DECISION SUPPORT SYSTEMS:
ISSUES AND PERSPECTIVES

Michael J. Ginzberg
and
Edward A. Stohr

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #27

GBA #82-12(CR)




Page 2

I. Introduction

The past few years have witnessed the emergence of Decision Support
Systems {DSS)‘ as an area of great activity within the information systems
field. The pages of MIS and MS journals are filling with articles about
DSS. Several conferences on DSS have already taken place and more are
scheduled. One major publisher has started a series of books on DSS, which
currently includes five volumes. The advertising of DP service providers
extols the virtues of their wares as DSS or as components from which DSS
can be built. Several academics have been seen criss—-crossing the country
(and occassionally venturing overseas) trying to win converts to the DSS

faith.

What is the basis for all of this action? What is it that DSS does
that has not been done before? More fundamentally, what is DSS, and how
does it differ from the other computer-based systems organizations have

been using for years?

Claims about the benefits and capabilities of DSS are substantial.
They will make managers more effective. They will improve managerial
decision making, especially in relatively unstructured tasks. They will
extend managers' cognitive capabilities, while leaving the manager free to
exercise his or her judgement where that is needed. The book is not vyet
written on what DSS will actually do. Certainly, some DSS have had the
types of impacts claimed. Others have not yet shown such a major impact,

nor are they ever likely to.




Page 3

In part, the range of DSS impacts which have been observed stems from
the variety of systems which have been labeled DSS. There is at present
little consensus about what qualifies a system as a DSS. This paper will
begin by examining some of the definitions that have been suggested. It
will then examine the implications of these different definitions, focusing
on the issues highlighted by and ignored by each definition. The paper
will then suggest a definition for DSS which highlights those issues we
believe are most central to developing and implementing more effective DSS.
The remainder of the paper will explore those issues and attempt to outline
the areas where further research over the next few years could be most

fruitful.

II. DSS Definitions

The earliest definitions of DSS (e.g., Gorry and Scott Morton [1971])
identify DSs as systems to support managerial decision makers in
unstructured or semi-structured decision situations. Two key concepts in

this definition are support and unstructured. First, these systems were

meant to be an adjunct to the decision maker, to extend his capabilities
but not to replace his judgement. Second, they were aimed at supporting
the manager in those decisions where judgement was required, decisions that
could not be completely specified as an algorithm and turned over to the
computer. Not specifically stated in, but implied by, the early
definitions was that the system would be computer-based, would operate

on-line, and preferably would have graphics output capabilities.




Page 4

A refinement of these early definitions is provided by John Little
[1970] in his definition of a "decision calculus." He defines this as a
"model-based set of procedures for processing data and judgements to assist
a manager in his decision making" (p. B470). He argues that in order to
be successful, such a system must be (1) simple, (2) robust, (3) easy to
control, (4) adaptive, (5) complete on important issues, and (6) easy to
communicate with. Implicit in this definition, too, is the assumption that
the system will be computer-based and that it will serve as an extension to

the user's probem-solving capabilities.

Throughout most of the 1970's, definitions of DSS like those presented
above were accepted by practitioners and researchers who wrote about DSS.
By the end of the decade, however, new definitions began to emerge. Alter
[1980] defines DSS by contrasting them to traditional EDP systems on five
dimensions:

1) Use: active (DSS) vs. passive (EDP)

2) User: 1line, staff & management (DSS) vs. clerk (EDP)

3) Goal: overall effectiveness (DSS) vs. mechanical efficiency (EDP)

4) Time horizon: present & future (DSS) vs. past (EDP)

5) Objective: flexibility (DSS) vs. consistency (EDP)

Three other recent definitions of DSS are offered by Moore & Chang
[1980], Bonczek, Holsapple & Whinston [1980], and Keen [1980]. Moore &
Chang argue that the "structuredness" concept, so much a part of early DSS
definitions, is not meaningful in general; that a problem can be described
as structured or unstructured only with respect to a particular decision
maker or group of decision makers. Thus, they define DSS as (1) extensible

systems, (2) capable of supporting ad hoc data analysis and decision




Page 5

modeling, (3) oriented towards future planning, and (4) used at irregular,

unplanned intervals.

Bonczek, Holsapple & Whinston [1980] define a DSS as a computer-based
system consisting of three interacting components. Those components are
(1) a Language System —- a mechanism to provide communication between the
user and other components of the DSS, (2) a Knowledge System =-- the

repository of problem domain knowledge embodied in the DSS, either as data

or procedures, and (3) a Problem Processing System -- the link between the
other two components, containing one or more of the general problem

manipulation capabilities required for decision making.

Finally, Keen [1980] applies the term DSS "to situations where a
"final' system can be developed only through an adaptive process of
learning and evolution™ (p. 15). Thus, he defines DSS as the product of a
development process in which the DSS user, the DSS builder, and the DSS
itself are all capable of influencing one another and resulting in

evolution of the system and the pattern of its use.

These definitions can be contrasted by examining the types of concepts

each employs to define DSS. This contrast is shown in Exhibit 1. It
should be apparent that the basis for defining DSS has been migrating from
an explicit statement of what a DSS does (i.e., support decision making in
unstructured problems) to some ideas about how the DSS's objective can be
accomplished (i.e., what components are required? what usage pattern is

appropriate? what development process is necessary?).



Page 6

Concepts Underlying DSS Definitions

Source

Gorry & Morton [1971]

Little [1970]

Alter [1980]

Moore & Chang [1980]

Bonczek et al. [1980]

Keen [1980]

DSS defined in terms of:

problem type, system function (support)

system function, interface characteristics

usage pattern, system objectives

usage pattern, system capabilities

system components

development process

Exhibit 1.




Page 7

One result of this migration is a narrowing of the population of
systems that each author would identify as DSS -- e.g., Keen would exclude
any systems which can be built without following an evolutionary strategy,
and Moore & Chang would exclude systems which are used at regular, planned
intervals to support decisions about current operations. This type of
narrowing of a population is indeed a proper function of a definition. By
dealing with a smaller population of objects, we can identify those
characteristics which the members of the population have in common as well
as those characteristics which differentiate one population from another.
This helps to focus attention on those problems where research is most

needed and is likely to be most fruitful.

