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Abstract

Database queries explicitly containing existential
and universal quantification become increasingly important
in a number of areas such as integrity checking, interac-
tion of databases, and statistical databases. Using a
concept of range nesting in relational calculus expressions,
the paper describes evaluation algorithums and transformation
methods for an important class of quantified relational cal-
culus queries called perfect expressions. This class includes
well-known classes of "easy'" queries such as tree queries
(with free and existentially quantified variables only), and
complacent (disconnected) queries.
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L. Introduction

Using explicit quantification in database
queries has long been considered difficult to
understand by users and inefficient to
implement by the DBMS. However, several recent
developments may lead to new interest in the
neglected area of query optimization for
quantified queries, especially for queries
containing universal quantifiers.

First, there is a need to test general
integrity constraints efficiently [BERN82].
Often, such constraints apply to all elements
of a certain data set and therefore use
universal quantification.

Second, more and more database systems are
coupled with artificial intelligence systems.
First-order predicate calculus with existential
and universal quantifiers is one of the
foundations of AI methods [NILS82]. It seems
useful to provide similar tools in a database
system to make the interaction efficient.

Third, very high-level user interfaces to
database systems, such as natural language,
make frequent use of quantification. A database
programming language [SCHM82] that supports
such interfaces as a target or implementation
language should provide constructs to evaluate
quantification efficiently.

Fourth, there is a growing interest to
provide relational interfaces to DBMSs with
other data models, e.g., networks. In such
models, especially the notion of existential
quantification seems very natural [DAYAS82].

Finally, quantified queries are closely
related to aggregate queries [KLUG82] playing
an important role in the emerging area of
statistical database management. In fact, most
existing query evaluation systems implement
quantification indirectly via aggregate
functions (e.g., COUNT), if at all.

Our approach to query optimization for
guantified queries makes direct use of the
established body of first-order calculus
research. The standard relational calculus
[CODD72] is extended to allow the definition of
so-called (range-) nested expressions.



Relational calculus expressions are
transformed into nested expressions by rules
that generalize the notion of extended range
expressions introduced in [JARK82a]. Note that
our concept of range nesting is different from
the SQL concept of condition nesting [KIMS82].

In extended range expressions, a range
relation of the (tuple) relational calculus can
be substituted by a monadic relation-valued
expression over this relation. For example, an
element variable can be bound to the subset of
"professors" rather than to a full "employees"
relation. This approach may lead to reduced
costs for evaluating n-ary expressions by
reducing the size of the participating
relations.

Range nesting extends this idea by
allowing the system to bind element variables
to general relational expressions with one free
relation variable but an arbitrary number of
quantified variables. For example, a variable
might be bound to "professors not teaching
after 6pm", thus reducing further the size of
the range relation and the complexity of the
query structure.

Such a more specific definition of the
scope of interest can be helpful for users in
formulating queries and for the system in
evaluating them. The specific goal of this
paper is to define and optimize an important
class of nested expressions, perfect nested
expressions (PNE), and to characterize the
corresponding class of relational calculus
queries, perfect expressions. Examples of
perfect expressions include tree queries
[SHMUB81] and complacent expressions [BERN82].

The paper starts with an overview of
several representation forms useful to analyze
and transform quantified queries. Section 3
introduces the concept of perfect nested
expressions and analyzes algorithms for their
efficient evaluation. Section 4 derives the
possibilities to map relational calculus
expressions into perfect nested expressions.
Especially for queries containing universally
quantified variables, ways to transform
seemingly difficult queries into perfect
expressions are developed.
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2 Quantified Queries

Queries can be represented in a number of
forms. A representation form suitable for the
purpose of query optimization supports the
analysis of the structural properties of the
query and provides a well-defined basis for
query transformation. A representation form
also defines the class of queries under
consideration.

In this section, three representation
forms for quantified queries useful for
different purposes are given: a relational
calculus, a parse tree, and a so-called quant
graph.

2.1 Relational Calculus Representation

A quantified query can be represented as a
relation-valued (relational) expression
[SCHM77]:

[EACH rl IN Rl,...,EACH rn IN Rn :
<{selection predicate>]

The ri are usually referred to as element
variables and the Ri are called range
relations.

