
A DATA-DRIVEN USER INTERFACE GENERATOR FOR

A GENERALIZED MEJLTIPLE CRITERIA DECISION SUPPORT SYSTEM

Matthias Jarke, Mohamed Tawfik Jelassi
and Edward A. Stohr

October 1984

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS I182

GBA 4184-72(CR)

A shorter version of this paper appears in Proceedings
IEEE Workshop on Languages for Automation, New Orleans,
November 1-3, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 2

1.0 INTRODUCTION

The development of reliable user friendly software is a difficult

and error prone task. And yet, as amply demonstrated by the current

wave of popularity of spread-sheet programs, the rewards can be great.

Software that combines functionality with a good interface will be

used by management personnel on a voluntary, everyday basis and in

ways that, pernaps, were not even dreamed of by the software

designers. The apalications that have so far been developed have, for

the most part, been fairly rudimentary from a management science

point-of-view. However, we believe that the existence and popularity

of these elementary models will inexorably create a demand for more

sophisticated ones. In fact the processing of information in more and

more complex ways will become a major focus of economic competition

and survival.

In this paper we describe a software system that is designed

specifically to facilitate the development of decision support systems

(DSS). Our objective is to help the management scientist build

successful software. Our focus is on DSS employing Multi-Criteria

Decision Making (MCDM) models. But this is not the only possible area

of application. Since our goal is to develop software that will help

others develop software there is a possibility for confusion. To

clarify the discussion we will call the set of software tools that we

are designing a "Generatorw for multi-criterion decision support

systems (GMCDSS) . The generator provides an environment for model

builders to develop "targetw software in the area of multi-criterion

DSS (MCDSS). The builders therefore are the users of the GMCDSS while

the decision makers use the MCDSS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

The CMCDSS provides a set of languages and a uniform environment

for the model builders. It helps them interface many different kinds

of MCDM algorithm and provides screen generation and database

facilities for direct employment in the target MCDSS. It is based on

an extension of normal database management techniques in which (1)

application data, (2) management science models (and other programs)

and (3) meta-data concerning the structure of decision-making

problems, are combined in a uniform formalism. Our approach is to

model the decision processes of the end-users using a data abstraction

hierarchy. It is at this point that the generator becomes specialized

to a particular class of application (in our case MCDM problems).

Once the data abstraction has been correctly defined it is much easier

to build a target system which will provide a uniform and friendly

environment for the user. Essentially we are following the ROMC

(Representation, Operations, Methods and Control) approach to DSS

building first advocated by Sprague and Carlson [1982], In our case

the "representationw involves principles of data abstraction.

Section 2 of the paper briefly describes the general environment

of MCDM decision-making and develops a set of software design

requirements. Section 3 outlines the architecture of the data manager

component of the CMCDSS and its relationship to the overall system

architecture which was described in a previous paper [Jelassi et al.,

19841. Section 4 describes the abstraction hierarchy together with

some extensions of the normal data definition component of relational

DBMS's. Given this data model Section 5 describes the process of

developing the user interface by means of an example. This

description is accompanied by samples of the code used by the model

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 4

builders. Essentially this employs the SQL language [Astrahan et al.

19761 with two different kinds of extensions: (1) to allow us to take

advantage of the meta data stored in the abstraction hierarchy, and

(2) to allow us to employ database techniques to dynamically generate

user screens representing the current state of the man-machine

decision system. Finally some conclusions and suggestions for future

work are provided in Section 6.

2.0 DESIGN REQUIREMENTS FOR MCDM MODELS

There are a wide range of different MCDM techniques. All are

designed to help cope with the existence of multiple, conflicting

objectives in decision problems. Some of these methods (for example,

goal programming [Ignizio 1976 1 and UTA [Jacquet-~a~reze and Siskos

19821) deal with quantifiable objectives and constraints and represent

extensions of single criterion optimization techniques. An important

group of techniques is based on utility theory [Keeney & Raiffa,

19761. Other techniques such as AHP [Saaty, 19801 and ELECTRE [Roy,

19681 are designed to handle situations where judgements have to be

made between alternatives on the basis primarily of qualitative,

relatively uncertain, information. Correspondingly, the output from

the system ranges from a complete specification of the levels of a

number of activities (goal programming), to a cardinal priority

ordering (AHP) or simply a dominance ranking (ELECTRE).

Good reviews of MCDM techniques are contained in [Zeleny 19821

and [Bui, 19841. For our purpose it is sufficient to observe the

following:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 5

1. All of the techniques rely on subjective inputs from users;

2. They attempt to provide informational and computational

support but do not dictate the final decision;

3. Often the methods involve extensive interactions with users

in which learning takes place and either utility functions

are derived or "dominatedn alternatives are successively

eliminated;

4. There are many different techniques and many different

situations in which they might be employed;

5. Any given decision situation might require that several

techniques be used in conjunction;

6. End-users will usually be inexperienced both in MCDM

techniques and in the use of the computer.

