1 , -); in - tableau(-, Level, Row2, - ) )  , 
! , 
one - level-simplify(Leve1, Rowl, Row2, Rel), 

one - level-simplify(Leve1, Rowl, Row2, Rel) :- 
equal-key(Leve1, Rowl, Row2, Rel), schema(Re1, Schema), 
!, 
coerce(Leve1, Schema, Rowl, Row2), 
delete row(Schema, Row2). 

one~level~si~plify(~evel, Row 1 , Row2, Rel) : - 
equal LHS(Leve1, Rowl , Row2, Rel, RHS) , 
coerce(~eve1, RHS, Row 1, Row2), 
fail. 

one - level-simplify(-, -, -, -). 
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The predicate, coerce, tries to make the values of the attributes in 

the list RHS equal between rows Row1 and Row2, gives appropriate error 

messages should this prove impossible due to contradictions, and 

indirectly activates the recomputation of shortest paths. 

5.0 CONCLUSIONS AND EXTENSIONS 

The practical relevance of tableau-oriented simplification 

techniques inspired by database theory has repeatedly been questioned 

by practioners, as evidenced by the fact that they are hardly 

implemented in any of the well-known relational systems, Our 

preliminary experience with an actual integration of these concepts 

into a working system seems to refute this negative opinion. On one 

hand, the need for semantic simplification invariably arises when 

higher-level interfaces such as natural language [Ott and Horlaender 

19821 are to be implemented that rely heavily on view mechanisms, 

An important if trivial observation in this context is that -- in 
contrast to integrity checking in update operations -- the query 
simplifier has complete freedom to use just as many constraints as 

justified by the expected benefit. The modular implementation enabled 

by logic programming in connection with the blackboard concept is 

particularly flexible in allowing the easy addition of 'expert rules' 

for which constraints to use in a given environment. For example, the 

current implementation tries to avoid the exponential search incurred 

by full handling of notequal conditions [Rosenkrantz and Hunt 19801 by 

ignoring certain notequal-related simplification strategies, 

Similarly, the initial shortest-path procedure currently appears to be 

the major performance bottleneck. We are therefore experimenting with 
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'expert rulesf that reduce the number of inequalities based on 

valuebound conditions, and thus the number of nodes in the algorithm 

based on 'reasonable' -- but not failproof -- assumptions. 

On the other hand, the implementation of the simplifier has 

demonstrated another, quite surprising advantage (although it may seem 

obvious in hindsight): the capability of the system to provide 

meaningful warnings in cases where previous query evaluation 

subsystems would just return an empty result. The need for such 

enhanced feedback was especially felt during our earlier work on 

empirically evaluating a natural language query system where users 

were often helpless when the system returned an unexpectedly empty 

result [ ~arke et al. 19851, 

Apart from our work on an improved interface from Profog to the 

simplifier (handling recursion and buffer management [ Jarke e t 

al. 1984]), two extensions to the simplifier itself seem particularly 

promising. The first is the analysis and optimization of predicates 

handling arbitrary functions over database data which should lead to 

improved database interfaces to decision support systems, statistical 

databases, recursive databases, etc. 

Additionally, work is underway to extend the simplifier to the 

multi-user case. This idea is presumed to have several advantages. 

First, since all users would be read-only, the simplifier requires 

only rudimentary concurrency control and can thus be a relatively 

small and simple system. Second, since the simplifier is external, it 

can interact with the DBMS as a single user, thus reducing DBMS 

concurrency control problems. Third, as a consequence of the previous 
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two, the simplifier has full freedom to perform common subexpression 

analysis to share query evaluation costs and to create common 

temporary access paths [Jarke 19841. Finally, as a consequence of its 

global architecture (section 3 ) ,  the simplifier can easily accept 

multiple input languages, although, from the viewpoint of error 

messages and efficient common access path analysis, a single input 

language, e.g., Prolog, may be more desirable since it would allow the 

addition of view definitions to the knowledge base. 

In summary, it appears that narrowing the scope of semantic query 

optimization to database theory-based simplification -- while keeping 
the general idea in mind -- has some benefits of simplicity and 

efficiency. This should by no means be constructed as a criticism of 

general semantic query optimization, On the contrary, we see our 

approach as a kernel around which more sophisticated knowledge bases 

can be constructed, whose corresponding inference techniques work on 

the same blackboard data structure, hopefully with little interference 

with existing algorithms. Further classification of integrity 

constraints may be desirable for such extensions; in particular, 

those types of constraints should be investigated for which the range 

of applicability is easily detectable and does not, in itself, require 

answering a complex query. 

Acknowledgments. The concept of the external semantic query 
simplifier builds on earlier work with Juergen Koch and Joaehim 
~chmidt on query transformation strategies in database programming 
languages, and with Jim Clifford and Yannis Vassiliou on interfacing 
Prolog with relational database systems. 
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