The selection predicate is a first-order
predicate over the variables of the target list
and is completely defined by the following
recursive rules:

l. Let ri.Ali denote the attribute 2i
of variable ri, op € [(<,<=,>,>=,=,%1,
and ¢ a constant. Then

(ri.Al op c) is a monadic term, and
(ri.Ai op rj.Aj) is a dyadic term.

2. Atomic predicates are defined as follows:
(i) A term is an atomic predicate.
(ii) TRUE is an atomic predicate.
(iii) FALSE is an atomic predicate.

3. An atomic predicate is a selection
predicate.
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4. Let A be a selection predicate,
r an element variable, and
R a relation. Then

(i) SOME r IN R (A)
(ii) ALL r IN R (A)

are selection predicates.

A is said to define the scope of r.

Terms of the form, Q r IN R, where
Q € [EACH, SOME, ALL]

are called quantified range terms.

5. Let A and B be selection predicates. Then

(1) NOT (&) (negation)
(ii) A AND B (conjunction)
(iii) A OR B (disjunction)

are selection predicates.

6. No other formulae are selection predicates.

The main advantage of the relational
calculus representation is that it provides
query analysis with access to the established
body of predicate logic. Tables 2.1 and 2.2
contain the most relevant predicate calculus
rules adapted to the many-sorted relational
calculus.

Relational expressions are usually
simplified and standardized in orxder to remove
redundant subexpressions [HALL76] and to
provide the evaluation procedure with a
suitable starting point [CODD72], [PALE72],
[WONG76]. A standard form that particularly
supports the optimization and evaluation of
independent subexpressions is the so-called
disjunctive prenex normal form (DPNF) .
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Most transformations performed for the
purpose of standardization and simplification
are of a purely syntactic nature (see tables
2.1 and 2.2). However, the rules for quantifier
movement (Ql to Q4) required for the
transformation into DPNF, and simplification
based on empty relations (M7) are obviously
data-dependent. Therefore, a compile-time
approach to standardization and simplification
as outlined in [JARK81] has to provide
sufficient information so that quantifier
movement can be corrected in the presence of
empty relations. Simplification based on empty
relations can not be performed at all at
compile-time.

Alternatively, one can use a runtime
algorithm as sketched below. It performs
standardization and simplification just before
query evaluation and, therefore, has more
information about the actual data.

(1) Apply rules for empty relations (M7).

(2) Transform into DPNF
(Ql..0Q4, Q9, Ql1l@, M3, M5, M6).

(3) FOR EACH conjunction DO
apply idempotency rules M4a to M4d.

(4) Apply idempotency rules Mde to M4i.

Page 6




Page 7

Assuming that A and B are selection predicates and that quantified
expressions of the many-sorted relational calculus can be translated
into equivalent (one-sorted) predicate calculus expressions

according to

and

SOME r IN R (A) {many-sorted}

SOME r ((r IN R) AND A) {one~sorted}

ALL r IN R (&) {many-sorted}
Lo

ALL r ((r IN R) ==> A) { one~-sorted}

then the following holds:

Ql:
Q2:

a)
b)

Q3:

a)
b)

Q4:
Q5:

Q7:

Q9:

Ql@:
Q1ll1:
Ql2:
Ql3:
Ql4:

A AND SOME r IN R (B(r)) <==> SOME r IN R (A AND B(r))
A OR SOME r IN R (B(r))
==
SOME r IN R (A OR B(r)) | R # []
A ‘ R = []
A AND ALL r IN R (B(r))
ALL r in R (A AND B(r)) R # []
A R = []
A OR ALL r IN R (B(x)) ==> ALL r IN R (A OR B(r))

SOME rl IN R1 SOME r2 IN R2 (A(rl,r2))
==D
SOME r2 IN R2 SOME rl IN R1 (A(rl,r2))

ALL rl IN R1 ALL r2 IN R2 (A(rl,r2))
==
ALL r2 IN R2 ALL rl IN R1 (A(rl,r2))

SOME r IN R (A(r) OR B(r))
{==
SOME r IN R (A(r)) OR SOME r IN R (B(r))

ALL r IN R (A(r) AND B(r))
C== _
ALL r IN R (A(r)) AND ALL r in R (B(r))

NOT ALL r IN R (A(r)) <==> SOME r IN R (NOT(A(r)))