As an example of (51, it is conceivable that a group decision-making

problem may start-out as a cooperative one but gradually become

uncooperative. Since the reverse is also true the need for a

versatile, intelligent system becomes obvious. It is also apparent

that the system should be able to play an "advisoryw role in helping

potential users choose suitable techniques to apply to their decision

problem. Finally, the delivered MCDSS should also have a helpful and

easy to use interface and exhibit other properties of good software

such as accuracy, reliability and maintainability.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 6

An architecture for a system that will help provide these

capabilities is described in Section 4 below. Before leaving this

section, however, we note that a typical use of a MCDSS by an end-user

will involve the following phases:

(1) Selection of an existing application (for which data and a history

of prior usage exists) or alternatively the definition of a new

application area.

(2) Selection of one or more MCDM techniques from a ltmodel bankN of

algorithms maintained by the GMCDSS.

(3) Gathering of data (perhaps from external sources) concerning the

application area.

(4) Selection and/or computation of criteria by which the relative

merits of the alternatives are to be judged.

(5) Restriction of the set of possible alternatives to be considered

on a priori grounds.

(6) Generation of data consistent with steps (4) and (5) in a format

acceptable by the models selected in step (2).

(7) Interaction with the model in the solution of the MCDM problem.

(8) Storage and analysis of intermediate and/or final results.

The data abstraction hierarchy on which the GMCDSS is based explicitly

recognizes the above decision-making steps, This model is described

in Section 5.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 7

Figure 1 shows the components of the Data Hanager sub-system of

the GMCDSS with which we are concerned in this paper- As discussed

more fully in [Jelassi et al., 19841, the Data Hanager connects to two

other major subsystems--the Model Manager and the Dialogue Manager.

At this level the design resembles that proposed by a number of other

researchers (e.g., t~prague & Carlson, 19821, [Stohr & White, 19821).

Briefly the Dialogue Manager provides menu management, screen

generation and graphics facilities. It also contains information on

physical device characteristics such as line speeds, screen sizes and

communication protocols. It provides two-way communication with both

the Model Manager and the Data Manager. The data flows between the

Dialogue Manager and Model Manager consist of prompts from the MCDM

models, and reciprocating commands and parameter values from the

end-users. The data flows between the Dialogue Manager and the Data

Manager consist of queries and update transactions made by the user

and reciprocating query answers, confirmation messages and data

dictionary definitions from the Data Manager.

The Model Manager consists of executable modules (MCDM models and

general service programs) together with modelling language facilities

and execution management. The data flows between Model and Data

Manager consist of dynamic requests from the models for information

and the corresponding responses from the DBHS. In addition, as

explained in this paper the Data Manager supports the user in

generating the data (goal programming tableaux, matrices of criteria

values etc.) required by the MCDM models.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 8

The Data Manager c o n s i s t s of the f i v e software components shown

i n Figure 1. The Query Language F a c i l i t y is the main focus o f t h i s

paper. Th i s is the language t r a n s l a t o r and message switching cen te r

o f t h e GMCDSS. It l i n k s t h e three major sub-systems and a l lows them

t o be developed somewhat independently.

The i n t e r n a l d e t a i l s of the Generalized V i e w Processor w i l l be

described i n more d e t a i l i n another paper. However, its funct ion

within t h e t o t a l GMCDSS w i l l play an important r o l e here, I n

r e l a t i o n a l database theory a "vieww is genera l ly a v i r t u a l r e l a t i o n

t h a t is defined by a query addressed t o the "base r e l a t i o n s u o f t h e

database. The view d e f i n i t i o n is s to red but no t t h e r e s u l t i n g

database t a b l e , Users may compose quer ies i n terms o f e i t h e r t h e

views o r t h e base r e l a t i o n s o f the database. A view f a c i l i t y provides

a number o f advantages. F i r s t , expressing quer ies i n terms of views

o f t e n inc reases the expressive power o f t h e language by providing a

kind of short-hand notat ion. Secondly, c e r t a i n use r s may "knoww t h e

database only i n terms of the views t h a t are re levan t t o t h e i r needs.

This s i m p l i f i e s the u s e r ' s learning task and can be used t o provide an

important measure of secur i ty . A s i l l u s t r a t e d l a t e r i n t h e paper, we

f ind a need t o genera l ize the accepted concept of a view t o a l low

views t o be parameterized and t o include no t only raw d a t a bu t a l s o

computed values.

The Data Dictionary w i l l provide t h e system with

llself-knowledge". This f a c i l i t y must a l s o have enhanced c a p a b i l i t i e s

s ince we w i l l requi re it t o handle metadata. Its r o l e (bu t no t its

implementation) w i l l be discussed below.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 9

The Staging Processor provides facilities for loading external

data from heterogenous sources into the DBMS. In a microcomputer

environment this might be a decoupled "f ile-server allowing

communication with the company's mainframe and/or external information

utilities. We will not consider this component further in this paper.