Unfortunately, the most recently offered definitions of DSS do not
provide a consistent focus, since each tries to narrow the population in a
different way. We can consider the types of questions each definition
leads us to ask. Following Moore & Chang we would ask, how can you build
extensible systems or systems to support analyses which have not been
prespecified? Bonczek et al. would lead us to ask how knowledge can be
represented in a system and how to provide various problem processing
capabilities. Keen's definition would cause us to ask how the development
process can be structured to assure that the feedback loops among user,

builder, and system are in place and functioning.

While all of these questions are interesting, they collectively ignore
the central issue in DSS; that is, support of decision making. There
seems to have been a retreat from consideration of outputs, the dependent
variable, and a focus on the inputs instead. A very likely reason for this

change in emphasis is the difficulty of measuring the outputs of a DSS




Page 8

(i.e., decision quality). While such measurement difficulties no doubt
exist, they must not be used as an excuse for ignoring what should be our

central concern.

Supporting and improving decision making is the issue in DSS.
Definitions which attempt to narrow the field, to focus research along some
other dimension are missing the point. Indeed, this is the reason why
recent DSS definitions have been so inconsistent with one another and have

not developed a clear notion of DSS.

We propose that, for now at least, a definition of DSS quite close to

the early definitions of Gorry & Scott Morton and Little be adopted. That

is, a DSS is a computer-based information system used to support decision

making activities in situations where it is not possible or not desirable

to have an automated system perform the entire decision process. The

remainder of this paper will explore some of the implications of this
definition: What characteristics are common to all (or most) DSS? What
characteristics can differ? What development process (or processes) is
appropriate for DSS? What usage pattern (or patterns) is appropriate for
DSs? What research is needed to enable us to build better DSS? Perhaps
once these questions have been answered it will be possible to draw

narrower boundaries around the field, to more clearly define DSS.

III. The Anatomy, Physiology and Ontogeny of DSS

The elements that characterize DSS can be separated into three major
groups: (1) the underlying technological components from which DSS are

built, (2) the ways in which DSS are used, and (3) the processes by which




Page 9

DSS are designed and implemented. These three groups represent the
anatomy, physiology, and ontogeny of DSS, and a full understanding of them

will provide a relatively complete picture of DSS.

III.A. Anatomy: DSS Technology

In earlier work, Keen and Scott Morton [1978] arqued that
technological issues were secondary considerations in DSS. Advances in
hardware and software had made DSS possible, and the important
considerations in DSS design involved human decision making. Since that
time, research has continued on discovering problem situations where DSS
can be applied, on the man-machine interface, on the impact of DSS on
individuals and groups, and on the behavioral aspects of implementation.
Other research, however, has stressed the hardware and software aspects of
DSS, seeking to broaden the domain of application of computer support, to
speed the development process, and to make the resulting system more

adaptable to the changing needs of decision makers.

In our view, both areas of research are vital to the success of the
DSs concept. Technological progress determines what can be done;
behavioral research determines what should be done and how best to apply

technology to serve organizational goals. Ideally, the latter should drive

the former, but it seems that technology has a momentum of its own.

In this section we review DSS technology, the elements which make up a
DSS. To be complete, our review should consider both hardware and
software. DSS hardware, however, differs little from that for any modern

computer-based information system. No special hardware is required for




Page 10

DSS, in our view, nor are there any necessary hardware requirements to
qualify a system as a DSS. There are some interesting potential impacts of
hardware trends for future DSS, and we shall address these in the final

section of this paper.

Turning to DSS software, we first consider some suggested taxonomies.
The first (Alter [1977]), divides DSS software into seven types based on

function performed. Three of the types are data-oriented, performing data

retrieval and/or data analysis. The remaining four types are

model-oriented, providing either a simulation capability, optimization or

computations that 'suggest an answer'. The IRIS system (Berger and Edelman
[1977]) which utilizes a high level interactive query language and data
base techniques provides an excellent example of a data-oriented DSS. On
the other hand Hax and Meal's [1977] 'hierarchical' production planning and
scheduling system which combines optimization and heuristics provides an
example of a model-oriented system. Some DSS, however, (e.g., Holsapple
and Whinston, [1976]) seem equally oriented to both data retrieval and
modelling while others (GADS, Carlson et al [1974]) are graphics-oriented.

Neither system fits easily in this classification scheme.

Donovan and Madnick [1977], differentiate DSS based on the nature of

the decision situation they are designed to support. Institutional DSS

deal with decisions of a recurring nature. An example is the Portfolio
Management System (PMS) which has been used by several large banks to
support investment managers (Gerrity, [1977]). Another example is the
comprehensive system being developed by AT&T and described by Jeske in this
volume. Institutional DSS may be developed and refined over a number of

years. Ad hoc DSS deal with specific problems that are neither anticipated




Page 11

nor recurring. To support this kind of situation requires general-purpose
software for information retrieval, data analysis and modelling that can
quickly be customized to a specific application. Donovan [1976] describes
the development and use of the Generalized Management Information System

(GMIS) to support ad hoc decision-making.

A classification scheme with similar implications is proposed by
Sprague [1980]. Here the criterion is flexibility and transportability

across decision situations. Specific DSS are built to support a particular

organization and task. An early example is the Potlatch Forests system
(Boulden and Buffa, [1970]) which provided an interactive planning system
containing a model of the company's operations embedded in FORTRAN code.

DSS generators, on the other hand, provide more general purpose retrieval

and modelling facilities and can be quickly tailored to a specific problem.
A survey by Naylor and Schauland [1976] documents a marked growth in the
use of DSS generators for the projection of financial statements and the
development of more general corporate planning models. Current commercial
DSS generators of this type include SIMPLAN (Mayo, [1979]) and IFPS

(EXECUCOM, [1979]).

A final classification scheme is based on the degree of

non-procedurality of the data retrieval and modelling languages provided by

the DSS (Bonczek et al., [1980]). Procedural languages require a
step-by-step specification of how data is to be retreived or a computation
performed. Non-procedural languages require the user to specify only what
is required. At an intermediate level of procedurality are systems that
utilize a command language allowing the user to specify the name of a

prespecified report or model. The cartesian product of these three levels




Page 12

of procedurality for data and model-oriented interfaces provides nine
different possible classes of DSS. DSS systems have progressed from
systems where both data retrieval and modelling is achieved |using
procedural languages to DSS generators that provide intermediate levels of
non-procedurality. An objective of DSS development is to provide
easy-to-use non-procedural languages for both the data and modelling

interfaces.