NOT SOME r IN R (A(rx)) <==> ALL r IN R (NOT(A(x)))
SOME r IN R (TRUE) {==> TRUE, if R # []

SOME r IN R (FALSE) <==> FALSE

ALL r IN R (TRUE) <==> TRUE

ALL r 1IN R (FALSE) <==> FALSE, if R # []

Table 2.1: Transformation rules for quantified expressions




M1l:
a)
M2:
a)

b)

a)

b)

a)
b)
)
d)
e)
£)
g)
h)
i)
M5:
a)
b)

M6:

M7:
a)
b)

c)

Commutative rules

A OR B <==> B OR A b) A AND B <==> B AND 2
Associative rules

(A OR B) OR C <==> A OR (B OR C)

(A AND B) AND C <==> A AND (B AND C)
Distributive rules

A OR (B AND C) <==> (A OR B) AND (A OR C)

A AND (B OR Q) <==> (A AND B) OR (A AND C)

Idempotency rules

A AND A <==> A

A AND NOT (A) <==> FALSE
A AND TRUE <==> A

A AND FALSE {==> FALSE
A OR A <==> A

A OR NO&(A) <==> TRUE
A OR TRUE <==> TRUE
A OR FALSE <==> A

A OR (A AND B) <K==> A

DeMorgan's rules
NOT (A AND B) <==> NOT(A) OR NOT (B)
NOT (A OR B) <==> NOT (A) AND NOT (B)

Double negation rules

NOT ( NOT(A) ) <==> A

Empty relation rules

[EACH r in []: A] <==> []
SOME r IN [] (&) ==>» FALSE
ALL r IN [] (&) {==> TRUE

Table 2.2: Transformation rules for general expressions
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2.2 Parse Tree Representation

Graphical representation forms for queries
have a number of attractive properties. The
visual presentation of a query often leads to
an easier understanding of its structural
characteristics. In addition, graph theory
offers a number of results useful for the
analysis of graph structures (e.g., discovery
of cycles, tree property, etc.).

A straightforward graphical representation
of a general relational expression is its
corresponding parse tree, in which quantified
range terms, atomic predicates, and logical
operators are represented as nodes, and
syntactic relationships as edges. Example 2.1
illustrates the correspondence between a
calculus expression and its parse tree.

Example 2.1: A relational calculus expression
and its parse tree.

[EACH r IN R:
ALL s IN S
(predl (r,s)
AND
SOME t IN T (pred2(s,t))
AND
SOME u IN U (pred3(s,u)))]

- ——

------------ IN T

e —— ———

—— . ——— —— i ——
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2.3 Quant Graph Representation

Special classes of queries, such as the
class of conjunctive queries, play an important
role in various approaches to query
optimization [AHO79], [BERN8la], [CHAN771,
[ROSE80]. In the following, we shall introduce
the quant graph as a graphical representation
for quantified conjunctive expressions.

A gquant graph is a directed graph. Each
node ni represents a quantified range term.
According to the quantifier, we distinguish
EACH-nodes, SOME-nodes and ALL-nodes. Each edge
ni->nj represents a dyadic term. The direction
of the edge indicates that the quantified range
term nj is defined in the scope of ni.

A path between nodes ni and nj is a
sequence of adjacent edges connecting both
nodes. We distinguish undirected paths (denoted
by ni--nj) in which the direction of the edges
is irrelevant, and directed paths (denoted by
ni-->nj) which may not contain two adjacent
edges with opposite direction. A quant graph is
connected, if for each node ni there is an
undirected path ni--nj to every node nj # ni in
the graph.

A quant graph is called a tree, if there
is a distinguished node r, the root, from which
there is a unique directed path r-->ni to every
node ni in the graph. A cycle is an undirected
path connecting some node ni with itself. An
absorber is a node having more than one
incoming edges. According to the quantifier, we
distinguish EACH-absorbers, SOME-absorbers, and
ALL-absorbers.

Lemma 2.1: A connected quant graph that
is not a tree contains at
least one absorber.

Proof: Assume that the graph does not contain
an absorber. In this case, there is either a
path from one node (the root) to all other
nodes since all edges are directed, or the
graph is disconnected. Both situations
contradict the presupposition.
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Lemma 2.2: Each cycle contains at least
one absorber.