The final component of the Data Manager is a general purpose

relational data base management system (DBMS). We will assume that

this will support interactive querying as well as embedded query

languages. To provide a concrete example we will assume that the DBMS

supports the SQL query language.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 10

MCDM MODEL MANAGER
I I

1 1 1 2
I I

I DATA MANAGER 111 I
1- I I I- I 3 I
I Histo- I I
I rical I I
I-data -1 I

\ I

1 Query Language 1 --------------- I - DIALOG
I Facility I--------------- 1 - MANAGER
I I 4 I - I

1 External 1 I \ I
ldata I I \ I I I 8 IData 1 1
Izource= I -- I --- I Staging 1 7 1 Generalized I ----- IDictionl I

I / I Process I----- l View Processor 1 ----- larv 1 1
I / I I I 1 9 1

/ /
- I I

I- I I / \ \ T I
lVery I / 1 \ 1 121 113 14/ /15 I
llarne DPI / I \ \ I I / / I
ldata I / /
lfiles ,I I

I

Tertiary I I I I
Storage I - I

1-1
I I

1-
I Model I
1 intermediate 1
I results I
I I
I Criterion I
I values I
I I
Q?2!9

Local MCDM Database

Legend :
1, Query/Insert 9. Criteria definitions/View definitions
2. Data/Definitions 10. Load
3. Query/Insert/Delete/Update 11. Unload
4. Data/Messages/Definitions 12. Database transaction
5. Translated transaction 13. Raw data
6. Preprocessed data 14. Request
7. Request 15. Data definitions/Integrity constraints
8. Request

Fig. 1: The Data Management Component of the GMCDSS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 11

4.0 ABSTRACTION MECHANISMS IN MODEL/DATA MANACEXENT

Abstraction mechanisms have been widely proposed for data

modelling since the original papers by Smith and Smith [19771. In

this paper, an abstraction ~echanism will be introduced that allows

the system to guide the user in a stepwise refinement process from the

selection of an application and a decision model, to the choice of a

subgroup (category) of alternatives to be considered, to the choice of

evaluation criteria for that category, and finally to the extraction

of decision-relevant data from an underlying database, followed by the

execution of the model.

This process is implemented as a sequence of menus. However, in

contrast to typical menus, their format is not rigid, but depends on

data retrieved from the database at various abstraction levels. In

this section, the abstraction hierarchy and its representation in a

slightly extended relational model will be presented. In Section 5,

its use for data-driven user interface generation will be

demonstrated .

4.1 Abstraction Hierarchy For Model Selection And Data Extraction

Figure 2 depicts the abstraction hierarchy that plays a central

role in the CMCDSS. For simplicity, we assume that the MCDM method

requires as input a set of alternatives each characterized by a number

of properties or attributes. For example, in a car-buying example the

alternatives are types of cars and the base relation would contain

relevant attributes such as "maximum speed", Itfuel consumptionw etc.

Some (but not necessarily all) of these attributes may be important to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 12

a particular user's decision problem. The attributes in this subset

are called "criteriaN. The data for the decision problem is stored in

a "decision matrix1* where the rows represent alternatives and the

columns criteria.

The main assumption of the abstraction mechanism is that all

necessary information about alternatives is derivable from data stored

in an underlying aaiabase, (However, during the execution of a

particular model the user may be allowed to add additional manually

defined criteria and alternatives.)

The abstraction hierarchy uses several types of abstraction:

aggregation for combining the input from multiple screens (e.g.,

ACCESS AUTHORIZATION from USER and APPLICATION) , specialization (e . g. ,
from the selected APPLICATION down to a particular CATEGORY of

alternatives), and instantiation (e.g., from a particular CATEGORY of

alternatives down to the actual ALTERNATIVES, indicated by the

vertical bar to the right of the decision matrix).

The function of each object type in Fig. 2 can be briefly

summarized as follows. A user may choose to work on an MCDM

application if he/she is authorized to do so. The user then selects a

method for the MCDM session to work on that application.

Subsequently, in order to create a decision matrix -- the typical

starting point for most MCDM methods -- the user has to define, how
decision alternatives and decision criteria are to be derived from the

underlying database.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 13

Alternatives are defined in two steps. First, the user selects a

subset or category of alternatives to be considered. For example, in

a car buying application, the user may be interested only in trucks

but not in other types of cars. This step takes one or more database

relations as its input to extract from them by selection and join

operations a single selected subrelation ("categoryw) on which all

further processing will be performed. Second, the user chooses a

grouping of database records within this subrelation such that each

group constitutes an alternative. For example, the user may be

interested only in distinguishing cars by their make and series, but

not, e.g., by details such as number of doors, kind of engines, etc,

Criteria are derived from attributes of the database records. In

the simplest case, an attribute value can directly serve as a

criterion (egg., maximum speed). However, frequently, the criterion

value may involve a function of several attribute values (e.g.,

average fuel consumption as the average of fuel consumption in the

city and on highways). Moreover, whenever alternatives correspond to

groups of records rather than to single records, criterion values must

be based on aggregate functions over these records (e.g., average,

minimum, maximum, forecast for next year).