The various approaches to classifying DSS are summarized in Exhibit 2.
Of these schemes we favor the last. It provides an historical perspective
on DSS development and objectives, and focuses on the user interface as a

key issue in DSS design.

Are there characteristics of DSS software that distinguish it from
other software systems? Not necessarily. We have already argued for a
broad definition of DSS which would not exclude a batch-oriented interface.
A data base system with a high level query language can be the basis for
decision support. Office automation systems with their emphasis on the
user interface and possessing such features as high-level languages for
defining and processing forms and graphic representations of 'in-baskets',
'out-baskets' and files possess many of the attributes of advanced DSS

software.

Nevertheless distinctive characteristics do emerge when we consider
general purpose DSS software and especially software incorporating
modelling capabilities. Before discussing these features we note several
important objectives. DSS generators exist because they provide a means
for satisfying ad hoc decision-making support. They speed—-up the

development process for specific DSS applications. To this end they must




Page 13

DSS Software Classification Schemes

Source

Alter [1977]

Donovan and Madnick [1977]

Sprague [1980]

Bonczek, et al. [1980]

Clasgsification Scheme

Data-oriented vs. model-oriented

Ad-hoc vs. institutional

Specific DSS vs. DSS generators

Procedural vs. non-procedural

Exhibit 2.




Page 14

be adaptable to different decision-making situations and easy to use.
Beyond this, the generated systems should possess the same qualities as
other good software s accuracy, reliability, maintainability,

modifiability and so on.

The major components of DSS software incorporating a modelling
capability are depicted in Figure 1, which is based on Sprague and Watson
[1976] , Bonczek et al. [1980] , Haseman and Kellner [1977], and Blin et al.
[1978] . A similar architecture was evident as early as 1970 in the
Potlatch system cited earlier. The major change in modern design concepts
is the attempt to give each component the properties of independence,
generality of function and intelligence. A similar evolution occurred in
the development of data retrieval facilities from operating system access
methods activated by calls from procedural 1languages to file management

systems and finally to database management systems (DBMS).

The purpose of the Data Extraction System is to load the DSS data base

with external data and data generated internally to the organization by the
MIS system. Although it is generally accepted that a DSS requires less
detailed and timely data than operational systems (Keen and Scott-Morton,
[1978] ) this can be a major implementation problem. Since the DBMS used by
the DSS may be different from that of the operational MIS and since the
data will generally be structured differently, gquite complex data

conversion operations may be required.

The use of a DBMS in a DSS where the major purpose is data retrieval
is direct and obvious. One only needs to define the 'schema' for the data
base and perhaps provide specially-tailored user interfaces if the data

retrieval lanquage associated with the data base is inadequate to the task.




Page 15

DATA BASE DATA
MANAGEMENT EXTRACTION e
SYSTEM SYSTEM
N
USER LANGUAGE SYSTEM
USER<&-€; INTERFACE INTERFACE Y prrecToRY
SYSTEM SYSTEM
MODEL
MANAGEMENT
SYSTEM
Figure 1

MAJOR COMPONENTS OF DSS GENERATORS



Page 16

In model-oriented DSS there are several additional functions that

might be performed by the DBMS:

1. management of both the inputs and outputs of the models

2. storage and access of the models themselves

3. storage and access of a 'knowledge base' of meta-data concerning
the semantics of the models and the structure of their constituent

processes.

A major research issue in the application of DBMS within DSS concerns
the use of time-series and cross-sectional data in modelling. Existing
modelling languages have special facilities for managing such data but are
weak 1in general retrieval capabilities. Conversely DBMS's have powerful
retrieval capabilities and can maintain complex data interrelationships;
however special application programming may be required to enable them to
handle multiple copies of dynamically generated variable length series data
as occurs in forecasting applications. Another DBMS issue concerns the
need to store intermediate and final results in the database while the DSS
is being used. The structure of this data generally can not be anticipated

giving rise to the need to dynamically restructure the data base schema.

The concept of a Model Management System (MMS) is an innovative

product of DSS research. Its purpose is to facilitate both the development
of models and their subsequent use during sensitivity analyses (Elam et al.
[1980] ). BAn example of an operating MMS is contained in Sprague and Watson
[1976] , and a general discussion is contained in the paper by Bonczek et

al. in this volume. There are several unresolved research issues. How




Page 17

can the results of sensitivity analysis be stored in the data base and
related to the underlying model assumptions and data values? (Stohr and
Tanniru, [1980]). Can decision aids be dynamically constructed from module
components thus providing the user with a modelling language with the same
level of non-procedurality as advanced data base query languages such as
IBM's SEQUEL? The idea is that the user would simply specify the required
data items without necessarily being aware that they were not stored in the
data base; the DSS would then determine the proper sequence of operations,
including models to be applied, and display the desired result. Two
approaches involving the use of artificial intelligence techniques are
proposed by Elam et al. [1980] and Bonczek et al. [1981] . The fifst
involves the use of semantic inheritance nets (Findler [1979]) for
knowledge representation, and the second, the use of the resolution
principle of first-order predicate calculus (Nilsson, [1971]). The

relative merits of these and other alternatives remain to be investigated.

The Language Interface Subsystem consists of the compilers and

interpreters that translate the statements and commands used for specifying
retrieval requests and defining models. The power of these languages has
an important effect on the ease of use of the DSS. Attempts to avoid the
complexity of step-by-step procedural specifications have already been
mentioned. However it is not yet clear how much non-procedurality can or
should be attained, especially with respect to modelling languages.
Another approach in this area is to develop languages that will perform
more computations per character of instruction and avoid some of the
tedious details of the control structures and loops of conventional
programming languages. A forerunner in this area is APL which has been

used in many DSS (see the paper by Mattern in this volume).