Proof: Follows directly from lemma 2.1.

Example 2.2: A quant tree and a cycle
containing an ALL-absorber.

EACH ¢
IN R

EACH r
IN R

pred2/\pred3

SOME t SOME u
IN t IN U

As defined here, gquant graphs are more
expressive than undirected graphs such as qual
graphs [BERN8la], since they consider some of
the scope rules of the predicate calculus.
Extensions of the quant graph definition that
cover all such rules are not needed in the

context of this paper.
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3s Perfect Nested Expressions

The representation forms introduced in
section 2 are primarily useful for query
analysis and query transformation. In addition,
a representation form is needed, that relates
relational expressions to a physical evaluation
procedure. An extension to the relational
calculus, the concept of nested expressions,
can serve this purpose.

3.1 An Introductory Example

Before giving the general definition and
evaluation procedure for nested expressions, we
motivate our approach by a simple example.

Consider the relational database with the
schema

EMPL (eno, ename, dno, status)
DEPT (dno, dname, city, street-address)
LECT (lno, eno, subject, time)

Suppose we are interested in "computer
science departments employing professors who do
not lecture after 6pm". This can be represented
by the relational expression

[EACH 4 IN DEPT:
d .dname = 'cs'
AND
SOME e IN EMPL
(e.status = prof
AND
e.dno = d.dno
AND
ALL 1 IN LECT
(l.time <= 6pm
OR
l.eno # e.eno))]

The parse tree for this query is shown, below.
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——— o ————————

|AND |
/ \
/ %
|d.dname=‘cs'| |SOME e 1IN EMPL |
|
|AND |
/ X
|e.status = prof| |e.dno = d.dno|
|ALL 1 IN LECT|
l
| OR|
/ \
|l.time<=spm| |1.eno # e.eno|

In [JARK82a], the concept of extended
range expressions was introduced. Noting, that
the query is interested only in

- computer science departments,
- professors, and
- lectures after 6pm,

the definition of the range relations can be
extended to include the corresponding selective
conditions and the query can be rephrased as

[EACH csd IN [EACH 4 IN DEPT: d.dname = 'cs']:
SOME p IN [EACH e IN EMPL: e.status = prof]
ALL late IN [EACH 1 IN LECT: l.time 2 6pm]
(csd.dno = p.dno AND p.eno # late.eno)]

Below, a quant graph for this expression 1is
shown.




EACH csd 1IN
[EACH 4@ IN DEPT:
d.dname = 'cs']

SOME p IN
[EACH e IN EMPL:
p.status = prof]

p.eno # late.eno

———————— o —————————

ALL late IN
[EACH 1 IN LECT:
l.time > 6pm]

The extension of this to range nesting can
be motivated by addressing the question how a
clever query optimizer would handle such a
query. An efficient stepwise procedure might
work as follows. The algorithm first finds out
the late lectures:

[EACH 1 IN LECT: l.time > 6pm]

Next it would look for professors who do not
teach late lectures. To do so, it embeds or
"nests" the range definition of professors and
late lectures into a more general expression
describing professors who do not teach late
lectures:

[EACH p IN [EACH e IN EMPL: e.status = prof]:
ALL late IN [EACH 1 IN LECT: l.time > 6pm]
(p.eno # late.eno)]

So far, this is not different from the extended
range expressions illustrated above. The next
step of the procedure, however, looks for
computer science departments employing the type
of professor described above. This is expressed
by nesting the definition of computer science
departments and the complete expression
describing "early lecture professors" into the
more general expression whose value is the
final answer to the original query:
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[EACH csd IN [EACH 4 IN DEPT: d.dname = 'cs']:
SOME earlylecturer IN
[EACH p IN [EACH e IN EMPL: e.status = prof]:
ALL late IN [EACH 1 IN LECT: 1l.time > 6pm]
(late.eno # p.eno)]
(earlylecturer .dno = c¢sd.dno)]

The example should make clear that the
concept of nested range expressions yields an
intermediate representation of a query which is
equivalent to the original relational calculus
query and defines important components of the
query evaluation procedure. In the remainder of
this section, this idea will be formalized and
an important class of nested expressions will
be defined which lends itself to particularly
efficient evaluation.
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3.2 Definition

A range-nested or, for short, nested
expression is characterized syntactically by
allowing to substitute the relation name, R, in
a range term

[ s se L INR uo-]
by a relational expression
[ cec T IN [ EACH X' IN .©o ¢ oo ] eoe ].