Finally, the combination of alternative definitions (grouping)

and criteria definitions (computations) allows the computation of

criterion values for alternatives (CRIT-VALUE) from the underlying

database.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page I4

..............
! ! , . ! !
! APPLICATIONS ! . USER . ! METHODS !

! (Attributes) ! ! SESSION ! ! (Base Data) !
! ! ! !

Selection C ! !- Selection

! CURR - ! ! CURR - !
! CRITERIA ! ! CATEGORY !
! !

Instantiation I I Grouping
I I

! CRIT-NAME ! ! ALTERNATIVES !
! * ! ? !

1 Instantiation

! ! !
! ! ! !
! ! ! !
! * ! ! . * !ALT-NAME

CRIT-VALUE

! !
DECISION-MATRIX

- - - - - - - -

! ! ! ! ! ! !
1.. ! ! ! ! ! ! !

!--------!--!----!--!--------!----------I
a group ! ! //! ! I / ! !//////////!

(alternative) ! . ! //! ! //! !//////////!

! ! ! ! ! ! !
~elec t e d ~ m i - 6 ; ; for CURR-CATEGORY

Fig. 2: Abstraction Levels for Model Selection and Data Extraction

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 15

4.2 Relational Representation Of The Hierarchy

The proposed abstraction hierarchy can be implemented using an

extended relational database system. The extension of the model is

relatively small; we only add a few new domain types to capture the

semantics of the abstraction process. This allows us to manage

metadata like ordinary database data but still permits restrictions on

the operations io be performed on such data. The concepts are

somewhat similar to those proposed in the area of statistical

databases [Shoshani 1982, McCarthy 19821. New domain types include:

1. Category names - - and definitions: this is used in the

definition of categories, e-g., we may want to introduce a

category 'compact1, defined by a query:

DEFINE CATEGORY compact AS
SELECT *
FROM car-relation
WHERE length >= loft AND length <= 20ft;

A category is a particular type of view whose definition does

only allow a I*' in the SELECT clause (similar to the

lselectorf proposed by [Schmidt 19841). This actually is not

an extension of the language power of relational languages

since views are available in several DBMS; however, here

these data and definitions are stored as field values in

relations.

2. Function names and definitions: this is used in the - -
definition of criteria from database attributes [~arke,

1983 1 . Over conventional database languages (e . g . , SQL) , it

gives two advantages. First, one can give a name to columns

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 16

with aggregate functions; second, the set of aggregate

functions is not limited to those offered as built-in

functions of the DBMS. The extension of relational query

languages by functions with grouping still needs a

theoretical foundation, despite the pioneering work of Klug

E19821. We are working on such a framework but an extended

discussion is beyond the scope of this paper. As an example,

we may define a criterion, space, from underlying database

attributes, length and width, in a Pascal-like notation:

DEFINE CRITERION space AS
FUNCTION spfct(re1 : car-reltype) : REAL;
BEGIN
spfct := SELECT avg(1ength * width)

FROM re1
END ;

where "relW can be any subrelation of the car-relation (i.e.,

has the same relation type). Subsequently, we can call this

function for an arbitrary category and grouping of

alternatives, e.g.,

SELECT MAKE, SERIES, SPACE
FROM COMPACT
GROUP-BY MAKE, SERIES;

Note, that the combination of categories with generalized

functions provides a powerful 'generalized viewt capability

not available in standard database systems.

Procedure names definitions: These are similar to

functions, except that they do not return a value but just

start the execution of a model. This extension is needed to

execute models from the database and is similar to previous

work in relational model management (e.g. , [~lanning, 1984 I) ,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 17

Bearing these extensions in mind, we can now proceed to define

the relations underlying the object types in Fig. 2. The syntax

roughly follows SQL, as given in [Date, 19821, with details (such as

field lengths) omitted .

The first four relations capture the information required to

initialize a session on the DSS.

TABLE APPLICATIONS (APP-NAME (STRING, KEY) ,
APP-DESCRIPTION (TEXT))

TABLE ACCESS-AUTHORIZATION (APP-NAME (STRING, KEY),
USER-NAME (STRING, KEY),
PASSWORD (STRING, NOPRINT))

TABLE METHODS (METH-NAME (STRING, KEY),
METH-DESCRIPTION (TEXT),
METH-PROCEDURE (PROCEDURE-TYPE)

TABLE CURR-SESSION (USER-NAME (STRING, KEY),
APP-NAME (STRING, KEY),
METH-NAME (STRING, KEY),
DATE (INTEGER, KEY) ,
TIME (INTEGER, KEY))

On the next level, the choice and/or definition of a new category

of alternatives is stored.