Page 18

Another unresolved issue concerns the use of quasi-natural,
English-like languages in DSS. Are such languages truly easier to use?
Can they be made precise enough? The answers to these gquestions are not
yet clear (Schneiderman, [1980], Ch. 9). Finally, there is the
possibility of including a parser-generator in the language sub-system.
This would greatly simplify the process of tailoring the user interface
both to the particular problem being addressed and to the needs of the
users. An example of a mathematical programming generator system

incorporating a parser generator is given in Mills et al., [1977].

The idea of the User Interface Subsystem as a separate layer of

software lying between the end-user and the other components of the DSS has
been used in the DAISY system (Buneman et al., [1977]) and AIPS (Advanced
Information Presentation System, Yonke and Greenfield, [1980]). The
objectives are:
(1) to eliminate the need for special applications programming to
generate displays and control the user dialogue;
(2) to provide the wuser with a variety of information channels
('windows') and input-output media including high-level command
languages, 1light-pens and other devices for manipulating visual

displays, voice input and output, conventional reports and graphics.

The design of the user interface system provides a fertile area for
DSS research. How should the user interaction be managed? When should
graphical displays be used? Some guidelines are included in Schneiderman

(1980, Ch. 11.], however further human factors research is required.



Page 19

The System Directory has been shown as a separate component although

it may often be included as part of the DBMS software (Bonczek et al.
[1980)). 1Its function is to give the system some degree of self-knowledge.
The purpose is to help the user learn the system, to reduce the need for a
complete specification of problems, and to prevent misuse of the system.
Outstanding research problems here include the determination of the best
methods for representing knowledge —- a problem traditionally attacked by

artificial intelligence research (see Findler, [1979]).

In summary, the software components of a DSS are quite diverse. No
DSS that we know of contains all of the components discussed above, though
most DSS contain at least some of them. Most of these components can be
found in other computer-based systems as well. The Model Management System
and the potential role of artificial intelligence, however, seem to be
unique to DSS. A further distinctive characteristic of DSS is the attempt
to integrate both human and machine decision making into one system. A
good example is provided by multiple criteria decision making and other
human-aided optimization techniques (see the paper by Hurst & Kohner in

this volume).

III.B. Physiology: DSS Usage Patterns

Many authors have attempted to circumscribe DSS through the definition
of "appropriate" DSS usage patterns. This includes who should use a DSS,
for what problems, at what intervals, through what mechanism, and to what
end. In this section we shall consider each of these gquestions about DSS
use, asking whether any single pattern of use is really more appropriate

for DSS than any other.




Page 20

Much of the DSS literature asserts or at least implies that DSS must
be used by managers, or perhaps even upper level managers. But, is such a
usage pattern a necessary condition for DSS? We conclude not. While,
clearly, many DSS are used by managers, many others exist (or could exist)
where this is not the case. Some of the DSS which have been most widely
studied and written about are, in fact, used by non-managers at least as
much as by managers. The principle users of Gerrity's [1971] Portfolio
Management System while often having the title of manager (e.g., Portfolio
Manager) are not managers in the traditional sense. Rather, they are
investment decision makers, a professional, but not truly managerial role.
GADS (Carlson, Grace and Sutton, [1977]), a DSS generator which has been
used in a number of real decision situations involving geographic
boundaries, has had as users many different "interested parties" to those
decisions; but, certainly, they were not all managers. Alter [1980] also
describes several DSS whose primary users were non-managerial personnel;

e.g., an insurance renewal system used by underwriters.

Note that we are not developing an artificial position by looking at
the "hands-on" user of the system and asking whether he (or she) is a
manager. Rather, we are considering the position of the consumer of DSS
output, the person who directs what analyses the DSS is to perform. In the
GADS case, for example, usage is always through a trained intermediary.
Our focus, however, is on those people who instruct the intermediary; and,
the evidence indicates that these people are quite 1likely to be

non-managers.




Page 21

What do these DSS users have in common if not managerial status? All

are either decision makers or key "stakeholders" in the outcome of a

decision, people who need to understand the implications of decision
alternatives and who want to influence the choice among alternatives.
Thus, rather than using formal role --i.e., managerial status =-- as the
criterion for defining proper DSS users, it 1is more sensible to use
functional role —- i.e., key decision influencers. Perhaps this explains
why relatively few top level managers use DSS and why we should not expect
them to. Though Mintzberg [1971] describes top managers as the ultimate
decision makers for their organizations, in many (if not most) cases this
is a misleading description of their role. Top managers are more often

decision ratifiers than decision makers. That is, their staffs present

them with alternatives, recommendations, and rationales to support the
recommendations. In many cases, the manager then accepts the staff
recommendation and ratifies the decision which was made by the staff.
Since it 1is the staff, not the executive, who goes through the entire

decision process, one should expect the staff to be the DSS user as well.

The early DSS literature clearly defines the types of problems for
which DSS are appropriate as those which are semi-structured, that is not
completely structured at one or more of the problem solving phases --
intelligence, design, or choice (Gorry and Morton, [1971]). Further, it is
suggested that DSS are most appropriate to strategic planning, rather than
control, problems, a theme which has been reiterated recently (Moore and
Chang, [1980]). To what extent should the characteristics of problem
structure and problem level (planning vs. control) constrain the

definition of DSS?




Page 22

Moore and Chang [1980] argue that problem structuredness cannot be
defined in absolute terms, hence they dismiss it as a meaningful concept
for defining DSS. While their premise is no doubt true, we cannot accept
their conclusion. Degree of problem structure, even if it can only be
discussed with reference to particular decision makers, is central to DSS.
At one extreme, if a problem can be completely structured to the
satisfaction of some decision maker, an algorithm can be written to replace
the human decision maker. If no judgement is required -- i.e., the
complete decision process can be specified -- decision support is not an
issue. At the other extreme, if no structure can be brought to the
problem, that is if none of the data requirements nor any of the necesséry
processing at any problem solving stage can be specified, decision support
is impossible. It is only between these extremes that DSS is relevant, and
we agree with Moore and Chang that the location of the extreme points can

vary across decision makers.