Nested expressions are produced using the
rules N1 to N3 that are motivated by the
definition of the many-sorted calculus in
table 2.1.

N1l: [EACH r IN R: predl AND pred2]
==
[EACH r IN [EACH r' IN R: predl]: pred2]

N2: SOME r IN R (predl AND pred2)
<==>
SOME r IN [EACH r' IN R: predl] (pred2)

N3: ALL r IN R (NOT(predl) OR pred2)
{==
ALL r IN [EACH r' IN R: predl] (pred2)

Expressions can be nested to arbitrary
depth. The nesting generates a partial order on
the evaluation of subexpressions, in that inner
expressions are supposed to be evaluated before
the outer ones.

Executing cheap selective operations first
and serializing the execution of a query into a
sequence of operations, each working on a
single relation or variable, are heuristic
approaches known to reduce the effort of query
evaluation [SMIT75], [BERN8la]. We now define a
class of nested expressions, namely perfect
nested expressions, that are particularly
well-suited for such heuristics.
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A perfect nested expression (PNE) is
defined recursively as follows:

(1) Let p(r) be a selection predicate with
monadic terms only. Then

[EACH r IN R: p(r)]
is a PNE.

(2) Let A be a PNE and O(r) a one-level
independent (OLI) selection predicate
as defined below. Then

[ EACH r IN A: O(r) ]

is a PNE. An OLI is defined as follows.
[Let B be a PNE. Then

(2a) SOME s IN B (p(r,s)) and
ALL s IN B (p(x,s))

are OLI predicates where p(r,s) is a
conjunction of dyadic terms.

(2b) If 01(r), 02(r) are OLI predicates,
so are

(2bl) NOT ( 01l(r) )
(2b2) 0l(xr) AND 02(r)
(2b3) 01l(r) OR 02(r).

To motivate this definition, consider some
special cases. If only range relations of type
(1) are used, the inner expressions are the
extended range expressions of [JARKS82a].
Substituting TRUE for p(r,s) in (2a) yields the
complacent expressions of [BERN82].

If (1), (2a), and (2b2) are used, the
expression is called a perfect conjunctive
expression. The last version of the example in
section 3.1 is a perfect conjunctive
expression. The so-called tree queries
[BERN8la] , [SHMUBl] are perfect conjunctive
expressions with no universal quantifiers.

17




Page 18

3.3. Evaluation

Perfect nested expressions can be
evaluated in a bottom-up or in a top-down
fashion following the nesting of expressions.
This section describes the implementation of
one step of the evaluation procedure. It should
be noted, however, that additional efficiency
can be gained by parallel processing of
subexpressions refering to the same base
relation [JARK82a]. Hardware-oriented
approaches to the parallel execution of
subexpressions are discussed in [VALD82].

Fur thermore, it is often possible to
pipeline successive steps of the evaluation,
that is, to start the evaluation of an outer
expression when only a partial result, e.g.,
one element, of the inner expression is
available. In the sequel it is assumed that
this is always done for a sequence of
restrictions of the same relation. For example,
the expression

[EACH r IN [EACH r' IN R: p(r')]l : g(r)]
is evaluated like

[EACH r IN R: p(xr) AND g(rx)].
At each step of the procedure, a subexpression

[EACH r IN R: O(x)]

as defined in the previous subsection is
processed. It is assumed that all the inner
nestings in O(r) have already been evaluated.
That is, 0(r) consists of terms such as

SOME/ALL s IN VS (p(r,s))

where VS is the value set to which the inner
expression computes on the given database
state.

Consider first the case that p(r,s) is a
single dyadic term (r.A op s.A). In this case,
the transformations of table 3.1 can be applied
to reduce the quantified expression to a single
comparison. It can be seen that in all cases
except J1 and J8 at most one value is returned
by the inner expression. Therefore, a single
monadic term is generated that restricts r.
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In the cases J1 and J8, however, each
element of R must be tested against the full
value set. Considering the complete expression
0(xr) , each r may have to be tested against a
collection of value sets.