TABLE CIJRR-CATEGORY (USER-NAME (STRING, KEY),
APP-NAME (STRING, KEY),
METH-NAME (STRING, KEY),
DATE (INTEGER, KEY),
TIME (INTEGER, KEY),
CAT-NAME (STRING, KEY))

TABLE CATEGORIES (CAT-NAME (STRING, KEY),
VIEW-DEE' (QUERY-TYPE))

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 18

Within each category, the grouping of alternatives and the choice

and definition of criteria must be decided. An alternative is defined

by keeping a combination of values in given columns of a base relation

constant. This partitions the rows into groups. The columns are

defined in the relation ALTERNATIVES. For each group of rows, the

criterion computation then proceeds as described above.

TABLE ALTERNATIVES (USER-NAME (STRING, KEY),
APP-NAME (STRING, KEY),
METH-NAME (STRING, KEY),
DATE (INTEGER, KEY) ,
TIME (INTEGER, KEY) ,
CAT-NAME (STRING, KEY),
ALT-ATTRIBUTE (ATTRIBUTE, KEY))

TABLE CURR-CRITERIA (USER-NAME (STRING, KEY),
APP-NAME (STRING, KEY),
METH-NAME (STRING, KEY),
DATE (INTEGER, KEY) ,
TIME (INTEGER, KEY),
CAT-NAME (STRING, KEY),
CRIT-NAME (STRING, KEY))

TABLE CRITERIA (APP-NAME (STRING, KEY),
CAT-NAME (STRING, KEY),
CRIT-NAME (STRING, KEY),
CRIT-DESCR (TEXT ,
MEASURE-UNIT (STRING),
CRIT-FUNCTION (FUNCTION))

Using the above definitions it is possible to construct a

generalized view definition e . , query with functions) that

generates the decision matrix from the underlying base relation.

Depending on how the decision matrix is to be stored, there are

several ways to proceed. The method illustrated below is probably the

simplest. It assigns one tuple of a relation CRIT-ALT to each

criterion column in the decision matrix; essentially, CRIT-ALT is a

representation of the join between CURR-CRITERIA and ALTERNATIVES.

The ALT-NAME is constructed from the ALTERNATIVES relation and must be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 19

the same for all criteria; it simply consists of the list of

attribute names that identify an alternative (this will often be a

subkey of the selected relation). Thus, the identifier of an

alternative is the combination of values in these attributes.

TABLE CRIT-ALT (USER-NAME
APP-NAME
METH-NAME
DATE
TIME
CAT-NAME
ALT-NAME
CRIT-NAME

(STRING, KEY),
(STRING, KEY),
(STRING, KEY),
(INTEGER, KEY),
(INTEGER, KEY) ,
(STRING, KEY),
(LIST-OF-ALT-ATTRIBUTES , KEY) ,
(STRING, KEY))

From CRIT-ALT, the decision matrix is generated as follows, The

identifier of the decision matrix is the sixtuple <USER-NAME,

APP-NAME, METH-NAME, DATE, TIME, CAT-NAME>. Its column names are:

the list of attributes that constitutes an alternative (ALT-NAME) and

the list of CRIT-NAMES associated with the table. Each row contains a

unique combination of attribute values in the ALT-NAME columns, and

the values computed from CRIT-FUNCTION in each column given by the

corresponding CRIT-NAME. In the extended SQL notation, the Query

Language Facility therefore produces the following kind of query:

DECISION-MATRIX =
SELECT CALT-NAME attributes>, cCRIT-NAME 1, ..., CRIT-NAME n>
FROM <CAT-NAME>
GROUP-BY CALT-NAME attributes>

The generalized view processor accepts this query, substitutes the

corresponding function definitions from CRITERIA for the criterion

names and the view definition from CATEGORIES for the CAT-NAME, and

optimizes the resulting query before submitting it to the DBMS or the

staging processor, Both the selected category relation and its

derived decision matrix are then loaded into the local database (which

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 20

we assume to be on a microcomputer).

Now, the MCDM method defined in the METHOD relation takes

control; during its execution, the user may wish to define new

criteria, either manually or by recomputing the decision matrix from

the category relation using additional CRITERIA entries. For the sake

of brevity, we cannot describe these operations in detail; we just

mention at Vnis wint that the user has two options: he/she can

either change the decision matrix or the underlying selected relation.

Only in the latter case, will it, in general, be possible to make the

additions to the data permanent -- by writing the selected relation

back into the underlying database -- because of the simple nature of
the operations allowed for category definition.

5.0 USER INTERFACE GENERATION -- AN EXAMPLE

We now show how model builders can use the abstraction hierarchy

of Section 4 to generate a user interface that will allow users to

access and run MCDM models. We will show a typical series of screens

and give examples of the code required to generate them. In the

limited space available many details must be omitted.