What does it mean to say that a problem is semi-structured? In

essence, it means that it is possible to bring some structure to bear on

the problem; that a decision maker is willing to accept a certain data set
or certan processing routines as relevant to problem solution. Indeed, in
a recent paper Alter [1981] points out that a good DSS brings as much
structure as possible to the problem. While we would change this to as

much structure as the system user will accept, we are fundamentally in

agreement with Alter. Thus, rather than defining DSS as systems
appropriate to partially structured problems, they are better defined as
systems applicable to problems which are at 1least partially, but not

completely, structurable.




Page 23

Does it matter to what phase of the problem solving process this
structure is applied? We conclude not. Structure should be brought to
bear on any phase of the process where it is appropriate -- i.e., definable
and acceptable to the decision maker. Indeed, the DSS described in the
literature show examples of support for all phases == intelligence or
problem definition, design of alternative solutions, evaluation of and
choice among the alternatives, as well as monitoring and control of
implementation of the chosen solution. Of course, the type of support will
vary from phase to phase since the nature of the activities varies. And,
some phases are more easily supportable than others; hence, they are more
likely to receive support. In particular, support for the design phase
typically requires much more problem domain knowledge embedded in the
system than is the case for the other stages. Consequently, relatively few
DSS support design. Reitman (in this volume) discusses the application of
artificial intelligence techniques to alternative generation, i.e., the

design phase.

As stated earlier, many authors view DSS as appropriate only to future
oriented, planning problems, not to current control problems. We find this
distinction hard to accept. In what way is the decision process for (1)
planning next year's operations of a complex manufacturing facility
fundamentally different from that for (2) analyzing last month's
sub-standard performance of the facility in order to design a corrective
course of action? Both require completion of the entire intelligence -
design - choice = implementation cycle. Neither is likely to be totally
structurable, nor is either likely to be completely unstructurable. In

other words, each would appear to be a candidate for a DSS.




Page 24

One of the more recent trends in delimiting DSS is to state that they
are systems whose usage patterns will evolve (e.g., Keen [1980], Moore and
Chang [1980], Sprague [1980]). In a sense, this is undoubtedly true.
Usage patterns for all systems, not just DSS, evolve. Additional data
items are placed in an employee master file and the payroll system becomes
a personnel system. New reports are added. On-line inquiry and update are

added. Evolutionary usage is not unique to DSS.

The argument made by those who claim evolutionary usage as a hallmark
of DSS is that use will lead to learning which will lead to new demands on
the system, which will lead to refinement of the system, which will lead to
new usage patterns, and so forth. There seems to be some confusion here
between DSS and novelty. Any system =-- transaction processing, word
processing, DSS, or what have you -- that represents an initial effort in
an area for the user organization is likely to evolve, both in form and in
usage pattern. Perhaps some DSS will evolve more rapidly than other
systems because they start with less structuring and thus have more “room"
for change. This will not necessarily be the case for all DSS. 1In some,
the initial structuring may be all that can be accomplished for quite some
time; thus, the usage pattern may be relatively stable for a protracted
period. In summary, evolutionary usage does not appear to be a
particularly useful way to characterize DSS. It fails to distinguish DSS

from other computer-based systems, and ascribes to all DSS something which

is characteristic only of some.

Several other characteristics of DSS usage patterns are frequently
suggested. These are: (1) voluntary usage (e.g., Lucas [1978]), (2)

interactive usage (e.g., Scott Morton [1971]), and (3) unplanned usage




Page 25

(e.g., Moore & Chang [1980]). In general, DSS users do have greater
discretion about both type and amount of system use than do users of more
conventional computer-based systems, e.g., transaction processing systems.
Two caveats are necessary, however. First, voluntary usage does not
distinguish DSS from other innovative systems, e.g., office automation
systems. And second, what appears to be voluntary usage of a DSS may not
always be so. In some cases, a DSS is the only available source of
information a user needs to do his job. Thus, while use may in theory be

voluntary, some amount of use becomes mandatory.

Next to use in support of semi-structured problems, perhaps the most
frequently mentioned characteristic of DSS is interactive usage. Initially
it was argued that interactive usage was necessary so that the decision
maker could carry on an uninterrupted dialog with the DSS (see e.g., Scott
Morton [1971], Carroll [1967]). History has made it apparent that few
decision makers want to have on-line dialogs with their DSS. Many DSS are
used through an intermediary. In those DSS where the decision maker is the
hands-on user, he will, as 1likely as not, use the system in an
"intermittent"” mode —-- executing a few functions, stepping back (perhaps
for several hours or even days) to study the result, and then returning to
the terminal. Thus, interactiveness is not a good characterization of most
DSS. Moreover, technological advance has resulted in many non-DSS (e.g.,
real-time order entry systems) being converted to an interactive usage

mode.

Perhaps more relevant than interactiveness as a characteristic of DSS
usage is controllability. This includes availability of the system when

the decision maker wants to use it, which often implies an on-line system.




Page 26

But, it goes farther, to what Turner [1980] calls two-way communication.
In systems with two-way communication, the user can react to "intermediate"
processing results, and direct further processing on the basis of these
results. One-way communication, on the other hand, implies that the user
can do 1little to alter the course of processing once it has bequn. This
two-way communication can take place during a single session at a terminal,
over multiple terminal sessions spread out in time, or even with a batch
system. This type of controllability is a far more meaningful way to

characterize DSS than is interactive usage.

Unplanned usage means different things to different people. To some
it means that system outputs cannot be planned in advance. To others it
means that usage is aperiodic and cannot be prescheduled. While both are
characteristic of many DSS -- distinctly more so than they are of
conventional systems —- neither seems a necessary DSS characteristic. Many
decisions recur with substantial regularity in form, in timing, or in both.
In the first case, at least some parts of the output can be prespecified;
indeed, this 1is the point of bringing structure to the decision process.
In the second case, scheduled, periodic usage of the DSS should be
possible. Surely, neither of these circumstances should disqualify a

system as DSS.

One final question about DSS usage patterns concerns purpose of use.
By far, the bulk of the DSS 1literature views the purpose of DSS as
enhancing an individual decision maker's cognitive capabilities (e.g.,
Gerrity [1971], Keen and Hackathorn [1979], Stabell [1977]). This view
ignores the fact that DSS are used in organizational settings, and do not

simply support lone decision makers. Alter [1976] describes the




WHO:

WHAT :

HOW :

Page 27

DSS Usage Patterns

Decision influencers

Partially structurable decisions
Any/all decision process phases

Planning and control

Directly or through intermediary

Evolutionary, but with widely varying time frames
Largely voluntary

Controllable, though not necessarily interactive
Scheduled and unscheduled

Partially prespecified and ad hoc

Cognitive enhancement, communication, and control

Exhibit 3.