One way to do this in a bottom-up
procedure, is to store all the value sets in
hash tables or simply as ordered sequences
allowing binary or, for larger value sets, tree
search.

If there are only value sets of one
attribute, an alternative to the above approach
would be to conduct a merge join between the
value sets and the outer relation. This
requires sorting the relation by the given
attribute first (unless the attribute is
indexed) and may be worthwhile only if one of
the value sets is very large.

Let A be an attribute of non-empty value set VS, VS[A] the projection
of the value set onto A, and s the variable of the outer relation.
Then the following transformations hold:

Jl:
J2:
J3:

J4:

J o

J6:
J7s

J8:

SOME s IN VS (r.A = s.A) ==> r.,A IN VS[A]

I
[}

SOME s IN VS (r.A </ <= s.A) ==> r.A </ <= MAX (VS[A])

> r.A >/ >= MIN (VSI[A])

1}
I

SOME s IN VS (r.A >/ >= S.A)

SOME s IN VS (r.A # s.A) ==> TRUE, if |VS[A]| > 1

r.A # VS[A], if |vs[a]] =1
ALL s IN VS (r.A = s.A) ==> FALSE, if SVS[A] > 1

r.A = Vs[a], if [vs[a]| =1

1]
1}
v

ALL s IN VS (r.A </ <= s.A) r.A </ <= MIN (VS[A])

r.A >/ >= MAX (VS[A])

1}
1]
v

ALL s IN VS (r.A >/ >= s.A)

ALL s IN VS (r.A # s.A)

1
]
v

r.A NOT IN VS[A]

Table 3.1: Transformation rules for quantified join terms
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More optimization is possible if some of
the predicates in 0(r) are AND-connected.
Firstly, the predicates can be tested
sequentially in decreasing order of selectivity
to reduce the overall number of comparisons.
Secondly, if indexes on the outer relation
exist, the sets of element references generated
by the value sets can be intersected before
accessing the relation elements.

A top-down approach, as proposed by
[KLUG82] for aggregate functions, uses the
nested iteration method combined with the use
of indexes. Obviously, this can be
cost-effective only in the cases J1 and J8
since otherwise the generation of a single
value may have to be repeated unnecessarily.
Under the same assumption, the nested iteration
method should also be used in a DBTG data
structure as demonstrated for existentially
quantified variables by [DAYA82]. There, the
evaluation simply follows the set chains.

Now consider the case that p(r,s) is a
conjunction of several join terms. If s is
universally quantified, variable splitting
(rule Q8) can be used to achieve the one term
case. If s is existentially quantified, the
terms must be evaluated simul taneously, and
therefore a multi-attribute value set must be
stored resulting in a more expensive search
process. If nested iteration is used, feedback
techniques as described in [CLAU8@] may improve
the efficiency of query evaluation.

In summary, the worst case time complexity
of algorithms for perfect nested expressions is
in the order of N log m for each step where m
is the size of the value list and N is the size
of the outer relation (at this step). As the
overall bottom-up algorithm is sequential, this
is also the overall complexity of the
algorithm. Linear or near linear time is
possible in all (one term predicate) cases
where J1 and J8 do not occur, or if appropriate
hashing functions for the value sets can be
formed.
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4. Transforming Quantified Queries Into
Per fect Nested Expressions

Certain classes of expressions, such as
the example in section 3.1, are obviously
equivalent to some perfect nested expressions
and any clever query evaluation system would
consider a stepwise evaluation procedure.

However, there are classes where this is
not obvious at all and other classes, such as
cyclic expressions, which look even rather
hopeless [BERN8la]. A surprising result of our
research is, that universal quantification,
usually perceived as a trouble maker, often has
a positive impact on expression nesting.

In this section, we investigate perfect
expressions, defined as the class of
expressions that can be transformed into
perfect nested expressions. In particular, we
are interested in the question how to nest a
relational expression given in standard form.
We shall deal with this problem in two steps.
First, the essentials of separating an
expression in standard form into (independent)
conjunctive subexpressions are addressed.
Second, some nesting properties of quantified
conjunctive expressions are shown.