A contribution of the proposed GMCDSS is a coupling of the DBMS

Query Language with a screen generator. As with other Application

Generators, screens can be 'composed1 and stored in an off-line

database. Additionally, however, one or more windows in the screen

can be reserved for displaying database query results. Furthermore,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 21

if desired, these can be formatted automatically so that the retrieved

tuples appear as menu choices. We distinguish three distinct types of

function served by terminal displays: (1) information display, (2)

data entryhpdate and (3) menu choice. Classifying the different

screen types according to their primary function and as to whether or

not they require a database interaction produces the six basic screen

types shown in Table 1.

No database Database
Interaction Interaction

Information (1) DISPLAY-INFO-SCREEN (4) GEN-INFO-SCREEN
Display Help screens, Display query results.

predefined data.

Data-entry (2) DISPLAY-ENTRY-SCREEN (5) GEN-ENTRY-SCREEN
/upcia te Input values to Insert/update/delete/

program variables. match database values.

Menu-choice (3) DISPLAY-MENU-SCREEN (6) GEN-MENU-SCREEN
Fixed set of choices, Variable set of choices

determined by DBMS query.
Table 1: Categories of Screens: Command Names and Sample Applications

The commands that will activate each category of screen are shown

in capital letters in Table 1. Differentiating the types of screen in

this way allows the system to automatically generate the screens and

supervise the user interaction thereby reducing programming effort.

The model builders can partially predefine all screen types by

specifying input and output fields, comments, headers etc, However,

the top and bottom sections of the screens are automatically generated

by the system and contain application-independent menu choices, help

and other information. This varies with the class of screen but

provides a measure of standardization and a uniform way of interacting

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 22

with the system which is application and programmer independent, In

the following sample screens, the top line (containing the screen

name), and the function keys F1, F2, F3 (bottom of screen) are

simplified examples of system-supplied screen sections,

Screens of types (4), (5) and (6) invoke a range of DBMS services

while (3) and (6) activate menu-management services. Type (4) and (5)

screens are available in some commercial DBMS. With type (4) screens

the user can scroll both left and right and up and down and execute

searches over the results of the retrieved query (similar to a full

screen editor). Type (5) screens are composed simultaneously with the

definition of the relations in the database. These screens allow

record at-a-time interaction with database relations. The screen

fields correspond to relational attributes, In addition to the

traditional operations of insert, delete, and update, it is convenient

to introduce a 'match' operation which requires the user to input

attribute values to be compared to the stored relation. This new

command is not only useful for password checking, as shown below, but

also for double-checking data entry. Type (6) screens appear to be

novel. As discussed below, they provide a simple means for the model

builders to construct interfaces for dynamically varying situations.

For all types of screens it is possible for the programmer to

write variable values into predefined fields (WRITE , . TO , .
command) and to accept information input by the user from predefined

fields (READ .. FROM . command). With screens produced by the

GEN-MENU-SCREEN command it is also possible to assign the retrieved

values of database fields to program variables (ACCEPT ,. FROM ,.
USING command). We now give some examples of the use of these

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

commands. Note that the dynamically generated sections of the screen

will be depicted as lying between ruled lines. Language keywords will

be capitalized; variable names, field names and constant values are

in small letters.

1 Screen: Access 1
I MCDSS SYSTEM I

I User-Authorization -- Please enter
I
I User -name
I
I Password I
I I
I I
I I
I
I F1 = Help

I
F2 = Prior screen F3 = End session I

I I

The 'Access' screen provides the first interaction between the

MCDSS and the decision-maker. There are two methods of generating

such a screen. Using a type (2) screen, the code could be:

DISPLAY-ENTRY-SCREEN Access;
READ User-name-var FROM User-field;
READ Password-var FROM PW-field;
IF Password-var NOT IN SELECT Password FROM Access-Authorization

WHERE User-name-var = User-name;
DISPLAY-INFO-SCREEN PW-Violation;
END-SESSION;

END-DISPLAY-SCREEN;

PW-Violation is a type (1) screen. The database query performs a

simple table-lookup. If the password does not correspond to that

stored for the user the session is ended.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 24

An equivalent method uses a type (5) screen definition:

GEN-ENTRY-SCREEN Access;
MENU Window-1

MATCH User-name, Password
WITH Access-Authorization
IFNOT DISPLAY-INFO-SCREEN PW-Violation;

END-SESSION;
END GEM-ENTRY-SCREEN;

This method generates the whole window of the screen above (relation

name, field names, field lengths and types) from the database.

Although it may look more elegant in this particular case, using the

type (2) screen buys more flexibility at the expense of increased

programming and screen definition effort.

We will suppose that the decision-making session continues by

asking the user to select the MCDM application of interest to him/her

via the Applic-menu screen below.