Page 28

"offensive" use of DSS as tools to bolster an individual's position on a
contested issue, to provide the "weight of evidence" to enable him to
prevail. Ginzberg [1980] notes that DSS are often used to coordinate
decision making activities among the multiple, interdependent participants
in a decision. In general, DSS are used to exert control or influence,

achieve coordination, as well as enhance cognitive capabilities.

Exhibit 3 summarizes the who, what, how, and why of DSS usage. This
summary makes it clear that very few of the distinctions suggested in the
literature hold up under close analysis. DSS usage patterns are widely
varied. The major commonalities in wusage which help define DSS as
something unique are (1) largely voluntary, (2) controllable (3) use by

decision influencers (4) in partially structurable decisions.

ITI.C. Ontogeny: DSS Development Patterns

Much less has been written about DSS development patterns than about
usage patterns. Still, some authors have proposed certain development
patterns as appropriate to DSS and others as inappropriate. The most
common prescriptions for DSS development are that (1) it must include
normative decision modeling (e.g., Gerrity [1971], Keen and Scott Morton
[1978]), (2) it must be participative (e.g., Schultz and Slevin [1975],
Ginzberg [1978])), and (3) it must be evolutionary (e.g., Keen [1980], Moore
and Chang [1980], Sprague [1980]). Several other issues about DSS
development which should be considered are (1) its focus =-- on an
individual, an organizational role, or a problem, and (2) its orientation

towards change.




Page 29

Normative modeling is the mechanism by which additional structure is
brought to unstructured decision situations. That is, the normative model
specifies how a decision (or part of a decision) should be made. Thus, if
one purpose of DSS is to bring structure to decision making, normative

decision modeling is a necessary part of the DSS development process.

The call for user participation in system development is hardly unique
to DSs. Indeed, this is one of the most commonly heard prescriptions for
developing any type of computer-based system. Since the general case for
participation has been amply discussed elsewhere, we will not repeat it
here. It should be noted, however, that user involvement in DSs
development is perhaps more important than in other, less innovative
computer-based systems. DSS often are less well defined, imply greater
change, and require more training than many other systems. As a result,
user involvement is needed to help resolve design uncertainties and to
prepare the users for the new system. It should be noted that while we
strongly believe user involvement in DSS development is important, we do
not suggest that this should be a criterion for identifying or defining
DSS. 1In some cases, gaining user involvement during DSS development is
difficult -- e.g., because of a large number of users, or because
development is being conducted by an entrepreneur who will later attempt to
sell the system. Nonetheless, such systems can be DSS, and Alter [1978]

has shown that they are often quite successful.

Recent DSS literature has argued strongly the need for evolutionary
design, and Keen [1980] goes as far as saying that an evolutionary design
process is a prerequisite for calling a system a DSS. Moore and Chang

[1980] state well why evolutionary design is often necessary: the user's




Page 30

problem or problem view changes, hence the system must evolve to remain
relevant and useful. However, as stated in the discussion of DSS usage
patterns, not all DSS will experience rapid evolution in usage, while some
non-DSS will. Further, Henderson and Ingraham (in this volume) raise some
serious questions about the efficacy of evolutionary design for DSS.
Rather than requiring an evolutionary design process for DSS, it makes more
sense to require a flexible process. Where substantial uncertainty exists
about user needs or probable system usage patterns, evolutionary design may
well be appropriate. If uncertainty is somewhat less, prototyping may be
the best approach to design. And, where little uncertainty exists and a
fairly stable wusage pattern can be projected, a more traditional,
structured approach to design is appropriate. The key is to match the
design approach to the needs of the situation (see Alter [1981] for

additional comments on this issue).

DSS focus refers to the orientation of the system: towards a
particular individual, an organizational role or set or roles, or a
specific problem or set of problems. As such, it has implications for
system content and usage patterns, but its strongest implications are for
the development process. A DSS oriented towards a particular individual
should be designed with the needs and preferences of that individual in
mind. This includes his/her view of which decision(s) should be supported,
how they should be supported (i.e., what models and data are appropriate or
necessary), and how data should be presented. That 1is, the potential
user's cognitive style and view of his job are key constraints on system
design. DSS oriented towards specific roles are designed with much less
attention to individual user preferences. Rather, they attempt to support

an organizational definition of appropriate decision making behavior for




Page 31

people holding certain positions. Problem focussed DSS are also
organizationally defined, but the concern here is with how certain problems
should be solved, regardless of who is doing the problem solving. The
principal implication of these differences in focus is the source of the
models and data which are wused to design the system. While normative
decision modeling is a part of the development process for any DSS, these
normative models must be tempered by the needs of the specific setting.

The focus of the system determines where we must look to define those

needs.

DSS differ from most conventional computer-based systems in their
orientation towards change. Conventional systems, for the most part,
attempt to avoid change, to maintain the status quo in the organization.
DSS, on the other hand, are change inducing; they attempt to alter the way
people or organizations define and solve problems. As a result,
substantial attention must be paid to defining the organizational changes
which are required and to assuring that these changes in fact occur. This
implies a very different role for the DSS designer from that common to
designers of conventional systems. Xeen and Scott Morton [1978] illustrate
this difference by contrasting two designer behavior patterns -- change
agent vs. technician. The substantial change requirements also imply a
need for more comprehensive training activities than are normally provided

in conventional system development efforts (see Ginzberg [1978]).

Exhibit 4 summarizes these attributes of DSS development. Two
characteristics, normative modeling and change induction, do differentiate
the DSS development process from that for conventional systems. The

requirement of user involvement is similar for DSS and other systems. And,




Page 32

DSS DEVELOPMENT PATTERNS

- Normative decision modeling

User involvement (to the extent possible)

- Flexible design process

Individual, role, or problem focused

Change inducing

Exhibit 4.