4.1 Separation

The parse tree of an expression in
standard form is a chain of quantified variable
nodes followed by an OR-node which branches out
to the conjunctions of the matrix.

quantified
variables

———
- —
—— ————

—— ——— —— —— v ——

The desired form where the qguantifiers directly
precede the conjunctions would rather look
like:

——

| or |
//,r/i ] .:?T~HHMHHHH .
gquantified quantified quantified
variables variables variables
1 | |
|conjl| ]coan[ | conjm|

——— —— —— - ———

To achieve the desired form, the guantifiers

must be distributed aver the OR-nodes, one by
one, starting with the innermost. Three types
of transformation techniques can be used for

this purpose:

(1) variable Splitting (according to rule Q7):
This allows conjunctions over a common
existentially quantified variable to be
evaluated separately. The schema looks like
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——— ——

SOME ¢ | OR |
INR ] eemem———
———————— Vg \
——l--- SOME rl SOME r2
| OR | ==> IN R IN R
£ N | |
|conj1{r)| |conj2 (x) | | conjl (rl) | |conj2 (r2) |

(2) vVariable Propagation (according to rules
Q2,04): This applies, 1f one or more
conjunctions do not contain the variable r or
variables defined in its scope.

SOME/ALL | OoR |
rINR |  mem————
—————————— N\
-—L--- SOME/ALL |conj2|
| OR | ==> £ INR | mmemean
/ \ |
| conjl (x) | |conj2 | | conjl(x) |

(3) Range Extension (according to rule N3):
Technique (2) works only if there is just a
single conjunction over r. Obviously, for
existentially quantified variables this
limitation can be removed by combining the
first two rules. For universally quantified
variables, the concept of range nesting can be
applied in some cases to satisfy the
precondition of (2). If a predecessor variable
of r occurs in at most one conjunction together
with r (e.g. in conjunction 2), a
transformation as shown in the following schema
yields a form that can be further transformed
by means of (2):
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————————————— —— ————————————

EACH/SOME/ALL EACH/SOME/ALL
s IN S s IN S

‘ALL r IN [EACH r IN R:|

IN R NOT (conjl (x))]
L |
| OR | | OR |
coﬁjl conj2 |conj3 | conj2 |conj3 |
(r) (£ss) | =—=====- (24B) | ~==we==

If technique (3) is not applicable, the
conjunctions must be evaluated simultaneously
before evaluating the quantifier.

4.2 Amelioration

In this section we identify classes of
conjunctive expressions, that can be
transformed into equivalent perfect nested
expressions, and that can thus be ameliorated
with respect to evaluation performance. These
classes will be characterized by means of
structural properties of their corresponding
quant graphs. Only expressions with connected
quant graphs will be considered. Others (e.g.,
complacent expressions [BERN82]) can be
evaluated piecewise. The results are
generalizations of the well-known work on
conjunctive expressions and tree expressions
[CHAN77], [BERN8la], [ROSE8@] and are of
particular interest because of the explicit
exploitation of quantification.

Proposition 4.1: Quantified conjunctive
expressions whose quant
graph is a tree are perfect.

Proof Sketch: The overall idea of the proof is
to show how the expressions under consideration
can be transformed into an equivalent perfect
nested one. There are three types of subtrees
distinguished by the quantification of the
variable in the root node.




Types 1 and 2: Free and existentially
quantified variables.

EACH/ SOME
r IN R
Pre@}‘/”predzi s e EMWM‘Eredn
SOME/ALL SOME/ALL SOME/ALL
sl IN S1 s2 IN S2 sn IN Sn
can be transformed to
EACH/SOME
r IN R'
predZi o & I\predn
SOME/ALL SOME/ALL
s2 IN S2 sn IN Sn
where R' = [EACH r IN R:

SOME/ALL s1 IN S1l(predl (x,sl)]

The transférmation follows rules N1 and N2. By
induction on the breadth of the tree, it can be
shown that trees of types 1 and 2 are perfect.
I1f, at any time, R' becomes empty, the
evaluation stops with a value of FALSE (SOME
root) or an empty result (EACH root).

Type 3: Universally quantified variables.