I Screen: Applic-menu I
I MCDSS SYSTEM I

I The available Applications are: I
I I
1 1. Cars Car-buying decision I
1 2. Homes Home-buying decision I
1 3. Micro-computers Micro-computer selection I
1 4. Travel-packages Travel-package selection I
I 1
I Enter your choice: - 1

I I
I F1 = Help F2 = Prior screen F3 = End session I

The related program segment is:

GEN-MENU-SCREEN Applic-menu;
SELECT App-name, App-description
FROM Application;
ACCEPT App-name-var FROM App-name USING Choice;

Em-GEN-MENU-SCREEN;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 25

This is a type (6) screen. The choices in the middle window of the

screen, as well as the relation name, are generated from the SELECT

command and would vary depending on the current contents of the

database. The MENU command performs geometric calculations and

provision is made to allow for scrolling of the screen if the

information does not fit in the window. The ACCEPT verb causes the

assignment of the value of the database App-name field to the program

variable App-name-var based on the numeric value input into the

*Choicet field on the screen by the user. Thus if the user types *2*,

App-name-var gets the value *Homest.

I Screen: Method-menu I
I MCDSS SYSTEM I
I I
1 1. DEFAULT The system will select a suitable I
I method for your application I

I The available Methods are: I
I I
1 2. UTA Assesses additive utility functions I
I which aggregate multiple-cri teria in I
I a composite criterion using the infor- 1
1 mation given by a subjective ranking. 1
I I
1 3. ELECTRE Aggregates weak orders into an outran- I
I king relation and produces rankings. I
I I
I Enter your choice: - I
I I
I I
I F1 = Help F2 = Prior screen F3 = End session I
I I

Method-menu is dynamically generated in a similar way to Applic-menu.

The database query associated with this screen is:

SELECT Meth-name, Meth-description (40)
FROM Methods

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 26

The number in parentheses specifies a limit on the displayed width of

a database field and causes the wrap-around shown in the illustration.

Note that the DEFAULT choice was pre-specified; the choices in the

DBMS window therefore start at 2.

It is now possible to add a new row to the MCDM session relation

which tracks the history of user interactions with the system:

INSERT INTO Curr-session
<User-name-var, App-name-var, Meth-name-var, Date-var, Time-var);

Here USER-NAME-VAR through METH-NAME-VAR are program variables

generated through the above interaction while DATE-VAR and TIME-VAR

are system-supplied variables.

I Screen: Cat-menu I
1 MCDSS SYSTEM I
I I
I 1. See the definition of an existing category I
I 2. Define your own category
i

I
I

I
The available Categories are: I

I
I 3. Subcompact
I 4. Compact
I 5. Station-wagon
I 6. Trucks
I
I Enter your choice:
I

-

I F1 = Help F2 = Prior screen F3 = End session I

This type (6) menu allows the end user to select (or define) the

category of alternatives of interest to him/her within the chosen MCDM

application. The DBMS query used to generate this screen is:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 27

SELECT Cat-name
FROM Categories
WHERE App-name = App-name-var

Choice 1 generates a second menu of the same form to allow the user to

choose the criterion to be described. Choice 2 will lead to a type

(5) insert screen for the relation CATEGORIES.

I Screen: Crit-menu I
I MCDSS SYSTEM I
I I
I 1. See the definition of an existing criterion I
I 2. Define an aggregate criterion 1

I
The available Criteria are: I

I
3. Price I
4. Maximum speed I
5. Horse-power I
6. Number-of-doors I
7. Number-of-seats I more.....,,.. I
Enter your choice: or F10 for other choices I

I
I I
1 F1 = Help F2 = Prior screen F3 = End session I

In this menu, the end user is asked to select (or define) the criteria

that will be evaluated for every alternative of the chosen category.

The existence of other choices that cannot fit in the available window

is indicated.

Choice 2 will require the definition of a new criterion in a type

(5) insert screen. In the simplest case, this will just mean renaming

an existing attribute or criterion. Otherwise, the user must define a

new function which may require a relatively high level of skill. An

intermediate alternative would be to provide a type (3) menu with

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 28

available standard functions. The corresponding code for the type (5)

screen would be :

GEN-ENT.RY-SCREEN Criterion-def;
INSERT App-name-var, Cat-name-var, Crit-name,

Crit-Descr, Crit-function
INTO Criteria;

The last step in the data extraction is the specification of

alternatives, i.e., the grouping of the tuples in the selected

category relation. Since the GROUP-BY clause can have more than one

attribute this requires the selection of a group of attributes from a

type (6) screen displaying as menu choices the list of attributes of

the selected category relation. The system has to check for duplicate

choices and for disjunctness with the set of attributes underlying the

selected criteria. At this stage of the preparation process, the

GMCDSS will generate the relation CRIT-ALT associating the

alternatives of interest to the user with the criteria. The further

procedure is as described in section 4.