Page 33

while both type and focus of the design process are important aspects of
DSS development, both can vary substantially; thus, neither provides a way

to uniquely characterize all DSS.

IV. Summary, Trends, and Directions for Research

This paper has presented a rather broad definition of DSS, one that
does not attempt to limit the range of such systems by requiring that
specific components be included nor that specific usage or development
patterns be followed. We feel this broad definition is appropriate, since
it leads us to focus on the central issue in DSS -- the decision process

and how that process can be supported.

In this final section we shall review some developing trends in
computer technology and examine their likely impacts on DSS. Finally, we
shall identify some of the key directions for research that is needed to

improve the quality of future DSS.

First, we turn to technological trends. Continued advances in all
aspects of hardware, including higher CPU speeds, will help extend the
range of structurable decision situations by making more sophisticated
heuristics and, in particular, artificial intelligence applications
feasible. However, optimal solutions to certain 'difficult' management
science problems are likely to remain computationally infeasible.
Communications technology -- international, national and 1local networks,
distributed data bases, distributed processing, electronic mail,
teleconferencing == will increase the opportunities for coordination of
geographically dispersed activities and for collaborative decision making.

An example of the use of communications capability in a DSS is provided by



Page 34

the Hertz system (see the article by Edelstein and Melnyk in this volume).

The trend towards the automation of office activities brings the
man-machine interface closer to general management. The initial emphasis
seems to be in providing clerical support using form-driven systems (de
Jong, [1980]). This could be followed by systems that support management
by providing an 'electronic file cabinet', meeting schedulers, reminders,
electronic mail and telephone messages, etc. (Wohl, [1980]). From here it
is but a short step to providing the capability for decision support as

defined in this paper.

Another hardware trend is the development of cheap and powerful
microcomputers and their rapid acceptance by both large and small
businesses. This greatly increases the availability of systems that can
support decision making. An example is the popular VISICALC system,
available on both APPLE and TRS-80 microcomputers, which supports
spread-sheet accounting and performs functions similar to DSS financial
planning generators. Finally, we should note the increasing availability
of devices that support the user interface - graphics terminals, voice

recognition, and voice synthesis.

In summary, technological advances will increase the effectiveness of
DSS. Computational power will be more readily available and will migrate
away from the central DP shop towards the 1locus of decision making,
increasing user familiarity with computers and providing more opportunities

for the application of DSS.




Page 35

These hardware advances will become available to DSS developers in the
next few years, but by themselves, they will have little impact on the
quality of DSS. Two equally important areas are advances in software and
in our understanding of decisions and decision making. While the hardware
advances will be made largely outside the DSS community, many of the needed
gains in software capability and decision process understanding will have to

be made by DSS researchers and practitioners.

In the software area, three types of development seem particularly
important. The first is Model Management Systems. These systems are in an
early stage of development, and substantial progress in +this area seems
both necessary and likely. The second is the incorporation of artificial
intelligence techniques in DSS software. These techniques have a number of
potential wuses within DSS, including making the user interface "smarter"
and more flexible, and providing better support for the intelligence and
design phases of problem solving. The final area where software
development is needed is in the Data Base Management System, providing

facilities for managing highly dynamic data bases.

We conclude this paper very near where we began, by turning again to
the decision making process. Our understanding of decisions and decision
making remains quite limited. We need better models of specific decision
situations and taxonomies which explain in a meaningful way the
similarities and differences across decisions. We need measures of
decision effectiveness. Ultimately, our progress in developing better DSS

will be limited by how well we understand the needs of decision makers.




Page 36

REFERENCES

Alter, S.L., "How Effective Managers Use Information Systems,"

Harvard Business Review, Vol. 54, No. 6 (Nov. - Dec., 1976),

Ppo 97-104.

, "A Taxonomy of Decision Support Systems,"™ Sloan Management

Review, Vol. 19, No. 1 (Fall 1977), pp. 39-56.

"Development Patterns for Decision Support Systems," MIS

Quarterly, Vol. 2 , No. 3 (September, 1978), pp. 33-42.

» Decision Support  Systems: Current Practices and

Continuing Challenges, Reading, Massachusetts: Addison-Wesley,

1980.

, "Transforming DSS Jargon into Principles for DSS Success,"

presented to DSS-81, Atlanta, Georgia, June 8-10, 1981.

Berger, P. and F. Edelman, "IRIS: A Transaction-Based DSS for
Human Resources Management," Data Base, Vol. 8, No. 3, (Winter

1977), pp. 22-29.

Blin, J.M., E.A. Stohr and M. Tanniru, "A Structure for

Computer-Aided Corporate Planning," Policy Analysis and

Information Systems, Vol. 2, No. 2 (June, 1978), pp. 111-139.

Bonczek, R.H., C.W. Holsapple and A.B. Whinston, "The Evolving

Roles of Models in Decision Support Systems,™ Decision Sciences,

Vol. 11, No. 2 (1980), pp. 339-356.




10.

1.

12.

13.

14.

15.

Page 37

. and , "Representing Modeling Knowledge with

First Order Predicate Calculus," Operations Research,

(forthcoming) .

Boulden, J.B. and E.S. Buffa, "Corporate Models: On-Line

Real-Time Systems," Harvard Business Review, Vol. 48

(July-August, 1970), pp. 143-154.

Buneman, O.P., H.L. Morgan and M.D. Zisman, "Display Facilities
for DSS Support: The Daisy Approach," Database, Vol. 8, No. 1

(Winter 1977), pp. 46-50.

Carlson, E.D., J. Bennet, G. Giddings and P. Mantrey, "The
Design and Evaluation of an Interactive Geo—-Data Analysis and

Display System," IFIP Congress 74 (1974), pp. 1057-1061.

, B.F. Grace and J.A. Sutton, "Case Studies of End User
Requirements for Interactive Problem-Solving Systems," MIS

Quarterly, Vol. 1, No. 1 (March, 1977), pp. 51-63.

Carroll, D.C., "Implications of On-Line, Real-Time Systems for

Managerial Decision Making," in Science and Technology Series,

Vol. 12, Tarzana, California: American Astronautical Society,

1967, pp. 345-370.

de Jong, S.P. and R.J. Byrd, "Intelligent Forms Creation in the
System for Business Automation (SBA)," IBM Research Report,

RC8599, 1980.