ALL r
IN R
pregi]]_//predzi - \\predn
SOME/ALL SOME/ALL SOME/ALL
sl IN S1 s2 IN S2 sn IN Sn

—— —— ——

For the processing of any edge, say the
leftmost one, two cases must be distinguished.
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case 1l: [EACH r IN R:
NOT (SOME/ALL sl IN S1
(predl (xr,sl)))] = (1

In this case, the above subtree can be
transformed according to rules Q8 and Q13:

B e el kT ——

ALL
IN R
pred2 i “oe \\Eredn
SOME/ALL SOME/ALL
s2 IN S2 sn IN Sn

case 2: [EACH r 1IN R:
NOT (SOME/ALL sl IN S1

(predl(r,sl)))] 7 (]

In that case, the evaluation procedure stops
with a value of FALSE (rule Ql4) for the
subtree, and the entire tree evaluates to the
empty relation.

By induction on the breadth of the tree it can
be shown that trees of type 3 are perfect.

By induction on the height of the tree it can
be shown that expressions whose quant graph is
a tree are perfect.

If the quant graph is not a tree, it
contains absorbers (lemma 2.1). The

corresponding expressions are perfect only if
there is a way to remove the absorbers. For

example, the expression represented by the
following graph is not perfect.

EACH r ALL s
IN R IN §
r.A—t.B\/ 5.C=t.D
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The SOME-absorber cannot be removed, since
the quantifier sequence (ALL, SOME) must not be
exchanged. In some cases however, absorbers can
be removed by redirecting edges (rules Q1 to
Q6) or by splitting absorber variables (Q7,08).
For ALL-absorbers, the following lemma provides
a power ful tool for query amelioration.

Lemma 4.1l: ALL-absorbers can be removed
by variable splitting.

Proof: Follows directly from rule Q8.

Example 4.1l: Amelioration of a quant graph with
a single ALL-absorber.

—— e ——— ——— ———— i ——— -

EACH r SOME s EACH ¢ SOME s
IN R IN S IN R IN S
predl \/ pred2 ==> ! predl AND pred2
ALL t ALL t ALL t
IN T INT INT

——————— - — ——

The expression of example 4.1 is
decomposed into two disconnected
subexpressions. If the right subexpression
evaluates to FALSE, the overall result is the
empty relation, otherwise it is the result of
the left subexpression.

Cycles can occur in queries regardless of
variable quantification. It is known that
cycles containing EACH-absorbers and
SOME-absorbers are not perfect in general
[BERN8la] . However, some cycles can be broken
to yield perfect expressions. Well-known
examples are cycles induced by transitivity and
cycles with certain inequality join terms
[BERN81D] .
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For expressions with universally
quantified variables, there is another way to

break a cycle.

Proposition 4.2: An expression with a cyclic
quant graph is perfect if the
the cycle contains only
ALL-absorbers.

proof Sketch: Applying rule Q8, a cycle
containing n ALL-absorbers is decomposed into n
disconnected subtrees.

Example 4.2: Amelioration of a cycle
with two ALL absorbers.

————

EACH r
IN R
EACH r predl/ \predz
INR |  mem——ada i, S
-------- ALL s ALL t
predl/ \predz IN S IN T
ALL s ALL t ==
IN S IN T
pred3\ /pred4 ALL s ALL t
——————— IN S IN T
SOMEu| = secaa- T R
IN U pred3\ /pred4
SOME u
IN U

———— —

The class of perfect expressions is not
limited to the cases discussed in this section.
With certain combinations of universal and
existential quantifiers, there are additional
ways to remove SOME-absorbers. A detailed
discussion would require an extension of the
guant graph notation and is therefore beyond
the scope of this paper, as is the analysis of
non-conjunctive perfect expressions.



5. Conclusion

This paper introduced a concept of range
nesting for the optimization of quantified
queries, and outlined algorithms for the
evaluation of perfect nested expressions. The
class of perfect relational calculus
expressions was shown to include the classes of
quantified tree queries and of queries
containing only ALL-absorbers (including cyclic
queries) .

Results for SOME-absorbers were mostly
derived from earlier work. For space reasons,
some more subtle details of the interaction
between differently quantified variables are
left to a forthcoming paper, as is the
evaluation of non-perfect expressions. Another
area of current research is the augmentation of
the standardization and simplification phase to
include semantic query optimization using
integrity constraints.

The range nesting method is currently
being implemented as a central logical query
optimization strategy in the context of a
calculus-based database programming language
[JARKS82D] .
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