6.0 CONCLUSIONS AND FUTURE WORK

In this paper, we developed several database-centered methods

aiming at an improved integration of database, model and dialog

management in DSS. Using the example of multiple criteria decision

making, we first introduced an abstraction hierarchy the user can

employ for a stepwise selection and refinement of the problem to be

solved. Second, some extensions to the relational model of data were

introduced that permit the mapping of the hierarchy into an enhanced

relational database. Finally, it was demonstrated how this database

in turn can be utilized to substantially facilitate screen management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 29

in the Dialog Manager, using a taxonomy of screen generation

procedures.

Due to the large number of concepts covered in this paper, many

details remain to be worked-out in depth. In particular, two issues

need further research. First is the development of a sound

theoretical foundation for the functional enhancements of the

relational data model introduced in section 4; syntactical details

and the efficient evaluation of generalized views must be studied.

Second is the detailed design and implementation of the screen manager

outlined in section 5; in particular, the relationship of the

proposed data-driven menu generator with windowing capabilities, and

the relationship between static declarations of screen formats and

dynamic activation of stored formats in a program will be

investigated.

It is our hope that the combination of the proposed concepts will

finally lead beyond the well-known architectural paradigms of DSS that

simply add-up subsystems, towards a kernel DSS architecture that is

still able to communicate with existing sources of data and models but

has its own 'personalityt.

References

Blanning, R.W., "Language Design for Relational Model Managementn, in: -
Chang, S.K. (ed.) kina ement and Office Information Systems, New
York: Plenum Press, 19 89-- 4, pp. 217-235.

Bui, X.T., "Building Effective Multiple Criteria Decision Models: A
Decision Support System Approachn, Systems, Objectives, Solutions,
Vol. 4, NO. 1, pp. 3-16.

Date, C.J., @ Introduction to Database Systems, Third Edition,
Reading, Mass. : ~ddison-wesleyT-1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

Page 30

Ignizio, James P., Goal Pro rammin and Extensions, D, C, Heath and
Company, Lexington, ass., -b--
Jacquet-LaGreze, E., and Siskos, J., "Assessing a Set of Additive
Utility Functions for Multiple Criteria Decision Making -- the UTA
MethodN, European Journal - of Operational Research, Vol, 10, No. 2,
pp. 151-164.

Jarke, M., "Problems of Database Usage in Health-Economic
Cost-Effectiveness Studiesw, Proceedings - 12th Annual - DGOR Congress,
Mannheim, West Germany, Heidelberg: Springer-Verlag 1983 (in German).

Jelassi, M.T., Jarke, M., and Stohr, E.A., "Designing A Generalized
~ulti~le criteria ~ecision supper t systemii, Froceedings
International Conference on Multiple-Criteria Decision Making,
Cleveland (Ohio), to be pubnshed by springer-~erla~(1985).

Keeney, R.L,, Raiffa, J., Decisions with - Multiple Ob ectives:
Preferences Values Trade-offs, New York: John Wiley 197 +-
Klug, A., "Equivalence of Relational Algebra and Relational Calculus
~ u e r ~ Languages Having Aggregate ~unctions" , Journal --- of the ACM, Vol.
29, No* 3 (1982), pp. 697-717.

McCarthy, J.L., "Metadata Management for Large Statistical Databasesw,
Proceedings 8th ~nternationai Conference -on - Very Large - Data 9 Bases
Mexico City, September, 1982, pp. 234-243.

Roy, B., "Classement et choix en presence de point de vues multiple
(la methode ELECTRE) ** , R. I .R.O. , Vol . 2, pp. 57-75.

Saaty, T., The Analytic Hierarchy Process: Planning, Priority,
Allocation, New York: McCraw Hill, 1980.

Schmidt, J.W., "Database Programming: Language Constructs and
Execution Modelsw, in U.Ammann (ed.): Programmiersprachen - und
Programmentwicklung, Heidelberg: Springer-Verlag 1984, pp. 1-26.

Shoshani, A,, "Statistical Databases: Characteristics, Problems, and
Some Solutionsf' , Proceedings 8th International conference - on Very
Large Data Bases, Mexico City 1982, pp. 208-222.

Smith, J.M., and Smith, D.C.P., "Database Abstractions: Aggregation
and Generalization", ACM Transactions on - Database ~~stems~-voi. 2,
No. 2 (1977), PP. 10533.

Sprague, R., and Carlson, E., Building Effective Decision Support
Systems, Englewood Cliffs, NJ: Prentice Hall, 1982.

Stohr, E.A., and White, N.H., "User Interfaces for Decision S u ~ ~ o r t
systems: An ~verviek'~, ~nternational Journal of Policy ~nal~sib'and -
Information Systems, Vol. 6, No. 4 (1982). -
Zeleny, M., Multi le Objective Decision Making, Reading, Mass.:
Addison-Wesley, -9- 19 2.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-72