16.

17.

18.

19.

20.

21.

22.

23.

Page 38

Donovan, J.J., "Data Base System Approach to Management Decision

Support,” Transactions on Data Base Systems, Vol. 1, No. 4

(December, 1976), pp. 344-369.

and S.E. Madnick, "Institutional and Ad Hoc Decision
Support Systems and Their Effective Use," Data Base, Vol. 8, No.

3 (Winter 1977), pp. 79-88.

Elam, J.J., J.C. Henderson and L.W. Miller, "Model Management
Systems: An  Approach to Decision Support in Complex

Organizations,"” Proc. Conference on  Informaton Systems,

Philadelphia (December, 1980), pp. 98-110.

EXECUCOM, IFIPS Users Manual, EXECUCOM Systems Corporation,

Austin, Texas, 1979.

Findler, N.V. (ed.), Associative Networks —— The Representation

and Use of Knowledge in Computers, New York: Academic Press,

1979.

Gerrity, T.P., Jr., "Design of Man-Machine Decision Systems: An

Application to Portfolio Management," Sloan Management Review,

Vol. 12, No. 2 (Winter 1971), pp. 59-75.

Ginzberg, M.J., "Redesign of Managerial Tasks: A Requisite for

Successful Design Support Systems," MIS Quarterly, Vol. 2, No. 7

(March, 1978), pp. 39-52.

, "An Organization Contingencies View of Accounting and

Information Systems Implementation," Accounting, Organizations and

Society, Vol. 5, No. 4 (1980), pp. 369-382.




24.

25.

26.

27.

28.

29.

30.

31.

Page 39

Gorry, G.A. and M.S. Scott Morton, "A Framework for Management

Information Systems," Sloan Management Review, Vol. 13, No. 1

(Fall 1971), pp. 55-70.

Haseman, W.D. and M.I. Kellner, "Decision Support Systems:

Their Nature and Structures,"” Modeling and Simulation, Vol. 8

(1977).

Hax, A.C. and H.C. Meal, "Hierarchical Integration of Production

Planning and Scheduling,” in Studies in the Management Sciences,

vol. I, M.A. Geisler (ed.), North-Holland, 1975.

Henderson, J.C. and R.S. Ingraham, "Prototyping for DSS: A
Critical Appraisal," Proceedings of the NYU Symposium on Decision

Support Systems, New York, May 21-22, 1981.

Holsapple, C.W. and Whinston, A.B., "A Decision Support System

for Area-wide Water Quality Planning," Socio—-Economic Planning

Sciences, Vol. 10, (1976).

Keen, P.G.W., "Adaptive Design for Decision Support Systems," Data

Base, Vol. 12, Nos. 1 and 2 (Fall 1980).

and R.D. Hackathorn, "Decision Support Systems and
Personal Computing,”" Working Paper No. 79-01-03, The Wharton

School, 1979.

and M.S. Scott Morton, Decision Support Systems: An
Organizational Perspective, Reading, Massachusetts:

Addison-Wesley, 1978.




32'

33.

34.

35.

36.

37.

38.

39.

Page 40

Little, J.D.C., "Models and Managers: The Concept of A Decision

Calculus," Management Science, Vol. 16, No. 8 (April, 1970), pp.

B466-B485.

Lucas, H.C., Jr., Information Systems Concepts for Management, New

York: McGraw-Hill, 1978.

Mayo, R.B., Corporate Planning and Modeling with SIMPLAN, Reading,

Massachusetts: Addison-Wesley, 1979.

Mills, R.E., R.B. Fetter and R.F. Averill, "A Computer Language

for Mathematical Program Formulation," Decision Sciences, Vol. 8

Mintzberg, H., "Managerial Work: Analysis From Observation,"

Management Science, Vol. 18, No. 2 (October, 1971), pp-

B97-B110.

Moore, J.H. and M.G. Chang, "Design of Decision Support
Systems," Data Base, Vol. 12, Nos. 1 and 2 (Fall 1980), pp-

8-14v

Naylor, T.H. and H. Schauland, "A Survey of Users of Corporate

Planning Models," Management Science, Vol. 22, No. 9 (1976), pp.

927-937.

Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence,

New York: McGraw-Hill, 1971.




40.

41.

42.

43.

44.

45.

46.

47.

Page 41

Schneiderman, B., Software Psychology: Human Factors in Computer

and Information Systems, Cambridge, Massachusetts: Winthrop,

1980.

Schultz, R.L. and D.P. Slevin, "A Program of Research on
Implementation,” in R.L. Schultz and D.P. Slevin (eds.),

Implementing Operations Research/Management Science, New York:

American Elsevier, 1975, pp. 31-52.

Scott Morton, M.S., Management Decision Systems: Computer—-Based

Support for Decision Making, Boston: Division of Research,

Graduate School of Business Administration, Harvard University,

1971.

Sprague, R.H., Jr., "Characteristics of Decision Support Systems,"

Computing Newsletter for Schools of Business, Vol XIII, 1980.

. "A Framework for the Development of Decision Support

Systems," MIS OQuarterly, Vol. 4, No. 4 (December, 1980), pp.

1-26.

and H.J. Watson, "A Decision Support System for Banks,"

OMEGA, Vol. 4 (1976), pp. 657-671.

Stabell, C.B., "On Defining and Improving Decision Making
Effectiveness," Research Paper No. 289, Graduate School of

Business, Stanford University, (July, 1977).

Stohr, E.A. and M. Tanniru, "A Data Base for Operations Research

Models," Policy Analysis and Infomation Systems, Vol. 4, No. 1

(March, 1980), pp. 105-121.




48.

49.

50.

Page 42

Turner, J.A., "Computers in Bank Clerical Functions: Implications
for Productivity and the Quality of Working Life,"™ unpublished

Ph.D. dissertation, Columbia University, 1980.

Wohl, A.D., "Replacing the Pad and Pencil," Datamation, Vol. 26,

No. 6 (June, 1980), pp. 169-176.

Yonke, M.D. and N.R. Greenfield, "An Information Presentation
System for Decision Makers," Data Base, Vol. 12, Nos. 1 and 2

(Fall 1980), pp. 26-32.




